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a b s t r a c t

Demand-Side Management systems aim to modulate energy consumption at the customer side of the
meter using price incentives. Current incentive schemes allow consumers to reduce their costs, and from
the point of view of the supplier play a role in load balancing, but do not lead to optimal demand
patterns. In the context of charging fleets of electric vehicles, we propose a centralised method for
setting overnight charging schedules. This method uses evolutionary algorithms to automatically search
for optimal plans, representing both the charging schedule and the energy drawn from the grid at each
time-step. In successive experiments, we optimise for increased state of charge, reduced peak demand,
and reduced consumer costs. In simulations, the centralised method achieves improvements in
performance relative to simple models of non-centralised consumer behaviour.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

EU policy aims to reduce greenhouse gas emissions and reduce
dependency on imported fossil fuels. The “20–20–20” targets [1]
mandate the reduction in member states to 20% below the 1990
emission levels, the supply of 20% of all energy from renewable
energy sources (RESs) and a reduction in energy consumption by
20% by the year 2020.

Electric vehicles (EVs) are viewed as playing a role in reducing
emissions in the transport sector, but their usage causes an
increase in electricity demand. The use of RESs also causes
problems for the efficient operation of a power plant [2]. Increased
cycling (starting up and shutting down) of the power system
results in increased wear and tear on the plant and can cause an
increase of greenhouse gas emissions.

Therefore, newmethods are required to increase electricity grid
efficiency and reduce emissions. The smart grid (SG) is one main
approach. A SG is a type of electrical power grid whose goal is to
respond to the behaviour and actions of energy suppliers and
consumers to efficiently deliver economic, reliable and sustainable
electricity services. Multiple research areas have been explored in
SG over recent years as a result of different challenges that have

been posed to the electrical grid. One of the most explored areas in
SG is Demand-Side Management (DSM) systems as shown by the
increasing number of publications, ranging from the use of
intelligent algorithms (e.g., game theory [3], Monte Carlo-based
methods [4], evolutionary algorithms [5], multi-agent systems [6]),
real-time systems [7], up to challenges and in-depth surveys on
the area [8–11].

DSM is a set of measures to improve the energy system at the
consumer side. DSM ranges from improving energy efficiency
through the use of better insulation or better materials up to the
use of autonomous systems to control energy resources [10]. DSM
programs include different approaches, e.g., manual conservation
and energy efficiency programs [12] and Residential Load Manage-
ment (RLM) [6,3]). RLM programs based on smart pricing are
amongst the most popular methods.

The motivation for smart grid tariff structures is twofold. They
allow consumers to reduce their electricity costs. At the same time,
the utility company achieves a reduction in the peak-to-average
ratio (PAR) in load demand resulting from the shifted consumption
[6]. If no special measures are taken to avoid them, high PAR
values come about naturally because consumer electricity demand
follows a diurnal pattern, with increased load in the morning, a dip
in the afternoon, a rise in the evening, and a stronger dip in the
middle of the night.

Some of these smart pricing methods are very popular. In
particular, time-of-use (ToU) pricing has been widely adopted in some
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European countries [11]. Other smart pricing types include critical-
peak pricing, extreme day pricing, and smart grid real-time pricing.

Motivated by smart price-based approaches, we are interested
in developing an autonomous intelligent DSM system that shifts
electricity consumption of electric vehicles (EVs). To this end, we
use stochastic optimisation evolutionary algorithms (EAs). The
main contribution of this work focuses on the notion of load
shifting, borrowed from popular smart pricing-based methods. In
contrast to typical DSM approaches such as dynamic pricing,
which are based on an interaction between the utility and the
user, we use a centralised approach, wherein the consumption
schedule is set centrally based on complete information of all EVs.
The motivation is to achieve improvements in performance. To do
so, we use EAs to automatically generate (optimal) solutions. The
use of all EVs is considered in the solution representation used in
our EAs (described in detail in Section 2). We also use this in the
evaluation of candidate solutions.

To test this idea, we considered a dynamic scenario of 28
simulated days, with the charging period from 18:00 to 07:30,
divided into 28 time-slots of 30 min each. An action (switching EV
charging on or off) can be taken at the beginning of each time-slot.
We defined three different goals:

(a) that EVs' batteries are as fully charged as possible;
(b) we add an extra goal to (a) by aiming for a low fluctuation at

the transformer load (i.e., low PAR); and finally,
(c) we add a third and final goal that aims to reduce electricity

costs to the consumer by using a pricing signal based on ToU.

To achieve these three goals, we propose three fitness functions.
Each will be used independently in our EA and will guide our
evolutionary search to automatically create an (optimal) plan.

The core elements in this work are the following:

1. We study the impact of the representation and functions
proposed in this work when scaling the problem up (i.e., from
using a few EVs to using dozens of them) by measuring the
transformer load, the initial and final state of charge (SoC), the
PAR and electricity costs.

2. To do so, we used two EA approaches: a genetic algorithm and an
evolution strategy and compared their performance against three
non-intelligent approaches (i.e., Greedy, Midnight and Random
methods), each of them simulating a specific user behaviour.

3. A dynamic scenario was used to study all these approaches by
allowing having a variety of changes, i.e., different SoC for each EV
for each of the simulated days, over a 28-day simulated period.

1.1. Importance of this research in DSM

DSM has been investigated extensively over recent years. For
instance, it has been shown that more than 2000 scientific papers
have been published in this area since the 1980s [4], with more
than half in this decade. Fig. 1 shows a visual representation of the
research trends followed in DSM (a) from 2010 until now, and
(b) in 2014 only.1

As can be seen in Fig. 1 multiple topics have been covered in
DSM, ranging from electricity costs, the use of electric vehicles, up
to the use of data. The research conducted in this work lies at the
very core of the research trend observed in this figure.

The challenges continuously presented to the grid, such as the
aggregation of new electric devices (e.g., electric vehicles using the
grid can double the average household load [3]) make the use of
intelligent algorithms suitable to be used in the design/implemen-
tation of DSM systems. Fig. 1 shows this trend. For instance, notice
the presence of “algorithms”, “programs”, and “methods”. In fact,
one could consider the presence of “algorithms” in the core of
Fig. 1 if researchers had unified their use around this unique term
instead of using various synonyms.

Several algorithms have been used in DSM system and each has
focused their attention on different areas within DSM. For exam-
ple, it has been shown that by adopting pricing tariffs which
differentiate energy usage by time and level, a global optimal
performance can be achieved by means of a Nash equilibrium of
the formulated consumption scheduling game [3]. Multi-agent
systems have also been used in DSM. For instance, the research
conducted in [14] aimed to create a DSM based on these type of
systems and studied different types of smart pricing, concluding
that in all studied scenarios, a high PAR was observed under the
use of these smart pricing models (e.g., ToU, critical peak price,
real-time pricing).

In this work we use EAs to automatically create plans to
intelligently charge EVs’ batteries, aiming at reducing PAR, redu-
cing load at the substation transformer, and reducing costs to the
consumer.

This paper is organised as follows. In the following section we
introduce our proposed approach. Section 3 shows the experi-
mental setup used in this study. In Section 4, we present and
discuss our findings. Section 5 draws some conclusions and
presents some future work.

2. Proposed approach

2.1. Background

Evolutionary Algorithms (EAs) [15,16], also known as Evolu-
tionary Computation systems, are influenced by the theory of
evolution by natural selection. These algorithms have been with us
for some decades and are very popular due to their successful
application in a range of different problems, ranging from the
automated design of an antenna carried out by NASA [17], the
automated optimisation of game controllers [18,19], the auto-
mated design of combinational logic circuits [20,21], to automated
optimal localisation for building seismic sensing stations [22]. EAs
are “black-box”, that is, they do not require any specific knowledge
of the fitness function. They work even when, for example, it is not
possible to define a gradient on the fitness function or to decom-
pose the fitness function into a sum of per-variable objective
functions. The fitness functions used in our work (described in
Section 2.2) are not amenable to analytic solution or simple
gradient-based optimisation, hence search algorithms such as
EAs are required.

The idea behind EAs is to automatically generate (nearly)
optimal solutions by “evolving” potential solutions (individuals
forming a population) over time (generations) by using bio-
inspired operators (e.g., crossover, mutation). More specifically,
the evolutionary process includes the initialisation of the popula-
tion Pð0Þ at generation g¼0. The population consists of a number
of individuals which represent potential solutions to the particular
problem. At each iteration or generation (g), every individual
within the population ðPðgÞÞ is evaluated using a fitness function
that determines its fitness (i.e., how good or bad an individual is).
Then, a selection mechanism takes place to stochastically pick the
fittest individuals from the population. Some of the selected
individuals are modified by genetic operators and the new

1 Source: http://ieeexplore.ieee.org/Xplore/home.jsp. Last accessed date: 31/
08/2014. Links of strength less than 55 (in (a)) or 20 (in (b)) are filtered out. Details
on how this was produced can be found in [13].
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Fig. 1. Research trend on ‘Demand-side management’ systems (a) 2010 until 2014 and (b) 2014 only. Only links (similarities) with strength greater than 55 (in (a)) or 20 (in
(b)) are shown.
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population Pðgþ1Þ at generation gþ1 is created. The process stops
when some halting condition is satisfied. Further details on how
these stochastic optimisation algorithms work can be found in
[15,16].

2.2. Representation and evaluation

In this work, we use a fixed-length bitstring representation,
where each bit indicates whether a particular EV should be
charged or not during a particular time period.

Let N denote the number of household units (users). Let M
denote the number of electric vehicles (EVs) available in N. In our
study M¼N. In our work the time-slots are of length 30 min,
starting at ti and running to tf . Therefore an energy consumption
schedule can be naturally represented by a matrix of bits:

EM9

Eti1 ;…; Etf1
Eti2 ;…; Etf2

⋮
EtiM ;…; EtfM

2
666664

3
777775 ð1Þ

where each Etm is a single bit representing whether EV m is
charging at time t or not. Each row represents the behaviour of a
single EV over the full period; each column represents the
behaviour of all EVs at a single time-slot. An individual in the EA
is just a matrix EM , unrolled to give a bitstring, that is

Eti1 ;…; Etf1 ; E
ti
2 ;…; Etf2 ;…; EtiM ;…; EtfM ð2Þ

Now, we need to define a fitness function (cost function) to
automatically evaluate the candidate solution shown in Eq. (2). To
do so, we need to define several elements, discussed next.

For each mAf1;…;Mg, let ltm denote the load drawn by EV m at
time t. If Etm ¼ 0 then ltm ¼ 0; if Etm ¼ 1 then ltm ¼ 1:7 kW (this
constant is characteristic of the EV). The total load across all EVs
at each time tAfti;…; tf g is
Lt9

X
mA f1;…;Mg

ltm ð3Þ

As indicated previously, we are interested in the first instance
in automatically creating (near-)optimal schedules so that the final
state of charge SoCtf for allmAf1;…;Mg is as high as possible (goal
(a) as described in Section 1). Let us call this the ‘Charging’
function, f c. Thus, we aim to maximise

f cðEMÞ9
1
M

X
mA f1;…;Mg

SoCtf ðEmÞ
SoCmaxm

ð4Þ

where we denote the maximum possible charge as SoCmaxm . Eq. (4)
guides our EA towards a solution that aims to charge each EV as
much as possible.

We now proceed to consider goal (b), which is a low fluctuation
in the total EV load over time. The peak-to-average ratio (PAR) is
calculated as the maximum load demand for a period of time
divided by the average load demand. Therefore, the PAR in
demand is obtained by using Eq. (3) as a basis, and so we have

PAR9
maxtA fti ;…;tf g Lt
1
T
P

tA fti ;…;tf gLt
ð5Þ

To define a suitable fitness function, we start by defining the
variance of the total load (Eq. (3)) over time. We take the negative
(and add a scaling constant) so that we aim to maximise

SðEMÞ9�1
C
σ½Lti ;…; Ltf �þ

1
C

ð6Þ

where σ½Lti ;…; Ltf � is the variance in the total load over time, and
C � 80%M. Eq. (6) calculates the constancy of load. Now, we are in

position to define a ‘Steady Charging’ function:

f sðEMÞ9
f cðEMÞ if (m : SoCðEmÞoSoCmin;

f cðEMÞþSðEMÞ otherwise:

(
ð7Þ

where SoCmin is the minimum state of charge that an EV should
achieve at time tf , and in this work we have arbitrarily chosen
SoCmin ¼ 80% of capacity. Eq. (7) aims first at reaching this
minimum SoC for all EVs and then tries to achieve constancy of
EV load at the transformer. This in consequence translates into
having both a constancy and a low PAR (Eq. (5)).

We finally consider our final goal (c): reduction of electricity
costs. So, we define our third and last function, to be called ‘Price-
Based Charging’ ðf pÞ. This function works in three stages. It first
tries to charge an EV to a certain minimum SoC, SoCmin. Once this
is achieved, it tries to reduce costs, by taking advantage of cheaper
electricity at certain times (details are given in Section 3). It then
tries to reduce variance at the transformer load (Eq. (6)). The
reduction of electricity cost is defined by

RðEMÞ9
C
M

X
mAM

1� PmðEMÞ
Pmaxm �Pminm

� �
ð8Þ

where Pm; Pmaxm ; and Pminm
indicate the price of a given scheduling

Em for a single EV m, the highest possible price for that EV, and the
optimal price for it, respectively.

Since RðEMÞ is a reduction, higher values are better. We will
denote the minimum desired price reduction as Rmin. In this work
we use the value Rmin ¼ 0:15, chosen empirically. Other values are
also possible. By using the expressions in Eqs. (4), (6) and (8) we
are now in a position to define our ‘Price-Based Charging’ function
f p. Thus, we have

f pðEMÞ9
f cðEMÞ if (m : SoCðEmÞoSoCmin;

f cðEMÞþRðEMÞ if 8m : SoCðEmÞZSoCmin and RðEMÞoRmin;

f cðEMÞþRðEMÞþSðEMÞ otherwise:

8><
>:

ð9Þ
Next, we describe the experimental setup used in this work to

test the three proposed functions: Charging ðf cÞ, Steady Charging
ðf sÞ and Price-Based Charging ðf pÞ.

3. Experimental setup

3.1. Grid scenario

We assume that EVs are charged only at home, and between
the hours of ti ¼ 18:00 and tf ¼ 07:30, inclusive. This charging
period is divided into 30-min slots. This scenario is common in
previous research [5,23–25]. There are several reasons why a 30-
min slot is used: sometimes electricity costs are recorded every
30 min [25]; another reason is to reduce the decision space in the
context of reinforcement learning [6]. In this study, we decided to
use 30-min slots in order to have candidate solutions of reasonable
size (see Eq. 1), which results in a smaller search space. Our
representation allows for charging to switch on or off every
30 min, but modern EV batteries are not as susceptible to damage
from switching charging on and off frequently [26].

In our considered benchmark smart grid system there are
N¼ f10;30;60;90g users, each with one EV (hence N¼M). Each
EV mAf1;…;Mg can only be charged at home. These small
numbers of EVs are not unrealistic: in real-world electricity
markets, a Demand Aggregator is a market participant which
plays the role of a middleman between the consumer and the
supplier (see, e.g., [27]). In our scenario, a Demand Aggregator
would be responsible for the centralised control of a (potentially
small) number of EV charging schedules.
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We simulated a dynamic scenario, where the initial state of
charge (SoC) for each EV at time of arrival (ti) at home varies for
each of the 28 simulated days.

To calculate the electricity costs yielded by the fitness functions
proposed in Section 2, we use the smart pricing time-of-use
‘Standard Electricity NightSaver’ plan implemented by electric
Ireland2 on the summertime schedule. The peak time is from
09:00 until midnight, whereas the remaining time is off-peak time
(Table 1 shows the electricity costs for these two periods). In our
scenario, this translates as having a high-peak time from 18:00
until 23:30, whereas the off-peak time is from midnight
until 07:30.

Table 1 summarises the parameters used to simulate our grid
scenario. We ran our simulations using the GridLab-D simulator
[28] (version 2.3). This is an open source electrical grid simulator
developed by the US Department of Energy.

3.2. Evolutionary algorithms

The experiments were conducted using two evolutionary algo-
rithms: (1) a population-based EA, with a steady state approach
with tournament selection, one-point crossover and bit-flip muta-
tion; and (2) a 1þ1-evolution strategy (only one individual is
evolved using mutation). We will refer to them in this work as
“EA” and “1þ1-ES”, respectively.

The parameters used for the EA are shown in Table 2. The 1þ1-
ES uses mutation as the only genetic operator. It was run for
20,000 generations, giving the same total number of fitness
evaluations as the EA. The parameter values and the type of
operators were determined empirically in pilot experiments. From
these experiments there are some elements worth mentioning.
For example, a two-point crossover decreased the performance of
our EA, whereas the one-point crossover, which we used in our
work, exhibited a slightly better performance. We also realised

that a much lower number of generations were required when
using 10 and 30 EVs to find good results. However, we decided to
use the same number of generations over all the EVs scenarios
(from 10 up to 90 EVs) to make a fair comparison.

Because of the stochasticity in the initial conditions on each
day and in the EA, we performed extensive independent runs (we
executed 672 runs in total, see Table 3 for details). Runs were
stopped when the maximum number of generations was reached.

3.3. Baselines

We will provide three simple methods of setting charging
schedules as baselines against which to compare EA performance,
named “Greedy”, “Midnight” and “Random”.

The Greedy baseline represents one typical customer beha-
viour. It represents the behaviour of a customer who begins
charging the EV at 18:00, ignoring cost, until the time of departure
(07:30) or until it is fully charged (i.e., SoCmaxm ). This is not an
unrealistic behaviour for many customers. It is fully deterministic.
For evaluation purposes, the Greedy approach can be represented
in the EA framework by a matrix where each row is of the form

f1;1;…;1;1;1;…;1g ðif charging has not finished at 07 : 30Þ
f1;1;…;1;1;0;…;0g ðif charging finishes before 07 : 30Þ

where the transition point from charging (1) and non-charging
(0) is determined by the EV's initial SoC, capacity, and target SoC.

The Midnight baseline represents the behaviour of a customer
who aims to use the cheapest possible electricity, and so starts
charging at midnight when the off-peak price applies, and con-
tinues until either the EV is charged or the customer leaves home
at 07:30. For evaluation purposes, the Midnight approach can be
represented in the EA framework by a matrix where each row is of
the form

f0;0;…;0;1;1;…;1g ðif charging continues until 07 : 30Þ;or
f0;0;…;0;1;1;…;1;0;0;…;0g ðif charging finishes before 07 : 30Þ

The Random baseline represents, perhaps, a more realistic
behaviour of customers given that it incorporates randomness.
Each EV begins charging at a random time and ends at a random
(later) time. For evaluation purposes, the Random approach can be
represented in the EA framework by a matrix where each row is of
the form

½0;0;…;0;1;1;…;1;0;0;…;0�

4. Results and discussion

As discussed throughout the paper, we are interested, broadly
speaking, in maximising the charge of the EVs’ batteries, while at
the same time balancing the transformer load.

Thus, in the following paragraphs we focus our attention on the
performance of our proposed approach by analysing the total EV

Table 1
Summary of parameters used for our smart grid system.

Parameter Value

Number of EVs (N) f10;30;60;90g
Initial time and latest ti ¼ 18:00,
time to charge tf ¼ 07:30
Frequency of making a decision 30 min
Number of time slots T 28
State of Charge (SoC) at ti (%) Uniform in ½40;60�
Battery capacity (kW) Random from f24;60g
Plug-in charging (kW) 1.7
Time-of-use pricing (kWh) € 0.2062 (peak)

€ 0.1019 (off peak)

Table 2
Summary of parameters used for our evolutionary
algorithm.

Parameter Value

Length of the
chromosome

NT (see Table 1)

Population size 100
Generations 200
Crossover rate 0.5 (only for the

EA)
Mutation rate 0.01

Table 3
Total number of runs executed for our experiments.

Description Value

Number of simulated days 28
Number of fitness functions 3
Number of EV fleets 4
Number of algorithms (EA and 1þ1-ES) 2
Total number of runs 672a

a 672¼ 28n3n4n2.

2 Source: https://www.electricireland.ie/switchchange/detailsValueRewardNight
Saver.htm
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load at the transformer over time and how this translates to
charge in the EVs’ batteries by analysing the initial and final state
of charge. We also analyse what the impact is on the peak-to-
average ratio. Finally, we discuss and analyse the implications of
the proposed approach in terms of electricity costs.

4.1. Overall performance

Let us start our analysis by considering the performance of our
proposed approaches in terms of their fitness values, as defined in
Section 2.2. The three fitness functions are named (a) Charging,
(b) Steady Charging and (c) Price-Based Charging. According to all
three definitions of fitness, higher fitness values are preferred.
Their performance is shown in Fig. 2 when using a 1þ1-ES (top
row) and when using a population-based EA (bottom row).
Evolutionary time, i.e., generations, is shown in the ‘x-axis’, and
fitness in the ‘y-axis’. As mentioned before, both the 1þ1-ES and
the EA use the same number of fitness evaluations (e.g., 20,000
generations, as seen in the ‘x-axis’ of Fig. 2 (top), for the 1þ1-ES
evolving 1 individual; and 200 generations, shown in the ‘x-axis’
of Fig. 2 (bottom), for the EA using 100 individuals). All three
fitness functions show the expected tendency to yield higher
fitness values as search progresses. CPU time required to run the
experiments is shown in Table 4 using a desktop computer with
Intel Core i7-2600 CPU clocked at 3.40 GHz and 8 GB RAM.

Broadly speaking, the results show that the 1þ1-ES slightly out-
performs the EA, and that performance for both algorithms tends to
decrease slightly as problem size increases (the 10- up to 90-EV cases).

The Charging fitness function, formally defined in Eq. (4), aims
to charge the EVs' batteries as much as possible. This is the
simplest function defined in our work. The 1þ1-ES achieves very
good results for this function (Fig. 2(a)), with the EA (Fig. 2(d))

achieving equally good results for the smallest problem (10 EVs)
and slightly worse for larger ones.

The Steady Charging fitness function, formally described in Eq.
(7), is built on top of the Charging fitness function (it aims to
charge the EVs’ batteries as much as possible) but also considers a
steady charging of the EVs’ batteries. As explained in Section 2,
this function works in two stages: it aims at charging the EVs’
batteries up to a certain point, SoCmin¼80% of capacity in Eq. (6)
and then it tries to find solutions that draw power steadily from
the transformer (low PAR). When using the 1þ1-ES to optimise
this fitness function (Fig. 2(b)), we can observe good performance
after only 2000 generations (the equivalent of 20 generations with
the EA). Thereafter the fitness values improve marginally if at all.
In contrast, the EA achieves good results slowly (Fig. 2(e)). Even at
the end of the run, the results on the largest case (90 EVs) are
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Fig. 2. Average of best fitness values over 28 independent runs for each of the three fitness functions proposed in this work, named (a) Charging, (b) Steady Charging and
(c) Price-based Charging, using a 1þ1-ES (top row) and a EA (bottom row). The fitness values denote the performance of our proposed fitness functions using different
number of EVs: 10, 30, 60 and 90, specified with the red-filled squares, green-filled diamonds, blue-filled circles and magenta-filled squares, respectively. Higher fitness
values denote better performance. (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Table 4
CPU time using different sizes of EV fleets over a period of 28 days, using the three
proposed fitness functions (i.e., Charging, Steady Charging, Price-Based Charging)
and using two variants of EAs (i.e., 1þ1-ES and EA). Notice that this CPU time
excludes compiling the simulator, which takes approximately one minute. This has
to be compiled for each of scenarios shown in this table.

Approach Electric vehicles

10 30 60 90

1þ1 ES Charging 1043″ 3053″ 2005″ 2047″
1þ1 ES Steady 3057″ 10010″ 13052″ 12021″
1þ1 ES Price-Based 4027″ 6050″ 4028″ 4032″
EA Charging 2000″ 5021″ 50290; 8001″
EA Steady 4009″ 11000″ 12053″ 15051″
EA Price-Based 4011″ 9052″ 11028″ 15032″
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improving but are still not quite as good as for the 1þ1-ES. This
may suggest that longer runs would allow the EA to continue to
improve, eventually out-performing the 1þ1-ES.

The third and last fitness function proposed in our work, named
Price-Based Charging, formally described in Eq. (9), works in three
stages: it aims to charge the EVs' batteries up to a certain point (i.e.,
SoC 80%), then it tries to reduce electricity costs given a pricing
signal. Once search is able to meet these two targets, it tries to
achieve a constancy at the transformer load (Eq. (6)). The perfor-
mance of this function when using the 1þ1-ES is depicted in Fig. 2
(c). We can see a trend similar to that of the previous two fitness
functions when using this particular algorithm. That is, performance
drops for the larger problems (60- and 90-EV cases). The EA (Fig. 2
(f)) marginally out-performs the 1þ1-ES on the 10-EV case, but
again performance is somewhat worse for larger problems.

From the above discussion, we have learned that both algo-
rithms are capable of improving all three fitness functions, and

that the 1þ1-ES has a slight advantage over the EA. However the
functions' impact on the individual goals of the work (transformer
load, SoC, PAR, and electricity costs) is not yet clear. This is
particularly so for the functions that work in two phases (i.e.,
the Steady- and Price-Based Charging), due to the fact that the
fitness values are a combination of these stages. In the following
sections, the fitness functions’ impact on the individual goals will
be examined in turn and compared to the baselines described in
Section 3 (i.e., the Greedy, Midnight, and Random baselines).

4.2. Transformer load

Let us consider the load over time, averaged over a period of 28
simulated days, depicted in Figs. 3, 4, 5 and 6, for 10, 30, 60 and 90
EVs, respectively, when using the Greedy, Midnight and Random
baselines, and using both the 1þ1-ES and a EA with the three
fitness functions.

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

18 19 20 21 22 23 0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Timeslots during day (30-minute timeslots)

A
ve

ra
ge

 tr
an

sf
or

m
er

 lo
ad

 (K
W

)

Fig. 3. Transformer load, averaged for 28 days, for 10 electric vehicles (EVs). From top to bottom and from left to right, the figures show the transformer load for the (a) Greedy
approach, (b) Midnight approach, (c) Random approach, (d) 1þ1-ES Charging, (e) 1þ1-ES Steady Charging, (f) 1þ1-ES Price-Based Charging, (g) EA Charging, (h) EA Steady
Charging and (i) EA Price-Based Charging.

E. Galván-López et al. / Neurocomputing 170 (2015) 270–285276



Results for the Greedy approach are shown with red squares in
Figs. 3(a), 4(a), 5(a) and 6(a) (top-left image in all cases). It results
in a high transformer load from 18:00. Demand begins to drop
from 00:00 as some EVs become fully charged. It represents one of
the two worst-case scenarios for transformer load (the other is the
Midnight approach, discussed in the next paragraph) because it
simulates that an EV starts charging as soon as it reaches home. As
expected, this approach gives a higher transformer load during the
18:00–00:00 period than either of the algorithms with any of the
three fitness functions. We can also see that with the Greedy
approach it is not possible to fully charge all the EVs’ batteries for
each of the simulated days since with this method the transformer
load never drops to zero, as shown in Figs. 3(a), 4(a), 5(a) and 6
(a) for 10, 30, 60 and 90 EVs, respectively. The reason why this
happens is due to three main factors: the battery sizes, the limit on
charging rate, and the period of time during which EVs can be
charged (these specifications and their corresponding values are
shown in Table 1).

The Midnight approach is depicted with magenta squares in
Figs. 3(b), 4(b), 5(b) and 6(b) for 10, 30, 60 and 90 EVs, respectively
(top-centre image in all cases). Here, load is zero until 00:00, then
jumps to a maximum and remains at this value until some EVs
become fully charged. It is equally as bad as the Greedy approach,
and in fact, it shows the same transformer load achieved by the
Greedy approach, but at a different time. Because of the nature of
this approach (i.e., starts to charge the EVs at midnight, when the
electricity cost is the lowest) and by considering the previous
approach, which starts charging the EVs 6 h before compared to
this approach, it is clear that none of the EV fleets will be fully
charged at the time of departure, as can be observed in the
referred figures. For instance, if we consider the case with 10
EVs, shown in Fig. 3(b) we can see that at 07:30, the average
transformer load is around 12 kW, whereas for the Greedy
approach, the average transformer load is around 4 kW, depicted
in Fig. 3(a). The same trend is observed for the rest of the EV fleets
(i.e., 30, 60 and 90 EVs). We will further discuss the implications of
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Fig. 4. Transformer load, averaged for 28 days, for 30 electric vehicles (EVs). From top to bottom and from left to right, the figures show the transformer load for the
(a) Greedy approach, (b) Midnight approach, (c) Random approach, (d) 1þ1-ES Charging, (e) 1þ1-ES Steady Charging, (f) 1þ1-ES Price-Based Charging, (g) EA Charging,
(h) EA Steady Charging and (i) EA Price-Based Charging.
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this transformer load when analysing the state of charge, peak to
average ratio and electricity costs later in this section.

We now turn our attention to the last non-intelligent approach,
the Random approach, shown with black circles in Figs. 3(c), 4(c),
5(c) and 6(c) for 10, 30, 60 and 90 EVs, respectively (top-right
image in each case). Unsurprisingly, we can see that the average
transformer load is reduced substantially compared to the values
found during charging periods by the other two non-intelligent
approaches (i.e., Greedy and Midnight), discussed previously. This
is to be expected given the nature of this approach. That is, each
EV may begin to charge at any point in the time period (i.e., from
18:00 until 07:30 as specified in Table 1). Clearly, this approach is
the best amongst the non-intelligent algorithms in terms of
keeping the transformer load low. Its effect on the final state of
charge, peak to average ratio, and electricity costs will be dis-
cussed later in this section.

Let us now turn our attention to the transformer load using a
1þ1-ES approach with each of the three fitness functions proposed

in this work: Charging, Steady Charging and Price-Based Charging,
denoted by the triangles, in the middle row (d)–(f), from left to
right, of Figs. 3, 4, 5 and 6 for 10, 30, 60 and 90 EVs, respectively. If
we focus our attention on the 10-EV case, shown in Fig. 3, and
consider the Charging function, we can observe that the algorithm
tends to reduce the transformer load compared to the first two non-
intelligent approaches, despite not explicitly aiming to minimise it.
In fact, the average transformer load is something over half of that
achieved during charging with the Greedy and Midnight
approaches, with a high variability (the standard deviation is shown
by the vertical lines). A similar trend can be seen when using 30
EVs, as seen in Fig. 4(d), 60 EVs as shown in Fig. 5(d), and 90 EVs as
depicted in Fig. 6(d). A similar tendency can be seenwhen using the
same algorithm (1þ1-ES) and the two other fitness functions
proposed in this work. For instance, if we continue analysing the
10 EV case, we can see that the Steady Charging function, formally
defined in Eq. (6) yields similar results: see Fig. 3(e), compared to
the Charging function as shown in Fig. 3(a), discussed in the
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Fig. 5. Transformer load, averaged for 28 days, for 60 electric vehicles (EVs). From top to bottom and from left to right, the figures show the transformer load for the
(a) Greedy approach, (b) Midnight approach, (c) Random approach, (d) 1þ1-ES Charging, (e) 1þ1-ES Steady Charging, (f) 1þ1-ES Price-Based Charging, (g) EA Charging,
(h) EA Steady Charging and (i) EA Price-Based Charging.
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previous paragraph. Moreover, the Price-Based Charging function
again yields similar results (see Fig. 3(f) compared to the Charging
function). This intuitively means that when using the 1þ1-ES and
these fitness functions, one should expect similar results when
analysing the final SoC, electricity costs, and PAR. We will discuss
these later in this section.

We now analyse behaviour of the population-based EA (or simply
EA) with the three proposed fitness functions. The results obtained by
the EA are shown in the bottom row (g)–(i) of Figs. 3, 4, 5 and 6 for 10,
30, 60 and 90 EVs, respectively. We see that results are very similar to
those of the 1þ1-ES, and again are superior to those of the Greedy,
Midnight, and Random approaches. There are some elements worth
mentioning for each of the functions presented in this work.

For instance, when using the Charging fitness function (bottom
left-hand corner, Figs. 3(g), 4(g), 5(g) and 6(g)), it can be perceived
that the average transformer load is, for the smaller problem sizes
(10, 30 and 60 EVs), larger than when using the Steady Charging
function (bottom centre, Figs. 3(h), 4(h), 5(h) and 6(h)). However,
the Steady Charging function has a much more smooth load

compared to the Charging fitness function. This is to be expected
since the latter function rewards candidate solutions that tend to
show less variance in terms of the actions executed by the EVs. The
difference between these two functions is less clear when using 90
EVs, as depicted in Fig. 6(g) and (h).

Finally, let us focus our attention on the effect of the Price-
Based Charging functions on the average load at the transformer,
shown in Figs. 3(i), 4(i), 5(i) and 6(i) (bottom-right image in each
case), when using 10, 30, 60 and 90 EVs, respectively. This function
is built on the previously discussed functions. It aims to charge the
EVs’ batteries up to a certain level (i.e., 80%). Once they reach this
level, the function tries to achieve a certain reduction in electricity
cost. Finally it aims for balanced load. As can be seen, this function
works fairly well as it follows the pricing signal (recall that the
lowest price is from midnight onward as specified in Table 1),
which results in the ‘stair’ shape seen in Figs. 3(i), 4(i) and 5(i). The
situation is less clear when using 90 EVs, as seen in Fig. 6(i).

As indicated throughout the paper, the proposed approach,
discussed in Section 2, aims at charging the EVs’ batteries as much
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Fig. 6. Transformer load, averaged for 28 days, for 90 electric vehicles (EVs). From top to bottom and from left to right, the figures show the transformer load for the
(a) Greedy approach, (b) Midnight approach, (c) Random approach, (d) 1þ1-ES Charging, (e) 1þ1-ES Steady Charging, (f) 1þ1-ES Price-Based Charging, (g) EA Charging,
(h) EA Steady Charging and (i) EA Price-Based Charging.
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as possible at the time of departure, balancing transformer load,
and reducing consumer electricity costs. Only the first of these
goals is captured in the Charging function defined in Eq. (4),
whereas the Steady Charging considers the first two goals, and
Price-Based Charging considers all three.

4.3. State of charge

From our previous analysis on the transformer load and the
three fitness functions, we know that the Charging function will
achieve a higher final state of charge (SoC) compared to that
achieved by the two other functions. However, it remains unclear
exactly what final SoC will be achieved for both the non-intelligent
approaches (i.e., Greedy, Midnight and Random) and the EA
approaches (i.e., 1þ1-ES and population-based EA) using each of
the three fitness functions.

Thus, to shed some light on this, we calculated the final SoC for
all the approaches discussed previously using 10, 30, 60 and 90
EVs. The results are shown in Fig. 7(a), (b), (c) and (d), respectively.
Recall that the initial SoC for each of the EVs, for each of the 28
simulated days, is between 40% and 60%, as specified in Table 1. It
can be seen that, unsurprisingly, the Greedy approach, shown in
the first boxplot, achieves the highest final SoC, regardless of the
number of EVs used. This, however, is achieved at a great cost
since the transformer load is fairly high, as discussed in the

previous paragraphs. The Midnight approach also shows a high
final SoC given that all EVs start to charge as soon as the electricity
price drops at 00:00, and continue until the time of departure (18
slots over 28 available time slots, see Table 1 for details). This
intuitively means that one should expect to see a low electricity
price when using this approach, but it has the drawback of having
a high transformer load from 00:00, as discussed in the previous
paragraphs. The Random approach shows the lowest SoC among
all the approaches (see third boxplot in each of the plots of Fig. 7),
including the EA methods used in this work. This is to be expected
by its nature. Recall that any EV could be charged during any time
over the charging period. Moreover, it could be charged for a short
period (e.g., 1 slot¼30 min).

Let us now analyse the results yielded by both EA methods:
1þ1-ES and population-based EA. To facilitate our analysis, we
have put together in Fig. 7 the results from methods using each of
the fitness functions proposed in this work. From the formal
definition of these functions, introduced in Section 2 and from
the analysis conducted throughout all the paper, we know that the
Charging function should result in having a high SoC, and this is
found in the fourth and fifth boxplots of Fig. 7(b)–(d). For the 10-
EV case (Fig. 7 (a)) there is no difference.

If we now focus our attention on the results yielded by the
Steady Charging function, shown in the seventh and eighth
boxplots of Fig. 7(a)–(d), we can see a similar scenario compared
to the Charging function, described above. The differences
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Fig. 7. Percentage of state of charge (SoC), averaged for 28 simulated days using (a) 10, (b) 30, (c) 60 and (d) 90 electric vehicles (EVs). The figures show a summary of the
results achieved by the non-intelligent algorithms (i.e, Greedy, Midnight and Random approaches) and the two variants of EAs (i.e., 1þ1-ES and population-based EA) using
the three proposed fitness functions: Charging, Steady Charging and Price-Based Charging, specified in the ‘x-axis’ of the figures. The variance within each scenario comes
about partly through the fact that the initial conditions vary during the 28 simulated days, as well as the non-deterministic behaviour of the EA.
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between the 1þ1-ES and EA, if any, are small. However, the SoC
achieved by this Steady Charging function is often lower than that
of the Charging function. This is also to be expected given the
features of the former function. That is, it tends to charge an EV as
much as possible while at the same trying to make a low
fluctuation at the transformer load. Thus, as a result of the last
constraint, one should expect a lower SoC.

The final fitness function, Price-Based Charging function,
shown in the last two boxplots of Fig. 7(a)–(d), shows a slightly
lower SoC compared to the previous fitness functions, regardless
of the EA approach used. Again, by analysing both the fitness
function and the results on the transformer load, we can see that
the rather erratic behaviour observed on the transformer load
should result on having a lower SoC compared to the other two
functions, as discussed in the previous paragraphs.

4.4. Peak-to-average ratio

The peak-to-average ratio (PAR) is calculated by the maximum
load demand for a period of time divided by the average load
demand (see Eq. (5)). A lower PAR is preferred [29] via [3]. The
total required generating capacity is determined by the peak load,
hence a low PAR allows for a reduction in the total required
generating capacity. PAR is related to but distinct from the Steady
Charging objective, in that Steady Charging is motivated by a
desire to reduce the inter-time-step fluctuation in load, whereas
PAR is concerned only with the peak and the average load. It is
possible to achieve a relatively low PAR despite a relatively bad
(non-steady) Steady Charging behaviour.

The PAR achieved by the non-intelligent approaches (i.e.,
Greedy, Midnight and Random) and our proposed approach using
each of the three fitness functions when using a 1þ1-ES and a
population-based EA is summarised in Fig. 8. The horizontal
dotted line shown in the figure is the optimal value that can be
obtained and it is taken as a baseline against which to compare all
the approaches used in this work.

Considering only the non-intelligent approaches, the Greedy
approach achieves the lowest PAR, followed by the Midnight
approach and the Random approach. To see why this happens,
one should recall how each of these approaches work. For
instance, the Midnight approach achieves higher PAR compared
to the Greedy approach because although both reach the same
peak (at 00:00 and 18:00, respectively), the Midnight approach
has a zero load before 00:00 whereas the Greedy approach never
draws a load of zero. The Random approach achieves the highest
PAR amongst these approaches given its constant fluctuation.

If we now consider the EA approaches using the three proposed
fitness functions, we see some differences worth mentioning. Let
us start with the best (lowest) PAR, yielded by the Steady Charging
function and using both the population-based EA and the 1þ1-ES,
shown in the sixth and seventh boxplots of Fig. 8(a)–(d). We can
see that for the 10, 30 and 60 EV scenarios, shown in Fig. 8(a),
(b) and (c), respectively the PAR value is almost the ideal as it is
close to the horizontal line, which denotes the optimal PAR value.
This, however, is not observed for the case of 90 EVs, which agrees
with the rather erratic result observed at the transformer load
shown in Fig. 6(i). The other two fitness functions, Charging and
Price-Based Charging, yield high PAR values regardless of both the
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Fig. 8. Peak-to-average ratio (PAR), averaged for 28 simulated days using (a) 10, (b) 30, (c) 60 and (d) 90 EVs. The figures show a summary of the PAR when using the non-
intelligent algorithms (i.e, Greedy, Midnight and Random approaches) and the two variants of EAs (i.e., 1þ1-ES and population-based EA) using the three proposed fitness
functions: Charging, Steady Charging and Price-Based Charging, specified in the ‘x-axis’ of the figures.
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number of EVs and the type of EA employed. This is in fact to be
expected. For the Charging function, one should recall that this
function does not consider to reward candidate solutions based on
a low fluctuation of the load. On the other hand, the Price-Based
Charging function does consider the fluctuation. However, the
high PAR observed by this function is mainly caused by the drastic
change in price, resulting in having a fairly big jump in transfor-
mer load at 00:00, as observed by the ‘stair’ shape in Figs. 3(i), 4(i),
5(i), for 10, 30 and 60 EVs, respectively.

4.5. Electricity costs

As measures of the performance of the plans produced, we
have considered transformer load over time (Figs. 3–6), the state of
charge (Fig. 7), and the peak-to-average ratio (Fig. 8). It remains to
consider the electricity cost. The natural way to measure this is as
the total cost of the electricity drawn by all EVs over the 28
simulated days. However, it is necessary to account for the fact
that some plans draw more electricity than others: this is reflected
in the fact that the SoC at the end of the charging period is not
uniform. Therefore, we have implemented a measure of electricity
cost we will refer to as Equalised Cost. It uses the minimum SoC
achieved for each EV as a reference point. Since all EVs achieve this
SoC or higher, the cost up to this SoC can be compared fairly.
Therefore, we simply calculate the cost of electricity per EV up to
this minimum SoC, and disregard the electricity drawn after this
SoC. That is, within this metric all EVs are seen as drawing the
same amount of electricity. Furthermore, we calculate the

electricity costs by considering the ToU and the peak and off-
peak times, as discussed in Section 3 (a summary is provided in
Table 1).

The results of this analysis are shown in Fig. 9, with more
details shown in Table 5. For all scenarios (10, 30, 60, and 90 EVs)
there is quite a clear trend of decrease in Equalised Cost as we
move from the Greedy approach, through the Charging and Steady
Charging to the Price-Based Charging fitness function. The price
per EV for the Greedy approach is relatively constant, at about
EUR2.18–EUR2.27 per charging period. This relatively high price
reflects the fact that the Greedy approach carries out its charging
as early as possible, as seen in Figs. 3–6, coinciding with the peak
charging period. Obviously, the Midnight approach results in the
lowest Equalised Cost given that it only uses the cheapest
electricity cost. The Random approach also yields some fairly low
Equalised Costs, although with a high variance. The reason the
latter approach yields some low Equalised Costs is due to the fact
that the off-peak period is longer than the peak period (see Table 1
for details).

The Charging and Steady Charging fitness functions tend to
spread the load out more, hence as a by-product tend to take
better advantage of the off-peak charging period, again as seen in
Figs. 3–6. The two are comparable, though Steady Charging
spreads the load out slightly more and achieves slightly lower
overall price.

However, the Price-Based Charging fitness function explicitly
rewards low prices, and so is capable of achieving lower prices:
approximately EUR1.40 for 10 EVs, up to EUR1.67 for 90 EVs, when
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Fig. 9. Electricity costs, in euros, averaged for the number of electric vehicles used (a) 10, (b) 30, (c) 60 and (d) 90 electric vehicles. The figures show an average of the
electricity cost when using the non-intelligent algorithms (i.e, Greedy, Midnight and Random approaches) and the two variants of EAs (i.e., 1þ1-ES and population-based EA)
using the three proposed fitness functions: Charging, Steady Charging and Price-Based Charging, specified in the ‘x-axis’ of the figures.
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using the population-based EA approach. However, its advantage
over the other fitness functions, which is very clear for 10, 30 or 60
EVs, is far less clear for 90 EVs.

5. Conclusions and future work

We have implemented two variants of evolutionary algorithms
(EAs): a 1þ1-ES and a population-based EA to search for efficient
charging schedules for fleets of EVs, achieving good results in
terms of reducing peak demand and reducing consumers' elec-
tricity costs, while maintaining a high overall state of charge of
EVs' batteries. We have tested these approaches on small to
medium fleet sizes – 10, 30, 60 and 90 EVs – using realistic data
generated by a state of the art grid simulator, over the course of 28
simulated days.

We have found that the 1þ1-ES is capable of slightly out-
performing a population-based EA, referred to in this work as EA.
We have also shown that both the EA and the 1þ1-ES approach
exhibit better performance compared against the non-intelligent
methods (i.e., Greedy, Midnight and Random approaches) used in
this work. This is a significant result because each of these non-
intelligent methods reflects likely default behaviour for most
consumers: in the Greedy approach, the EV is simply plugged in
and charged up fully as soon as it arrives home each evening; in

the Midnight approach, the EV is plugged in at midnight to take
advantage of the cheapest electricity cost; and in the Random
approach, the EV could be charged at any time during the
simulated period for any length of time. In contrast, either of the
EAs used in this work produces plans which take advantage of
lower-cost pricing in the middle of the night, and at the same time
reduce peak demand.

Although numbers of EVs are projected to be in the thousands
or millions, Demand Aggregators may have much smaller fleet
sizes. Therefore, the smaller fleet sizes considered here represent
an important real-world case. The slight disimprovement in the
EA's results noted in Section 4 for the 90-EV case is not a cause for
great concern. However, in future work we hope to scale our
results up further.

It is an assumption of this work that customers are willing to
submit their charging schedules to a central authority, e.g., a
Demand Aggregator. The intelligent algorithms used in this
work (i.e., 1þ1-ES and EA) require centralised knowledge (the
number of EVs and their initial SoC) and centralised control
(specification of when each EV should charge, up to 30-min
granularity). This assumption is not unrealistic. As we have seen,
customers will do better through centralised control than
through the most likely individualised behaviour, the Greedy
approach. However, more informed and more price-conscious
customers will be willing to deviate from the Greedy approach

Table 5
The Equalised Cost is calculated based on the number of kilowatt-hours drawn during peak and off-peak hours, equalized between schedules by taking into account only
electricity up to a minimum SoC. The Equalised Cost per EV is calculated based on the Equalised Cost and the number of EVs.

Approach Consumption in kWh during peak hours Consumption in kWh during off-peak hours Equalised Cost Equalised Cost per EV

10 Electric vehicles
Greedy 102.21 7.92 21.88 2.18
Midnight 0 110.13 11.22 1.12
Random 38.73 71.40 14.32 1.43
1þ1-ES Charging 60.87 49.26 17.20 1.72
EA Charging 65.99 44.14 18.10 1.81
1þ1-ES Steady Charging 60.05 50.08 17.12 1.71
EA Steady Charging 60.96 49.17 17.58 1.75
1þ1-ES Price-Based Charging 27.35 82.78 13.34 1.33
EA Price-Based Charging 27.14 82.99 14.05 1.40
30 Electric vehicles
Greedy 307.77 37.06 67.24 2.24
Midnight 0 344.84 35.13 1.17
Random 81.52 263.31 36.95 1.23
1þ1-ES Charging 203.80 141.03 56.39 1.87
EA Charging 193.34 151.50 55.30 1.84
1þ1-ES Steady Charging 163.43 181.41 52.18 1.73
EA Steady Charging 166.72 178.11 52.52 1.75
1þ1-ES Price-Based Charging 96.78 248.05 44.88 1.49
EA Price-Based Charging 107.40 237.44 46.34 1.54
60 Electric vehicles
Greedy 617.41 75.38 134.99 2.24
Midnight 0 692.8 70.59 1.17
Random 163.54 529.26 73.91 1.23
1þ1-ES Charging 405.05 287.75 112.79 1.87
EA Charging 342.31 350.48 106.30 1.77
1þ1-ES Steady Charging 313.08 379.72 103.20 1.72
EA Steady Charging 319.23 373.56 103.89 1.73
1þ1-ES Price-Based Charging 200.29 492.51 89.31 1.48
EA Price-Based Charging 244.61 448.18 96.10 1.60
90 Electric vehicles
Greedy 930.59 128.45 204.97 2.27
Midnight 0 1059.05 107.91 1.20
Random 246.49 812.56 112.90 1.25
1þ1-ES Charging 544.94 514.11 163.93 1.82
EA Charging 490.65 568.39 159.09 1.76
1þ1-ES Steady Charging 475.54 583.51 156.34 1.73
EA Steady Charging 481.31 577.73 158.11 1.75
1þ1-ES Price-Based Charging 348.26 710.79 142.25 1.58
EA Price-Based Charging 414.73 644.31 151.17 1.67
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in order to avail of lower cost periods in the middle of the
night. Such behaviour would lead to decreases in performance,
in particular increases in peak demand. Therefore, to apply our
work customers would have to be either contracted to submit
control of charging schedules to the central authority, or
induced to do so via a monetary reward. (Any such monetary
reward is not considered in our calculations of electricity
costs.)

In future work, this assumption could be removed, by model-
ling consumers as independently evolving agents seeking to
reduce their own costs and maximise their own SoC. The price
signal would then have to be modulated to induce a steady
charging behaviour. Both the consumer's behaviours and the price
signal policy could then be optimised in a coevolutionary setup.

We hope that the results achieved by our EA approach using
the fitness functions proposed in this work and by using a well-
developed grid simulator could attract the attention of companies
to adapt this form of machine learning technique.
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