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Abstract

In the present work, we propose to deal with two important issues regarding

to the RBM’s learning capabilities. First, the topology of the input space, and

second, the sparseness of the RBM obtained. One problem of RBMs is that

they do not take advantage of the topology of the input space. In order to

alleviate this lack, we propose to use a surrogate of the mutual information of

the input representation space to build a set of binary masks. This approach

is general and not only applicable to images, thus it can be extended to other

layers in the standard layer-by-layer unsupervised learning. On the other hand,

we propose a selective application of two different regularization terms, L1 and

L2, in order to ensure the sparseness of the representation and the generalization

capabilities. Additionally, another interesting capability of our approach is the

adaptation of the topology of the network during the learning phase by means of

selecting the best set of binary masks that fit the current weights configuration.

The performance of these new ideas is assessed with a set of experiments on

different well-known corpus.

Keywords: Restricted Boltzmann Machine, Deep Belief Networks,

Regularization

1. Introduction

Representation learning tries to convert data into a form that makes it easier

to extract useful information when building classifiers [1]. Among the different

approaches for learning representations, this paper focuses on deep learning
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methods. Deep learning methods work by stacking several layers of non-linear5

transformations with the objective of yielding more abstract and useful repre-

sentations.

Restricted Boltzmann Machines (RBM) are powerful generative graphical

models that are used in unsupervised learning for modeling data distributions.

Recently, RBMs have become very popular particularly since they were pro-10

posed to initialize the layers of Deep Belief Networks (DBN) [2]. RBMs model

statistical dependencies of observed variables by introducing binary latent vari-

ables, which are assumed to be independent given the observed variables.

In the present work, we propose to deal with two important issues regarding

to the RBM’s learning capabilities. First, the topology of the input space,15

and second, the sparseness of the RBM obtained. Regarding the first point,

one problem of RBMs is that they do not take advantage of the topology of

the input space. For instance, in the case of images they model long-range

dependencies that are known to be weak [3]. As a result, DBNs initialized

with these RBMs are known to be non robust to noise that is not seen in20

the training set [4]. In order to capture the topology of the input space, we

propose to evaluate the mutual information of the components of the input

representation space (pixels in case of images). This mutual information is

a measure of the dependence expressed in the joint distribution of two input

components relative to the joint distribution of these two components under25

the assumption of independence. However, since mutual information is very

difficult to obtain for continuous variables it is common to approximate it by

the Pearson’s correlation coefficient [5, 6]. In this work, we propose to use this

surrogate measure to obtain a weighted vector for each input component w.r.t

to the others. These weighted vectors will be considered to obtain regularization30

masks for the RBMs in the learning process.

Regarding to the second point, sparseness is a recent concept introduced

to increase the efficiency and robustness of neural networks. There exist two

variants of sparseness [7]: in sparse activity only a small fraction of the neurons

are active when an input pattern is presented, while in sparse connectivity each35
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neuron is connected to only a limited set of neurons. Interestingly, both kind

of sparseness have a strong biological inspiration since similar properties have

been observed in mammalian brains [8].

Following these two main ideas, we propose the use of a new regularization

scheme to train RBMs based on a selective L2–L1 regularization approach. This40

selective approach depends on a set of binary masks derived from a surrogate

measure of the mutual information of the input space, as mentioned above.

This combination of selective regularization and binary masks enforces sparse

connectivity and improves the robustness of DBNs to noise. One key advantage

of our approach is that the learning of the topology of the network (the binary45

mask selection) is included in the training process. Moreover, the definition

of the binary masks is general, so they can be used with any kind of data

(not only images) and also in higher layers of the DBN where the topology is

usually unknown. To prove the validity of our hypothesis we have performed

several classification experiments on well-know databases: MNIST, USPS, 20-50

Newsgroups and CIFAR-10.

2. Related Work

The study of the robustness of deep learning structures is a problem that

has attracted the attention of many researchers lately [9, 10, 11]. One way to

introduce robustness against noise is to artificially corrupt training data [12, 13].55

However, the noise distribution of test data can be unknown during training.

Another way to increase the robustness of deep structures is to introduce sparsity

in the activation of hidden units [14, 15, 16]. Interestingly, sparse representations

are not very useful as generative models, although they have proved to be very

successful for unsupervised feature learning [17].60

Sparsity can also be introduced in the connectivity of the neurons. Sparse

connectivity was introduced many years ago as one of the fundamental ideas

used in convolutional neural networks, where local receptive fields connect a

small subset of image pixels [18]. Similarly, sparse connectivity has been also
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introduced in RBMs that model images [4, 19] where the impact area of a65

hidden unit is restricted to a small patch of the visible image. In contrast to

convolutional networks, the weights are not shared between different hidden

units. In [4] the robustness of the sparsely connected RBMs was validated using

test sets that were corrupted with different noise types. In this paper, we follow

a similar methodology to validate the robustness of our regularization scheme70

against noise.

Although sparse connectivity has shown to be useful for feature learning, its

use has been restricted to image data where there is prior information about

the topology [20]. However, how to extend its use to other data types remains

an ongoing question. In the case of deep architectures, it is still unclear how to75

extend sparse connectivity to hidden layers where the topology is also unknown.

In the present work we aim at providing an efficient solution to this problem.

3. Restricted Boltzmann Machines

A training set of samples can be modeled using a two-layer network called

Restricted Boltzmann Machine (RBM). Each dimension of the sample corre-80

spond to a “visible” unit. The visible layer is connected to the “hidden” units,

which correspond to binary feature detectors. An RBM is an energy model with

a function given by:

E(v,h) = −
∑

i∈visible

aivi −
∑

j∈hidden

bjhj −
∑
i,j

vihjwij (1)

where vi,hj are the binary states of visible unit i and hidden unit j, ai,bj are

their biases and wij is the weight of the connection between them. The model85

assigns a probability to every possible pair of visible and hidden vectors through

this energy function:

p(v,h) =
1

Z
e−E(v,h) (2)
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where the “partition function”, Z, is given by summing over all possible pairs

of visible and hidden vectors:

Z =
∑
v,h

e−E(v,h) (3)

The probability that the network assigns to a visible vector, v, is given by90

summing over all possible hidden vectors:

p(v) =
1

Z

∑
h

e−E(v,h) (4)

Let L (θ,D) be the log-likelihood of the data defined as:

L (θ,D) =
∑
xi∈D

log p (xi) (5)

where θ are the parameters of the model and xi ∈ Rd is a sample of the training

set D.

During the training process, the parameters of the model are adjusted so that

the log-likehood of the training data is maximized. For this goal, we can perform

stochastic gradient descent on the negative log-likelihood function. Therefore,

the loss function to be minimized is:

` (θ,D) = −L (θ,D) (6)

To minimize the loss function, it is necessary to estimate the gradient with

respect to the model parameters. An estimation of this gradient can be obtained95

using a fast learning procedure called Contrastive Divergence (CD) [21].

4. Mask Selective Regularization for RBM

4.1. Introduction

Regularization is an important step in any optimization process to prevent

overfitting by penalizing complex solutions. From a Bayesian point of view, reg-100

ularization can be seen as a way to introduce prior distributions on model pa-

rameters. In the context of neural networks, the simplest regularization method
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is weight-decay, that controls the growth of parameters. Weight-decay adds an

extra penalty term to the loss function of Eq. 6:

` (θ,D) = −L (θ,D) + λ2‖W‖2 (7)

where W ∈ Rd×n is the matrix of weights wij that connects visible and hid-105

den units, λ2 is the regularization coefficient, and d and n are the size of the

visible and hidden layers, respectively. Weight decay penalizes large weights in

W . There are some reasons for using weight-decay in an RBM: improve gen-

eralization to new data, make the receptive fields of the hidden units smoother

and more interpretable by shrinking useless weights, etc [22]. However, the L2110

norm does not force zeros in the weights values. This causes the RBM model

to be non-robust against noise. The problem is that although the weights of

a standard RBM are spatially localized, they are not zero outside its influence

area. So that, the overall contribution of all the connections with small weight

values adversely affects the hidden activation units if there is any noise in the115

visible layer.

An alternative approach to reduce the effect of noise is to obtain a sparsely

connected RBM, so that each hidden feature is connected to a few visible units.

This goal can also be accomplished using regularization with a L1 norm. In this

case the loss function is given by:

` (θ,D) = −L (θ,D) + λ1‖W‖1 (8)

where λ1 is the regularization coefficient. This loss function often causes many

of the weights to become exactly zero whilst allowing a few of them to grow

quite large. The features obtained using the L1 regularization are strongly

localized which eases the interpretation. However, the L1 norm is not very120

common in the literature. In our opinion, L1 may remove too many connections

and the remaining may contain large weights which is a known problem for

generalization.

One of the most well-known approaches in order to combine both regular-

ization terms is the Elastic-Net (EN) [23]. It is important to note that EN125
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regularization was originally devoted for linear regression, a lasso convex prob-

lem, proposed by Zou and Hastie. The authors transform the naive elastic net

problem into an equivalent lasso problem on augmented data. Moreover, the

naive elastic net can perform an automatic variable selection in a fashion similar

to the lasso. The EN approach applied to the RBM optimization function will130

lead to the following expression:

` (θ,D) = −L (θ,D) + λ1‖W‖1 + λ2‖W‖2 (9)

Unfortunately, all the advantages introduced by the authors for the lasso

convex problem can not be extended to the RBMs due to the non-convexity

and the nature of the optimization problem.

4.2. A Loss function combining L2–L1 regularization135

As mentioned above, each of the norms L1 and L2 have its own advantages

and disadvantages. It would be desirable to define a new regularization scheme

that could combine the advantages of each norm into a single framework. To

accomplish this, we propose to adaptively split the set of weights into two dis-

joints sets, so that L1 regularization is used in one set and L2 in the other. We

define a new loss function given by:

` (θ,D) = −L (θ,D) + λ1

∥∥∥W ◦ R̂∥∥∥
1

+ λ2

∥∥∥W ◦R∥∥∥
2

(10)

where R is a d×n binary mask and R̂ is its complementary mask. Since W and

R are multiplied point-wise, the ones in R represent the elements in W where

the L2 regularization is applied. On the other hand, the ones in R̂ correspond

to the elements in W where the L1 regularization is used. Our loss function

enforces many elements of W to be exactly zero (L1 norm) and, at the same140

time, avoids weights to grow too large where the L2 norm is applied. This

type of regularization will be called Mask Selective Regularization (MSR) in

the sequel.

A significant difference between EN and this approach, is that in MSR either

L1 or L2 regularization is applied to each parameter, whereas in EN both regu-145
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larizations are applied together to all the parameters. Typically, EN is unfruitful

to combine L1 and L2 in cases where λ1 and λ2 have different magnitude orders.

For instance, a large λ1 dominates the minimization towards an sparse solution

while a large λ2 towards a shrinkage solution. However, this undesirable effect

is avoided with the selective regularization of our approach because λ1 and λ2150

values are applied separately over different weights.

4.3. Binary regularization mask

The first problem of this approach is how to build the binary matrix R.

This matrix should be set according to the topology of the data, so that weak

dependencies between visible units will be regularized using the L1 norm and155

stronger dependencies using L2. The regularization mask R is built by selecting

a subset of binary vectors from a setM. The set of a binary masksM is formed

by d different vectors mi ∈ Rd, where each mi is related to a different visible

unit. Therefore, there are as many unique binary masks in theM set as number

of visible units. Our goal is to obtain a mask set that sweeps the most influence160

areas of each dimension in the training set. We propose to use the Pearson’s

correlation coefficient [5, 6] as a surrogate of the mutual information to obtain

these masks as mentioned before. Therefore, each binary element mij of the

vector mi would be 1 if the correlation between visible units i and j is high.

The correlation coefficient is defined by:165

corr (i, j) =
cov (i, j)

σiσj
=
E [(i− µi) (j − µj)]

σiσj
(11)

where i and j are random variables that represent the visible units with expected

values µi and µj and standard deviations σi and σj respectively.

To build the binary mask, we set to 1 the c components of mi which re-

spective highest correlation values and 0 for the rest. In order to decide the c

parameter we propose to keep the correlation ratio above a certain threshold α:170

∑
j∈S |corr (i, j) |∑d
j=1 |corr (i, j) |

> α (12)
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where S is the set of indexes of the highest c correlation values.

In order to visually assess the effect of the parameter α, Figure 1 shows the

effect of different values on a regularization mask associated to a visible unit. In

the case of images, small values of α generates masks that are localized around

the visible unit. Larger values of α capture more complex topologies and, in the175

case of images, can relate areas that are not spatially connected.

Figure 1: Binary masks for α ∈ {0.2, 0.4, 0.6, 0.8} for the MNIST dataset. All masks are

associated to the same visible unit.

Figure 2 shows a few examples of regularization masks obtained from the

MNIST training set using α = 0.7. Each mask intends to capture the strongest

dependencies for each visible unit where we would like to learn useful localized

features detectors.180

Figure 2: Few examples of binary regularization masks in M for the MNIST dataset.

As mentioned above, the regularization mask R is built by means of selecting
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a subset of binary vectors from the set of binary masks M. It is important

to note that this selection changes along the training process. Therefore the

topology of the network, sparseness induced by R, changes adaptively selecting

those masks that better explain the distribution of the input data, as it will be185

explained in Section 4.5. Moreover, it is important to mention that, unlike other

methods that force sparse connections by hand assuming the image layout of

the samples [3, 4], our method does not use any knowledge about the geometry

of the data. In fact, we use our method to specify sparse connections not only

in the first RBM of the network, but also in upper layers where you can not190

assume that the data follows any particular layout.

4.4. Topology selection and convergence

As mentioned before, the matrix R is a d × n matrix formed by binary

vectors from the set M. This matrix R is used to selectively apply a different

regularization term over the weight matrix W . Let wj and rj be the jth column195

of the matrix W and R, respectively. Each wj maps the visible units to the

jth hidden feature. Following our MSR approach, the elements of wj can be

regularized using either a L2 or L1 norm according to the binary values of rj .

Instead of fixing the subset of binary vectors from M to be included in R,

we propose to build R dynamically. In general, we could have the same binary200

mask mi several times repeated in R, obviously it will happen when n > d.

This effect is desirable because some local areas would require several hidden

units in order to explain all the variability that appears in that portion of the

representation space. Hence, each rj is selected among a finite set of masks M

and can be changed during the optimization process.205

The selection of each rj at each update time is done using an energy criterion

that depends on the current weight values wj . The energy criterion is defined

by:
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rj = max
mk∈M

Ek
in − Ek

out (13)

Ek
in =

mᵀ
kw

2
j

|mk|1
(14)

Ek
out =

m̂ᵀ
kw

2
j

|m̂k|1
(15)

where m̂k is the complementary of mk. The Ek
in value is the “positive energy”

of the mask mk with the feature wj averaged by the mask’s area. The intuitive210

idea is that given a feature vector wj , E
k
in will be high if the large weights of

wj are under the mask mk. Similarly, Ek
out value is the “negative energy”. This

term penalizes the case where large weights of wj are not under mk. Therefore,

after the selection, rj is going to be the binary mask mk ∈M that best covers

the high values of wj . For these large weights the L2 regularization will be215

applied. For the rest of weights, the L1 regularization will be applied to enforce

real zeros.

As we have said before, mask selection occurs in each epoch of the opti-

mization process and the mask selected can change. In order to ensure the

convergence of the selected mask by each feature, we propose to decrease lin-220

early a probability assigned to the capacity of change the current mask. Hence

the chance for changing the mask in very initial iterations is high, but tends to

zero for the last iterations.

4.5. MSR Algorithm

The MSR algorithm entails to select the regularization matrices as described225

in previous section and compute the update equations derived from the loss

function in Eq. 10. It is important to mention that the update of R is performed

only once at every epoch, instead of at every batch. This is important because

it allows the weights to settle to stable configurations and greatly reduces the

computational cost. The binding between regularization masks and weights230

is quite changing at the beginning of the training process. At early epochs,

since the values of the weights are randomly initialized, there is not a clear
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topology and the binary masks that best fit the weights varies significantly. As

the process evolves, the correspondence freezes and each feature detector gets

associated with a regularization mask. Figure 3 shows some features learned235

with the MSR agorithm for the MNIST dataset. The binary mask selected for

each feature is overlayed in red.

Figure 3: Learned features for the MNIST dataset along with their corresponding binary

masks overlayed in red color.

Once the regularization masks are selected the derivative of the the loss func-

tion of Eq. 10 yields a very simple learning rule, following the CD-1 approach:

∆wij = ε
(
〈vihj〉data − 〈vihj〉model

−λ1sgn (wij ·r̂ij)− 2λ2 (wij ·rij)
) (16)

where wij are the weights of the RBM connections, and the angle brackets are

used to denote expectations under the distribution specified by the subscript.

Note that the last two terms are the derivatives of the L1 and L2 regularization240

terms, respectively, where sgn(x) is the signum function of x.

One key point of our algorithm is that it is not made any assumption a priori

about which regularization masks should be used. This selection is guided only
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by the topology of the data. In fact, we have observed that there exist masks

in M that are never used while others can be reused several times in different245

feature detectors. It only depends on the complex dependencies of the visible

data. Another interesting point is that our regularization serves as a guide

to indicate where coefficients should be enforced to be zero. However, there

exists situations where higher order relationships between visible units are not

captured by the binary masks. In this case, the feature may have non-zero250

values in the L1 regularized units outside the mask. The algorithm allows this

phenomenon. This fact is illustrated in the bottom-right feature shown in Fig. 3,

where large weights lay outside the mask (overlaid in red).

In order to show the differences among the different regularization tech-

niques, Figure 4 shows the histograms of weight coefficients in the first layer255

on the MNIST dataset using different regularizations. The histogram without

regularization is also included in the figure for completeness. It can be seen

that the MSR inherits properties from both L2 and L1 regularizations. It forces

many coefficients to be zero as in L1 and the number of large coefficients is

similar to L2. Although the EN histogram in this case is very similar to the260

MSR, the results presented in next section will show the advantage of our MSR

approach.

5. Experiments

In this section we present the evaluation carried out. We propose an evalu-

ation over different datasets, images and non-images. First, two popular hand-265

written digit datasets: MNIST1 and US Postal Service (USPS)2 are considered.

Second, in order to show the capabilities of the MSR to model the topology of

the input space on non-images problems, we carried out experiments beyond

image datasets. We run experiments with the well-known 20-Newsgroups text

1MNIST dataset is available here: http://yann.lecun.com/exdb/mnist/.
2USPS dataset is available in Matlab format here:

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html.
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classification dataset3. Finally, we have used the CIFAR-104 to evaluate our270

algorithm in a more complex scenario that contains natural color images.

All of these experiments have a common framework based in [2]. Our goal

is to train a DBN using a layer-by-layer pre-training method. Each layer of the

network is trained as an RBM with the CD-1 algorithm in a completely un-

supervised way. Finally, the entire network is fine-tuned discriminatively with275

back-propagation adding a “softmaxed” output layer and using the label infor-

mation of the training samples. The fine-tuning process stops when the average

cross-entropy error on the training data fall bellow a pre-specified threshold.

To fix the threshold value, we fine-tune the network using only a subset of the

training samples and using the remaining examples as a validation set. The280

cross-entropy threshold value is fixed with the fewest classification error on the

validation set.

The results obtained with our approach (MSR model) will be compared

against other regularization schemes: the No REG model is trained without

any regularization penalty, whereas L1 and L2 are models trained including L1285

or L2 regularization restrictions, respectively. The EN model uses both L1 and

L2 at the same time. The regularization parameters λ1 and λ2, as well as the

parameter α in our model, were chosen by model selection. For L1 and L2

methods, this model selection performs a search over λ1 and λ2 amog the values

0.0001, 0.001 and 0.01, fixing each value according to the best performance on290

a validation set in each case, respectively. For the EN method the grid search is

performed jointly over λ1 and λ2. Finally, for our MSR method the grid search

includes the α parameter in the range 0.3 − 0.8 with a step size of 0.1. It is

important to make it clear that the MSR algorithm is only applied during the

pre-training phase, as well as the others regularization techniques. Once the295

models have been pre-trained, the discriminative fine-tuning procedure is the

320-Newsgroups dataset is available in Matlab format here:

http://qwone.com/∼jason/20Newsgroups/.
4CIFAR-10 dataset is available here: http://www.cs.toronto.edu/∼kriz/cifar.html.
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same in all cases. Also, it is important to highlight that the MSR approach is

applied not only in the first layer but also in upper layers where we can not

assume that the data has any particular geometry or layout. Actually, some

extra experiments on the MNIST dataset have been performed to show the300

advantage of using MSR not only in the first layer, but also in upper layers of

the DBN model. Note that the weights between the last layer and the output

layer (that represents the labels) are not pre-trained.

In order to assess the robustness of the MSR approach we have run some

extra experiments over a noisy version of the test set. To this end, for the digit305

datasets inspired by [4], the original test partition has been corrupted with

three kinds of noise to reflect some possible sources of error. The first source

of noise is a random noise where 10% of the pixels are activated. The second

one introduces a border of two pixels wide to the images. Finally, the third

one simulates a block occlusion by adding a square to the images in a random310

location. The area of that square is set to be one sixteenth of the total area

of the image. We can see an example of each kind of noise in Figure 5. It is

important to mention that the models are trained and validated in absence of

noise in all cases. Similar experiments over a noisy test set are performed on the

20-Newsgroups text classification dataset where the noise is obtained modifying315

the word counts.

5.1. MNIST

The MNIST dataset has a training set of 60000 examples, and a test set of

10000 examples. The size of each image is 28 × 28 pixels and the pixel values

were normalized to the range [0,1]. For these experiments we have used the same320

784 − 500 − 500 − 2000 − 10 deep network used by Hinton [2], which achieves

1.14% error on the test set. Each RBM has been trained for 50 epochs. Weights

were initialized with small random values sampled from a normal distribution

with zero mean and standard deviation of 0.1. The learning rate value was set

to 0.1 for both weights and biases. The regularization terms λ1 and λ2 were325

fixed to 0.0001 for all the models, whereas α is fixed to 0.7 for our model. The
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Table 1: Error rate (%) on the MNIST test set for different noise sources.

Model Clean Random Border Block

No reg 1.11 1.39 87.61 16.46

L2 1.07 1.20 79.86 16.24

L1 1.11 1.21 2.82 12.83

EN 1.16 1.24 3.37 13.17

MSR 1.05 1.13 2.89 12.44

results are given in Table 1. First, we observe that our model MSR achieves

the best result in the noisy free case. In fact, we obtain a 1.05% error rate in

the classical MNIST task, which is comparable to other results published for

the permutation-invariant MNIST task. [2, 24, 4]. On the other hand, despite330

the fact that the No REG approach obtains reasonable good results on the

clean version of the test set, the performance of this approach drops drastically

when the noise appears in the test samples. However, MSR also outperforms

in almost all cases for noisy test samples. Note that L1 deals quite well with

the Border case in this database where the digits are very clear. These results335

confirm the fact that regularization is a required procedure in order to ensure

the generalization of the learned models.

Table 2: Effect of applying MSR to different layers of the network. Error rate (%) on the

MNIST test set.

Layers
Clean Random Border Block

1st 2nd 3rd

No Reg No Reg No Reg 1.11 1.39 87.61 16.46

MSR No Reg No Reg 1.14 1.25 4.37 13.08

MSR MSR No Reg 1.09 1.19 5.34 12.73

MSR MSR MSR 1.05 1.13 2.89 12.44

We have also conducted an extra experiment on this dataset to show the

advantage of using MSR in the upper layers of the network. These results are
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summarized in Table 2, where the error rate is shown for the same network340

of the previous experiment depending whether or not the MSR algorihm has

been applied to each layer. According to these results the best performance is

achieved when MSR is used in all layers. Note that the first and the last rows

of the Table 2 correspond to the already results presented in Table 1. These

results also demonstrate that MSR is useful when the topology of the data is345

not known as in the upper layers of the network.

5.2. USPS

The USPS dataset is composed by a training set of 7290 examples, and a

test set of 2007 examples. The size of each image is 16× 16 pixels and the pixel

values were normalized to the range [0,1]. For these experiments we have used350

a 784 − 300 − 300 − 1200 − 10 deep network as suggested in [25]. The results

are given in Table 3. The training and testing procedure is the same as in the

MNIST, except that in this case we have used λ1 = 0.001 and α = 0.6.

Table 3: Error rate (%) on the USPS test set for different noise sources.

Model Clean Random Border Block

No reg 5.17 33.45 71.08 28.36

L2 5.10 28.26 62.78 28.55

L1 5.24 27.18 62.63 26.75

EN 5.75 20.82 59.00 24.55

MSR 5.03 23.16 55.64 24.25

Again, some improvements are obtained on the clean version of the test

dataset. Our 5% error rate obtained by MSR on clean images is comparable355

with other results obtained with convolutional networks [26]. Also, there is

a clear advantage of the proposed technique when dealing with noise in most

cases. It should be mentioned that since USPS images are smaller than MNIST

images and their digits are scaled to fit the available area, the Border and Block

noises affect the error rate more severely in the USPS case compared to the360

MNIST dataset (Table 1).
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5.3. 20-Newsgroups

The 20-Newsgroups corpus is a collection of approximately 20,000 newsgroup

documents, partitioned (nearly) evenly across 20 different newsgroups. This

corpus is processed using the Rainbow toolkit and selecting the 5,000 most365

informative words to define the vocabulary. Moreover, we have added noise

to the text data (word counts) to evaluate also the behaviour of the different

regularizations w.r.t noise. The network is formed by just one hidden layer

with 1000 hidden units and a discriminative layer. The training and testing

procedure is the same as in the MNIST with λ1 = λ2 = 0.0001 and α = 0.6.370

Table 4 shows the results.

Table 4: Error rate (%) on the 20-Newsgroups test set for different noise sources.

Model Clean 10% 20% 30%

No reg 22.11 24.14 25.56 28.09

L2 22.23 23.85 25.17 27.45

L1 22.35 24.32 26.38 28.94

EN 22.73 24.38 26.57 28.74

MSR 22.13 23.73 25.14 27.48

The results using our MSR are comparable with other results using similar

models [27]. According to the results, MSR performs well on clean and noisy

data in a non-image database as well, although the differences are not as signif-

icant as in the other tasks. Finally, it is worth to mention that in some other375

omitted results in this task, we found the inability of the EN to deal with values

of λ1 and λ2 of different magnitude orders which worsens the results extremely.

This effect does not happen using MSR, which gives reasonable results even in

this extreme case.

5.4. CIFAR-10380

The CIFAR-10 dataset consists of 60000 32× 32 colour images in 10 classes,

with 6000 images per class. There are 50000 training images and 10000 test
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images. They are normalized to be zero-mean and unit-variance. The network

is formed by just one hidden layer with 4000 hidden units. To deal with real-

valued data such as the pixel intensities in natural images we have replaced385

the visible binary units by gaussian units obtaining a Gaussian-RBM [2]. The

GRBM model can be trained with the CD-1 algorithm as well. Weights were

initialized with small random values sampled from a normal distribution with

zero mean and standard deviation of 0.05. The learning rate value was set to

0.001 for both weights and biases. The regularization terms λ1 and λ2 were390

set to 0.001 for all the models, whereas α is fixed to 0.3 for our model. Unlike

the other datasets, the discriminative step, once the GRBM is trained, has

been done feeding the hidden output activations of each sample into a linear

SVM. This methodology has been previously used in the literature [10, 28].

Table 5 shows the results for the different regularizations and the proposed395

MSR method. Note that we have compared the results only on clean images,

since the robustness of MSR have been already demonstrated in the previous

datasets.

Table 5: Accuracy (%) on the CIFAR-10 test set.

Model Accuracy

L2 51.14

L1 52.98

EN 52.44

MSR 58.64

Despite these results are far from the state of the art [29, 30], it is important

to mention that our algorithm does not make any assumption on the geometry of400

the data. The best results on CIFAR-10 are obtained using convolutional models

that exploit the strong spatially local correlation present in natural images. In

fact, in [31] the authors show the difficulty of learn interesting-looking filters on

natural images without a convolutional approach. The best result in that work

is 64.84% of accuracy on the test set, but using a hidden layer with 10000 units405
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and pre-training the RBM with a much bigger subset from the Tiny Images

dataset. However, in the present work, our model uses a conventional RBM

(non-convolutional) and is trained with the standard training set. Under this

restrictions, our method outperforms other results obtained with similar non-

convolutional models on CIFAR-10. For instance, in [32] a three layer stacked410

autoencoder is trained on CIFAR-10 obtaining 53.2% of accuracy far from our

58.64% using MSR.

6. Conclusions

In this paper, we have described a new algorithm called Mask Selective

Regularization (MSR) to improve the RBM’s learning capabilities based on two415

important issues. On the one hand, we propose a new method to take advantages

of the topology of the input space. On the other hand, we presented a new

scheme that uses a selective L2–L1 regularization criterion to ensure sparseness

of the representation and generalization capabilities. In order to assess the

new proposed method we have compared the performance of MSR with other420

regularization schemes using both noisy and original versions of image and non-

image datasets. MSR outperforms the other models in all cases in presence of

noise, being still a good discriminative classifier comparable with the state of

the art on the original sets using similar methods. Also, a key aspect of our

approach is that it can be applied without any knowledge about the geometry425

of the data, and may be applied in upper layers of in a deep network.

For future work, we would like to investigate the applicability of the MSR

algorithm to other types of deep networks, like Deep Boltzmann Machines, Deep

Autoencoders, etc. Also, although the applicability of MSR in upper layers of

the network has been done, it would be interesting to evaluate the performance430

of our approach with other non-image datasets.
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Figure 4: Histogram of weights for different regularization schemes.
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(a) Clean (b) Random (c) Border (d) Block

Figure 5: Clean and noise images
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