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Abstract

We present a comprehensive study on the use of autoencoders for modelling text
data, in which (differently from previous studies) we focus our attention on the fol-
lowing issues: i) we explore the suitability of two different models bDA and rsDA
for constructing deep autoencoders for text data at the sentence level; ii) we pro-
pose and evaluate two novel metrics for better assessing the text-reconstruction ca-
pabilities of autoencoders; iii) we propose an automatic method to find the critical
bottleneck dimensionality for text language representations (below which struc-
tural information is lost); and iv) we conduct a comparative evaluation across dif-
ferent languages, exploring the regions of critical bottleneck dimensionality and
its relationship to language perplexity.

1. Introduction

One of the major hurdles in comparing text in vector space models (VSM) is
to deal with problems like synonymy and polysymy. Usually in vector space, the
documents are composed of thousands of dimensions. In addition to high compu-
tational complexity, many meaningful associations between terms are shadowed
by large dimensions. There are models which try to solve this problem e.g. pseudo
relevance feedback (PRF) and explicit semantic analysis (ESA) (Xu and Croft,
1996; Gabrilovich and Markovitch, 2007). Other category of attempts to solve
this problem comprise of dimensionality reduction techniques.
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The goal of dimensionality reduction techniques is to transform high dimen-
sional data (R™) into a much lower dimension representation (R"™) pertaining the
inherent structure of the original data where m << n. One such widely used
approach is latent semantic indexing (LSI) which extracts a low rank approx-
imation of a term-document matrix by means of principal component analysis
(PCA) (Deerwester et al., 1990). There are some advanced approaches like prob-
abilistic latent semantic analysis (PLSA) and latent dirichlet allocation (LDA)
which observe the distribution of latent topics for the given documents (Hofmann,
1999; Blei et al., 2003).

Dimensionality reduction techniques are also prominent while estimating the
similarity between text across languages. Associations of terms and documents
across languages in such techniques are learnt by means of parallel or comparable
text (Nie et al., 1999; Banchs and Kaltenbrunner, 2008; Platt et al., 2010).

Dimensionality reduction techniques can broadly be categorised in two classes:
linear and non-linear. Usually, non-linear techniques can find more compact repre-
sentations of the data compared to their linear counterparts (Hinton and Salakhut-
dinov, 2006). If there exists statistical dependence among the principal compo-
nents of PCA, or principal components have non-linear dependencies, PCA would
require a larger dimensionality to properly represent the data when compared to
non-linear techniques.

On the other hand, although non-linear projection methods such as multidi-
mensional scaling (MDS) give a way to obtain much better representations for
mono and cross-language similarity estimation, it is a transductive method (Cox
and Cox, 2001; Banchs and Kaltenbrunner, 2008). It means MDS does not pro-
vide an operator to project the unseen data into the target low dimensional space
like the resulting projection matrix in the case of PCA.

Lately, dimensionality reduction techniques based on deep-learning have be-
come very popular, especially deep autoencoders (DA). Deep autoencoders can
extract highly useful and compact features from the structural information of the
data. Deep autoencoders have proven to be very effective in learning reduced
space representations of the data for similarity estimation, i.e. similar documents
tend to have similar abstract representations (Hinton and Salakhutdinov, 2006;
Salakhutdinov and Hinton, 2009a). Deep learning is inspired by biological stud-
ies which state the brain has a deep architecture. Despite their high suitability to
the task, deep-learning did not find much audience because of convergence issues
until Hinton and Salakhutdinov Hinton and Salakhutdinov (2006) gave a way to
initialise the network parameters in a good region for finding optimal solutions.

Although deep learning techniques are in vogue, there still exist some impor-
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tant open questions. In most of the studies involving the use of these techniques
for dimensionality reduction, the qualitative analysis of projections is never pre-
sented. This makes the assessment of the reliability of learning very difficult.
Typically, the reliability of the autoencoder is estimated based on its reconstruc-
tion capability.

The first objective of this work is to propose a novel framework for evaluating
the quality of the dimensionality reduction task based on the merits of the ap-
plication under consideration: the representation of text data in low dimensional
spaces.

Concretely, our proposed framework is comprised of two metrics, structure
preservation index (SPI) and similarity accumulation index (SAI), which capture
different aspects of the autoencoder’s reconstruction capability like the structural
distortion and similarities among the reconstructed vectors. In this way, our pro-
posed framework gives better insight of the autoencoder performance allowing
for conducting better error analysis and evaluation, and, as explained below, these
metrics also provides a better means for estimating the adequate size of critical
bottleneck dimensions.

The second objective of this work is to conduct a comparative evaluation
across different languages of the dimensionality reduction capabilities of deep
autoencoders. With this empirical evaluation we aim at shedding some light re-
garding the adequacy of reducing different languages to a common bottleneck
dimension, which is a common practice in the field.

We carry out the experiments of dimensionality reduction of text at sentence
level and assess the suitability of two types of deep autoencoders. We report some
interesting findings at the architectural level of the specific problem of modelling
text at the sentence level.

The rest of the paper is structured as follows. A brief introduction to deep
autoencoders is given in Section 2. Section 3 gives details about the analysis
framework of the autoencoder learning, experiments and results. The discussion
on critical bottleneck dimensionality and an automatic way to estimate it is given
in Section 4. In Section 5, we attempt to relate the critical bottleneck dimension-
ality for a particular language to its perplexity. Finally, we present the conclusions
and future directions of this work in Section 6.

2. Models

In this section we describe the models we have considered for performing
dimensionality reduction of text data. First, we provide a brief introduction to



autoencoders. Then, in sub-section 2.1, we present the binary deep autoencoder
model (bDA); and, in sub-section 2.2, we describe the replicated softmax deep
autoencoder (rsDA). Finally, in sub-section 2.3, we discuss the training procedure
in detail.

Both of the considered models differ in the way they model the text data.
While the binary deep autoencoder models the presence of the term into the docu-
ment (binary), the replicated softmax deep autoencoder directly models the count
of the term (i.e., term frequency) in the document.

The autoencoder is indeed a network which tries to learn an approximation
of the identity function so as the output is similar to input. The input and output
dimensions of the network are the same (n). The autoencoder approximates the
identity function in two steps: i) reduction, and ii) reconstruction. The reduction
step takes the input x € R™ and maps it to y € R™ where m < n which can
be seen as a function y = g(z) with ¢ : R® — R™. On the other hand, the
reconstruction step takes the output of the reduction step y and maps it to & € R"
in such a way & ~ x which is considered as a £ = f(y) with function f : R"™ —
R™. The full autoencoder can be seen as f(g(x)) ~ x.

In a neural network based implementation of the autoencoder, the visible layer
corresponds to the input 2 and the hidden layer corresponds to y. There are two
variants of autoencoders: i) with a single hidden layer, and ii) with multiple hidden
layers. If there is only one single hidden layer, the optimal solution remains the
PCA projection even with the added non-linearities in the hidden layer (Bourlard
and Kamp, 1988). The PCA limitations are overcome by stacking multiple en-
coders, constituting what is called a deep architecture. This deep construction is
what leads to a truly non-linear and powerful reduced space representation (Hin-
ton and Salakhutdinov, 2006). The deep architecture is constituted by stacking
multiple restricted boltzmann machines (RBM) on top of each other as shown in
Fig. 1.

Each RBM is a two-layer bipartite network with a visible layer (v) and a hid-
den layer (h). Both layers are connected through symmetric weights (w). Usually
the hidden units correspond to latent variables. It is very easy to sample the data
from visible to hidden layer and vice-versa. The two models we consider here,
bDA and rsDA, primarily differ in the bottom-most RBM, i.e. the way they model
the input data. In a nutshell, in the case of bDA, the bottom-most RBM is a
standard RBM with stochastic binary (visible and hidden) layers; while, in the
case of rsDA, the bottom-most RBM is based on the replicated softmax model
(RSM) (Salakhutdinov and Hinton, 2009b).
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Figure 1: Architecture of the deep autoencoders. The binary and replicated softmax deep autoen-
coders are denoted as bDA and rsDA. |Vocab| is the size of vocabulary at the input layer.

2.1. Stochastic Binary RBM

Stochastic binary RBMs have both, visible and hidden, layers as stochastic
binary with sigmoid non-linearity. Let visible units v € {0, 1}" be binary bag-
of-words representation of text documents and hidden units h € {0, 1} be the
hidden latent variables. The energy of the state {v, h} is as follows,

n

E(V, h) = — Zaivi — Xm: bjhj — Zvihjwij (1)
j=1

i=1 ,J

where v;, h; are the binary states of visible unit ¢ and hidden unit j, a;, b; are their
biases and wj; is the weight between them.
Then, it becomes easy to sample the data in both directions as shown below,

plvi = 1/h) = o(a; + > _ h;Wi;) 2)

J

p(h] = 1|V) = O'(bj + Z UiWZ'j) (3)

where o(z) = 1/(1 4 exp(—=x)) is the logistic sigmoid function.



2.2. Replicated Softmax RBM

The Replicated Softmax RBM is based on the Replicated Softmax Model
(RSM) proposed by Salakhutdinov and Hinton Salakhutdinov and Hinton (2009b).

Letve{l,....K }D , where K is the vocabulary size, D is size of the docu-
ment and leth € {0, 1}" be stochastic binary hidden latent variables. Considering
a document with length D , the energy of the state {v, h} is defined as,

K m
E(v,h) ==Y o*a" = D> bh; = > Wrh;o* 4)
k=1 j=1 kj

where, o = 37 v¥ denotes the count data for the k™ term.

In RSM, the visible layer is softmax with multinomial visible units which
represents the probability distribution of the word-count. It is sampled D times
by using multinomial sampling to recover the original word-count data. Another
distinction of this model is scaling of the bias terms of the hidden layer which
gives a way to handle the documents of different lengths. In this case, the visible

and hidden units are updated as shown below,

exp + 3%, 1)
Zf:l exp(b; + Zj h‘jWiZ')

D K
plhy = 11V) = a(a; + 303 kW) ©)

i=1 k=1

p(vf = 1|h) =

(&)

2.3. Training of Autoencoders

Autoencoders are typically trained in two steps: i) greedy layerwise pre-training,
and ii) fine-tuning of the parameters to learn the identity approximation of the in-
put data.

2.3.1. Pre-training

In this step, each RBM is trained greedily using contrastive divergence (CD)
learning (Hinton, 2002). Here the RBMs are trained one by one starting from the
bottom-most RBM. The bottom-most RBM directly takes the input data while the
upper RBMs take the output p(h|v) of the RBM below which is already trained.
We use the structure of the autoencoder 500-250-250-m as shown in Fig. 1. We
train each RBM using CD; learning for 50 epoch where CD; refers to CD with 1
step of alternating Gibbs sampling (Hinton, 2002).
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2.3.2. Fine-tuning

Once the RBMs are trained layer-wise, the autoencoder is unrolled as shown
in Fig. 2. The stochastic binary activities of the feature layers is replaced by the
real-valued probabilities and the input data is backpropagated through the network
to fine-tune the parameters of the entire network. We calculate the cross-entropy
error (¢) between & = f(g(x)) and x as shown below and backpropagate it through
the entire network.

e=— Z[;c log(2;) + (1 — ;) log(1 — &,)] (7)

In case of bDA the binary input data is used to calculate e. While for rsDA,
the word-count input vectors are divided by the document length (D) to repre-
sent probability distribution which together with softmax output layer is used to
calculate e.

Input (z) ‘

Input (x) ’

Greedy Pre-training Unrolling and Fine-tuning

Figure 2: Left panel: pre-training the stacked RBMs where upper RBMs take output of the lower
RBM. Right panel: After pre-training the structure is “unrolled” to create a multi-layer autoen-
coder which is fine-tuned by backpropagation to perform & ~ x.

3. Qualitative Analysis and Metrics

In this section we describe the proposed metrics used for comparing the bDA
and rsDA models. Subsequently, we present the comparative analysis of the two
models.

The quality of the projections and the sufficiency of dimension m are mea-
sured by the autoencoder’s reconstruction ability. Unfortunately, the mean squared
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error between the input « and its reconstruction z, referred as reconstruction er-
ror, is a poor measure to estimate it. It neither gives any details about the quality
of the reconstructions in terms of text data representation nor the degree to which
the structure of the data is preserved in the reconstruction space. Moreover, it is
difficult to justify the adequacy of bottleneck dimension m by simply using the
reconstruction error.

In literature, when autoencoders are used for dimensionality reduction for text
data, most of the time, the quality of the algorithm is measured in terms of the ac-
curacy of the end-task which may be text categorisation (Hinton and Salakhutdi-
nov, 2006), information retrieval (Salakhutdinov and Hinton, 2009a), topic mod-
eling (Salakhutdinov and Hinton, 2009b), term modeling across scripts (Gupta
et al., 2014) or sentiment prediction (Socher et al., 2011). A shortcoming of this
approach is that there is no way to estimate the full potential, or the upper bound,
of the algorithm performance. On the other hand, in the case of poor results, it
becomes tougher to decide whether the training was proper or not.

As already mentioned before, in this work we propose two new metrics: i)
structure preservation index (SPI), and ii) similarity accumulation index (SAI),
which are intended to capture different aspects of the autoencoder’s reconstruc-
tion capability, like the structural distortion and semantic similarity of the recon-
structed vectors with respect to the original ones. Considering these two metrics,
along with the reconstruction error, allows for a much better assessment of confi-
dence regarding the quality of the network training process and its performance.

Structure Preservation Index (SPI):. Consider the input data as X where each
row x; corresponds to the vector space representation of the i** document and X
is its corresponding reconstruction. X and X are pxn matrices where p is the
total number of documents in the input data and n is the vocabulary size.
Compute matrix D for X such that D;; is the cosine similarity score between i’
and j'" rows of X. Similarly calculate D for X. D and D can be seen as
dissimilarity matrices of the original data and its reconstruction, respectively,
where D;; = D;; = 1,Vi = j. The SPI is calculated as follows,

h

1 .
SPI = EZHDU — Dyj||? (8)
ij

Notice that according to this definition, SPI captures the structural distortion in-
curred by the f(g(X)) process. Ideally, SPI should be zero.



Similarity Accumulation Index (SAI):. Different from SPI, which assesses struc-
tural distortion, SAI attempts to capture the quality of the reconstructed vectors
by measuring the cosine similarity between each original vector and its recon-
structed version. Indeed, this verifies the preservation of the relative strength of
the vector-dimensions in the reconstruction.

SAI is computed by the normalised accumulation of cosine similarities be-
tween each input document and its reconstruction. Ideally, SAI should be one.

12
SAI = - cosine(x;, T; 9)
) ; (i, &)

3.1. Comparative Evaluation of Models

We carried out an experiment of dimensionality reduction for text sentences,
where data sparseness plays a more critical role than in the case of full docu-
ments (dimensionality reduction applied to full documents is the case that has
been mostly explored in the literature).

In this study we aim at applying autoencoder techniques at the level of sen-
tences to open its way for sentence-centered applications, such as machine trans-
lation, text summarization and automatic dialogue response.

For this experiment, we used the Bible dataset, which contains 25122 train-
ing and 995 test sentences. All sentences were processed by a term-pipeline of
stopword-removal and stemming which is referred as Vocab,. After that we kept
only those terms which were non-numeric, at least 3-characters long and appeared
in at least 5 training sentences. We refer to this filtered vocabulary as Vocab,. For
English partition of the dataset, Vocab, and Vocab, are 8279 and 3100 respec-
tively.

Next, we present the results for English using both models, bDA and rsDA,
and present the qualitative analysis of the reconstructions with the help of the
aforementioned metrics. We train both autoencoders with the structure 500-250-
250-40 as described in Section 2.3. The results are presented in Table 1.

3.2. Analysis and Discussion

When operating in vector space, it is important to understand the amount of
distortion incurred by the network on the structure of the data during the process of
f(g(x)). The network uses the reconstruction error during the training to update
parameters but it does not give much insight about the quality of the network.



Model RC SP1 SAI

rsDA (pt) | 0.1192 0.7258 0.2132
rsDA (bp) | 0.0834 0.0049 0.5768
bDA (pr) | 8.0012 0.0712 0.3528
bDA (bp) | 5.4829 0.0035 0.6667

Table 1: The performance of bDA and rsDA in terms of different metrics. RC denotes reconstruc-
tion error while pt and bp denote if the model is only pre-trained and fine-tuned after pre-training,
respectively.

One more limitation of the reconstruction error is that it is not bounded and not
comparable across different models e.g. bDA and rsDA. The reconstruction error
is calculated between the softmax output and the probability distribution of terms
in case of rsDA hence it is not comparable to that of bDA (see Table 1).

The two proposed metrics, SPI and SAI are both bounded by [0,1] and com-
parable across the models. SPI gives the measure of how the similarity structure
of sentences among each other is preserved in the reconstruction space which in
turn gives a measure of trustworthiness of the network for similarity estimation.
Although both models show descent performance in terms of SPI after backprop-
agation, bDA is 28.57% better than rsDA in terms of SPI.

It is also important to assess the similarity between each input vector and its
corresponding reconstruction which is captured by SAIL In terms of SAI, bDA
is 15.59% better than rsDA. This is better understood in Fig. 3, where it can be
noticed that, in the case of rsDA, for more than half of the test samples cosine
similarity with their reconstruction is < 0.6. Although rsDA has been reported
in the literature to better perform at the document level, our results demonstrate
that bDA is a more suitable model to be used when using autoencoder represen-
tations at the sentence level. This can be explained by the fact that rsDA uses
multinomial sampling to model the word-count, which happens not to be suitable
at the sentence level for three reasons: i) most of the terms appear only once in
the sentences, ii) sampling the distribution of terms D times is less reliable when
D is quite small which is the case in sentences compared to full documents iii) the
gradients at the output layer (softmax) are very small as they are calculated over
probability distribution.

Finally, as argued by Erhan et al. Erhan et al. (2010), pre-training helps to ini-
tialise the network parameters in a region to find optimal solution. It can clearly
be noticed that pre-training is necessary but itself is not enough to put aside back-
propagation.
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Figure 3: Histogram of cosine similarity between test samples and their reconstructions for bDA
and rsDA.

4. Critical Bottleneck Dimensionality

In this section we present the analysis on the adequacy of the size of bottleneck
layer. Later, we extend the analysis to multilingual scenario and describe the
automatic method to estimate the critical bottleneck dimensionality for different
languages.

The top-most hidden layer of an autoencoder is commonly referred to as the
bottleneck layer. The reconstruction ability of the autoencoder is highly related
to the size of the bottleneck layer, in the sense that the smaller the size of the
bottleneck layer is, the higher the loss of information is.

The reduction step of autoencoders is also called hashing, and because simi-
lar sentences in the projected space are near to each other, this technique is also
referred to as semantic hashing. It is important to choose a proper size of the
bottleneck layer because of two reasons: i) a too large size may lead to redundant
dimensions and high computational cost, and ii) a too small size might lead to
high information loss.

The adequacy of the bottleneck dimension, which we refer to as critical bot-
tleneck dimensionality here, is rarely addressed in the literature. In this section of
the study, we present an analysis on the effects of choosing different sizes for the
bottleneck layer, as well as we provide an empirical method to choose the critical
bottleneck dimensionality properly.
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4.1. Metric Selection

We squeeze the bottleneck layer of the autoencoder to identify whether there
was a dimensionality region at which the reconstruction error, SPI and SAI met-
rics exhibit a clear change in its behaviour. Typically, this region is referred to
as the “elbow region”. We trained the autoencoder varying down the size of the
bottleneck layer from 100 to 10 with step-sizes of 10. Fig. 4 shows the values
of reconstruction error, SPI and SAI for different sizes of bottleneck layer. As
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Figure 4: Reconstruction error, SPI and SAI metrics while squeezing the bottleneck layer from
100 to 10 are shown respectively in (a), (b) and (c).

it becomes evident from the figure, SPI is the metric exhibiting the clearest “el-
bow region” pattern, hence we will use this metric for determining the critical
bottleneck dimensionality. Indeed, it can be noticed that both the reconstruction
error and SAI show a quasi-linear behaviour with almost constant slope, while
SPI clearly captures that below m = 40, the network starts losing the structural
information within the data. This result shows that care must be taken to select
a proper bottleneck dimension and it is important not to choose the bottleneck
dimension below the point where SPI changes its behaviour.
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4.2. Multilingual Analysis

Typically, in cross- and multi-language dimensionality reduction techniques,
most often all the documents are projected to a common dimensionality abstract
space regardless the language. Based on the analysis presented in the previous
section regarding the critical bottleneck region, it becomes important to assess the
following research question: does a common dimension suit all the languages?

To understand this phenomenon, we conduct a comparative study by consid-
ering different-language versions of the same English dataset already used in Sec-
tions 3.1 and 4.1. Due to language pre-processing capabilities, we restricted our
study to 5 different and diverse languages: English (Indo-European/Germanic),
Spanish (Indo-European/Italic), Russian (Indo-European/Balto-Slavic), Turkish
(Turkic) and Arabic (Afro-Asiatic), for all of which we repeated the experiment
described in Section 4.1. The statistics of the vocabulary sizes at these languages
is depicted in Table 2. The fundamental idea behind this experiment is to see

Language |Vocab,| |Vocab,|
English (en) 8279 3100
Spanish (es) 9398 3581
Russian (ru) 18285 4504
Turkish (tk) 17087 4502
Arabic (ar) 18703 3012

Table 2: Statistics of the Bible dataset.

whether the same knowledge (parallel corpus) in different languages can be rep-
resented by a reduced dimensionality space of the same size. We anticipated that
the critical bottleneck dimensionality of each language can be affected by differ-
ent parameters like: its vocabulary size, its syntactic structure and its semantic
complexity.

To identify the critical bottleneck dimensionality for each language, we calcu-
lated the percentage difference between the slopes connecting consecutive bottle-
neck sizes in the SPI curve. This captures the point in the “elbow region” at which
the slope of the SPI curve is steepest. Consider three points in SPI plot: a4, a; and
az. Let s? and s3 be the slopes of lines connecting a; — ay and ay — as, respec-
tively. Then the percentage difference between s? and s3 gives the steepness of the
curve at point a,. We calculate this figure for every point in the range and estimate
the critical dimensionality at which the percentage difference is the largest. This
method enables us to automatically find the adequate bottleneck dimension for a
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particular language. The algorithmic implementation of this method is described
in Fig. 5.

Method: Estimation of critical dimen-

sion
Input: A, B
Output: C

A = set of bottleneck dimensions
B = set of SPI values, where b; =
SPI(CLZ) S A
C = set of steepness values at each point
for each A;—1,0;, Qi1 € A
get bi—17 bi, bi+l €eB
cale. s¢_,, s:™ where,
82_1 = slope((ai_l, bi—l)a (ai, bz))
cale. ¢; = % diff (s¢_,,s/™)
add ¢; to C
end
plot C'
critical dim. = right-most large peak

Figure 5: Method to identify the critical dimensionality for the bottleneck layer for a particular
language.

For providing a better graphical representation on how the critical bottleneck
dimensionality is identified, Fig. 6 shows the the second derivative approximation
of the SPI curve that is computed by the method for all the different languages
under consideration. For some languages, there is a clear single peak where the
SPI curve changes its behaviour drastically e.g. English, Spanish and Turkish.
On the other hand, for some other languages, there exist multiple large peaks
e.g. Russian and Arabic. In these latter cases, the right-most large peak is the
one considered indicative of the critical bottleneck dimensionality. This is mainly
because further below that point the network drastically loses the capacity for
recovering the original data structure information.

Finally, it should be mentioned that the critical bottleneck dimensionality might
not be easily spotted directly from the slope of SPI curve, but plotting the percent-
age difference, which approximates the SPI’s second derivative, clearly captures
it. It is evident from the results presented in this section that different language
exhibit different critical bottleneck dimensionalities. This provides a much more
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Figure 6: The percentage difference in slope of the SPI curve at each dimension.

principled criterion for the selection of the target dimensionalities in cross- and
multi-language applications that use dimensionality reduction techniques.

5. Critical Dimensionality and Perplexity

It has been discussed that the neocortex of the brain works in multiple lay-
ers where each layer captures some specific type of information (Quartz and Se-
jnowski, 1997; Utgoff and Stracuzzi, 2002). This presents a strong analogy to
the computational deep learning framework. Inspired on this evidence, we antici-
pated that the critical bottleneck dimensionality of each language can be affected
by their different structural and semantic characteristics.

As an additional empirical analysis, we used the word-level perplexities of
each considered language as a proxy to its structural and semantic complexity,
and we evaluated whether such a proxy correlates with the critical bottleneck di-
mensionalities obtained in the previous section.

Perplexity is often used as a metric for evaluating the quality of a language
model. A word-level perplexity of value V' indicates that the considered model
found V alternatives for each term; therefore, the better a model is, the lower
the resulting perplexity. In the limit, the lowest perplexity achievable by a lan-
guage model indicates the actual information content (entropy) of the given lan-
guage (Brown et al., 1992).

In order to establish whether the language information content and its critical
bottleneck dimensionality are related to each other, we calculated the Pearson’s
correlation coefficient between the word-level perplexity estimated with a trigram
model and the critical bottleneck dimensionalities obtained in the previous sec-
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tion. Table 3 presents the obtained perplexities for both, token and stem based,
trigram models along with the critical bottleneck dimensionalities for each of the
five languages under consideration; and Table 4 presents the resulting correlation
coefficients and their corresponding p-values. As observed from Table 4, although

Lang. Crit. Dim. PPL-T PPL-S

en 40 64.0018 59.6428
es 45 113.075 89.4268
tk 50 322315 177.117
ru 40 218.634 159.588
ar 70 741.115 296.663

Table 3: The word-level perplexities for each language computed on tri-gram language model
considering tokens (PPL-T) and stems (PPL-S) along with critical bottleneck dimensionality.

both correlation coefficients are high, only the correlation coefficient between the
stem-based perplexity and the critical dimensionalities is statistically significant
(this is not surprising as autoencoders were actually trained with stems rather than
tokens). This result implies that there is actually a strong dependence between the
perplexity of a language and its critical bottleneck dimensionality.

Mode Correlation p-value
tokens  0.95797 0.10339
stems 0.88834  0.04168*

Table 4: The correlation between critical dimension for a language and its word-level perplexity.
The p-value represents the two-tailed TTest values. * denotes the statistical significance (< 0.05).

6. Conclusions and Future Research Directions

In this work we have presented a comprehensive study on the use of autoen-
coders for modelling text data, in which differently from previous studies we fo-
cused our attention in the following issues:

e We explored the suitability of two different models bDA and rsDA for con-
structing deep autoencoder representations of text data at the sentence level.

e We proposed and evaluated two novel metrics which assess the reconstruc-
tion quality of an autoencoder with regards to the particular problem of text
data representation.
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e We proposed an automatic method to find the critical bottleneck dimension-
ality for text language representation, below which structural information is
lost.

e We conducted a comparative evaluation across different languages and ex-
plored the relationship between the critical bottleneck dimensionality and
language perplexity.

As aresult of this study we have found that the bDA model is most suitable for
constructing and training autencoders for handling text data at the sentence level.
We also found that our defined SPI (Structure Preservation Index) metric allows
for a better discrimination and identification of the critical bottleneck dimension-
ality, which happens to be different for different languages and exhibits a high and
significant correlation coefficient with language perplexity.

As future work, we want to study the suitability of our proposed metrics, es-
pecially SPI, as error metric during the autoencoder fine tuning stage. If this
metric can be used along with back-propagation, we envisage a new generation of
text-oriented autoencoders able to provide a much better characterization of the
linguistic phenomenon in text data.
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