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a b s t r a c t

Human Activity Recognition (HAR) is aimed at identifying current subject task performed by a person as
a result of analyzing data from wearable sensors. HAR is a very challenging task that has been applied in
different areas such as rehabilitation and localization. During the past ten years, plenty of models,
number of sensors and sensor placements, and feature transformations have been reported for this task.
From this bunch of previous ideas, what seems to be clear is that the very specific applications drive to
the selection of the best choices for each case.

Present research is focused on early diagnosis of stroke, what involves reducing the feature space of
gathered data and subsequent HAR, among other tasks. In this study, an Information Correlation
Coefficient (ICC) analysis was carried out followed by a wrapper Feature Selection (FS) method on the
reduced input space. Additionally, a novel HAR method is proposed for this specific problem of stroke
early diagnosing, comprising an adaptation of the well-known Genetic Fuzzy Finite State Machine
(GFFSM) method.

To the best of the author's knowledge, this is the very first analysis of the feature space concerning all
the previously published feature transformations on raw acceleration data. The main contributions of
this study are the optimization of the sample rate, selection of the best feature subset, and learning of a
suitable HAR method based on GFFSM to be applied to the HAR problem.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

This research aims at developing a solution for the early diagnosis of
stroke and the rehabilitation of elder people after a disruptive event: an
injury due to a falling, a seizure onset, etc. In this context, only a small
subset of activities are to be identified among those that a human
being can usually do and hence, the recognition of those activities is
simplified. On the other hand, activity recognition devices help to
improve the mobility of elder people during rehabilitation, so technol-
ogy is enhancing the quality of life for both elder and injured people.

Every human being performs different activities during the day
and Human Activity Recognition (HAR) targets their identification.
Though walking recognition is nowadays a clear-cut task [1], the
recognition of other activities is not. It is difficult due to the fact
that there are many different activities that a person may perform
and some of them could even co-occur at the same time (talking to
another person or eating a sandwich while walking, reading and

being seated). Additionally, a wide spread of feature transforma-
tions and HAR methods have been applied up to now [2–4]. Many
techniques of data gathering, including video-images, are being
used but tridimensional accelerometers are the data sources for
the majority of previous HAR studies.

The main problem to be solved in this research is the early
diagnosis of stroke onsets. During such episodes, the upper limbs
are the parts of the body that best reflect the differences regarding
normal behavior. According to this idea, two triaxial acceler-
ometers are usually placed on the subject's wrists. The hypothesis
is that with these sensors we would be able to recognize an onset
due to the differences in the movement patterns. However, these
movement patterns will depend on the task that the subject is
carrying out. Therefore, early diagnosis of stroke also includes
HAR. Interesting enough to mention, the activities to be identified
also depends on the focused population; generally speaking, the
older you are the lower the amount of activities you perform
during everyday life. Additionally, the quality of the movement
may be rather different depending on the age of people; the
younger the faster. Thus, the target population define the different
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activities that may be excluded for recognition and the age reduces
the amount of movement; movement for the elderly is lower than
that for younger people while performing the same activities.

A light wearable device might be enough for the data gathering,
pre-processing and analyzing provided the number of activities to be
recognize is kept small. Previous studies have analyzed the window
size for pre-processing the continuous data flow coming from data
sources [5]. Once the data is properly pre-processed, they must be
analyzed.

To do so, one of the most interesting HAR techniques that can
be deployed in embedded devices is the Genetic Fuzzy Finite State
Machine (GFFSM) [6], which also handles expert knowledge with
high accuracy. To this end, this study is focused on enhancing the
HAR by using 3DACC sensors in wearable devices. The aim of this
research is two-fold: on the one hand, the selection of the 3DACC
transformations is analyzed and a feature subset is chosen; on the
other hand, the improvements on the GFFSM model obtained due
to the reduced feature subset are explored. The study also makes
use of this GFFSM model for HAR, but additionally it tackles
several issues identified as relevant in the HAR literature, such as
those concerning the diversity of transformations from the accel-
eration raw data and how to reduce the dimensionality and the
different methods for cross validation used so far.

The remainder of the present paper is organized as follows.
Next section deals with the challenging task of HAR, including an
overview of the input feature domain, as well as an in-depth
review of the HAR literature. Section 3 introduces the proposed
method and its different stages: a two-step Feature Selection (FS)
and a HAR modeling by means of the GFFSM. Subsequently,
Section 4 is devoted to evaluate and discuss the experimentation
carried out. Finally the main conclusions from the obtained results
as well as the future work are drawn in Section 5.

2. A review of human activity recognition

After several years of study, a wide spectrum of features,
calculated as transformations from raw acceleration data, have
been proposed for HAR. A set of features is chosen for each one of
the applied methods according to different criteria. This section
describes the main features from those that have been proposed in
the literature up to now; afterwards, the previous work on HAR is
analyzed and compared.

2.1. From acceleration data to the input feature space

Nowadays, the most common sensor applied in HAR is the
triaxial accelerometer. Data gathered from this type of sensor,
known as raw data (RD, aix, aiy and ai

z; ai;jA fx;y;zg for the sake of
brevity), should be decomposed in the gravity acceleration (G) –

that is due to each gravity, gix, giy and gi
z or gi;jA x;y;z� and the BA –

which is due to the human movement, bix, biy and bi
z or bi;jAx;y;z� .

The ability of BA to discriminate among different human gestures
is documented in [7]. Nevertheless, the literature includes the use
of a wide variety of transformations (the most interesting ones are
described below), where w stands for the window size – if
needed–, and sub-indexes iAf1;…;Ng and jAfx; y; zg stand for
the number of the sample and the axis, respectively. It is worth
mentioning that all these features computed on each one of the
possible signals (RD, BA, and G) would generate a feature space
with more than 190 features, whose processing and analysis are
very challenging tasks indeed.

The following features have been previously applied to HAR:

1. The mean, deviation and higher momentum statistics values for
the RD [8] or for the BA [9,7], and the RD mean absolute

deviation MADj ¼ 1
w

Pw
i ¼ 1 ai;j�mj

�� �� [10,8], wheremj is the mean
value of ai;j.

2. The Root Mean Square RMSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
w

Pw
i ¼ 1 a2i;j

��� ���
r

[10].

3. The sum of the absolute values of the BA [11] sBAi ¼
1
w

Piþw
t ¼ i

P
jA fx;y;zg bt;j

�� ��, the vibration of the sensor (Δ) [9]

Δi ¼ 1
w

Piþw
t ¼ i

P
jA fx;y;zga

2
t;j�g2t;j and the tilt of the body

(tilti ¼ 1
w

Piþw
t ¼ i ayi

�� ��þ azi
�� ��[6]. The two former transformations

were designed to detect whether the sensor registers no
movement at all, as fixed to an steady object, while the latter
is used whenever the sensor axes match with the body axes.

4. The Signal Magnitude Area SMA¼ 1
w �Pw

i ¼ 1ð bxi
�� ��þ byi

�� ��þ bzi
�� ��Þ

[9,12,7] discriminating between gravity acceleration and BA.
5. The Amount of Movement AMi ¼

P
v ¼ fx;y;zg maxiþw

t ¼ iþ1ðb
v
t Þ�

���
miniþw

t ¼ iþ1ðbvt Þj [6] calculated as the maximum difference
between the values of BA within the sliding window.

6. The Delta coefficients for estimating the first order time
derivative of each of the G signal components [12]:
Δgfx;y;zgt ¼ PD

d ¼ �D d � gfx;y;zgtþd =
PD

d ¼ �D d
2, where the shift D is

parameterized to the algorithms and gfx;y;zgt stands for each of
the three axis G components.

7. The Shifted Delta Coefficients (SDC) for estimating the first
order time derivative of the BA signal components in the

vicinity of the current timestamp [12]: Δbfx;y;zgtþ i�P ¼PD

d ¼ �D
d�bfx;y;zg

t þ i�P þ dPD

d ¼ �D
d2

, where bfx;y;zgt stands for each one of the three

axis BA components, N is the number of base features from
which they are calculated, D stands for the same as in the delta
calculations, P is the distance between samples and K is the
number of samples taken.

8. The Average Energy (AE) [13,9,7] calculated as the sum of the
squared discrete FFT component magnitudes of the signal in a
window of a fixed size. This features allows to discriminate
between static and dynamic activities. Although it is calculated
for each axis, the aggregation or the average over the three
axes is often used [7].

9. The correlation between axes [13] calculated for each pair of
axes as the ratio of the covariance and the product of the
standard deviations. This feature is useful to discriminate one
dimensional activities if the sensor is properly placed. As
stated in [7], this feature allows the discrimination between
walking and climbing stairs.

10. The Intensity of the Movement (InMo) [14], which is the mean
first derivative of the raw acceleration data, InMovA fx;y;zg

t ¼
1
w

Pw�1
i ¼ 0 � avt� i�avt� i�1

�� ��=Δxt . Δxt represents the time between
samples, which can be ignored if the sampling rate is kept
constant. The window size is given by the value of w.

11. The Time Between Peaks (TBP) [8], time in milliseconds
between peaks in the sinusoidal waves associated with the
frequency response of most activities (for each axis).

12. The Binned Distribution [7,8] as stated by the authors, this
measure is used with sliding windows of size w. For each
window the range should be calculated as maximum-minimium;
then, the range is divided into 10 equal size bins; finally, it is
recorded what fraction of the w values falls within each of the
bins. This approach is named as Relative Binned Distribution
(RBD). In this study, it is proposed the Absolute Binned Distribu-
tion (ABD) that is calculated using the lower and upper accel-
eration values as the range to be divided in bins.

In many of the solutions, sliding windows (with or without
shifting) are proposed and the typical window size converges to
the samples within a period of 2 s. Features are typically normal-
ized to 0-mean 1-standard deviation and/or scaled to the interval
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[0, 1] before further preprocessing. Using frequency-derived fea-
tures, employing FFT or similar ones, over long time-windows
have been found more suitable for long duration and quasi-
periodic signals like walking, cycling or teeth brushing. Otherwise,
when classifying shorter duration and non-periodic activities,
transitions or a short sequence of steps, then the time-domain
representation has been found as a better solution [12].

2.2. Previous work on HAR

The characterization of human movement, specially while
walking, is well documented in the literature [1]. Nevertheless,
disruptive events, such as injury falling, strongly modifies the way
patients move [15]. Particularly the patient's gait is severely
affected. Due to this reason, and also because walking is one of
the most sensible activities in human dependence, the gait and the
patient kinematics have been broadly studied in the literature so
far [15,16].

Most of the previous studies are based on the analysis of video-
images of the patient gait or movements through well-known
mechanical methods [16–19]. These studies are mainly focused on
the rehabilitation of the patient and aimed at developing new
therapeutical training techniques, providing interesting conclu-
sions, and determining the relevant variables for characterizing
the gait pattern.

Since the appearance of low cost and high performance accel-
erometers in the market, the recognition of human activity got the
focus. Plenty of studies have analyzed the performance of this type of
devices for stroke rehabilitation evaluation [20] and activity level
measuring [21]. Some of the studies reported the used of different
sensors and techniques, like accelerometers and electromyography
[22] or accelerometers and electrocardiograph sensors [3]. One of
those studies presented the combination of accelerometers and
pressure gauges within the shoes for discriminating between three
activities (sitting, standing and walking) of stroke patients [23]. In
this study, Support Vector Machines (SVM) were proposed for
classification of the activity, and rates of 99% of recall and 76.9% of
precision were achieved. Though the classification performance is
relatively good, it is worth noting that this approach can only
discriminate between normal and abnormal walking as the rest of
the activities are mainly related to the upper limbs.

There are also several studies concerning the use of acceler-
ometers as the only source of information for HAR. [24] was one of
the very first studies in HAR using accelerometers, in which
several feature extraction methods were applied before modeling
the classifiers of the different activities. Three different classifiers
were applied: for the raw accelerometer data from the two
accelerometers – one on each hip – for the subsets of Principal
Component Analysis (PCA) and Independent Component Analysis.
In each case, the most relevant feature subset were normalized to
0-mean and 1-standard deviation; an sliding window of 256
samples with 64 sample shift was used. Afterwards, wavelet
transformations were carried out over the windowed data. A
Multi-Layer Perceptron was trained with back propagation for
the classification of four different activities: Stop, Walking, Walk-
ing Upstairs, Walking Downstairs. The classification error was used
for evaluation each model, and the back propagation weight
updated was based in the momentum.

A well known contribution to the field of HAR was proposed in
[25]. In that study, the authors proposed the use of the divide and
conquer strategy, detecting first static postures from dynamic activ-
ities. Then, specific decision trees were generated for each case,
either static or dynamic. The framework was structured around a
binary decision tree in which movements were divided into classes
and subclasses at different hierarchical levels. General distinctions
between movements were applied in the top levels, and successively

more detailed subclassifications were made in the lower levels of the
tree. This framework was used to develop a classifier to identify basic
movements from the signals obtained from a single, waist-mounted
triaxial accelerometer. Nevertheless, the main drawback of these
methods is the computational complexity of the calculations that
prevents them from being deployed in embedded devices.

An extension of the former study was presented in [26], where
a sensor in the hip was used. The movements were first divided
into activity (dynamic activities) and rest (static activities) using
the SMA. Then, according to the postural orientation, it was
proposed to decide the current activity and orientation. In spite
of the obtained results from this approach and its low complexity,
the main drawback of this study is that apart from falling, no other
abnormal behavior can be detected using the sensor in the hip.

In [12] a rule and heuristic-based decision system is proposed
for discrimination between the states of lying, standing, walking,
as well as with the transitions between states. The transitions
rules are learned through a Gaussian mixture model. This work is
very interesting in the sense that it keeps track of the current state,
that is, the cHA. Nevertheless, as far as only one sensor in the hip is
used, this is not valid for the problem faced in present study.
Moreover, the tilt of the body as well as the orientation of the body
are rather different for present study.

In [2], Hidden Markov Models are proposed for automatic
segmentation and classification of HAR. The underlying idea is
that determining the activity that the current TS belongs to is no
longer needed; only the number of activities to be identified are
needed. To show the results up to 5 sensors, 4 triaxial acceler-
ometers and one gyroscope were distributed among the chest,
upper arms, ankle and thigh, respectively. The promising results in
auto segmentation lacks in requiring a relatively high number of
sensors. Similarly, a genetic algorithm driving the learning of a
Fuzzy Finite State Machine was proposed in [6], using a sensor
placed in the central part of the body. This study, which was called
GFFSM, was found very suitable and will be further explained in
the next subsection.

A very interesting idea is shown in [4], where a sparse
representation of the input feature domain is proposed. This
representation uses TS windows as a set of relevant motifs for
each activity, each motif is the input feature with the information
from the TS window. Whenever a new TS window is to be
classified, the most suitable set of motifs is determined and thus
the corresponding activity is proposed. Though this approach is
conceptually rather novel and interesting, the main drawback of
this method is again the computational cost that makes this
method unfeasible for being introduced in embedded devices.

The use of triaxial accelerometers on the wrist is documented
in [10,7]. In the former approach, up to 24 features were analyzed
using dynamic Linear Discriminant Analysis; the best ranked
features in each step drive the basis function classifier update to
an iterative process that ends when a suitable error rate is
obtained. Interestingly, this approach allows to evolve the activity
set to detect, though the activity set applied in the experimenta-
tion is not described. The study presented in [7] details the general
procedure for obtaining the set of features and, in this case, the
neural classifier. Interestingly, this study proposed the common
PCA for choosing the best feature subset, though they proposed
the feature extraction instead of FS.

Currently, there is a trend to introduce HAR as an add-on to
smartphones as far as the deployment cost is highly reduced
[14,8,27]. In [14], three sensors were placed in the dominant wrist,
hip and ankle; up to six different activities were studied: resting,
typing, gesticulating, walking, running, and cycling. To classify the
activity, two well known methods were analyzed: a C4.5 tree and a
Feed-forward Neural Network, although only the latter was found
useful. Similarly, but with a different feature subset, [8] proposed
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the time between peaks and a discretization of the sliding window
to feed a J48 decision tree. Finally, a discussion about the benefits
of using the data from sensors included in smartphones is
presented in [27].

Present study focuses on choosing the best feature subset for a
specific HAR model. The FS is a two-step method, an initial
filtering one followed by a wrapper FS algorithm. After that, the
final HAR model is learned.

3. Proposed soft computing method for HAR

This section introduces the lightweight HAR method proposed
in this study to differentiate a reduced set of activities. To do so,
two small wearable sensors are placed on the wrists of the person
under analysis, as previously described. Once these data are
gathered, a two-stage method is applied, as depicted in Fig. 1.

The well-known GFFSM HAR method is applied in present study
due to its easy implementation in embedded devices. Nevertheless, this
method must be adapted to work in unison with the sensors on the
wrists because the original approach features does not reflects the
current sensor placement. In addition, the problem of choosing the
most suitable raw acceleration transformations is still present with the
aforementioned adaptation. Consequently, using sensors located on the
wrists introduces the problem of selecting which are the most suitable
data transformations for the GFFSM performance. Therefore, the idea
underneath is based on reducing the dimensionality of the input
domain by means of a two-stage FS, a former filtering stage based on
ICC and a latter stage using a wrapper FS algorithm.

As it is known, a wrapper FS method chooses the feature subset
with the best fitness value. To evaluate each feature subset, the FS
method learns a certain classifier or model and the chosen error
measure is assigned as the fitness value of the feature subset. Thus,
when the learning is complete, a wrapper FS method produces the
feature subset and the model itself. Nevertheless, in most cases,
the learning of the model during the feature selection is relaxed to
avoid high computational costs. Therefore, once finished and the
best feature subset is chosen, then the process ends with a full
learning of the model.

In this study it is adapted a well-known hybridized method:
the Steady-state Genetic Algorithm (SSGA) [28]. In this method, a
Genetic Algorithm (GA) evolves the feature subset while, for
evaluating the feature subset, a GFFSM is learnt for the feature
subset with a relaxed set of parameters. This GA is a steady-state
approach with a percentage of elite individuals defined a-priori.
After the FS, the GFFSM is learnt with the complete parameter set
for the best feature subset found so far. The whole approach is
presented in Fig. 1.

Up to 150 features can be generated by the different transfor-
mations introduced in Section 2.1. Due to this huge amount of
features, using the wrapper FS previously detailed would lead to
high computational costs. Therefore, a filtering FS is deployed to
reduce the dimensionality to the 20 most promising features
before the wrapper FS is applied. This former stage will evaluate
each feature with the Information Correlation Coefficient (ICC),
and the most interesting features will be selected for the wrapper
FS stage.

In the following subsections the stages of the proposed method
are comprehensively described. Firstly, the GFFSM stage is pre-
sented and its adaptation is detailed. Then, the filtering and
wrapper FS stages are described.

3.1. Genetic fuzzy finite state machine stage

In this study, the solution proposed by [6] is applied; conse-
quently, this subsection is devoted to briefly describing this

approach. The main contribution presented in [6] is a GA driving
a Pittsburg approach of the Fuzzy Finite State Machine for
detecting human activity GFFSM¼ fQ ;U; f ;Y ; gg, running the rules
and learning the partitions. The rules to be tuned are extracted
from a predefined Finite State Machine, which is depicted in Fig. 2,
considering only a set of three states {Seated, Upright, Walking}.

This approach makes use of one triaxial accelerometer placed
in the center of the back, and three input variables are used: the
dorso-ventral raw acceleration, the amount of movement and the
tilt of the body. For each input variable, three linguistic labels
(ni ¼ 3; 8 i) with Ruspini trapezoid membership functions are used,
those niþ1 parameters are needed to be learnt for each input
variable. A GA evolves the partitions and the rules in a Pittsburg
style as 72 binary genes encode part for the rules; 12 real-coded
genes for the membership function parameters. The BLX-α cross-
over operator was proposed as focused on only one antecedent of
chosen rules.

The fitness function is the mean absolute error (MAE), calcu-
lated as MAE¼ 1

N
1
T

PN
i ¼ 1

PT
j ¼ 0 absðsi½j��sni ½j�Þ, where T is the num-

ber of examples in the data set, si½t� and sni ½t� are the degree of
activation and the expected degree of activation, respectively, of
state qi at time t¼ j. The GA is completely defined with a binary
tournament, generational replacement with elitism, two-point
crossover for the rule base and BLX-α crossover for the real-
coded genes that is applied twice for obtaining two new pair of
chromosomes and classical bitwise mutation for the rule base.
Additionally, uniform mutation is applied for the real-coded part.
Termination occurs whenever the first of the following conditions

Fig. 1. The two-step FS method. After data gathering and pre-processing, the input
feature domain is calculated. The FS comprises an ICC step where the most
representative features are determined and a GFFSM-based wrapper-like FS
method. The final GFFSM model is obtained afterwards, using the best feature
subset.

Fig. 2. The Fuzzy Finite State Machine proposed for this study. The allowed
transitions defined the structure and consequents of the fuzzy rules, while the
final antecedents are tuned with the learning process.
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applies: MAE takes 0 value, the expected number of generations is
reached or there are a number of generations without changes in
MAE. The remaining genetic parameters are: 100 individuals and
300 generations.

Nevertheless, this approach can not be directly applied in the
current study as far as the sensors are placed on the wrists;
therefore, the amount of movement, the dorso-ventral accelera-
tion, and the tilt of the body, though easy to compute, looses its
meaning.

3.2. Filtering feature selection stage

Filtering is usually employed when a big amount of features are
available and there is a suitable measurement for ranking them.
Nevertheless, when talking about HAR, rather few researches have
been reported with this scope. A preliminary study of the most
interesting features using the ICC measurement over the whole
data set was carried out in [29]. However, in this study, an analysis
using the ICC as the ranking measurement is defined but for
different cross validation (CV) schemes.

Firstly, a standard experiment should be defined, and several
runs of this experiment should be done; each run will provide us
with a time series (TS) data set.

Secondly, three different feature datasets are generated with
the available TS data sets: (i) DATA1, a global one including all the
data gathered, (ii) DATA2, a 5�2 CV style grouping of TS, and
(iii) DATA3, a 10-fold CV style grouping of TS. Both DATA2 and
DATA3 comprise up to 10 different data sets including data from
different TS.

The main reason for these groupings is to evaluate how the ICC
is biased due to the different schemes and thus, when high
differences are found, it would mean that ICC is seriously biased
and perhaps it might not be the best measurement for FS. In the
case of DATA 1, the 20 best-ranked features are chosen for the
wrapper FS. In the cases of DATA2 and DATA3, the 20 best-ranked
features are selected from each fold and the union of all these folds
generates the outcome for the next FS stage. Interestingly enough,
the filtering stage will end up with three features subsets for
further processing in the next FS stage.

3.3. Wrapper feature selection stage

The well-known SSGA FS method [30] is adapted to drive the
learning of the GFFSM and also the selection of the best feature
subset [29]. Thus, a GA will evolve the population of individuals,
each individual representing a subset of three features from the
input space. The parameters for the GA devoted to FS are 30
generations with 26 individuals, using the one-point crossover
operator with probability 0.8. The mutation operator is also
flipping one of the three-selected features among the available
candidates; the mutation probability is set to 0.02. The fitness of
each of the individuals is calculated as the MAE of the GFFSM
model learnt from the feature subset the individual chooses.

Learning the GFFSM within the wrapper is relaxed to bound the
computational costs: in this case, the GA runs 50 generations with
76 individuals, the α-crossover operator probability is set to 0.8 for
an α value of 0.3. The mutation operator is the classical bitwise
mutation for the rule base and the uniform mutation for the real-
coded part; the mutation probability is set to 0.02.

The following GA early stop conditions are defined: (i) the
convergence measured as 25 generations without changes in the
MAE of the best individual, and (ii) reaching a MAE fitness lower
than 0.02 at any generation.

Finally, the GFFSM is obtained for each of the three different
feature subsets, one for each case: DATA1, DATA2, and DATA3. The
value for the GFFSM parameter subset is that proposed in the
original research: 100 individuals, 300 generations and the same
crossover and mutation operators and probabilities. This final
GFFSM model is referred for comparison purposes as WRAPPER.
Fig. 3 illustrates the whole feature selection stage and its outcome.

4. Evaluation and experimentation

As previously stated, this study focuses on early stroke diag-
nosing, thus the HAR analysis is always concerned with the typical
activities of the focused population, namely WALKING, STANDING
and RESTING. The experimental validation performed in this study
is aimed at evaluating which one of the proposed alternatives is
the best for the recognition of these three activities. To do so, three
different datasets have been generated and analyzed. The obtained
results are described in this section.

In order to gather the data, the subject under analysis is
provided with two bracelets Fig. 4(b) each one of them with a
triaxial accelerometer – the ADXL345 sensor has been used in
present study – with a sampling frequency of 16 Hz. Ten runs of a
typical rehabilitation test Fig. 4(a) will be carried out and all the
data will be manually segmented and classified according to the
activity the subject is owe to do. This segmentation is performed
in a similar way to that stated in the original GFFSM study [6]:
known states are assigned with total certainty, while transitions
are assigned with imprecise observations, e.g., 0.7/SEATEDþ0.3/
STANDING.

To obtain results from the bracelets the analyzed subject stayed
seated for a period of time T1, then stood up and stayed in that

Fig. 3. The proposed FS procedure: the overall outcome includes a feature subset
and the corresponding GFFSM model.
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position for a period of time T2, then started walking following a
10 m straight line on the floor and went back to the original
standing up location, stayed stand up for T2 seconds and finally
seated down and stayed resting for T1.

The rehabilitation test carried out involved the following steps (see
right side of Fig. 3): the subject should be seated during a time T1, then
should stand up and stay on that position during T2. Afterwards, the
subject will start walking following a straight line on the floor (10m)
and go back. The subject shall stand up during T2 and, finally, keep
seated during T1. T1 and T2 have been set to 60 s.

The experimentation, thus, will include (i) the data gathering as
explained before, (ii) computing the transformations, (iii) perform-
ing the FS: the former filtering step followed by the wrapper FS
with the relaxed GFFSM, (iv) learning the adapted GFFSM as
explained in Section 3.1, and (v) learning the GFFSM with the best
feature subset and with the complete GFFSM parameter set. A
flowchart of the experimentation for each of the arrangements
(DATA1, DATA2 and DATA3) is depicted in Fig. 5.

Two cross validation schemes (5�2 and 10f) are used to study
how the features help in each case for obtaining a suitable model.
In case that for certain data arrangement the best model is found
for both CV schemes, it can be said that arrangement is clearly the
best one. Next subsections deliver the results obtained from each
one of the stages: FS and GFFSM learning.

4.1. Feature selection results

As stated above, the DATA1 processing generates a reduced
space containing the 20 best-ranked features. For the remaining
arrangements, it would depend of the features chosen from each
fold. In this case, 22 and 31 features were finally chosen from
DATA2 and DATA3, correspondingly (Fig. 6).

The feature subset obtained for each arrangement after the
filter and the wrapper FS steps are depicted in Table 1.

4.2. GFFSM alternatives for HAR modeling

Once the best feature subset for each arrangement has been
found, its time for modeling. Interested reader should recall that
for each feature subset obtained from FS on one of the data
arrangements – a GFFSM model is to be obtained using a
combination of window size and cross validation as shown
in Fig. 5.

Table 2 includes the results for all the possible combinations,
while the boxplots with the MAE for the best individual obtained
for each fold can be seen in Fig. 7, for a window size of 10 samples.

The feature subset obtained from the arrangement DATA3
performs better in both 5�2 and 10f CV. Therefore, it can be

Fig. 4. (a) The rehabilitation test carried out with different subjects movements. (b) The set of bracelets used in this experimentation, one for each wrist.

Fig. 5. Flowchart of the experimentation for each DATA arrangement. Once
prepared the DATAi, FS takes place outcoming with the feature subset. Conse-
quently, the original data set for these features is prepared and two cross validation
schemes are employed: 5�2 and 10f CV. For each fold, a GFFSM is learnt and
results from training and testing are obtained. TRN and TST stands for the
corresponding folds used in training and test; consequently, with the TRN/TST
data sets the train/test results are obtained. These folds are generated according to
the cross validation scheme.

S. González et al. / Neurocomputing 167 (2015) 52–60 57



concluded that this feature subset is the best candidate for the
final application.

In Table 3, the statistical results for the three different GFFSM
releases are depicted. The model obtained after the FS stage really
outperforms the rest of candidates; consequently, the FS selection
stage and the subsequence analysis is found valid. With these
results we can conclude that the HAR recognition stage for an
early stroke diagnosis tool is not conclude but satisfactory, thus its
time to focus on alarm generation. Further HAR studies should be
focused on learning the GFFSM rules as well as the partitions,
which might reduce the number of rules and also the computa-
tional resources needed for integrating these models in embedded
devices.

5. Conclusions

This study presents a Soft Computing method for modeling and
validation in HAR, focusing on three different activities: being
seated, standing up and walking. The main objective of this study
is choosing the best combination of parameters to get the subset of
features that best describes this HAR problem while the activity
conditions are modeled at the same time. So, this study proposes a
FS method to reduce the space dimensionality of features that
differs from previous work.

In keeping with this idea, a Hybrid Artificial Intelligent Method
has been designed an applied. In a first stage, a filter FS is deployed
to reduce the dimensionality by evaluating each feature with ICC.
Then, the most important features are selected for the wrapper
stage. Since the features are chosen, a wrapper FS method using
GFFSM is the responsible of searching for the best feature subset
associated with each data set and for modeling the human activity.
Finally, different schemes are used for validation of the best
parameters for features subset and the model from the best data
set with different runs.

From the obtained results some conclusions are drawn. Firstly,
the use of a cross validation scheme for feature selection might
improve the overall outcome. Perhaps a voting scheme may also
improve the performance of the feature filtering stage. Secondly,
the window size has been found problem specific, thus the
different studies in the literature should have made such analysis
without reporting it. Finally, it has been found a proper feature
subset and the corresponding GFFSM model for HAR, which is to
be deployed in further research concerning early stroke diagnosis.

Future work envisages the implementation of more stages in
the Finite State Machine, easing the experts reutilization of the
presented approach. Further research would be done to include
others styles to tackle the learning for the fuzzy rule base of the
GFFSM instead of predefining it.
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