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Abstract

This article presents a study of the approaches in the state-of-the-art in the field of pathological speech signal

analysis with a special focus on parametrization techniques. It provides a description of 92 speech features

where some of them are already widely used in this field of science and some of them have not been tried yet

(they come from different areas of speech signal processing like speech recognition or coding). As an original

contribution, this work introduces 36 completely new pathological voice measures based on modulation

spectra, inferior colliculus coefficients, bicepstrum, sample and approximate entropy and empirical mode

decomposition. The significance of these features was tested on 3 (English, Spanish and Czech) pathological

voice databases with respect to classification accuracy, sensitivity and specificity. To our best knowledge the

introduced approach based on complex feature extraction and robust testing outperformed all works that

have been published already in this field. The results (accuracy, sensitivity and specificity equal to 100.0±

0.0 %) are discussable in the case of Massachusetts Eye and Ear Infirmary (MEEI) database because of its

limitation related to a length of sustained vowels, however in the case of Pŕıncipe de Asturias (PdA) Hospital

in Alcalá de Henares of Madrid database we made improvements in classification accuracy (82.1 ± 3.3 %)

and specificity (83.8 ± 5.1 %) when considering a single-classifier approach. Hopefully, large improvements

may be achieved in the case of Czech Parkinsonian Speech Database (PARCZ), which are discussed in

this work as well. All the features introduced in this work were identified by Mann-Whitney U test as

significant (p < 0.05) when processing at least one of the mentioned databases. The largest discriminative

power from these proposed features has a cepstral peak prominence extracted from the first intrinsic mode

function (p = 6.9443 · 10−32) which means, that among all newly designed features those that quantify
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especially hoarseness or breathiness are good candidates for pathological speech identification. The article

also mentions some ideas for the future work in the field of pathological speech signal analysis that can be

valuable especially under the clinical point of view.

Keywords: pathological speech, disordered voice, dysarthria, speech processing, bicepstrum, non-linear

dynamic features

1. Introduction

Voice Pathology description and characterization has always demanded attention from the physiological

and medical fields [1], as well as from the voice function point of view [2]. The term voice is described

by [3] both in a broad and a narrow sense. In the broad sense voice may be taken as synonymous of speech,

therefore terms as Voice over IP (VoIP) can be found in the literature and media with the meaning of

speech data on internet. In the narrow sense voice refers to the vibration of the vocal folds. Speech sounds

resulting from the interaction of this vibration with the Oro-Naso-Pharyngeal Tract (ONFT) are referred to,

as voiced. Speech sounds produced by turbulent flow within the ONFT are termed voiceless. Phonation is

the recommended term to refer to vocal fold vibration. A speaker showing an anomalous vocal fold vibration

pattern is referred as dysphonic, and aphonic if there is no vocal fold vibration at all. If no anomalies are

present the speaker is referred as normophonic.

Dysphonic voice is a perceptual and subjective term associated to Voice Pathology. Dysphonia is the

perceptual quality of voice signaling that something wrong is happening in the phonation organs (mainly

the larynx and its associated structures). Voice Pathologies and Dysphonic Voice are thus intrinsically

related. The classification of Voice Pathologies or Disorders is described in [3] as tissue infection (e. g.

laryngitis, bronchitis, croup,. . . ), systemic changes (e. g. dehydratation, pharmacological and drug effects,

hormonal changes,. . . ), mechanical stress (e. g. vocal nodules, polyps, ulcers, granulomae, laryngocele, hem-

orrhage,. . . ), surface irritation (e. g. laryngitis, leukoplakia, gastroesophageal reflux,. . . ), tissue changes (e. g.

laryngeal carcinoma, keratosis, papillomas, cysts,. . . ), neurological and muscular changes (e. g. bilateral and

unilateral vocal fold paralysis, Parkinson’s Disease (PD), Amyotrophic Lateral Sclerosis (ALS), myotonic

dystrophy, Huntington’s Chorea, myasthenia gravis,. . . ), and abnormal muscle patterns (e. g. conversion

aphonia or dysphonia, spasmodic dysphonia, mutational dysphonia, ventricular phonation,. . . ). In [4] a de-

scription of vocal pathologies can be found. A last important group of neurological diseases which leave

a correlate in voice and speech is that of cognitive origin, Alzheimer’s Disease (AD) being the most relevant
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one for their impact in well-being and in aging specialized-attention demand. Some references on the influ-

ence of AD in speech and voice can be found in [5–8]. Going a step further, emotional alterations (either

temporary or persistent) leave also correlates in the speech and phonation signature, and may be subjects

of further study by acoustic analysis [9, 10]

The relationship between acoustic correlates and voice pathology has been clinically established in the

last decades, subjectively and quantitatively [11, 12]. Acoustic Voice Quality Analysis (AVQA) is a wide

term for a set of different methodologies designed to quantify acoustic correlates giving a definition of the

quality of phonation or speech production. Therefore AVQA would be the procedural way to objectively

quantify anomalies manifested in Dysphonic Voice. Modern signal processing technologies provide estimates

of voice and speech correlates in time and frequency [13], allowing to better visualize and quantify phonation

patterns. Spectral techniques facilitate the study of pathologic phonation, establishing relations between

harmonic-harmonic and harmonic-formant ratios, which were found as important correlates to organic voice

pathology [14]. Similarly, harmonic-noise ratios were found significant in characterizing certain types of

dysphonic pathologies [15, 16]. Time domain estimates, as jitter, shimmer and open-closed phase quotients

are also used in describing dysphonic voice [17, 18]. These descriptions gave rise to AVQA as a specific

field [19].

Under the point of view of AVQA the following objectives can be established in order of difficulty:

dysphonic voice detection, dysphonic voice grading, and dysphonic voice classification according to etiology.

Dysphonic voice detection would be the task of assigning normophonic (normative) or dysphonic (non-

normative) labels to a given phonation produced by a specific speaker. The determination of the dysphonic

grade is traditionally carried out by independent referees according to a subjective criterion on a given scale.

One of the most popular is GRBAS (grade, roughness, breathiness, asthenia and strain) [11]. The relative

dependence of the assigned grade to the referee’s subjective opinion, results in wide grading differences

among referees. To overcome this problem requires the design of clinical assessment methodologies [20].

The task of dysphonic voice classification according to etiology is far more difficult, as a given acoustic

correlate may be attributed to different pathologies. If this problem is stated in terms of associating acoustic

correlates to specific pathologies, the potential risk is that it will remain unsolved for long, because it is an

ill-posed problem (a many-to-one subjective mapping). A preliminary step to be covered first is to define

the implications of different pathologies in the vocal function, especially at the level of the larynx. Under

the functional point of view, the following main behaviors may be observed in the abnormal operation of the

vocal folds: asymmetric vibration, contact defects and dystonia (hypo-, hyper-tension and tremor). Most

organic larynx pathologies reproduce either one or another behavior, or all of them. Asymmetric vocal

fold vibration is to be expected in pathologies as polyps, cysts, carcinomae, vocal fold paralysis, ulcers,

cysts, papillomae, etc., and produces acoustic correlates as jitter, shimmer, poor harmonic-noise ratios,

unbalance, sub- and inter-harmonics, etc. On its turn, contact defects are to be expected in pathologies
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as polyps, nodules, edemae, cysts, etc., where full closure of the glottal gap is not granted by vocal fold

adduction and produce acoustic correlates as open and close phase perturbations, recovery phase attenuation,

harmonic display reduction, etc. Other pathologies, especially those of neurological origin produce deviations

in biomechanical parameters, as vocal fold tension (hypo- and hyper-tonic) and tremor, which can also

be manifested as modulations in amplitude or frequency, and as changes in the vocal fold tension. As

many organic pathologies induce a hyper-tonic behavior, the main problem when dealing with correlates

produced by neurological pathology is to differentiate their origin from that of organic origin. Contact

defect pathologies can also show asymmetric vocal fold vibration, and this may also be the case in aging

voice (presbyphonia). To establish differentiation criteria for using acoustic correlates when dealing with

organic, neurologic or aging-induced perturbations, is a major issue in AVQA [21].

Another problem regarding AVQA is the lack of good reference baselines to establish the methodologies

for voice pathology classification from acoustic analysis. Rigorous databases, acquired to represent each

of the different pathologies under well-defined sample population size and recording conditions are scant.

Many times the problem comes from the simultaneous presence of different larynx pathologies in the same

patient, either related or unrelated (e.g. it is common to find a counter-lateral lesion as a consequence

of a unilateral polyp). The problem then is how to decide if a specific acoustic correlate is produced by

one cause or another. Most of the times acoustic databases are produced by laryngological services as

part of examination protocols [22, 23], but this is not always the case, as many laryngologists prefer to

depend on visual exploration, neglecting the possibilities offered by AVQA for different reasons [24]. Speech

therapists rely more on acoustic exploration, but many times it is mainly restricted to measurements of

vocal effort, long term frequency analysis, respiratory efficiency, or distortion measures. Therefore voice

records from speakers ranked by etiology and severity index, using compatible standards (digitalization,

channel, microphones) are scant. Most of the available databases are either incomplete, inconsistent (made

up of recordings taken under different conditions) or deficient (many non-frequent pathologies are not well

represented in sample size). Besides, there is a lack of good normative databases, as most of the records

produced by medical services contain information from dysphonic voice, but normative speakers are absent

or poorly represented (this is the case of the most widely used database [25]). This is a severe limitation for

systematic AVQA. Another problem is cross-lingual representation. As far as sustained vowels are concerned,

this would not be a problem, but it becomes a major obstacle when segmental parameters are involved, as

in the use of passages (either read or spontaneous).

After all these considerations, it may be said that the aim of AVQA is to design the best methodology to

use Voice Correlates in Voice Pathology detection, grading and classification. Several steps are to be assumed

and methodologically formulated for such. Voice Pathologies and Correlates have to be well connected by

adequate physiological and biomechanical modeling of larynx dynamics to understand how acoustic correlates

and organic dysfunctions could be associated [26]. This requirement is of vital importance in meeting the

4



challenge of pathology classification from acoustic correlates. On its turn, inverse methods to obtain robust

and significant estimates of voice correlates are of great relevance [27]. These are to be combined with other

parameterization methods based in direct time and frequency domain estimates to produce rich feature

sets [28]. Finally, good Statistical Pattern Matching and Machine Learning methodologies have to be used

to reduce redundancy and to make a selection by relevance within the feature set, to determine the best

combinations for each specific task (detect, grade, classify), and procure specific results under quality criteria

(sensitivity, specificity and accuracy) [29]. These methods have to be contrasted on generally-accepted

benchmark databases [30].

Having in mind all these conditions the present study is aimed to describe a wide set of tests on different

databases, using an exhaustive set of acoustic features, by means of well-known classifiers to estimate

the performance of the methods and features regarding specificity, sensitivity and accuracy in dysphonic

voice detection tasks. There are already many publications describing the methods of pathological speech

detection. Usually the authors use just a limited set of speech features and most of the publications present

the detection accuracies tested only on one monolingual database [31–37]. Probably the widest range of

features describing different aspects of speech was tested in a work of Tsanas et al. [34]. Regarding the

databases there are just a few publications considering 2 different data sets [38–41].

To sum up the state-of-the-art approaches in the field of pathological voice analysis there is still a lack of

publications providing a complex overview of features quantifying pathological speech and providing strong

conclusions supported by a robust testing. Therefore this work has 4 main goals:

1. According to complex parameterization and consequent robust testing identify features that have the

largest discriminative power in the field of pathological speech analysis.

2. Design new features that can quantify hoarseness, breathiness and non-linearities in pathological speech

signals.

3. Prove that the proposed large set parameterization approach can provide better classification results

(with respect to classification accuracy, sensitivity and specificity) than those published in the field of

pathological speech analysis by the other researchers.

4. Select a database that has high potential for the future, especially in terms of speech features design,

tuning and testing.

The paper is organized as follows: the classically used features as well as the newly designed ones are

discussed in section 2, section 3 describes the 3 databases, section 4 describes the testing procedure, section 5

is devoted to the experimental results and discussion. The conclusions are given in section 6.
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2. Features

The aim of this work was to explore significance of the mostly used speech features when focusing on the

ability of differentiation between healthy and pathological speech. The features that are usually known in

different fields of speech signal processing (speech recognition, enhancement, denoising, identification etc.)

and newly designed features originally introduced in this paper will be investigated as well.

Due to the limited size of this paper the features that were not originally introduced in this work will be

mentioned without their deeper description by an algorithm. However each parameter will be accompanied

by a reference where the reader can find further information.

2.1. Features Describing Phonation

Probably the most popular features describing pathological voice are fundamental frequency F0 and

parameters describing its variability in time (jitter): PPQ5 (five-point Pitch Perturbation Quotient), RAP

(Relative Average Perturbation), jittloc (average absolute difference between consecutive periods, divided

by the average period), jittabs (average absolute difference between consecutive periods), jittddp (average

absolute difference between consecutive differences on neighbour glottal periods, divided by the average

period) [39, 41–43]. These features are good candidates especially for quantification of voice tremor [44].

A disadvantage of previously mentioned measurements is that the values of the features are highly

dependent on gender and variable acoustic environment. To overcome this disadvantage Little et al. proposed

the PPE (Pitch Period Entropy) [45]. During the calculation of PPE, logarithmic semitone scale, inverse

filtering and entropy estimation are incorporated. Another method which is close to jitter is a measure

of standard deviation (std) of the time that vocal folds are apart (GQopen) and in collisions respectively

(GQclosed) [34].

To effectively describe hypophonia or intensity perturbations, short-time energy E or pitch-level vari-

ations (shimmer) can be used [34, 42, 46]. In this work 6 kinds of shimmer will be considered (they are

calculated similarly to jitter but the intensity is used): APQ3 (three-point Amplitude Perturbation Quo-

tient), APQ5, APQ11, shimmloc, shimmddp, shimmdB (average absolute base-10 logarithm of the difference

between the amplitudes of consecutive periods) [43, 47].

Another feature describing speech intensity is TKEO (Teager-Kaiser Energy Operator) [48]. The ad-

vantage over simple E is that it takes into account also signal frequency. It has been shown that speech

contains dominant modulation frequencies in a range 2–20 Hz with maximum at approximately 4 Hz [49].

The 4 Hz modulation energy (ME) was selected as a feature which is related to a measure describing en-

ergy distribution in power spectra. Similarly MPSD (Median of Power Spectral Density), usually called

median frequency, was selected [50]. The last feature in this category is LSTER (Low Short-Time Energy

Ratio) [51]. This feature is usually used for differentiation between speech and music signals because speech
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exhibits higher variations in energy per 10–30 ms frames. However this feature was selected for analysis of

pathological speech as well. It is considered that patients will reach higher values of this feature in the case

of maintained vowels due to the inability to sustain the same amount of airflow during the whole phonation.

2.2. Features Describing Tongue Movement

Frequencies of first three formants F1, F2, F3 and their bandwidths B1, B2, B3 are related to volumes

of vocal tract cavities. Especially the volume of throat and oral cavity is modified by the tongue position.

According to this fact it is possible to consider formants as a measure of tongue movement [52, 53].

2.3. Features Describing Speech Quality

Signs of vocal fold dysfunctions are usually associated with breathiness or hoarseness [32]. From signal

theory point of view these dysfunctions are characteristically decreasing voice quality, under a simplified

consideration, by additive noise. This implies that methods based on speech quality measurements can

suitably quantify vocal folds impairment and describe its progress. Besides breathiness and hoarseness these

methods can be also used for analysis of hypernasality caused by an improper work of soft palate [54].

Probably the simplest quality measure feature is ZCR (Zero-Crossing Rate) and its modification HZCRR

(High Zero-Crossing Rate Ratio) which takes into account a variation of ZCR in time [51]. Another simple

measure is FLUF (Fraction of Locally Unvoiced Frames) which can describe an impossibility of carrying out

periodical glottal closure [55].

The next three measures are based on the variation of spectrum values between adjacent frames. Specif-

ically these are SF (Spectral Flux) [56], SDBM (Spectral Distance Based on Module) and SDBP (Spectral

Distance Based on Phase) [55].

We have also used several features based on cepstral analysis. It was shown that cepstrum and its

rahmonics correlate well with the perception of breathiness [57]. Moreover from the nature of cepstrum

it can be said that it is a kind of periodicity measure and therefore it should also predict roughness. The

most famous feature based on the real cepstrum is CPP (Cepstral Peak Prominence) originally introduced by

Hillenbrand et al. [57]. Besides this feature, PECM (Pitch Energy Cepstral Measure) [55] and VR (Variation

in Ratio between the second/first harmonic within the derived cepstral domain) were also used [55].

The other quality measure features are based on an estimation of the level of noise present. We will test

the significance of HNR (Harmonic-to-Noise Ratio) [37, 38, 54, 58], NHR (Noise-to-Harmonic Ratio) [37, 59],

NNE (Normalized Noise Energy) [60], GNE (Glottal-to-Noise Excitation ratio) [58], SPI (Soft Phonation

Index) [59] and VTI (Voice Turbolence Index) [59]. The methods differ especially in the estimation of noise.

The last feature in this category is SSD (Segmental Signal-to-Dysperiodicity ratio). It was shown that

this feature correlates strongly with the perceived degree of the speaker’s hoarseness [38].
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2.4. Segmental Features

Although some of the features mentioned in the other categories can be denoted as segmental as well

(they are calculated from 10–30 ms segments), here the segmental features are considered as matrices (not

only vectors) calculated from the whole signal. Probably the most popular segmental features in the field

of speech signal analysis are MFCC (Mel Frequency Cepstral Coefficients) [33, 36, 42, 54]. The advantage

of these coefficients is that they can indirectly detect slight misplacements of articulators [34]. In this work

20 MFCC coefficients are extracted. The coefficient number zero is replaced by an estimate of log-energy.

Although MFCC are generally used, there is a lack of publications that compare these features to

other segmental ones for the purpose of pathological speech analysis. Therefore we decided to include other

segmental features. We extracted 20 mel frequency cepstral coefficients but in this case the bank of triangular

filters was adjusted to the equal loudness curve [61]. We call these features MFCCE. The other two sets of

features derived from MFCC are LFCC (Linear Frequency Cepstral Coefficients) and CMS (Cepstral Mean

Subtraction coefficients). In the case of LFCC the bank of triangular filters is equidistantly spread in the

frequency scale [62]. CMS is a kind of standardized z-score of MFCC (subtraction of mean and division by

std over the time).

MSC (Modulation Spectra Coefficients) can provide information complementary to MFCC [36, 63]. These

features can capture a class of source mechanism characteristics related to voice quality [33].

In the next step features based on linear prediction were extracted. LPC (Linear Predictive Coeffi-

cients) [42], PLP (Perceptual Linear Predictive coefficients) [64], LPCC (Linear Predictive Cepstral Coeffi-

cients) [65], LPCT (Linear Predictive Cosine Transform coefficients) [42] and ACW (Adaptive Component

Weighted coefficients) [65] were tested. The advantage of PLP over simple LPC or MFCC is that it also

takes into account an adjustment to the equal loudness curve and intensity-loudness power law [64]. The

advantage of LPCC and LPCT over “classic” LPC is that a transformation is used into the cepstral domain

and thus the values do not correlate much. The advantage of ACW is that these coefficients are less sensitive

to channel distortion [65].

The last segmental features used in this work are parameters that analyze amplitude modulations in

voice using a biologically-inspired model of the inferior colliculus [66]. These features are called ICC (Inferior

Colliculus Coefficients).

Segmental features are sometimes extended by their 1st and 2nd order regression coefficients (∆ and ∆∆

respectively). In this work used the ∆ coefficients.

2.5. Features Based on Bispectrum

Alonso et al. proved that a greater presence of quadratic coupling is observed in healthy voice when

comparing it to the pathological one [55]. It is probably due to a fact that healthy voice is characterized by
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a vocal tract which is more non-linear than in the case of pathological voices. This quadratic coupling can

be appropriately described by bispectrum and features derived from this 2D signal.

There were proposed measures such as BII (Bicoherence Index Interference), HFEB (High Frequency

Energy of one-dimensional Bicoherence), LFEB (low Frequency Energy of one-dimensional Bicoherence),

BMII (Bispectrum Module Interference Index) and BPII (Bispectrum Phase Interference Index) [55].

2.6. Features Based on Wavelet Decomposition

The wavelet transform is widely used especially in the field of coding and speech denoising. However its

application can be found in the field of pathological speech analysis too [67]. Detail coefficients after the

decomposition can be used to estimate the present noise and consequently it is possible to calculate SNR

(Signal-to-Noise ratio). In fact this is just another method of voice quality measurement.

According to some measurements we have empirically selected 7 wavelets: 10th, 15th, 20th-order Daubechies

wavelets; 10th, 15th, 20th-order symlet wavelets and 5th-order coiflet wavelet. We will mark the features

derived from the detail coefficients of the wavelet transform as SNRW(wvl), where wvl corresponds to the

specific wavelet (e. g. daub15).

2.7. Features Based on Empirical Mode Decomposition

Recently, in speech processing new methods based on EMD (Empirical Mode Decomposition) have been

used. Using EMD it is possible to decompose the arbitrary non-linear and time-varying signal into countable

and usually a small number of IMF (Intrinsic Mode Functions). These functions are modulated in amplitude

and frequency and their sum gives the original signal.

Tsanas et al. proposed several measures of SNR and NSR based on the IMFs [34]. The time-varying

high frequency components are present in the first few IMFs. Therefore these first few IMFs can be used

to represent the noise in the signal and the rest of IMFs can be used for a representation of the useful

information. According to this consideration features like IMF-SNRTKEO (based on Teager-Kaiser Energy

Operator), IMF-SNRSEO (based on Squared Energy Operator), IMF-SNRSE (based on Shannon Entropy),

IMF-NSRTKEO, IMF-NSRSEO and IMF-NSRSE have been introduced.

2.8. Non-linear Dynamic Features

Tension on the vocal folds can significantly differ in the case of pathological speech. Voice becomes

aperiodic, noisy-like, and it is very difficult to find any regularities in the signal. There is a frequent

presence of sub-harmonics and chaos which can lead to a failure of conventional techniques of speech signal

analysis. However it was shown that these kinds of signals can be sufficiently described by non-linear

dynamical analysis [32, 37, 40, 54].

The first representative in this category is CD (Correlation Dimension) which statistically measures

attractor geometry in the phase space. This measure is related to a number of independent variables
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necessary for generating the attractor [32, 45, 47]. Another dimension measure FD (Fractal Dimension)

is based on a number of basic building blocks that form a pattern [32, 68]. We will also use complexity

measures like ZL (Ziv-Lempel complexity) which quantify the regularity embedded in a time series [69].

Possible long-term dependencies in the speech signal will be described by HE (Hurst Exponent) [54].

Another set of measures is based on entropy. We will use SHE (Shannon Entropy), RE (second-order

Rényi Entropy) [70], CE (Correlation Entropy) [40, 70], RBE1 (first-order Rényi Block Entropy) [40], RBE2

(second-order Rényi Block Entropy) [40], AE (Approximate Entropy) [32, 71, 72], SE (Sample Entropy) [72]

and RPDE (Recurrence Probability Density Entropy) [37]. Generally the entropy is a measure of uncertainty

and it can be used to quantify the complexity of a system. Rényi entropies quantify the loss of information in

time in a dynamic system [40], correlation entropy gives an indication of the predictability of the nonlinear

time series [70] and RPDE represents the uncertainty in the measurement of the pitch period [37]. The

only difference between AE and SE is that SE does not evaluate a comparison of embedding vectors with

themselves.

Another measure we have considered in this work is FMMI (First Minimum of Mutual Information

function) which was found by Henriquez et al. as a feature that better discriminates among the different

voice qualities of the multiquality database [40]. To include also a measure of sensitivity to an initial

condition, the LLE (Largest Lyapunov Exponent) was selected [32, 54]. We also used detrended fluctuation

analysis (DFA) to characterize the self-similarity of the graph of a signal from a stochastic process [34, 37].

In this field NSE (Normalized Scaling Exponent) and FA (Fluctuation Amplitudes) were evaluated.

2.9. High-level Features

The features that are calculated for each speech segment separately form a vector or a matrix at the

output of the parametrization process. This representation must be then transformed to a scalar value to

be able to carry out the next processing like statistical analysis, classification etc. This is usually done

by an extraction of some kind of statistics. These statistics are called high-level features while parameters

extracted directly from the speech signal are called local features. If the local feature is represented by

a matrix, then the high-level feature is calculated for each row separately (this monitors feature changes in

time). We have extracted 60 high-level features:

• max, min, position of max, position of min, relative pos. of max, relative pos. of min

• range, relative range, interquartile range, rel. interquartile range, interdecile range, rel. interdecile

range, interpercentile range, rel. interpercentile range, studentized range

• mean, geometric mean, harmonic mean, mean excluding 10 %, 20 %, 30 %, 40 % and 50 %, of outliers,

median, mode
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• var, std, mean absolute deviation, median absolute dev., geometric standard dev., coefficient of varia-

tion, index of dispersion

• 3rd, 4th, 5th and 6th moment, kurtosis, skewness, Pearson’s 1st and 2nd skewness coefficient

• 1st, 5th, 10th, 20th, 30th, 40th, 60th, 70th, 80th, 90th, 95th and 99th percentile, 1st and 3rd quartile

• slope, offset and error of linear regression

• modulation, Shannon entropy, second-order Rényi entropy

2.10. Newly Designed Features

In sec. 2.1 to sec. 2.8 we have presented 92 local features that are already used in the field of speech signal

processing. However during the experiments these parameters will be extended by the other 36 features that

are originally introduced in this work.

2.10.1. Features Based on Modulation Spectra

An initial step of modulation spectra calculation employs a short-time Fourier transform (STFT) of the

discrete input speech signal s[n] with length N :

S[k,m] =

N−1∑
n=0

s[n]w[n−mL]e−jk 2π
N n, (1)

k = 0, 1, . . . , N − 1,

m = 0, 1, . . . ,M − 1,

where w[n] is a window function (in our case a Hamming window) with a step of L samples and M number

of speech segments. Consequently the power spectra |S[k,m]|2 is extracted and filtered by a bank of

P triangular filters equidistantly spaced out in the mel scale. This procedure forms a matrix X[p,m]

with subbands p = 1, 2, . . . , P . A distribution of amplitudes of each subband envelope X[p,m] of the

voiced speech signal has a strong exponential component which is suppressed by logarithmization and mean

subtraction [33]:

X̂[p,m] = ln (X[p,m])− ln (X[p,m]), (2)

where ∗ corresponds to the average operator over m. Next the frequency analysis of subband envelopes is

performed using the discrete Fourier transform (DFT):

Ψ[p, l] =

M−1∑
m=0

X̂[p,m]e−jl 2πM m, (3)

l = 0, 1, . . . ,M − 1,
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where p and l denote the acoustic and modulation frequency respectively. In the last step of modulation

spectra extraction the second power of each subband is taken and normalized which partially suppresses the

effect of training and testing conditions mismatch:

Ψn[p, l] =
Ψ[p, l]∑
l Ψ[p, l]

. (4)

The features we are proposing are based on a function ψ[l] which is extracted from the normalized

modulation spectra according to:

ψ[l] =

P∑
p=1

Ψn[p, l]. (5)

Due to the instability of vocal fold vibrations pathological speech exhibits larger energy spread on higher

modulation frequencies. This fact can be sufficiently expressed in function ψ[l]. Fig. 1 illustrates function ψ[l]

calculated for healthy and pathological female vowels [a] obtained from the database Pŕıncipe de Asturias

(PdA) Hospital in Alcalá de Henares of Madrid [73, 74]. As it can be seen the peak of function ψ[l] in the

case of healthy voice is higher, narrower and more shifted to lower modulation frequencies than in the case

of the pathological one.

0 2 4 6 8 10
0

500

1000

1500

l [Hz]

ψ
[l

]

 

 
healthy voice
pathological voice

Figure 1: Function ψ[l] calculated for healthy and pathological female vowels [a] obtained from the database PdA [73, 74].

The proposed features derived from ψ[l] are MSER (Modulation Spectra Energy Ratio), MFP (Mod-

ulation Frequency of Peak) and RPHM (Relative Peak Height of Modulation spectra). MSER is defined

as:

MSER =

l5Hz∑
l=0

ψ[l]

M−1∑
l=l5Hz+1

ψ[l]

, (6)

where l5 Hz is a sample corresponding to 5 Hz modulation frequency (this limit was empirically found). MFP

is defined as:

MFP = arg max
l

(ψ[l]) , (7)
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where MFP is given in Hz. Finally RPHM can be calculated according to the following expression:

RPHM =
ψ[i]− r[i]
ψ[i]

, (8)

i = arg max
l

(ψ[l]) ,

where r is a linear regression line of ψ[l] for l = l5 Hz, . . . ,M − 1 and i is the index at which the function ψ[l]

reaches maximum value.

2.10.2. Features Based on Inferior Colliculus Coefficients

Using inferior colliculus coefficients (ICC) it is possible to extract the frequency content of the modulation

envelopes applied to different bands of an auditory stimuli [66]. Similarly to modulation spectra, the ICC

extraction process employs at the beginning STFT and consequent calculation of power spectra |S[k,m]|2.

However in the next step instead of the bank of the triangular filters, the bank of P mel-spaced gammatone

filters is applied. We used filters defined by the the impulse response:

g[n] =

(
n

fs

)o−1

· cos

(
2πfcn

fs

)
· e

−2πbn
fs , (9)

b = 24.7
(
4.37−3fc + 1

)
,

where fc is the center frequency in Hz, o the filter order (in our case 4) and fs the sampling frequency in

Hz. The DFT on the subband envelopes was applied next, this time without prior to normalization:

T [p, l] =

∞∑
m=−∞

X[p,m]e−jl 2πM m. (10)

Finally the magnitude spectrum of each envelope |T [p, l]| is filtered by a bank of Q = 13 resonance filters

with exponentially spaced frequencies from 12 to 107 Hz. In this work we used resonance filters defined by

the following transfer function:

H(z) =
0.1z2 − 0.09

z2 − 1.8 cos
(

2πfc
fs

)
z + 0.81

. (11)

At the output of this process a matrix Ξ[p, q] (q = 1, 2, . . . , Q) of ICC for the input signal s[n] is extracted.

The proposed features are based on a function ξ[p] which is extracted from Ξ[p, q] according to:

ξ[p] =

Q∑
q=1

ln (Ξ[p, q]) . (12)

Contrary to ψ[l] this function reflects the misplacement of articulators better than the instability of vocal

fold vibrations. In Fig. 2 it is possible to see an example of ξ[p] calculated for the pathological and healthy

voice obtained from the PdA database. The features derived from ξ[p] are ICER (Inferior Colliculus Energy
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Ratio) and RPHIC (Relative Peak Height of Inferior Colliculus). The ratio ICER is defined by the following

expression:

ICER =

12∑
p=1

ξ[p]

20∑
p=13

ξ[p]

. (13)

Similarly to RPHM the RPHIC is extracted using the regression line but in this case r[p] is calculated for

p = 13, . . . , 20:

RPHIC =
ξ[i]− r[i]
ξ[i]

, (14)

i = arg max
p

(ξ[p]) .

5 10 15 20

200

250

300
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ξ[
p]

 

 
heal.
path.

Figure 2: Function ξ[p] calculated for the healthy and pathological female vowels [a] obtained from the database PdA [73, 74].

2.10.3. Features Based on Bicepstrum

We will use a definition of the real bicepstrum c[n1, n2] similar to the definition of the real cepstrum:

c[n1, n2] =
1

N2

N−1∑
k1,k2=0

B̂[k1, k2]ej 2πN (k1n1+k2n2), (15)

B̂[k1, k2] = ln (|B[k1, k2]|) , (16)

where the bispectrum B[k1, k2] is calculated as the DFT of triple correlation or circular triple correlation

γ[n1, n2] [75]. In our work we used the second approach based on γ[n1, n2]:

B[k1, k2] =

N−1∑
n1,n2=0

γ[n1, n2]e−j 2πN (k1n1+k2n2), (17)

γ[n1, n2] =
1

N

N−1∑
n=0

δ[n]δ[n+ n1]δ[n+ n2],

δ[i] = s[(n+ i) mod N ].
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The first feature we are proposing in the present work is BCII (BiCepstral Index Interference):

BCII =
1

N2 − 1

1

|max (b[n1, n2])|
· (18)

·
N−1∑
n1=0

N−2∑
n2=0

|b[n1, n2 + 1]− b[n1, n2]| ,

b[n1, n2] =

∣∣∣∣M−1∑
m=0

cm[n1, n2]

∣∣∣∣
M−1∑
m=0
|cm[n1, n2]|

, (19)

where cm[n1, n2] is the bicepstrum calculated from the mth speech segment. The two features introduced

next are HFEBC (High Frequency Energy of one-dimensional BiCepstral index) and LFEBC (Low Frequency

Energy of one-dimensional BiCepstral index):

LFEBC =

L∑
n=0

ρ[n]

N−1∑
n=0

ρ[n]

, (20)

HFEBC =

N−1∑
n=L+1

ρ[n]

N−1∑
n=0

ρ[n]

, (21)

ρ[n] = c[n, n], (22)

L =
fs

fmax
,

where ρ[n] (for n = 0, 1, . . . , N −1) is the one-dimensional bicepstral index and fmax the maximum expected

fundamental frequency (in our case fmax = 350 Hz).

It is supposed that pathological voice contains much more white noise (symmetrically distributed) than

healthy voice. This is especially due to incorrect glottal closure. This kind of noise disappears in the real

cepstrum estimated by ρ[n] (see Fig. 3), therefore a difference between the real cepstrum c[n] (estimated

using DFT) and the one-dimensional bicepstral index can estimate noise components of the analyzed signal.

According to this idea BCMII (BiCepstrum Module Interference Index) and BCPII (BiCepstrum Phase

Interference Index) are proposed:

BCMII =
1

N2 − 1

1

max (ηm[m])
· (23)

·
M−2∑
m=0

|ηm[m+ 1]− ηm[m]| ,

BPMII =
1

N2 − 1

1

max (ηp[m])
· (24)

·
M−2∑
m=0

|ηp[m+ 1]− ηp[m]| ,
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ηm[m] =

N−1∑
n=0

(|cm[n]| − |ρm[n]|)2
, (25)

ηp[m] =

N−1∑
n=0

(ang (c̃m[n])− ang (ρ̃m[n]))
2
, (26)

where cm[n] and ρm[n] are themth frame real cepstrum and the one-dimensional bicepstral index respectively.

c̃m[n] is the complex cepstrum and ρ̃m[n] is the one-dimensional bicepstral index where the absolute value

in eq. (16) was not taken.

0 20 40 60 80 100
-0.2

0
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n

c[
n]

, ρ
[n

]

 

 
c[n] ρ[n]

Figure 3: Comparison of the one-dimensional bicepstral index ρ[n] and the real cepstrum c[n] calculated for a maintained vocal

[a] uttered by a healthy speaker. Only first 101 samples are displayed.

The other features, based on c[n] and ρ[n] are LCBCER (Low Cepstra/BiCepstra Energy Ratio) and

HCBCER (High Cepstra/BiCepstra Energy Ratio):

LCBCER =

L∑
n=0
|c[n]|

L∑
n=0
|ρ[n]|

, (27)

HCBCER =

N−1∑
n=L+1

|c[n]|

N−1∑
n=L+1

|ρ[n]|
. (28)

According to these equations we also propose the features LSBER (Low Spectra/Bispectra Energy Ratio) and

HSBER (High Spectra/Bispectra Energy Ratio), however the ratios of spectrum S[k] and one-dimensional

bispectral index ϑ[k] for L = bN/2c are calculated in this case.

The other two features BCMD (BiCepstral Module Distance) and BCPD (BiCepstral Phase Distance)

are based on distance measures. The values of these features for the mth speech segment are:

BCMD =

N−1∑
n1,n2=0

||c̃m+1[n1, n2]| − (29)

− |c̃m[n1, n2]|| ,
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BCPD =

N−1∑
n1,n2=0

|ang (c̃m+1[n1, n2]) − (30)

− ang (c̃m[n1, n2])| ,

where c̃m[n1, n2] is the complex bicepstrum calculated without the absolute value in eq. (16). Similarly to

eq. (29) and (30) features BMD (Bispectral Module Distance) and BPD (Bispectral Phase Distance) are also

extracted, where Bm[k1, k2] is used instead of c̃m[n1, n2].

2.10.4. Different Kernel Based Approximate and Sample Entropy

Approximate entropy (AE) is a measure of regularities inside the analyzed time series. The advantage

of AE is that it can robustly estimate the system complexity using just a limited number of samples (100–

5000) [76]. To define AE we need to firstly reconstruct a state space using Takens’ embedding theorem: [77]

x[n] = [s[n], s[n+ τ ], . . . , s[n+ (m− 1)τ ]] , (31)

n = 0, 1, . . . , N − 1− (m− 1)τ,

where x[n] is an embedding vector, m is an embedding dimension and τ is a time delay (τ = 1 for AE).

Next, the regularity quantity of a particular pattern C[i,m, r] is defined as:

C[i,m, r] =
1

N −m

N−m∑
j=0

κ (i, j, r) . (32)

Finally AE can be calculated according to expression: [32]

AE = Φ[m, r]− Φ[m+ 1, r], (33)

Φ[m, r] =
1

N −m

N−m∑
i=0

ln (C[i,m, r]) . (34)

A disadvantage of AE is its dependence on the signal length due to the self comparison of points in the

attractor. This fact can be avoided using the sample entropy (SE) which does not evaluate the comparison

of embedding vectors among themselves: [78]

SE = Γ[m, r]− Γ[m+ 1, r], (35)

Γ[m, r] =
1

N −m

N−m∑
i=0

ln (Cx[i,m, r]) , (36)

Cx[i,m, r] =
1

N −m

N−m∑
j=0,i6=j

κ (i, j, r) . (37)

The usual values for embedding dimension are m = 1, 2. In this work we used m = 2 which provides more

detailed reconstruction. Finally, a function must be defined κ (i, j, r) we call kernel function. Originally the
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AE or SE are based on:

κ (i, j, r) = Θ{r − d (x[i], x[j])}, (38)

d (x[i], x[j]) = max
k
|s[i+ k]− s[j + k]|, (39)

k = 0, 1, . . . ,m− 1,

where Θ is the Heaviside function and r a radius in our case calculated according to:

r = 0.2std (s[n]) . (40)

We will denote these entropies as AE(Heaviside) and SE(Heaviside) respectively. Orozco-Arroyave et al.

proposed AE(Gaussian) and SE(Gaussian) based on the Gaussian kernel: [78]

κ (i, j, r) = exp

(
−‖x[i]− x[j]‖2

10r2

)
. (41)

In this work we propose AE and SE based on the other 6 kernels: exponential kernel

κ (i, j, r) = exp

(
−‖x[i]− x[j]‖

2r2

)
; (42)

Laplacian kernel,

κ (i, j, r) = exp

(
−‖x[i]− x[j]‖

r

)
; (43)

circular kernel,

κ (i, j, r) =
2

π
arccos

(
−‖x[i]− x[j]‖

r

)
− (44)

− 2

π

‖x[i]− x[j]‖
r

√
1−

(
‖x[i]− x[j]‖

r

)2

,

for ‖x[i]− x[j]‖ < r, zero otherwise; spherical kernel,

κ (i, j, r) = 1− 3

2

‖x[i]− x[j]‖
r

+ (45)

+
1

2

(
‖x[i]− x[j]‖

r

)3

,

for ‖x[i]− x[j]‖ < r, zero otherwise; Cauchy kernel,

κ (i, j, r) =
1

1 + ‖x[i]−x[j]‖2
r

, (46)

for ‖x[i]− x[j]‖ < r, zero otherwise and triangular kernel,

κ (i, j, r) = 1− |x[i]− x[j]|
r

, (47)

for |x[i]− x[j]| < r, zero otherwise.
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2.10.5. Features Based on Empirical Mode Decomposition

As was mentioned in sec. 2.7 Tsanas et al. proposed several measures of SNR and NSR based on EMD: [34]

IMF-SNR =

I∑
i=4

µi

3∑
i=1

µi

, (48)

IMF-NSR =

2∑
i=1

µ̂i

I∑
i=3

µ̂i

, (49)

where µi is a parameter, or mean sequence value, calculated from the original ith IMF and I is the total

number of the IMFs. In the case of µ̂ the ith IMF was logarithmized before the consequent parametrization.

To extract the sequence from IMF, Tsanas et al. used SEO (Squared Energy Operator) and TKEO. As

a parameter they also used SHE.

We have extended this idea on these parameters: IMF-SNRRE (based on second-order Rényi Entropy),

IMF-SNRZCR (based on Zero-Crossing Rate) and IMF-NSRRE. In the case of IMF-SNRRE µi is defined as:

µi = − log2

 J∑
j=1

p2
(
xij
) , (50)

where p2
(
xij
)

is the probability P
(
IMFi = xij

)
and

{
xi1, x

i
2, . . . , x

i
J

}
are the possible values of the ith IMF.

In the case of IMF-SNRZCR µi is calculated according to:

µi =
1

N

N−1∑
n=1

|sgn (fi[n])− sgn (fi[n− 1])| , (51)

where fi[n] is the ith IMF.

The time-varying high frequency components present in the 1st IMF represent the noise part of the

speech signal. We propose a new feature IMF-FD which is based on the fractal dimension calculated from

the 1st IMF. This complexity measure appropriately quantifies the amount of noise present in the signal and

indirectly describes hoarseness or breathiness. The feature is defined as:

IMF-FD =
log10N

log10N + log10

(
N

N+0.4Nch

) (52)

Nch =

N−1∑
n=1

|sgn (f1[n])− sgn (f1[n− 1])| .

Another feature based on the first intrinsic mode function is IMF-CPP (Cepstral Peak Prominence

extracted from the 1st IMF). It can be calculated as:

IMF-CPP =
c[i]− r[i]
c[i]

, (53)
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i = arg max
n

(c[n]) ,

n =
fs

fmax
, . . . , N − 1,

where c[n] is real cepstrum calculated from f1[n] and r[i] is a linear regression line of c[n] for n =

fs/fmax, . . . , N − 1. We consider fmax = 350 Hz.

The last feature proposed in this work is IMF-GNE (Glottal-to-Noise Excitation ratio based on the 1st

IMF). The whole procedure of IMF-GNE extraction can be described in following steps:

1. Segment the speech signal and extract the 1st IMF for each frame.

2. Repeat step 3–6 for each segment.

3. Do an inverse filtering of the 1st IMF.

4. For each band of 1000 Hz with 1000 Hz step get the Hilbert envelope (the absolute value of analytical

signal).

5. Calculate cross correlation functions for all possible combinations of Hilbert envelopes and pick the

maximum of each function.

6. Pick the maximum from all the maxima in 5.

3. Databases

To provide robust results 3 (English, Spanish and Czech) databases have been used during the testing

procedure. Each database represents a different language group (Germanic, Romanic and Slavic). This

approach is advantageous from the cultural difference point of view. Speakers of different languages exhibit

especially different prosodic characteristics. The aim of this work is to find features significant for the

particular language, but we have focused on a selection of features that are language-independent as well.

3.1. MEEI Disordered Voice Database

The Massachusetts Eye and Ear Infirmary (MEEI) database [25] has been for many years used as

a benchmark in the field of pathological speech analysis. This commercially available database consists of

53 healthy and 657 pathological speakers with different pathologies (e. g. adductor spasmodic dysphonia,

conversion dysphonia, erythema, hyperfunction, etc.). The data of each speaker contain 12 s of a standard

text “The Rainbow Passage” [79] and a sustained phonation of the vowel [a] pronounced as in the word

“father”. The recordings are sampled at fs = 50 kHz or fs = 25 kHz. For our purpose only the vowels [a]

are used.

Although MEEI consists of approximately 700 speakers in total, the age distributions between normal

and pathological speakers are not matched. Therefore the amount of pathological speakers is usually lim-

ited to 173 according to criteria published by Parsa and Jamieson (we call this “limited version of MEEI
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Table 1: Statistical characteristics of the MEEI database used in this work.

Number Mean age Age range STD of age

Speakers Male Female Male Female Male Female Male Female

Healthy 21 32 38.81 34.16 26–59 22–52 8.49 7.87

Pathological 70 103 41.7 37.59 26–58 21–51 9.40 8.19

database”) [15]. The statistical characteristics of MEEI database used in this work can be found in Table 1.

Although this database is very popular and very often used, its size and data are considered insufficient.

Table 2 shows detection results (obtained on the MEEI database) of several works. The highest accuracy

reached by Henriquez et al. is 99.69 % [40]. However using the same features and same experimental setup

the authors achieved an accuracy of 82.47 % using the “Multiquality” database [40]. This fact shows that

despite the popularity of the MEEI database there is a need to introduce new, larger and more complex

(when considering the speech tasks) benchmark databases in order to provide more reliable results and

conclusions. A discussion on the reliability of results mentioned in Table 2 can be found in sec. 3.4.

Table 2: Summary of pathological speech detection results obtained on the MEEI database.

Reference Accuracy [%]

Henriquez et al. (2009) [40] 99.69

Diabazar et al. (2002) [80] 99.44

Parsa and Jamieson (2000) [15] 98.70

Alpan et al. (2010) [81] 98.70

Hariharan et al. (2010) [82] 98.45

Arias-Londono et al. (2011) [83] 98.23

3.2. PdA Database

The second database we have used is Pŕıncipe de Asturias (PdA) database [73, 74]. This database

consists of 239 healthy and 200 pathological speakers with different organic pathologies (e. g. nodules,

polyps, oedemas, carcinomas, etc.). Every speaker uttered a sustained Spanish vowel [a]. The recordings

are sampled at fs = 25 kHz. The statistical characteristics of this database can be found in Table 3. Table 4

shows detection results (obtained on the PdA database) of two available works. As can be seen, the accuracies

are not so high as in the case of MEEI database. Moreover, the PdA consists of more speakers than the

limited version of MEEI. All these facts highlight the high potential of the PdA for future use.

3.3. PARCZ Database

The last database we have included in our test is the Czech Parkinsonian Speech Database (PARCZ)

recorded at St. Anne’s University Hospital in the Czech Republic. This database consists of 52 healthy
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Table 3: Statistical characteristics of the PdA database used in this work.

Number Mean age Age range STD of age

Speakers Male Female Male Female Male Female Male Female

Healthy 101 138 34.44 35.29 18–78 8–71 16.24 14.73

Pathological 74 126 48.05 36.71 11–76 9–72 13.89 13.14

Table 4: Summary of pathological speech detection results obtained on the PdA database.

Reference Accuracy [%]

Arias-Londono et al. (2011) [74] 84.15

Vasilakis and Stylianou (2009) [39] 77.68

Table 5: Statistical characteristics of the PARCZ database used in this work.

Number Mean age Age range STD of age

Speakers Male Female Male Female Male Female Male Female

Healthy 26 26 65.65 62.15 49–83 45–87 9.02 9.50

Pathological 36 21 66.22 68.81 46–87 49–86 9.20 9.00

speakers and 57 speakers with Parkinson’s disease (PD) who suffer from hypokinetic dysarthria [84]. This

database contains 91 speech tasks (free speech, reading text, maintained vowels, diadochokinetic tasks, etc.)

which are used for an analysis of speech dysfunctions that usually accompany PD. However for our purpose

only the sustained Czech vowel [a] is used. The recordings are sampled at fs = 48 kHz. The statistical

characteristics of the PARCZ database can be found in Table 5. As it can be seen, contrary to the MEEI or

PdA, PARCZ is more focused on elder people.

3.4. The Rule of 30

To decide whether the corpus size is sufficient for the robust conclusions Doddington et al. introduced

“the rule of 30” which comes directly from the binomial distribution, assuming independent trials [85]. The

rule is “To be 90 % confident that the true error rate is within ±30 % of the observed error rate, there must

be at least 30 errors.”

If we apply this rule to the original MEEI database (710 speakers), then the observed error rates below

4.25 % cannot be considered as reliable. Moreover if the MEEI database is limited to 226 speakers, then

threshold reaches 13.27 %. In other words, although the results in Table 2 predict promising approaches for

pathologic speech detection results, we must be critic about these values.

If we apply this rule to the PdA (436 speakers) or PARCZ (109 speakers) databases, we get the thresholds

of 6.88 % and 27.52 % respectively. According to this values it can be said that the results obtained with

the PdA are more reliable (contrary to PARCZ).
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4. Experiments

All the databases were resampled to fs = 16 kHz and in dependence on the next processing the data

have been divided into 9 groups. Two approaches have been considered: gender-dependent and gender

independent. Each database is randomly divided into 75 % and 25 % training and testing subsets respectively.

The classifier is evaluated consequently. This procedure (data split, classifier tuning and evaluation) is

repeated 100 times. The resulting accuracy (ACC), sensitivity (SEN) and specificity (SPE) are calculated

according to:

ACC =
TP + TN

TP + TN + FP + FN
· 100 [%], (54)

SEN =
TP

TP + FN
· 100 [%], (55)

SPE =
TN

TN + FP
· 100 [%], (56)

where TP (True Positive) and FP (False Positive) represent the number of correctly identified pathological

speakers and number of speakers diagnosed as pathological, but being healthy. Similarly, TN (True Negative)

and FN (False Negative) represent the total number of correctly identified healthy speakers, and pathological

speakers evaluated as healthy controls.

Before classification the training data are z-score normalized. The testing data are normalized by sub-

tracting the training set mean and dividing by the training set standard deviation for each feature.

4.1. Parameterization Programs

Several toolboxes and programs have been used for the purpose of feature extraction. Features based on

the detrended fluctuation analysis have been calculated using FastDFA [86]. The glottal quotients (GQopen

and GQclosed) were extracted using the algorithm DYPSA implemented in VOICEBOX [87]. To estimate

the largest Lyapunov exponent (LLE) TSTOOL has been used [88]. The software Praat has been used to

estimate the fundamental frequency F0, all kinds of jitter and shimmer, harmonic-to-noise ratio (HNR) and

formant frequencies (F1, F2, F3) [89]. The rest of features (108 in total), including the features introduced

in this work, have been implemented in the Neurological Disorder Analysis Tool (NDAT) developed at the

Brno University of Technology [90].

4.2. Feature Selection

Considering all possible local and high-level feature combinations the parameterization process extracts

approximately 28,000 features for each speaker. This feature space reduced for each scenario using the

filtering feature selection approach based on the non-parametric Mann-Whitney U test. The significance

level was set to α = 0.05. This feature selection method is relatively simple, but there are several serious

studies indicating that there are scenarios where simple univariate methods perform similarly or even better
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than more complex methods. For instance Haury et al. show that a simple Student’s t-test provides better

results than SVM-RFE (Support Vector Machine Recursive Feature Elimination), GFS (Greedy Forward

Selection), LASSO (Least Absolute Shrinkage and Selection Operator) or elastic net [91].

After the evaluation a list of the ten most significant features is drawn up. Finally the density estimation

plots (computed using kernel density estimation with Gaussian kernels) of the most significant features in

all scenarios are given.

4.3. Classification Methods

In our test we have used 2 classifiers: SVM (Support Vector Machine with a radial kernel) and RF

(Random Forest). Regarding the SVM, the parameter kernel gamma γ and penalty parameter C were

optimized using a grid search for possible values.

5. Results

A summary of pathological speech detection results expressed by accuracy, sensitivity and specificity can

be found in Table 6. This table also provides some statistics related to the number of features selected in each

scenario. In the case of MEEI database the accuracy, sensitivity and specificity were equal to 100.0± 0.0 %

in all scenarios (considering both genders together and separately) when using an RF classifier. A discussion

focused on the credibility of these results is given below. In comparison to RF the SVM classifier provided

slightly worse results.

In the case of the PdA database the best results were found when classifying by RF too. The accuracy

(80.9±5.1 %) and specificity (85.4±6.7 %) are larger for male speakers while the sensitivity (77.2±7.7 %) is

larger for the female ones. When considering both genders together the accuracy (82.1±3.3 %) and sensitivity

(80.0±5.9 %) reach the best values in the frame of all PdA scenarios, however the specificity is approximately

1.6 % lower than in the case of the male-only scenario. In comparison to the best accuracies published by

Arias-Londono et al. our approach provides a lower accuracy by 2.05 %, however it should be highlighted

that the authors used classifier score fusion, which is not considered in this work [74]. When looking at

their single-classifier solution, the authors reported these values: 81.70 % (accuracy), 80.50 % (sensitivity),

82.91 % (specificity). Comparing these values to our results, we can say that our approach provides better

accuracy (by 0.40 %) and specificity (by 0.89 %), but worse sensitivity (by 0.50 %). Moreover, Arias-Londono

et al. used in their work an older version of PdA database which has only 199 healthy speakers, while our

version has 239. Therefore our results should be more trustable. In comparison to the work of Vasilakis et

al. our approach outperformed the classification results provided by the authors [39].

Regarding the PARCZ database the results are much worse than in the case of MEEI or PdA. In scenario

C1 (female speakers) the best accuracy was 67.1±8.3 % (classification by RF), sensitivity 35.3±30.3 % (SVM)
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and specificity 91.4±11.3 % (RF). The accuracy (67.3±10.7 %) and sensitivity (50.4±20.2 %), both obtained

using the SVM, were slightly better in the case of male speakers. Vice versa, the specificity (83.6± 16.0 %)

was worse. Finally in scenario C3 (both genders) the best accuracy was 67.9 ± 6.0 % (RF), sensitivity

39.3 ± 14.9 % (SVM) and specificity 87.5 ± 8.5 % (RF). It should be also mentioned that in comparison to

MEEI or PdA the PARCZ database exhibits much larger standard deviations.

The poor classification results are caused probably by the fact that PD patients were in different pro-

gression stages of hypokinetic dysarthria, from first to more advanced ones (this fact most likely explains the

large standard deviations that were obtained). It means that we were performing a two-class classification

over the data that can be split into approximately 4 classes (1 healthy and 3 levels of dysarthria: mild,

moderate and severe). It can be an issue for future work to develop a system that would not only identify

the presence of pathological speech, but also estimate the level of voice pathology. The PARCZ database

is a good candidate for a development of such a system. The system can be interesting especially if we are

able to detect the first stages of different disorders so that the doctors can start the treatment early and

slow down the progress. One of the works that deals with this issue has been published by Henriquez et

al. [40]

When looking into a number of significant features selected by the Mann-Whitney U test, it can be

concluded that this number positively correlates with the classification accuracy. For example in the case of

both genders the number of selected features is 15, 521± 231 (MEEI), 11, 540± 419 (PdA) and for PARCZ

only 1, 750± 331.

Table 6: Summary of pathological speech detection results represented as mean± std [%] (SVM – Support Vector Machine with

a radial kernel, RF – Random Forest, F – female, M – male, MF – all genders).

Scenario No. of sel. features Accuracy Sensitivity Specificity

ID Dataset Gender (mean± std) SVM RF SVM RF SVM RF

M1 MEEI F 13, 996± 288 99.5± 1.5 100.0± 0.0 99.3± 2.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

M2 MEEI M 13, 561± 398 99.2± 1.7 100.0± 0.0 99.1± 2.1 100.0± 0.0 99.3± 3.3 100.0± 0.0

M3 MEEI MF 15, 521± 231 99.9± 0.4 100.0± 0.0 99.8± 0.5 100.0± 0.0 99.9± 0.7 100.0± 0.0

P1 PdA F 9, 726± 447 75.7± 4.3 78.5± 4.9 72.8± 6.5 77.2± 7.7 78.4± 6.8 79.6± 7.3

P2 PdA M 9, 721± 458 78.6± 5.1 80.9± 5.1 71.0± 10.1 74.7± 9.8 84.2± 6.1 85.4± 6.7

P3 PdA MF 11, 540± 419 77.7± 3.2 82.1± 3.3 74.9± 5.3 80.0± 5.9 80.1± 5.0 83.8± 5.1

C1 PARCZ F 2, 141± 415 65.9± 11.9 67.1± 8.3 35.3± 30.3 10.3± 16.9 79.0± 15.3 91.4± 11.3

C2 PARCZ M 2, 121± 489 67.3± 10.7 66.5± 10.3 50.4± 20.2 42.6± 21.6 79.4± 14.5 83.6± 16.0

C3 PARCZ MF 1, 750± 331 65.4± 7.6 67.9± 6.0 39.3± 14.9 31.0± 14.6 79.3± 10.0 87.5± 8.5

The ten most significant features selected by Mann-Whitney U test in all considered scenarios can be

found in Tables 7 – 15. The density estimation plots (computed using kernel density estimation with Gaussian

kernels) of the most significant features in these scenarios can be seen in Fig. 4. In all MEEI scenarios (M1 – 3)

the 10 most significant features produce equivalent p values and they are sorted alphabetically. Regarding

scenarios M1 (females) and M3 (both genders) the most discriminative features are those derived from
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MSC (Modulation Spectra Coefficients) while in the case of M2 (males) features based on ACW (Adaptive

Component Weighted coefficients) and FADFA (Fluctuation Amplitudes of Detrended Fluctuation Analysis)

are mainly selected. Looking at Fig. 4 a) – c) it can be concluded that the relative interpercentile range of

first modulation spectra coefficients and the third moment of the first adaptive component weighted cepstral

coefficients show always a single value for pathological speech. Moreover, in the case of male speakers the

single value also represents the healthy one. In other words, regarding the MEEI database we can use

a very simple classifier (theoretically a decision tree with only one node) to differentiate between healthy

and pathological speech. This fact supports our classification accuracies equal to 100.0 ± 0.0 %. But the

question is: Are these results trustable enough?

The MEEI database itself introduces many issues related to the credibility of the results. The main

problem is that both the healthy and disordered speech were recorded in a different way. First of all

the healthy one was sampled at fs = 50 kHz and the disordered one at fs = 25 kHz. In our experiment

all databases were resampled to fs = 16 kHz but some small differences will remain among signals. But

probably the most serious problem is that the duration of a sustained vowel is 3 s and 1 s for healthy and

disordered voice respectively. Therefore all high-level or local features that somehow reflect the signal length

(entropy, range, std, duration, etc.) can provide very good discriminative results. This can also be a case

of the relative interpercentile range mentioned in Table 7 and 9. Although it is a relative measure it is

still dependent on the length of the input vector. We made a small experiment repetitively and randomly

generating vectors with length N = 10i for i = 1, 2, 3, 4 and with a normal distribution. After that we

calculated the relative interpercentile range of these vectors and found out that the value of this measure is

increasing with the decreasing vector length.

To avoid the problem of different vowel durations one can skip features dependent on this property but we

would loose parameters that can be potentially very good candidates for pathological speech identification.

The other approach is to take only a one-second segment from the healthy speech but in our opinion this is

not a good solution. The first second segment could be selected but then we are losing the sustained part

of the signal (used for estimating jitter) and phonation trail. If we take only the sustained part, then we

will loose information about phonation onset and offset. It has been shown that an analysis of these parts

is useful for example for the dysarthric speech description [90, 92]. Therefore there is no elegant solution

that would not distort the results. Moreover, Malysla et al. mention that some speakers were recorded

in different sites and over potentially different channels [66]. In conclusion, although the MEEI database

is a very popular benchmark in the field of pathological speech analysis, the results obtained using this

database should be taken very carefully. An introduction of a new English disordered voice database is thus

highly important for the future evaluation of new state-of-the-art speech signal processing techniques.

In scenario P1 (PdA, males) all the most significant features are based on UCPP (Unsmooth Cepstral

Peak Prominence). On the other hand, in the case of scenarios P2 (females) and P3 (both genders) all the
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Table 7: 10 most significant features selected by Mann-Whitney U test in scenario M1: MEEI, females (MSC – Modulation

Spectra Coefficients).

Feature p value

relative interpercentile range of 1st MSC 2.8610 · 10−30

relative interpercentile range of 10th MSC 2.8610 · 10−30

relative interpercentile range of 11th MSC 2.8610 · 10−30

relative interpercentile range of 12th MSC 2.8610 · 10−30

relative interpercentile range of 13th MSC 2.8610 · 10−30

relative interpercentile range of 14th MSC 2.8610 · 10−30

relative interpercentile range of 15th MSC 2.8610 · 10−30

relative interpercentile range of 16th MSC 2.8610 · 10−30

relative interpercentile range of 17th MSC 2.8610 · 10−30

relative interpercentile range of 18th MSC 2.8610 · 10−30

Table 8: 10 most significant features selected by Mann-Whitney U test in scenario M2: MEEI, males (ACW – Adaptive

Component Weighted coefficients, FADFA – Fluctuation Amplitudes of Detrended Fluctuation Analysis).

Feature p value

3rd moment of 1st ACW 2.5336 · 10−21

4th moment of 1st ACW 2.5336 · 10−21

5th moment of 1st ACW 2.5336 · 10−21

6th moment of 1st ACW 2.5336 · 10−21

mean absolute deviation of 1st ACW 2.5336 · 10−21

mean excluding 50 % outliers of 1st ACW 2.5336 · 10−21

mean of 1st ACW 2.5336 · 10−21

offset of linear regression of 1st ACW 2.5336 · 10−21

position of max. of FADFA 2.5336 · 10−21

relative position of min. of FADFA 2.5336 · 10−21

selected features are based on IMF-CPP (Cepstral Peak Prominence of first Intrinsic Mode Function) which

is originally introduced in this work. However looking at Tables 10 – 12 it is evident that the features listed

here correlate significantly (e. g. mean and median, std and var, etc.). We have not carried out an analysis

of correlation in this work due to a large number of features, but some statistics related to the most popular

ones have been published, for example by Tsanas et al. [29]

In the case of scenario C1 (PARCZ, females) there were selected features based on LPCC (Linear Pre-

dictive Cepstral Coefficients), GNE (Glottal-to-Noise Excitation ratio), MPSD (Median of Power Spectral

Density) and GQopen (Qlottis Quotient – vocal folds are apart). Regarding scenario C2 (males), the 10

most significant features are based on UCPP, LPCT (Linear Predictive Cosine Transform coefficients), CMS

(Cepstral Mean Subtraction coefficients), IMF-NSRRE (Noise-to-Signal Ratio derived from IMF based on

second-order Rényi Entropy) and AE (Laplacian: Approximate Entropy based on Laplacian kernel). And
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Table 9: 10 most significant features selected by Mann-Whitney U test in scenario M3: MEEI, all (MSC – Modulation Spectra

Coefficients).

Feature p value

relative interpercentile range of 1st MSC 1.0560 · 10−49

relative interpercentile range of 10th MSC 1.0560 · 10−49

relative interpercentile range of 11th MSC 1.0560 · 10−49

relative interpercentile range of 12th MSC 1.0560 · 10−49

relative interpercentile range of 13th MSC 1.0560 · 10−49

relative interpercentile range of 14th MSC 1.0560 · 10−49

relative interpercentile range of 15th MSC 1.0560 · 10−49

relative interpercentile range of 16th MSC 1.0560 · 10−49

relative interpercentile range of 17th MSC 1.0560 · 10−49

relative interpercentile range of 18th MSC 1.0560 · 10−49

Table 10: 10 most significant features selected by Mann-Whitney U test in scenario P1: PdA, females (UCPP – Unsmooth

Cepstral Peak Prominence).

Feature p value

mode of UCPP 1.6224 · 10−19

mean of UCPP 2.9605 · 10−19

mean excluding 10 % outliers of UCPP 3.6871 · 10−19

60th percentile of UCPP 4.2979 · 10−19

mean excluding 20 % outliers of UCPP 4.5230 · 10−19

mean excluding 40 % outliers of UCPP 4.9362 · 10−19

median of UCPP 4.9719 · 10−19

mean excluding 30 % outliers of UCPP 5.0820 · 10−19

mean excluding 50 % outliers of UCPP 5.0820 · 10−19

90th percentile of UCPP 6.6980 · 10−19

finally, when considering both genders, there were selected features based on LFCC (Linear Frequency Cep-

stral Coefficients), MPSD, FADFA and ICC (Inferior Colliculus Coefficients). Generally p values are much

lower than in the case of MEEI or PdA databases. This is also closely related to the poor classification

results mentioned in Table 6.

To summarize the discussion about the databases we can say that the MEEI database should no longer

be used as a benchmark. The more challenging one is PARCZ database, however it has some disadvantages

from the scientific point of view: it is in Czech language, which is not a widespread language in the world;

it is focused only on PD people with hypokinetic dysarthria; and it is not really suitable for a binary

classification (at least 4 classes should be considered). Probably the most suitable database for the evaluation

of pathological speech identification methods is PdA. The classification accuracies are still challenging and

they can be significantly improved. Another advantage of this database is that it is freely available for
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Figure 4: Density estimation plots (computed using kernel density estimation with Gaussian kernels) of the most significant

features in scenarios M1 – 3, P1 – 3 and C1 – 3. Black colour represents healthy speech and grey the pathological one. a) Scenario

M1 (MEEI, females): relative interpercentile range of 1st modulation spectra coefficients; b) Scenario M2 (MEEI, males): 3rd

moment of 1st adaptive component weighted cepstral coefficients; c) Scenario M3 (MEEI, all): relative interpercentile range of

1st modulation spectra coefficients; d) Scenario P1 (PdA, females): mode of unsmooth cepstral peak prominence; e) Scenario

P2 (PdA, males): median absolute deviation of cepstral peak prominence of first intrinsic mode function; f) Scenario P3 (PdA,

all): error of linear regression of cepstral peak prominence of first intrinsic mode function; g) Scenario C1 (PARCZ, females):

coefficient of variance of 11th linear predictive cepstral coefficients; h) Scenario C2 (PARCZ, males): slope of unsmooth cepstral

peak prominence; i) Scenario C3 (PARCZ, all): interquartile range of 18th linear frequency cepstral coefficients.
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Table 11: 10 most significant features selected by Mann-Whitney U test in scenario P2: PdA, males (IMF-CPP – Cepstral Peak

Prominence of first IMF).

Feature p value

median absolute deviation of IMF-CPP 6.4974 · 10−17

interquartile range of IMF-CPP 1.2600 · 10−16

60th percentile of IMF-CPP 8.6433 · 10−16

3rd quartile of IMF-CPP 1.1901 · 10−15

error of linear regression of IMF-CPP 1.3454 · 10−15

median of IMF-CPP 1.4129 · 10−15

mean absolute deviation of IMF-CPP 2.0881 · 10−15

mean excluding 50 % outliers of IMF-CPP 2.2461 · 10−15

70th percentile of IMF-CPP 2.3014 · 10−15

mean excluding 40 % outliers of IMF-CPP 3.1541 · 10−15

Table 12: 10 most significant features selected by Mann-Whitney U test in scenario P3: PdA, all (IMF-CPP – Cepstral Peak

Prominence of first IMF).

Feature p value

error of linear regression of IMF-CPP 6.9443 · 10−32

median absolute deviation of IMF-CPP 1.3082 · 10−31

mean absolute deviation of IMF-CPP 1.8834 · 10−31

80th percentile of IMF-CPP 4.5625 · 10−31

interquartile range of IMF-CPP 5.3469 · 10−31

std. of IMF-CPP 5.5387 · 10−31

var. of IMF-CPP 5.5387 · 10−31

3rd quartile of IMF-CPP 5.7880 · 10−31

70th percentile of IMF-CPP 7.0861 · 10−31

interdecile range of IMF-CPP 7.4045 · 10−31

research purposes. The only disadvantage is the limitation to Spanish language. This should not be such

a big problem in the case of sustained vowel [a], but there will certainly be cultural differences when dealing

with the spoken text analysis.

Another question is, whether analysis of vowel [a] is really the best way to identify pathological speech, at

least in the field of vowels analysis (not considering the other speech tasks like read/repeated/spontaneous

words, sentences, etc.). Although most of researchers automatically use sustained vowel [a], just a few

publications report classification accuracies based on analysis of the other vowels. For this purpose Henriquez

et al. made an experiment where they tried to identify pathological speech based on analysis of 5 Spanish

vowels separately ([a], [e], [i], [o], [u]) [40]. They observed that in comparison to the other vowels the

classification based on vowel [a] provides slightly better results. Probably the choice of vowel [a] is good

when classifying the pathological speech generally (but still this should be proved by robust testing in future).
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Table 13: 10 most significant features selected by Mann-Whitney U test in scenario C1: PARCZ, females (LPCC – Linear

Predictive Cepstral Coefficients, GNE – Glottal-to-Noise Excitation ratio, MPSD – Median of Power Spectral Density, GQopen –

Qlottal Quotient (vocal folds are apart)).

Feature p value

coeff. of var. of 11th LPCC 1.0832 · 10−04

position of max. of GNE 1.3509 · 10−04

index of dispersion of 11th LPCC 1.6228 · 10−04

min. of MPSD 3.0797 · 10−04

1st percentile of MPSD 3.1013 · 10−04

modulation of MPSD 3.1013 · 10−04

relative range of MPSD 3.1013 · 10−04

harmonic mean of MPSD 3.1085 · 10−04

modulation of GQopen 4.0151 · 10−04

relative range of GQopen 4.0151 · 10−04

Table 14: 10 most significant features selected by Mann-Whitney U test in scenario C2: PARCZ, males (UCPP – Unsmooth Cep-

stral Peak Prominence, LPCT – Linear Predictive Cosine Transform coefficients, CMS – Cepstral Mean Subtraction coefficients,

IMF-NSRRE – Noise-to-Signal Ratio derived from IMF based on second-order Rényi Entropy, AE(Laplacian) – Approximate

Entropy based on Laplacian kernel).

Feature p value

slope of UCPP 3.4500 · 10−05

40th percentile of 2nd LPCT 4.2438 · 10−05

offset of linear regression of 5th CMS 4.2438 · 10−05

1st quartile of 2nd LPCT 5.2089 · 10−05

offset of linear regression of IMF-NSRRE 6.3797 · 10−05

mean excluding 40 % outliers of 2nd LPCT 7.0546 · 10−05

mean excluding 50 % outliers of 2nd LPCT 7.0546 · 10−05

offset of linear regression of AE (Laplacian) 7.0546 · 10−05

mean excluding 10 % outliers of 2nd LPCT 7.7966 · 10−05

mean excluding 20 % outliers of 2nd LPCT 7.7966 · 10−05

However, as soon as we focus on a specific pathology, we can get better results when analysing another vowel.

For instance Orozco-Arroyave et al. classified hypokinetic dysarthria in patients with Parkinson’s disease

and found out that it is more advantageous to analyse vowel [o] [78].

Our initial idea was also to try the inter-database classification (training the classifier on one database

and testing it using the other one). However the classification results were very poor. It was caused mainly by

these two facts: 1) When we trained the classifier on MEEI database, the features reflecting the signal length

were selected. But these features were not so significant when testing them on PdA or PARCZ databases.

2) The PARCZ database is very different from MEEI or PdA, because it contains only one specific speech

disorder (hypokinetic dysarthria), while the other two databases contain many different voice pathologies.
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Table 15: 10 most significant features selected by Mann-Whitney U test in scenario C3: PARCZ, all (LFCC – Linear Frequency

Cepstral Coefficients, MPSD – Median of Power Spectral Density, FADFA – Fluctuation Amplitudes of Detrended Fluctuation

Analysis, ICC – Inferior Colliculus Coefficients).

Feature p value

interquartile range of 18th LFCC 1.8665 · 10−05

median absolute deviation of 18th LFCC 1.9509 · 10−05

min. of MPSD 1.9970 · 10−05

modulation of MPSD 2.0055 · 10−05

relative range of MPSD 2.0055 · 10−05

harmonic mean of MPSD 2.1543 · 10−05

40th percentile of FADFA 3.7451 · 10−05

median absolute deviation of 2nd ICC 5.7179 · 10−05

mean excluding 10 % outliers of 2nd ICC 5.9621 · 10−05

mean excluding 20 % outliers of 2nd ICC 5.9621 · 10−05

From the feature selection point of view it is interesting to point out that many segmental parameters

have been found significant. Some of them (MSC, ACW, LPCC, LPCT, CMS and ICC) were also selected

as the 10 most significant ones. Although the segmental features are not very frequent when analysing

pathological speech (except MFCC, MSC and ICC), their potential seems to be high. In fact, to our best

knowledge, features like MFCCE, LFCC, CMS or ACW were used for this purpose for the first time in the

present research.

In this work we have introduced 36 new speech features. Just one (IMF-CPP) has been mentioned among

the 10 most significant ones (Table 11 and 12), however the rest of them are significant (p < 0.05) as well,

see Table 16. In the case of MEEI database we firstly checked if high-level features do not reflect the length

of signal. If not we kept the feature in the table. If yes we checked the next most significant variant of the

local parameter. At the top positions of this table we can see mainly features based on modulation spectra,

bicepstrum and approximate entropy.

6. Conclusions

This work provides an insight into the robust and complex approach of pathological speech analysis. To

our best knowledge this is the first contribution providing a complex evaluation of feature significance from

different fields of speech signal processing (e. g. speech analysis, recognition, coding, enhancement etc.). It

is also the first contribution deriving conclusions according to robust tests where 3 (English, Spanish, Czech)

databases were used. These languages belong to 3 different language groups (Germanic, Romanic, Slavic).

In general, the work has 4 goals, yet each of them has its conclusion.

1) According to complex parameterization and consequent robust testing identify features that have the

largest discriminative power in the field of pathological speech analysis. Unfortunately most of the works
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Table 16: Best significance levels (computed using the Mann-Whitney U test) selected for all 36 features originally introduced

in this work (F – female, M – male, MF – all genders).

Local feature High-level feature p value Sc. ID Dataset Gender

IMF-CPP (Cepstral Peak Prominence extracted

from the 1st IMF)

error of linear regression 6.9443 · 10−32 P3 PdA MF

MFP (Modulation Frequency of Peak) - 3.2291 · 10−28 M3 MEEI MF

RPHM (Relative Peak Height of Modulation spec-

tra)

- 1.5614 · 10−27 M3 MEEI MF

MSER (Modulation Spectra Energy Ratio) - 2.9477 · 10−26 M3 MEEI MF

BCPD (BiCepstral Phase Distance) harmonic mean 4.9663 · 10−19 M3 MEEI MF

HFEBC (High Frequency Energy of one-

dimensional BiCepstral index)

- 2.5381 · 10−15 M3 MEEI MF

LFEBC (Low Frequency Energy of one-dimensional

BiCepstral index)

- 2.5381 · 10−15 M3 MEEI MF

AE (triangular kernel) offset of linear regression 7.7587 · 10−15 P3 PdA MF

BCII (BiCepstral Index Interference) - 9.1669 · 10−15 P3 PdA MF

AE (exponential kernel) 1st quartile 1.4641 · 10−14 P3 PdA MF

SE (exponential kernel) median 5.5444 · 10−14 P3 PdA MF

IMF-GNE (Glottal-to-Noise Excitation ratio based

on the 1st IMF)

mean 6.0985 · 10−14 M3 MEEI MF

AE (Cauchy kernel) mean 1.3344 · 10−13 M3 MEEI MF

AE (spherical kernel) offset of linear regression 1.4599 · 10−13 P3 PdA MF

SE (spherical kernel) mean excluding 40 % outliers 2.5551 · 10−13 P3 PdA MF

IMF-SNRRE (based on second-order Rényi En-

tropy)

mean 3.1582 · 10−12 P3 MEEI MF

LCBCER (Low Cepstra/BiCepstra Energy Ratio) mean 5.6242 · 10−12 M3 MEEI MF

IMF-FD (based on Fractal Dimension) median 1.4092 · 10−11 M3 MEEI MF

ICER (Inferior Colliculus Energy Ratio) - 2.8611 · 10−11 M3 MEEI MF

BMD (Bispectral Module Distance) median 5.3843 · 10−11 M3 MEEI MF

AE (circular kernel) 4th moment 7.3659 · 10−10 P3 PdA MF

SE (circular kernel) std 1.3186 · 10−09 P3 PdA MF

SE (triangular kernel) mean 1.3839 · 10−09 P2 PdA M

BPD (Bispectral Phase Distance) mean 1.0753 · 10−08 P3 PdA MF

IMF-NSRRE (based on second-order Rényi En-

tropy)

90th percentile 1.1298 · 10−08 P2 PdA M

IMF-SNRZCR (based on Zero-Crossing Rate) mean 1.5834 · 10−08 M3 MEEI MF

HCBCER (High Cepstra/BiCepstra Energy Ratio) 1st percentile 4.7190 · 10−08 P3 PdA MF

SE (Cauchy kernel) harmonic mean 5.1617 · 10−08 M1 MEEI F

BCPII (BiCepstrum Phase Interference Index) - 1.7589 · 10−07 M1 MEEI F

RPHIC (Relative Peak Height of Inferior Collicu-

lus)

- 2.2653 · 10−07 M2 MEEI M

BCMD (BiCepstral Module Distance) harmonic mean 1.7894 · 10−06 M3 MEEI MF

HSBER (High Spectra/Bispectra Energy Ratio) mean 3.2552 · 10−06 M1 MEEI F

AE (Laplacian kernel) offset of linear regression 4.2554 · 10−06 P2 PdA M

SE (Laplacian kernel) 80th percentile 7.5456 · 10−06 P2 PdA M

BCMII (BiCepstrum Module Interference Index) - 1.1755 · 10−04 P3 PdA MF

LSBER (Low Spectra/Bispectra Energy Ratio) mean excluding 20 % outliers 3.7662 · 10−04 M2 MEEI M
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published in the field of pathological speech analysis provides conclusions based on a limited set of param-

eterization methods. In other words there is still a lack of publications providing a complex overview of

features quantifying pathological speech and providing strong conclusions supported by a robust testing.

Our work is unique in this way, because together it provides testing based on 128 local features. We made

the wide overview of all these features used for pathological speech quantification so that the researchers

can find out what exactly the specific feature quantifies and how it can be implemented. We used features

describing phonation, tongue movement, speech quality (including non-linear dynamic features and features

based on bispectrum/bicepstrum, empirical mode decomposition, wavelet decomposition) and segmental

features.

Using the non-parametric Mann-Whitney U test we observed that among all parameterization techniques

those based on segmental features provide the best classification results. To our best knowledge this is the

first work that tested the significance of 11 segmental features. The largest discriminative power can be

obtained thanks to especially segmental features like modulation spectra coefficients, adaptive component

weighted coefficients and linear predictive cepstral coefficients. Although the segmental features are not very

frequent when analysing pathological speech, their potential seems to be high. However, their disadvantage is

that they are usually difficult to be interpreted clinically. This is probably the reason they are not frequently

used. Although they can provide good classification results they don’t say much about specific pathology

or speech dysfunction.

2) Design new features that can quantify hoarseness, breathiness and non-linearities in pathological speech

signals. Clinical signs of vocal fold dysfunctions are usually associated with breathiness or hoarseness.

Moreover voice can become aperiodic, noisy-like, and it is very difficult to find any regularities in the signal.

Sometimes there is a frequent presence of sub-harmonics and chaos, which can lead to a failure of conventional

techniques of speech signal analysis and which requires new parameterization methods developed specifically

for pathological speech description.

We introduced 36 new measures based on modulation spectra, inferior colliculus coefficients, bicepstrum,

sample and approximate entropy and empirical mode decomposition. Features based on modulation spectra

quantify instability of vocal fold vibrations and complements features based on inferior colliculus coefficients

that reflect the misplacement of articulators. Due to incorrect glottal closure the pathological voice contains

much more white noise that can be effectively quantified by proposed features derived from bicepstrum.

New features based on empirical mode decomposition are able to describe the noise component of analysed

signal as well. Finally we proposed different kernel-based approximate and sample entropies to measure

regularities inside the signal.

These novel features were statistically processed by the non-parametric Mann-Whitney U test. All of

them have been identified as significant and they have passed the feature selection process in at least one

database. Moreover, some of them were listed among top ten significant features selected in specific scenario
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(they outperformed the other conventional features). In other words they helped to improve classification

results in terms of accuracy, sensitivity and specificity and due to their effective quantification abilities they

have high impact on the future work.

3) Prove that the proposed large set parameterization approach can provide better classification results

(with respect to classification accuracy, sensitivity and specificity) than those published in the field of patho-

logical speech analysis by the other researchers. We tested the significance of all the mentioned parameters

on 3 (English, Spanish, Czech) databases. In the case of the Massachusetts Eye and Ear Infirmary (MEEI)

database we get accuracy, sensitivity and specificity equal to 100.0± 0.0 %, which are the best results that

have been published in the frame of this database (Henriquez et al. reached 99.69 % [40]). However, we

are very critical with these results. Therefore we discussed their trustability and the viability of using the

MEEI database as a benchmark for pathological speech signal analysis.

The results obtained with the PdA database are more challenging. When we considered the single-

classifier approach, we reached the accuracy 82.1 ± 3.3 %, which is the best among the published numbers

(Arias-Londono et al. published 81.7 % [74]).

Regarding the last Czech Parkinsonian Speech Database (PARCZ), we obtained poor accuracy (67.9 ±

6.0 %), however, this is probably due to the fact that we used a binary classifier for a multi-class database.

We would like to do more experiments with this database in a near future splitting the data into healthy

speech and mild, moderate and severe dysarthria.

4) Select a database that has high potential for the future, especially in terms of speech features design,

tuning and testing. Due to some issues related to vowels’ length, different sampling frequencies, different

recording conditions, etc., the MEEI database should no longer be used as a benchmark. Results obtained

using this database are not trustable. The more challenging one is PARCZ database. Unfortunately it is

focused only on parkinsonic people with hypokinetic dysarthria and it is not really suitable for a binary

classification (at least 4 classes should be considered).

Therefore the most suitable database for the evaluation of pathological speech identification methods is

PdA, where the classification accuracies are still challenging and they can be significantly improved. More-

over this database is freely available for research purposes.

There are many works that deal with the development of pathological voice identification methods and

there is still a lot that can be improved in this field of science. However, the researchers should go further

and focus not only on the pathological speech identification, but also on more sophisticated analysis that

would be more helpful for doctors and that can make the treatment or diagnosis more effective. Probably

the most important challenges to face in the next decade are:

1. Identification of particular voice pathology. Identification of pathological speech itself is not so interest-
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ing. There are many pathologies (adductor spasmodic dysphonia, erythema, hypokinetic dysarthria,

etc.) and the issue is to classify them individually. This can be very problematic, therefore we propose

to do some kind of clustering and split this big set into subsets, for example according to the way

they are reflected in speech (problems with tongue movement, improper work of soft palate, disordered

vocal folds, etc.).

2. Identification of voice pathology in its first stage or estimation of its progress. This would enable

doctors to start the treatment very early and slow down the progress.

We are going to deal with these issues in future works. However this research is very dependent on good

databases and especially in the case of voice pathology identification, as in its first stage, there is still a lack

of suitable training data.
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