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Abstract

Given the massive number of interconnects in Spiking Neural Networks
(SNNs), distributing spikes effciently becomes a critical issue for the efficient
hardware emulation of large-scale SNNs. In this work, the AER-SRT (Ad-
dress Event Representation over Synchronous Serial Ring Topology) architec-
ture for spike transmission is proposed. AER-SRT is a light, easily scalable,
packet-based solution implemented with high-speed serial link for multi-chip
SNN communication. The channel uses a unidirectional, point-to-point connec-
tion between nodes, which provides a high transmission speed. Events (spikes)
are distributed among all the nodes in a ring-topology pipeline fashion and
the synchronous AER guarantees a collision-free scheme. The fast speed and
efficient channel usage limits the spike distribution time to values that allow
real-time operation for network sizes that can be calculated with simple design
equations. Also, in the proposed communication protocol there is no specific or
master node, so new nodes can be added to the ring by simply modifying two
configuration parameters. As a proof of concept, a prototype of the architecture
has been implemented and tested on FPGA development boards.

Keywords: AER (Address Event Representation); multi-chip communication;
synchronous serial ring; Aurora protocol; SNN emulation; time slot emulation.

1. Introduction

Spiking Neural Networks (SNNs) are third-generation networks of biological
neuron models. They exhibit higher computation capability and they are closer
to biological neurons than other artificial models [I]. Recently, the interest in
modeling the brain at detail scale and emulating SNNs has significantly grown as
research groups and companies have envisaged promising features that systems
based on artificial neural models, in general, and SNNs in particular, can offer to
develop smart and intelligent systems; and even in longer term to mimic parts of
the human brain. Since the estimated number of neurons in the human brain is
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around tens of billions and the number of synapses even four orders of magnitude
above [2], nowadays only much simpler networks can be simulated or emulated.
Understanding by emulation the real-time simulation of the network, if SNN
emulation has to be performed by a robot or embedded system, it becomes
clear that low-power custom hardware systems must be applied, instead of high-
performance but bulky and power-eager computers. As in biological neural
networks, very large number of neurons and synapses need to be simulated to
reproduce interesting spiking neuromorphic behaviors. Thus, when building
SNN hardware, two major challenges arise:

1. Large quantity of neurons and synapses have to be efficiently emulated
in parallel or with a balanced combination of parallel/serial processing.
Several optimized hardware architectures that address the SNN emulation
challenge have been proposed, with different flavors [3] @] [} [6].

2. High spiking activity has to be routed or broadcasted to the synapses of
the destination neurons in a very short time. The key point is that full
connection becomes intractable as the number of neurons grow. This work
concentrates on this second challenge.

Neuron spikes are produced at low rates, normally around hundreds of
Hertz [1], and typically they have to be transmitted to thousands of receiv-
ing synapses. Thus, instead of costly dedicated connection lines, a successful
spike time-multiplexing bus, using Address Event Representation (AER), was
proposed in the early nineties [7]. AER encoding is based on the binary model
of the spike, so it is not necessary to transmit the spike but only the spiking
neuron address through a single, parallel broadcast bus, which optimizes the
resources required for spike distribution. Receiving chips or subsystems decode
the address and drive the spike to the corresponding synapses. This approach,
originally asynchronous, has a major limitation when several neurons spike at
the same time. In that case, spikes may be lost or at least their timing is
degradated. Furthermore, complex arbitration logic is required in the latter
case.

In order to circumvent these issues, time-slot emulation [8] and synchronous
AER bus [9] were proposed. In this case, spike events are assigned to time slots
and time multiplexing distribution is applied. Spike time resolution is limited
by the time slot width, but no spikes are lost. The controlled time uncertainty
can be reduced as the time slot is made small.

The spike communication scheme is fundamental to distribute the maximum
number of spikes while preserving the time window imposed by the real-time
behavior in this kind of systems. The maximum number of neurons and synapses
is limited by the spike distribution efficiency, which becomes thus a key aspect
to enable the emulation of large-scale neuromorphic systems. Since a limited
number of neurons can be emulated in a specific silicon device, the use of multi-
chip systems is very common when building hardware SNN. In this kind of
systems inter-chip communication becomes a critical point, and usually it is
responsible of scalability degree and efficiency of the whole system.



Use of AER protocol has become very popular for chip interfacing in this
kind of multi-chip neuromorphic systems. The way AER is implemented has
evolved to more efficient, high-speed serial communication. Serial AER utilizes
fewer wires, exhibits better performance and does not limit the data word-width.
Several serial AER systems have been reported in literature demonstrating bet-
ter performance than traditional parallel bus [10] 1T}, 12} 13].

In [6] a packet-based synchronous AER protocol is presented. It is based on
multilayer wafer scale communication architecture with very high bandwidth.
The same channel is used for distributing events and for configuration. In [I3]
different topologies for AER systems are studied at theoretical level. Here an
interesting 2D mesh topology is presented, where an AER router is used in
each node to redirect traffic. This approach is similar to solutions used in NoC
(Network on Chip) [14].

Our solution presented here, AER-SRT, allows very simple SNN chip inter-
connection by means of a ring topology network. It balances between scala-
bility and efficiency, achieved using point to point high-speed differential serial
transceivers to do inter-chip communication, at frequencies of several Gbps.
This high speed and throughput, largely compensates the latency introduced
by the pipeline. A tradeoff between scalability and efficiency is obtained, which
results in a very interesting solution to build this kind of systems.

In the following section, the details of AER-SRT protocol are presented.
In Section 3, details about hardware implementation of an AER-SRT network
interface are given. Experimental results on a FPGA prototype are shown and
discussed in Section 4. Finally, in Section 5 the conclusions of the work are
pointed out.

2. AER-SRT: A Synchronous Serial AER Protocol

AER-SRT is a synchronous packet-based protocol that allows efficient dis-
tribution of AER events in a ring-topology multi-chip Spiking Neural Network.
AER-SRT encapsulates traffic using Xilinx Aurora 8B/10B, an open IP core
that implements a light high-speed serial protocol, being is especially indicated
for multi-chip communication [I5]. As seen in Fig 1, connection between nodes
is point-to-point and unidirectional.

AER-SRT uses two configuration parameters in each node: The Ring Size,
to define the number of nodes in the system, and a 7-bit Chip Identifier (Chip
Id) for detecting the source of each transmitted event, which allows a scalability
of up to 128 nodes. Modification in the number of nodes is straightforward and
it only implies to reconfigure Ring Size parameter at each node. The protocol
remains the same regardless of the node count, since there is no master or special
node.

To test this protocol a SNN emulator has been implemented, which generates
a succession of emulation cycles. Every emulation cycle is divided in two phases:

1. Execution Phase (EP). During this phase synapses and neural algo-
rithms are calculated. The generated events are later distributed through
the ring.
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2. Distribution Phase (DP).

(a) Ring Synchronization Phase (RSP): Since every node in the system
does not necessarily finish the execution phase at the same time, a
packet-based synchronization mechanism has been implemented. In
this stage each node waits until the remaining are ready to start
distributing events.

(b) Event Transmission Phase (ETP): Once the ring is synchronized,
every node starts sending events to the next node in a burst. The
DP ends when all packets reach every chip.

In AER-SRT a 16-bit packet length is defined. The most significant bit of
every packet defines a data or control packet, set to 1 or 0 respectively. Data
packets encapsulate AER events and Control packets are specific packets to
support the transmission protocol. A 3-bit header currently allows to distinguish
between 4 types of control packets: SYNC, START, FINISH and IDLE.

SYNC packets are used in RSP. Each node sends this control packet to
indicate it is ready to start distributing events and after that it propagates
the incoming SYNC packets from the other nodes. As the number of received
SYNC packets in the node equals the Ring Size parameter, the ring will then
be synchronized and the distribution of events (ETP) starts.

The START packet contains the Chip ID of each node. Once the ETP
initiates, a START packet is sent leading the block of events belonging to each
node, every node sends all data sequentially. Thanks to this fact, the overhead
is reduced by sending the START packet only once, before all the followings
data packets of a given node

The packets travel throughout the ring until they eventually return to the
same node where they were generated. Thus, every received START package is
compared with the Chip Id. If the identifier is the same, then the associated
event data have travelled all the ring and they are removed. Otherwise, the
associated packets have to be forwarded to the next node and continue travelling
along the ring.



An added benefit of the ring architecture is that each node can compare the
events that have circulated the ring with the events it transmitted, being able
to confirm the information integrity or to detect any transmission error.

Every node in the ring sends one FINISH packet after it has sent the last data
packet. This way, when a given node receives a FINISH packet from another
node, no more events will be transmitted from that node in the current time
slot. When FINISH packets from all nodes have been received, the DP is over.

It is important to highlight that each node is in charge of removing the
events that it has generated.

During the EP events are not distributed. In order to keep the high-speed
serial link up and not to lose synchronization, the AER-SRT network interface
sends IDLE packets.

Error Control

The proposed protocol and ring topology easily permits without cost ensure
full data integrity or to detect any transmission error, because each node will
receive all the packets generated by itself under correct operation. In the im-
plemented AER-SRT solution, error detection consists in counting the number
of Input Buffer data packets and compare it with the number of received data
packets with the node Chip Id. In order to support error correction, the protocol
could be modified, as future work.

3. AER-SRT Ring Architecture

In this section a hardware implementation of an AER-SRT ring is presented.
Based on the block diagram of Fig. [[lan AER-SRT implementation is described.
For simplicity, every SNN node is considered to consist of two blocks:

3.1. Event Generator/Consumer

For the purpose of debugging and benchmarking, this module represents the
neuron and synapse emulating array that generates and consumes spikes. It can
be configured to produce different traffic load independently for each node.

3.2. Network Interface

The main Network Interface control signals are: AER_eo_exec, AER_ON,
AER_done and AER _eo_distrib. These four signals are responsible of delimiting
different phases in the protocol. AER_eo_exec is a signal from Input Interface
that indicates EP is over and RSP can start. AER_ON indicates RSP is complete
and ETP can start. AER_done and AER_eo_distrib indicate DP is over, and
consequently next EP can start.

The Network Interface in detail is introduced in the block diagram Fig.

e The AURORA CORE consists of the Transmitter and Receiver Sides

e The Aurora Transmitter (TX Side) serializes 16-bit AER-SRT packets and
it forwards the traffic serially through the intra-chip high-speed link.
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Figure 2: AER-SRT Network interface Diagram Block

The Aurora Receiver (RX Side) de-serializes 16-bit AER-SRT packets from
incoming traffic and sends them to AER RX block.

The Input Interface is responsible of receiving the node events from the
Event Generator/Consumer that have to be distributed and it indicates
when EP is over, so synchronization phase can start.

The Output Interface sends to a node all the events generated by all the
nodes in the system when the DP is over.

As buffers, the Network Interface uses 2 FIFOs of 1024 word depth: Input
FIFO keeps events produced by the Event Generator/Consumer during
EP, until DP starts. Bypass FIFO receives the traffic that has to be
retransmitted. The FIFO size introduces a limitation in the maximum
number of spikes (i.e., emulated neurons) that a simple node can generate
and retransmit, but it can be easily adapted to support nodes with higher
density of neurons.

The AER TX module is responsible of generating the AER-SRT frames
for the Aurora TX Side block from Input FIFO and also retransmit the
received packets from Bypass FIFO. This module enables different opera-
tions depending on the protocol stage. a) When the EP is over (AER _eo_exec
on), it sends SYNC packets and waits for AER_ON signal which indicates
RSP is over. Once AER_ON is received, in the following step the buffered
events are transmitted. Data transmission is performed in the following
sequence: First a START packet is sent, followed by all the data packets
containing the events of the Input FIFO and finally a FINISH packet.
b) After transmitting its own events, the node enters bypass mode to
distribute all the data that are already in the ring. c¢) Finally, when



AER_done signal is received, which means DP is over, it transmits IDLE
packets to keep channel synchronization.

e AFR RX module extracts AER-SRT packets from Aurora RX Side in
order to send them to the Event Generator/Consumer, and it is also re-
sponsible of writing the traffic to be retransmitted into the Bypass FIFO,
its operation involves:

a) Checking whether the currently received AER-SRT data block has to be
forwarded or not, i.e., whether the packet has been transmitted by another
node or by the same node. It compares the START packet Chip Id with
the node Chip Id. It writes the data packets into the Bypass FIFO only
if the comparison is false. b) Detecting the START packet and extracting
the Chip Id in order to identify the source of all the data packets that
follow. ¢) Counting the incoming SYNC packets, comparing the number
of received SYNC packets with the Ring Size parameter and generating
AER_ON signal when the comparison is true. d) Detecting the finish
condition counting the received FINISH packets, comparing this number
with Ring Size and generating AER _done signal when the comparison is
true. e) Extracting AER events from the data packets, adding the Chip_Id
extracted from the START packet to the most significant part of the AER
address, and sending the AER events to Output Interface to eventually
process them as incoming spikes.

There are also other ancillary modules as Error Detection Block (AER_error)
and Configuration Block (AER_-CONFIG), responsible of saving the configura-
tion values Chip Id and Ring Size. Finally, the Clock Compensation Module
(CC Module) adjusts slight clock frequency differences among ring nodes.

4. Implementation, Experimental Results and Discussion

The AER-SRT system presented in the previous section has been completely
described using VHDL. As previously mentioned, a block that simulates the
event generation and consumption of the neural emulator has also been defined
(Event Generator/Consumer block in Fig. . It simulates the handshake sig-
nals for monitoring states and it generates events with the format required for
the AER-SRT protocol. The node description containing the AER-SRT and
the Event Generator and Consumer has been synthesized and implemented on
Xilinx FPGA KC705 (Kintex 7) evaluation boards. These boards include SMA
connectors that allow the required two-port high-speed connections, TX and
RX for the ring implementation.

In particular, the implementation uses high-speed serial GTX transceivers
integrated in the FPGA wired to differential lines terminated with SMA con-
nectors. The shared communication channel uses a point-to-point connection
between nodes operating at a serial bit rate of 3.125 Gbps. The connection
between the transmitter and receiver is implemented using differential transmis-
sion lines. For debug and on-board validation, a virtual input/output (VIO),



’ Logic Utilization \ Used \ Available | Utilization ‘

Slice Registers (Flip-Flops) | 4332 407600 1.06%
Slice LUT's 2008 203800 0.98%

LUT as Logic 1564 203800 0.76%

LUT as Memory 444 203800 0.69%
RAMB36/FIFO 2 445 0.45%

Table 1: Device utilization Xilinx Kintex7 XC7TK325T2FFG900C (KC705 evaluation board).

Figure 3: Picture of the 3-node AER-SRT experimental system.

an integrated logic analyzer (ILA) and Xilinx ChipScope Analyzer were used.
Previous simulations were performed using QuestaSim. Xilinx Vivado tool was
used for synthesis and implementation. Table[I]shows the hardware resource us-
age on the FPGA for one node. These results illustrate the hardware efficiency
showing a very low resource utilization around 1% for the FPGA, leaving the
majority of resources for the implementation of the custom neural emulator.

Fig. [3| presents a prototype of 3-node AER-SRT. This configuration is a
ring of three Xilinx KC705 FPGA Evaluation Boards. Each FPGA contains a
node including the Event Generator and Consumer and the AER-SRT Network
Interface. Each node can be configured to send different number of spikes. Each
node has a pair of TX lines and a pair of RX lines, as shown in the picture.

Fig. [4 shows a snapshot, obtained with the ChipScope tool, of the AER-
SRT ring real-time execution. It illustrates the number of clock cycles utilized
to distribute 3000 spikes in the 3-node ring. Each node has been set to generate
1000 spikes at every execution cycle. This configuration is representative since
1000 spikes/node is close to the maximum capacity of each node. As stated
before, the node capacity is limited by the size of Input and Bypass Buffers.
This setup allows to get the measure of the worst-case time distribution for the
3-node system during high spiking activity.

Looking at signal aer_rx_data_chip_id in the time diagram, it can be seen
in the center of the figure how Chip_Ids are received at node 01, starting from
node 02, then 03 and finishing with the own 01. As indicated, 1000 events from
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Figure 4: Chipscope snapshot. Distribution of 1000 spikes/node in a ring of 3 AER-SRT
nodes

each node are received and processed after the corresponding Chip Id. Signal
aer_rx_valid_i indicates the time frame when valid spikes are being received.

In the example figure, the total number of cycles for Distribution Phase (DP)
is 3189, requiring 1.063 cycles per event, thus implying a 6.3% total overhead. As
described in Section 2, the DP is divided into Ring Synchronization Phase (RSP)
and Event Transmission Phase (ETP). The delay needed for RSP corresponds
to the delay between AER_eo_exec and AER_ON signals. This synchronization
time is approximately proportional to the latency of a single node multiplied by
the number of nodes in the ring. Specifically, for the 3-node configuration, 121
cycles are utilized.

During ETP, the number of cycles is equal to the total number of spikes
plus a small overhead, in particular, 3068 cycles are used for actual distribution
of the spikes. The difference of 68 cycles from the ideal 3000 cycles is due
to packets used for monitoring the handshake sequence of the protocol and
for the overhead imposed by the Aurora core which automatically interrupts
the transmission of data to send clock compensation sequences every 10,000
bytes[I5]. This behavior is replicated for bigger systems, as simulation analysis
confirms.

Fig. [5| illustrates the scalability of the system showing the RSP and ETP
cycles as a function of the number of nodes. The data has been obtained experi-
mentally for rings of 1, 2 and 3 nodes and by simulation for rings with more than
3 nodes. The blue data corresponds to the RSP , which does not depend on the
spike number, and the red and green data to rings generating 500 spikes/node
and 1000 spikes/node in the ETP, respectively. The interpolating lines of RSP
and ETP have been obtained using linear regression, so they approximate the
actual values for all points.

The graph clearly show linear dependencies on the number of nodes. The
system needs in both cases an average amount of RSP cycles (approximated to
38 cycles/node) proportional only to the number of nodes plus a small offset
and it grows much slower than the ETP cycles used for a relatively high spiking
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activity. On the other hand, the distribution cycle number is proportional to
both the number of nodes and the amount of spiking activity in every node.

From the simulated and experimental data, adding the RSP and ETP con-
tributions, a general expression, shown in Eq. has been extracted. It cor-
responds to the total time taken for the DP as a function of the number of
nodes:

N
taist = o (Z Sp + 42N + 19) (1)
forLk ot

where N represents the total number of nodes in the ring; s, is the number
of spikes generated by each node; forx = 125 MHz corresponds to the clock
frequency of this prototype. The first term of the equation accounts for the ideal
time, which is the total number of spikes. The second and third terms, 42N + 4,
are proportional to N and offset terms that correspond to overhead due to the
RSP and to the control cycles introduced automatically by Aurora core during
framing character stripping, left alignment processes and clock compensation.
These operations are required to ensure a reliable transmission, keeping both
the channel up as well as the synchronization of the communication process and
their effect on the total time. Approximately, it can be estimated as 9 = 56
cycles. Slight variations in slope are also expected from the performed linear
regression.

It becomes clear from Fig. [f]and from Eq. [I} and it is important to highlight,
that the system complexity scales linearly.

According to references [I6] [I7], a 1 ms time slot reference for emulating a
whole synaptic and neural cycle plus spike transmission in real time is assumed.
During this time, the neural and synaptic algorithms need to be executed (Ex-
ecution Phase, EP) and the outcoming spikes have to be distributed to the
destination synapses (Distribution Phase, DP). For simplicity, this time, called
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emulation cycle, is equally allocated in two parts: 0.5 ms for the EP and 0.5
ms for the DP. The objective is to distribute the maximum amount of events
through the ring using the At = 0.5ms DP time window.

The size of the AER-SRT input buffer introduces a limitation in the num-
ber of spikes each node is able to generate during one emulation cycle. In
the reported implementation the size is set to 1000 events. In the tradeoff
between number of nodes and number of spikes per node, obviously smaller
ring size (fewer nodes) results in better performance and better efficiency, since
latency increases with ring size. Taking this into account, the best configu-
ration for distributing spikes during At corresponds with nodes that generate
the maximum number of spikes. The number of clock cycles in time At is
c= At.ferx = 62,500, for forx = 125M Hz of our prototype. Deducing the
calculated 6.3% overhead, the number of cycles corresponds to 58,562 events
that can be transmitted in real time.

It is important to note that this maximum event capacity allows full connec-
tivity between all the neurons. It means all spikes can be broadcasted to all the
neurons in the system, which is not the case in many other implementations.
The bandwidth cost for this full-connectivity potential is the same if at least
one single neuron in each node is to be reached; however, for sparser networks,
a hierarchical topology could be applied without much design effort, saving the
transmission of local spikes and increasing much more the maximum size of the
real-time network.

Instead of the measures 58.56 Mevent /s of our prototype, in order to compare
with the raw speed considered in other works, if only the transmission phase
is considered, the maximum transmission speed is around 117 Mevent /s, same
order of magnitude of other previous works [I0} 1T, [12]; however it is still far from
the bandwidth obtained in the FACETS multilayer wafer scale neuromorphic
system [I8] [6].

The rates achieved in these works are 500 Mevent/s at inter-board level
and 1.28 Gevent/s at FPGA-to-FPGA top level. The very high throughput
is due to the use of a higher FPGA clock frequency of 500MHz, transceivers
at 10 Gbps, using Aurora protocol, and several parallel links. Upgrading our
prototype to a 500 MHz clock and 4, 10 Gbps transceivers, our approach would
show similar performance. However, with our approach events contention is
not possible because specific time slots are used for sending spikes through the
shared channel. As a result, a free collision transmission and thus a minimum
error rate is obtained. As another example, in designs using ALOHA, such as
in [I9], access protocol transmits events as soon they are generated, however
time overlaps can produce high error rates and limit the throughput for sparse
spiking activity.

The Ring Topology presented here is easy to implement and the penalty
introduced in latency is only constrained to 42 clock cycles per multi-chip node.
More complex topologies as 2D router-based mesh is presented in [I3]. Despite
this solution is very promising and bandwidth could be theoretically better
than ring topology, complexity associated with node configuration and data
distribution may insert additional latency and increase of hardware. Moreover,
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Multi-FPGA configuration has only been tested for 2 FPGA configuration in
that work.

5. Conclusion

In this work, the AER-SRT architecture, which consists in a scalable and
efficient solution to synchronously transmit address events for multi-chip spiking
neural emulation systems, has been proposed. It is based on a ring topology
using serial, high-speed point-to-point connections where each node only needs
two communication ports: one for reception and another for transmission. The
architecture uses low-complexity hardware and provides reliable data delivery.
Based on the time-slot emulation scheme, the synchronization among nodes
prevents spike contention or spike loss.

The ring protocol is based on packages to monitor the start and finish of
event distribution in all the nodes. Additionally it only requires 2 configura-
tion parameters for attaching a new node to the ring: Ring Size and Chip Id,
without incurring in extra hardware overhead. The symmetric design does not
require a dedicated hub working as a master. As a consequence of using a serial
ring topology, transfer rate is not affected when a new node is connected to the
ring. The bus efficiency is neither reduced as the number of nodes connected to
it increases. Regarding transmission errors, the architecture supports by con-
struction error detection. Error correction could be implemented by extending
the architecture, at the cost of some control overhead.

The AER-SRT architecture has been implemented on FPGA evaluation
boards and its operation experimentally demonstrated by real hardware test
of a 3-node ring generating 1,000 spikes each node and by precise simulation of
rings up to 6 nodes. The AER-SRT delay scales linearly with the total number
of spikes to transmit, regardless of the spikes that each node generates, providing
an architecture that can be easily upgraded to support larger configurations.

The experimentally achieved throughput is close to 1 spike per clock cycle
with a latency of approximately 42 cycles per ring node. This allows to use
this implementation to transfer large amounts of events in a free-collision chan-
nel while maintaining the temporal window of 0.5 ms which permits real-time
operation. Extending the results for bigger systems, the architecture supports
building a system able to broadcast approximately 60k events in real time in
a 60-node ring system working at 125 MHz. Better performance and bigger
capacity is possible increasing the clock frequency and link speed.

In summary, the AER-SRT architecture allows efficient broadcast event dis-
tribution in a multi-chip configuration, with point-to-point connections and ring
topology, offering a good choice for integration in Spiking Neural Network (SNN)
real-time emulators.
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