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Abstract:  

In this paper, we explore the potential of extreme learning machine (ELM) and kernel ELM 

(KELM) for early diagnosis of Parkinson’s disease (PD). In the proposed method, the key 

parameters including the number of hidden neuron and type of activation function in ELM, and 

the constant parameter C and kernel parameter γ in KELM are investigated in detail. With the 

obtained optimal parameters, ELM and KELM manage to train the optimal predictive models for 

PD diagnosis. In order to further improve the performance of ELM and KELM models, feature 

selection techniques are implemented prior to the construction of the classification models. The 

effectiveness of the proposed method has been rigorously evaluated against the PD data set in 

terms of classification accuracy, sensitivity, specificity and the area under the ROC (receiver 

operating characteristic) curve (AUC). Compared to the existing methods in previous studies, the 

proposed method has achieved very promising classification accuracy via 10-fold cross-validation 

(CV) analysis, with the highest accuracy of 96.47% and average accuracy of 95.97% over 10 runs 

of 10-fold CV.  

Keywords: Kernel extreme learning machine; Feature Selection; Medical diagnosis; Parkinson’s 

disease 

 

1. Introduction 

Parkinson's disease (PD) is named after James Parkinson, who published the first paper describing 

this disease in 1817. Now PD has become the second most common degenerative disorders of the 

central nervous system after Alzheimer's disease [1]. It breaks out in large part of the world with 

fast rate, and the disease prevalence is expected to increase dramatically as the population ages [2], 

which might be particularly serious for developing countries such as China or India [3]. Till now, 

the cause of PD is still unknown, however, it is reported to be possible to alleviate symptoms 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/neucom/viewRCResults.aspx?pdf=1&docID=18319&rev=1&fileID=612298&msid={2F21856D-3224-4150-A220-416B3CD2E440}


significantly at the onset of the illness in the early stage [4]. Patients with PD are usually 

characterized by five symptoms including tremor, rigidity, bradykinesia or slowness of movement, 

hand asymmetry and posture instability [5, 6]. Research has shown that approximately 90% of the 

patients with PD show vocal disorders [7]. It has also been proven that a vocal disorder may be 

one of the first symptoms to appear nearly 5 year before clinical diagnose [8]. The vocal 

impairment symptoms related with PD are known as dysphonia (inability to produce normal vocal 

sounds) and dysarthria (difficulty in pronouncing words) [9]. Little et al [10] has made use of the 

dysphonic indicators in their study to help discriminate PD patients from healthy ones. In their 

study, Support Vector Machine (SVM) with Gaussian kernel functions in combination with the 

feature selection approach was taken to predict PD, the simulation results have demonstrated that 

the proposed method can discriminate PD patients from healthy ones with approximately 90% 

classification accuracy using only four dysphonic features. A more recent study [11] has lifted the 

accuracy to 93% by increasing the number of features, and the result has been further boosted up 

to 99% through the use of a group of feature selection algorithms. 

Motivated by the pioneer work in [10], many researchers made use of a comprehensive machine 

learning techniques to handle the PD diagnosis problem. In [12], Das presented a comparative 

study of using artificial neural networks (ANNs), DMneural, Regression and Decision Tree for 

effective diagnosis of PD, the experimental results have shown that ANNs yield the best results 

with the overall classification score of 92.9%. In [13], AStröm et al. proposed a parallel 

feed-forward neural network structure for diagnosis of PD, the highest classification accuracy of 

91.20% was obtained. In [14], Sakar et al. used the mutual information based feature selection 

methods integrated with the SVM classifier for PD diagnosis, and the classification accuracy of 

92.75% was achieved. In [15], Li et al. proposed a fuzzy-based non-linear transformation method 

in combination with the SVM classifier for prediction of PD, and the best classification accuracy 

of 93.47% was achieved. In [16], Shahbaba et al. introduced a new nonlinear model based on 

Dirichlet process mixtures for classification of PD, the results have been compared with that of 

multinomial logit models, decision trees, and SVM, the best classification accuracy of 87.7% was 

obtained by the proposed approach. In [17], Psorakis et al. introduced novel convergence 

measures, sample selection strategies and model improvements for multiclass mRVMs, and finally, 

the improved mRVMs achieved the classification accuracy rate of 89.47% when applied to 

prediction of PD. In [18], Guo et al. combined genetic programming and the expectation 

maximization algorithm (GP-EM) to detect PD, and the best classification accuracy of 93.1% was 

obtained. In [19], Luukka employed the feature selection method based on fuzzy entropy measures 

together with the similarity classifier to predict PD, and mean classification accuracy of 85.03% 



with only two features was obtained. In [20], Ozcift et al. combined the correlation based feature 

selection (CFS) algorithm with the RF ensemble classifiers of 30 machine learning algorithms to 

identify PD, and the best classification accuracy of 87.13% was achieved by the proposed CFS-RF 

model. In [21], Spadoto et al. applied evolutionary-based techniques in combination with the 

Optimum-Path Forest (OPF) classifier to detect PD, and the best classification accuracy of 84.01% 

was achieved. In [22], Polat proposed to integrate the use of fuzzy c-means clustering-based 

feature weighting (FCMFW) with the k-NN classifier for the detection of PD, the classification 

accuracy of 97.93% was obtained. In [23], Chen et al. employed the Fuzzy k-nearest neighbour 

(FKNN) classifier in combination with the principle component analysis (PCA-FKNN) to 

diagnose PD, and the best classification accuracy of 96.07% was obtained by the proposed 

diagnosis system. In [24], Zuo et al. presented an effective and efficient diagnosis system based on 

particle swarm optimization enhanced FKNN for PD diagnosis, and the mean accuracy of 97.47% 

was reported. In [25], Hariharan et al. Developed a hybrid method by combining several feature 

pre-processing methods with classification techniques using least-square SVM, probabilistic 

neural network and general regression neural network, and the best classification accuracy of 100% 

was reported. In [26], Gök et al. developed a discriminative model by using rotation-forest 

ensemble k-nearest neighbour classifier algorithm, and the diagnosis accuracy of 98.46% was 

achieved. 

From the above works, we can see that ANNs and SVM have gained much more popularity due 

to their mature theory background as well as the satisfactory classification performance. The main 

advantages of ANNs are their outstanding capability of capturing the nonlinearity relationship 

between the input and output existed in the data. However, it should be noted that the traditional 

gradient descent based training algorithm such as back propagation method may be easily trapped 

in the local minima as well as leaving many network parameters to be specified. Recently, Huang 

et al. proposed a new learning algorithm, extreme learning machine (ELM) [27], for a single 

hidden layer feed-forward neural networks (SLFNs). ELM chooses input weights and hidden 

biases randomly, and the output weights are analytically determined by using Moore–Penrose (MP) 

generalized inverse. However, one drawback of ELM is that the randomly assigned weights can 

produce a large variation in the classification accuracy in different trials. In order to solve this 

problem, more recently Huang et al. [28] proposed the kernelized version of ELM (KELM), 

which requiring no randomness in assigning connection weights between input and hidden layers. 

Compared with SVM, KELM can achieve comparative or better performance with much easier 

implementation and faster training speed in many classification or regression tasks [28-30].  

Motivated by the excellent performance achieved by the ELM or KELM classifier on the 



disease diagnosis problems such as thyroid disease diagnosis [31], erythemato-squamous diseases 

diagnosis [32] and paraquat-poisoned patients diagnosis [33], in this study, an attempt was made 

to explore the potential of ELM and KELM in constructing an automatic diagnostic system for 

diagnosis of PD. Previous study [10, 14, 15, 19, 23] on PD diagnosis have proven that using 

dimension reduction before conducting the classification task can improve the diagnosis accuracy. 

Here, an attempt is made to diagnose PD by using the ELM and KELM classifiers in combination 

with the feature selection methods. Four common feature selection techniques including maximum 

relevance minimum redundancy (mRMR), information gain (IG), Relief and t-test are employed 

for pre-processing before the classification models are constructed. The effectiveness of the 

proposed hybrid method is examined in terms of the classification accuracy, sensitivity, specificity 

and AUC on the PD data set taken from UCI machine learning repository. Promisingly, as can be 

seen that the developed method for this dataset in which a more reliable result is found (96.47% 

highest accuracy) over 10 runs of 10-fold cross validation (CV).  

In summary, the main contributions of this paper can be summarized as follows: (1) The 

potential of ELM and KELM are explored in constructing an automatic diagnostic system for 

diagnosis of PD; (2) The detailed investigation on the impact of feature selection to the 

classification performance of PD diagnosis and interesting discovery are presented; (3) The most 

relevant measurement has been identified with the aid of the feature selection method. 

The remainder of this paper is organized as follows. Section 2 offers brief background 

knowledge on ELM and KELM. In section 3 the detailed implementation of the proposed method 

is presented. Section 4 describes the experimental design. The experimental results and 

discussions of the proposed approach are presented in Section 5. Finally, Conclusions and 

recommendations for future work are summarized in Section 6. 

2. Background Materials 

2.1 ELM and KELM 

This section gives a brief description of ELM. For more details, one can refer to [27, 34]. Given a 

training set {( , ) | , , 1,2, , }n m

i i i ix t x R t R i N    , where ix  is the 1n  input feature 

vector and it  is a 1m  target vector. The standard SLFNs which has an activation function 

( )g x , and the number of hidden neurons N  can be mathematically modeled as follows: 

                      
1
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N

i i j i j

i
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
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where iw  is the weight vector between the ith neuron in the hidden layer and the input layer, ib  

means the bias of the ith neuron in the hidden layer; i  is the weight vector between the ith 



hidden neuron and the output layer; and jo  is the target vector of the jth input data. Here, i jw x  

denotes the inner product of iw  and jx .  

If SLFNs can approximate these N samples with zero error, we will have 
1
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N

j jj
o t


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    . The above Equation can be 

reformulated compactly as: 
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As named by Huang et al.[35], H  is called the hidden layer output matrix of the neural 

network, with the ith column of H  being the ith hidden neuron output with respect to inputs 

1 2, , , Nx x x . Huang et al. [36, 37] has shown that the input weights and the hidden layer biases of 

SLFNs need not be adjusted at all and can be arbitrarily given. Based on this assumption, the 

output weights can be analytically determined by finding the least square solution ̂  of the 

linear system H T  : 

1 1 1 1
ˆ|| H( , , , , , ) T || min || H( , , , , , ) T ||

N N N N
w w b b w w b b


   

                       (5) 

Eq. (5) can be easily accomplished using a linear method, such as the Moor-Penrose (MP) 

generalized inverse of  , as is shown in Eq.(6) 

H T    
†ˆ H T                                (6) 

where †
H  is the MP generalized inverse of the matrix  . The use of the MP generalized 

inverse method has led to the minimum norm least-squares (LS) solution, it is unique and has the 

smallest norm among all the LS solutions. As analyzed by Huang et al. [34], by using such MP 

inverse method, ELM tends to obtain a good generalization performance with a dramatically 

increased learning speed. 

In summary, the learning steps of the ELM algorithm can be summarized as the following three 

steps: 

Given a training set {( , ) | , , 1,2, , }n m

i i i ix t x R t R i N    , an activation function 

( )g x , and the number of hidden neurons N , 



(1) Randomly assign the input weights iw  and bias ib , 1,2, .,i N  

(2) Calculate the hidden layer output matrix  . 

(3) Calculate the output weight †
H T  , 1 2[ , , , ] .T nt t t Τ   

It should be noted that when the feature mapping is unknown to users [28, 30], a kernel 

matrix for the ELM can be adopted according to the following equation: 

,HH : ( ) ( ) ( , )T

ELM ELMi j i j i jh x h x K x x                                    (7)  

where h(x) plays the role of mapping the data from the input space to the hidden-layer feature 

space H. The orthogonal projection method is adopted to calculate the Moore-Penrose 

generalized inverse of matrix, namely,
1†

H H HH( )T T  , and a positive constant C is added to 

the diagonal of HH
T . Now we can write the output function of ELM as follows: 
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                        (8) 

In this specific kernel implementation of ELM, namely KELM, we can specify the 

corresponding kernel for ELM model, the hidden layer feature mapping need not to be known to 

users. In this paper, the Gaussian radial basis function kernel 
2

exp(( ), )K u v u v   is 

applied. The two main parameters presented in KELM with Gaussian kernel are penalty parameter 

C and kernel parameter γ, which play an important role in model construction. The parameter C 

determines the trade-off between the fitting error minimization and the norm of input weights 

minimization, while the parameter γ defines the non-linear mapping from the input space to some 

high-dimensional feature space. 

2.2 Feature selection methods 

Four common feature selection methods including maximum relevance minimum redundancy 

(mRMR), Information Gain (IG), Relief and t-test are adopted in this study.  

2.2.1 Maximum relevance minimum redundancy (mRMR)  

mRMR is a filter type feature selection method that seeks to choose features which are relevant to 

the target class (maximum relevance) and come up with the feature subset containing as 

non-redundant features as possible (minimum redundancy) [38]. It tries to determine the 

correlations between features and target class, features and features by using the mutual 



information. The optimization criterion of mRMR is given as follows: 

1
1

1
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i k
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x S
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
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 

 
                                               (9)  

where X is the whole set of features, c is the target class, xj is the jth feature, Sk-1 is the set of top 

k-1 features selected in the earlier iterations, I is the mutual information, ( , )jI x c  and ( , )i jI x x  

denote mutual information between individual features xj with class c and mutual information 

between features xi and xj, respectively. 

The mRMR feature selection framework attempts to select features based on a balance between 

maximizing the joint dependency of top ranking features on the target class and avoiding selecting 

redundant features. 

2.2.2 Information Gain (IG) 

IG is always used as a tool to measure the effectiveness of a feature in classifying instances. It is 

the change in information entropy from the prior uncertainty and expected posterior uncertainty 

using some feature [39], which is defined as: 

( ) ( | ) ( ) ( | )IG H Y H Y X H X H X Y                                              (10) 

According to Eq.(10), IG is a symmetrical measure, where H(Y) is the prior entropy and H(Y|X) is 

the conditional entropy of the feature. It reflects additional information about Y provides by X that 

represents the amount by which the entropy of Y decreases. The larger the value of IG, the more 

significant this feature is.   

2.2.3 Relief 

Relief is a measure of feature quality which is often used for feature subset selection. The idea of 

Relief is to reward the feature for having different values on a pair of similar examples from 

different classes, and punish it for having different values on examples from the same class [40].  

For Relief algorithm, in each iteration, a sample x is randomly selected and then two nearest 

neighbors of x are found, one from the same classification (termed the nearest hit or NH) and the 

other from a dissimilar classification (termed the nearest miss or NM). So, Relief algorithm 

calculates the weight of the ith feature according to the following formulation: 

| NM ( ) | | NH ( ) |i i i i

i iw w x x x x                                               (11) 

where wi is the weight of the ith feature, | NM ( ) |i ix x ( | NH ( ) |i ix x ) is the difference between 

the sample xi and its NM (NH) in the ith feature. That is, it may be a good feature if one sample 

has a large distance to its nearest neighbor sample from the dissimilar class, while it has a small 

distance to its nearest neighbor sample from the same class. Moreover, it is regarded as a real good 

feature when all samples support this rule. So, the ith feature is significant if wi is larger than a 

threshold, or it is not significant.      

2.2.4 t-test 

The t-test is often used to assess whether the means of two classes are statistically different from 

each other by calculating a ratio between the different of two class means and the variability of the 

two classes. It can be used commonly to determine the significance of each feature using the 

following equation [41]: 
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where i

c 
, i

c 
, i

c 
, i

c 
are the sample means and standard deviations in the ith feature of 

positive samples and negative samples, 
cn 

 and 
cn 

 are the size of positive samples and 

negative samples, respectively. The larger Ti represents this feature is more significant.   

3. Proposed hybrid method for PD diagnosis 

The main objective of the proposed hybrid method is to provide an efficient and accurate 

diagnosis tool for PD diagnosis. The flowchart of the proposed ELM based and KELM based 

diagnosis method is shown in Figs. 1 and 2 respectively. In the proposed methods, feature 

selection is firstly applied to identify the informative features in PD dataset, after then several 

feature subsets with top ranked features are fed to the ELM and KELM model for performance 

evaluation. In Fig. 1, we can see that two main issues of the ELM based method are selection of 

hidden neurons and activation functions. While the main issue of the KELM based method is the 

choice of the parameter pair as shown in Fig. 2. The two hybrid methods are comprehensively 

evaluated on the PD dataset in terms AUC, ACC, sensitivity and specificity. The pseudo-code of 

the proposed method is given bellow. 

______________________________________________________________________________ 

Pseudo-code for the proposed model 

/*Performance estimation by using k-fold CV where k = 10*/ 

Begin 

For j = 1:k 

Training set ← k-1 subsets; 

Validation set ← remaining subset; 

Rank features using mRMR, IG, Relief and t-test; 

Train ELM and KELM classifiers on the reduced training data feature space using different 

size of feature subset; 

Test the trained ELM and KELM models on the validation set; 

EndFor; 

Return the average classification accuracy rates of ELM and KELM over jth validation set; 

End. 

______________________________________________________________________________ 

 



 

Fig.1. Overall procedure of the proposed ELM based diagnosis method. 

 



 

Fig.2. Overall procedure of the proposed KELM based diagnosis method. 

4. Experiments design 

4.1 Data Description 

The experiment is conducted on the PD data set taken from UCI machine learning repository. 

(http://archive.ics.uci.edu/ml/datasets/Parkinsons, last accessed: May 2014). The purpose of this 

data set is to discriminate healthy people from those with PD, given the results of various medical 

tests carried out on a patient. This data set is composed of a range of biomedical voice 

measurements from 31 people, 23 with PD. The time since diagnoses ranged from 0 to 28 years, 

and the ages of the subjects ranged from 46 to 85 years, with a mean age of 65.8. Each subject 

provides an average of six phonations of the vowel (yielding 195 samples in total), each 36 

seconds in length [42]. It should be noted that there is no missing values in the data set, and the 

whole features are real valued. The whole 22 features are presented in Table 1, along with its 

http://archive.ics.uci.edu/ml/datasets/Parkinsons


description. 

Table 1 Description of the PD data set 

Label Attribute Description 

F1 MDVP:Fo(Hz) Average vocal fundamental frequency 

F2 MDVP:Fhi(Hz) Maximum vocal fundamental frequency 

F3 MDVP:Flo(Hz) Minimum vocal fundamental frequency 

F4 MDVP:Jitter(%) 

F5 MDVP:Jitter(Abs) 

F6 MDVP:RAP 

F7 MDVP:PPQ 

F8 Jitter:DDP 

Several measures of variation in fundamental frequency 

F9 MDVP:Shimmer 

F10 MDVP:Shimmer(dB) 

F11 Shimmer:APQ3 

F12 Shimmer:APQ5 

F13 MDVP:APQ 

F14 Shimmer:DDA 

Several measures of variation in amplitude 

F15 NHR 

F16 HNR 

Two measures of ratio of noise to tonal components in 

the voice 

F17 RPDE 

F18 D2 

Two nonlinear dynamical complexity measures 

F19 DFA Signal fractal scaling exponent 

F20 Spread1 

F21 Spread2 

F22 PPE 

Three nonlinear measures of fundamental frequency 

variation 

 

4.2 Experimental setup 

The whole experiment is conducted in the MATLAB platform, which runs on Windows 7 

operating system with AMD Athlon 64 X2 Dual Core Processor 5000+ (2.6 GHz) and 4GB of 

RAM. mRMR program can be obtained from 

http://penglab.janelia.org/proj/mRMR/index.htm. The corresponding algorithms of IG and 

Relief from WEKA tool [43] are called by the main program which is implemented in MATLAB, 

and we implement the t-test from scratch. For ELM and KELM, the implementation by Huang 

available from http://www3.ntu.edu.sg/home/egbhuang is used.  

It is difficult to compute the information entropies of the continuous features using a limited 

number of instances. Therefore, before using mRMR, IG, and Relief methods the continuous 

features are first discretized into multiple intervals using a supervised discretization method 

named MDL method [44]. After then, normalization is employed before classification, in order to 

avoid feature values in greater numerical ranges dominating those in smaller numerical ranges, as 

well as to avoid the numerical difficulties during the calculation. In this study, the data are scaled 

http://penglab.janelia.org/proj/mRMR/index.htm
http://www3.ntu.edu.sg/home/egbhuang


into the interval of [0, 1] according to the Eq. (13), where x is the original value, x  is the scaled 

value, amax  is the maximum value of feature a, and amin  is the minimum value of feature a. 

a

a a

x - min
x

max - min
                              (13) 

In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV was used to 

evaluate the classification accuracy [45]. This study set k as 10, i.e., the data is divided into ten 

subsets. Each time, one of the 10 subsets is used as the test set and the remaining 9 subsets are put 

together to form a training set. Then the average error across all 10 trials is computed. The 

advantage of this method is that all of the test sets are independent and the reliability of the results 

could be improved. It should be pointed out that only one repetition of the 10-fold CV will not 

generate enough classification accuracies for comparison due to the arbitrariness partition of the 

data set. So the 10-fold CV will be repeated and averaged over 10 runs for accurate evaluation. 

4.3 Performance Metric 

Classification accuracy (ACC), sensitivity, specificity and AUC are commonly used as 

performance metrics for evaluation the performance of the binary classification task, especially for 

the task of disease diagnosis. In order to define these measures, the confusion matrix is introduced 

as shown in Table 2. Where TP is the number of true positives, which means that some cases with 

PD are correctly classified as ones with PD; FN, the number of false negatives, which means that 

some cases with PD are classified as healthy persons; TN, the number of true negatives, which 

means that some healthy persons are correctly classified as healthy persons; and FP, the number of 

false positives, which means that some healthy persons are classified as patients with PD. 

Table 2 The confusion matrix 

 

 Predicted  patients 

with PD 

Predicted  healthy 

persons 

Actual patients with 

PD  

True Positive (TP) False Negative (FN) 

Actual healthy 

persons 

False Positive (FP) True Negative (TN) 

 

According to the confusion matrix, ACC, sensitivity and specificity are defined as follows:  

100%
TP TN

ACC
TP FP FN TN


 

  
                     (14) 

100%
TP

Sensitivity
TP FN

 


               (15) 

100%
TN

Specificity
FP TN

 


               (16)  

AUC represents the area under the receiver operating characteristic (ROC) curve, which plots 



true positives rates versus the false positive rates. A classifier that provides a larger AUC is 

preferable over a classifier with a smaller AUC. A perfect classifier provides an AUC that equals 1. 

AUC is one of the best methods for comparing classifiers in two-class problems [46], in this study 

the method proposed in [47] was implemented to compute the AUC. 

5 Experimental results and discussions 

5.1 Experiment I: Classification in the Whole Original Feature Space 

In this experiment, the performance of ELM and KELM for the PD diagnosis is examined. The 

performance of ELM is mainly influenced by the different types of activation functions and the 

number of hidden neurons. Here, these two key factors will be examined in detail. We firstly 

present results from our investigations on the influence of the different types of activation function 

and assign initial values for it. Five different common types of activation function including 

Sigmoid function (sig), Hard-limit function (hardlim), Triangular basis function (tribas), Radial 

basis function (radbas) and Sine function (sin) are investigated. The relationship between the 

classification accuracy of different ELM models and the different number of neurons is shown in 

Fig. 3. From Fig. 3 we can clearly see that the classification accuracy of ELM model is heavily 

influenced by the number of hidden neurons on the PD dataset. However, we can’t obviously see 

which activation function performs best among them. Therefore, we further summarize the 

detailed results of ELM models on the PD dataset with five different activation functions by 

increasing the hidden neurons from 1 to 200 with the step of 1 in Table 3. All the results in Table 3 

are shown in the form of average value (Mean), standard deviation (SD), maximum value (Max) 

and the minimum value (Min) over the all neurons. In Table 3, the most appropriate hidden neuron 

for each activation function is also recorded. It is found to be that ELM model achieves the best 

classification accuracy when the number of hidden neuron is set to be 57, 63, 84, 93 and 67 for sig, 

hardlim, tribas, radbas and sin activation function respectively.  



 

Fig.3. Trends of classification results of ELM with different activation functions by increasing the 

number of hidden neurons 

 

Table 3 Results of ELM with different activation functions on the PD dataset 

Classification accuracy (%) Type of 

activation 

function Mean Max  Min  SD 

Best 

hidden 

neuron 

sig 79.95 91.29 51.29 8.74 57 

hardlim 82.33 88.32 69.84 3.00 63 

tribas 80.08 91.29 55.97 8.57 84 

radbas 79.88 91.29 49.76 8.89 93 

sin 78.79 90.32 53.21 9.09 67 

 

 

The detailed results of 10 runs of 10-fold CV of ELM models with different activation functions 

by taking the acquired best hidden neuron are summarized in Fig. 4 and Table 4. From the table, 

we can see that ELM with the Sine function outperforms ELM with other activation functions 

with the average accuracy of 86.61%, the maximum accuracy of 89.79% and the SD of 1.67% 

over 10 runs of 10-fold CV. It is interesting to find that the standard deviation obtained by the 

ELM with Sine function is the smallest among the five activation functions. It indicates that ELM 

with Sine function is much more stable than other ELM models. Therefore, the Sine function is 

adopted in the subsequent experiment analysis.  



 

Fig.4. Classification results of 10 runs of 10-fold CV of ELM models with different activation 

functions  

 

Table 4 Results of 10 runs of 10-fold CV of different ELM models 

Classification accuracy (%) Type of 

activation 

function Mean SD Max Min 

sig 86.46 2.59 89.29 82.08 

hardlim  84.11 2.12 86.50 80.13 

tribas  86.51 2.80 91.26 82.58 

radbas  85.08 1.67 87.16 82.05 

sin 86.61 1.67 89.79 84.68 

 

 

Different from ELM, the performance of KELM is mainly influenced by the constant C and 

kernel parameter γ in Gaussian kernel function. Therefore, the impact of these two parameters on 

KELM model for PD diagnosis is also examined in detail in this experiment. In order to 

investigate the impacts of these parameters, we have conducted the experiments using different 

values of C when the value of γ is fixed to 1, 10, 100 and1000 respectively, different values of γ 

when the value of C is fixed to 1, 10, 100 and 1000 respectively. The relationship between 

classification accuracy and parameter C with different values of γ, and parameter γ with different 

values of C are shown in Figs. 5 and 6 respectively. From Fig. 5 we can clearly see that parameter 



γ has a big impact to the performance of KELM classifier. Interestingly, the classification accuracy 

is getting higher when the value of γ is set to be smaller. The best classification accuracy of 

89.79%, 91.26%, 93.87% and 94.89% is achieved with the parameter pair of (1, 1), (10, 1), (100, 2) 

and (1000, 2) as shown in Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d) when C is equal to 1, 10,100 

and 1000 respectively. Compared to the parameter γ, the parameter C is not sensitive to the 

performance of KELM. From Fig. 6 we can see that the classification accuracy is fluctuating when 

changing the value of C. The best classification accuracy of 96.45%, 89.82%, 87.68% and 86.17% 

is achieved with the parameter pair of (62, 1), (84, 10), (94, 100) and (48, 1000) as shown in Fig. 

6(a), Fig. 6(b), Fig. 6(c) and Fig. 6(d) when parameter γ is equal to 1, 10,100 and 1000 

respectively. Owing to the best classification accuracy is achieved when C and γ is set to be 62 and 

1 respectively, the optimal parameter pair of (62, 1) is adopted for subsequent analysis.  

 

Fig.5. The relationship between classification accuracy and parameter γ with different values of 

parameter C  



 

Fig.6. The relationship between classification accuracy and parameter C with different values of 

parameter γ. 

 

The detailed results of 10 runs of 10-fold CV of KELM models with the optimal parameter pair 

are listed in Table 5. From the table, we can see that KELM model achieves high performance 

with average results of 92.85%, 94.63%, 96.93% and 88.78% in terms of AUC, ACC, sensitivity 

and specificity respectively. Compared with the best ELM model, KELM with the optimal 

parameter pair has achieved the average classification accuracy with an increase from 86.61% to 

94.63%, the boosted 8% classification accuracy obtained by the KELM model may be owing to 

the fact that the constructed KELM model is able to effectively capture the nonlinear relationship 

existed in the PD dataset with the aid of the Gaussian kernel. In addition, the acquired standard 

deviation of KELM is also much smaller than that of ELM model. It also indicates the stability 

and robustness of the KELM model. 



Table 5 The detailed results obtained by KELM model with optimal parameter pair. 

 

Runs of 10-fold 

CV 
AUC ACC Sensitivity Specificity 

#1 0.9456 0.9492 0.9695 0.9217 

#2 0.9181 0.9489 0.9803 0.8558 

#3 0.9312 0.9432 0.9752 0.8871 

#4 0.9435 0.9537 0.9729 0.9142 

#5 0.9164 0.9387 0.9661 0.8667 

#6 0.9299 0.9489 0.9665 0.8933 

#7 0.9457 0.9545 0.9647 0.9267 

#8 0.9206 0.9379 0.9597 0.8814 

#9 0.8982 0.9339 0.9707 0.8256 

#10 0.9360 0.9545 0.9671 0.9050 

Avg. 0.9285 0.9463 0.9693 0.8878 

Dev. 0.0153 0.0075 0.0058 0.0317 

 

In order to evaluate the effectiveness of the proposed KELM approach, the SVM was also 

implemented for comparison. Here we considered both the linear kernel (SVM_Linear) and 

nonlinear RBF kernel (SVM_RBF) for SVM classification. For SVM_Linear, the penalty 

parameter C was chosen from the set of {0.01, 0.1, 1, 10, 100, 1000}. According to the 

preliminary analysis, the best classification performance of SVM_Linear was achieved when the 

value of C was set to be 1000. For SVM_RBF, a grid-search technique [48] was used to obtain the 

optimal parameter values of RBF kernel function. The range of the related parameters C and γ 

were varied between C = {2
-5

,2
-3

,…,2
15

} and γ = {2
-15

,2
-13

,…,2
1
}. The optimal parameter pair 

( , )C   was employed to construct the predictive model. The detailed classification performance 

of SVM_Linear and SVM_RBF with the maximum value (Max), minimum value (Min), average 

value (Mean) and the standard value (SD) over 10 runs of 10-fold CV are recorded in Table 6. As 

can be seen from the table, the average classification accuracy obtained by the SVM_Linear and 

SVM_RBF is 87.30% and 93.34%, respectively. The SVM model with RBF kernel has achieved 

much better performance than the model with linear kernel. It indicates that the nonlinear 

relationship between the features of the PD data is well captured by the SVM_RBF model. 

However, when the SVM_RBF is compared with the KELM approach, we can find that the 

KELM performs even better than SVM_RBF. From the Tables 5 and 6, we can see that the 

average ACC and AUC of KELM are higher than that of SVM_RBF by 1.29% and 2.8%, 

respectively. In addition, we can see that the standard deviation of KELM is also smaller than that 

of the SVM models, which indicates the consistency and stability of the KELM model. 



Table 6 The detailed results obtained by SVM model. 

 

Performance Metric 
Classification performance  

Mean SD Max Min 

ACC(SVM_RBF) 0.9334 0.0142 0.9589 0.9137 

AUC(SVM_RBF) 0.9005 0.0292 0.9416 0.8565 

Sensitivity(SVM_RBF) 0.8342 0.0496 0.9033 0.7577 

Specificity(SVM_RBF) 0.9669 0.0112 0.9798 0.9475 

ACC(SVM_Linear) 0.8730 0.0106 0.8926 0.8571 

AUC(SVM_Linear) 0.8188 0.0207 0.8481 0.7935 

Sensitivity(SVM_Linear) 0.7065 0.0342 0.7493 0.6549 

Specificity(SVM_Linear) 0.9311 0.0117 0.9469 0.9132 

 

5.2 Experiment II: Classification with Feature Selection 

To investigate whether feature selection can further improve the performance of ELM and 

KELM for diagnosis of PD, we further conduct the experiments in the reduced feature space. 

mRMR, IG, Relief and t-test are implemented to rank the features and the trends of classification 

accuracy of ELM and KELM model over the incremental feature subset are shown in Fig. 7. For 

convenience, the hidden neuron of 67 is taken for ELM model with Sine function, and the 

parameter pair of (1, 62) is adopted for KELM. From Fig. 7 we can see that feature selection can 

further improve the classification accuracy of the ELM and KELM, except the IG approach. Both 

ELM and KELM combined with IG achieve the best performance with the feature subset be full 

with the whole 22 features. It can be also found that the two models coupled with mRMR filter 

achieve the best classification accuracy with the smallest features among the four feature selectors. 

Therefore, mRMR has emerged as the promising technique compared to other three feature 

selection methods for extracting most informative features. In addition, we can find that KELM 

still performs much better than ELM with the aid of feature selection.   

 



Fig.7. Trends of classification accuracy of ELM and KELM for different feature subset 

obtained by different feature selection methods: (a) ELM model (b) KELM model. 

Since both ELM and KELM are sensitive to the variation of the parameter values on different 

feature subset, further detailed evaluation should be conducted. For simplicity, here we performed 

the detailed evaluation for KELM model with the mRMR filter owing to its excellent 

discriminative ability. We first utilize mRMR to rank the features and then selected top 1, 5, 10, 15, 

and 20 features as shown in Table 7. Since KELM model is sensitive to the variation of the 

parameter C and γ, we performed the experiment to look for the best parameter pair in each feature 

subset. Fig. 8 shows the trends of classification accuracy for different feature subset by changing 

the value of parameter C in the range of [1, 100] at the step size of 1 when the value of parameter 

γ is fixed to 1. From Fig. 8 we can clearly see that KELM gets different classification results on 

different feature subsets, and the trends of classification accuracy seems to be increasing when the 

size of feature subset is growing. From this figure, we have also got the best parameter pair for 

KELM on each feature subset. The best parameter pair for feature subset size 1, 5, 10, 15 and 20 is 

(9, 1), (92, 1), (85, 1), (86, 1) and (84, 1), respectively. These parameter pairs are adopted for the 

subsequent experimental analysis. Table 8 lists the detailed results of KELM construed on 

different feature subsets in terms of AUC, ACC, sensitivity and specificity. From Table 8 we can 

observe the following facts: 

1) The performance of KELM models built with feature subset size of 15 and 20 is better than 

the one built with all features. The best performance of KELM is obtained on the feature 

subset with size of 20, with the average AUC of 94.37%, ACC of 95.97%, sensitivity of 

97.61% and specificity of 91.12%. 

2) Among six feature subset sizes, the results show that the size of 15 is enough to build 

classification model, the KELM model with feature subset size of 15 achieves the average 

AUC of 94.19%, ACC of 95.49%, sensitivity of 97.27% and specificity of 91.11%, which is 

better than those obtained by using all features. 

3) The sensitivity of all models is close to each other, KELM can achieve the sensitivity of 

93.20% using only one feature. It indicates the first feature PPE, a nonlinear measure of 

fundamental frequency variation, selected by mRMR filter is one of the most informative 

feature, this result is consistent with the earlier finding obtained in [10] .  

 



Table 7 The feature subset obtained by mRMR filter. 

Size Feature subset 

1 F22 

5 F22 F18 F1 F13 F20 

10 F22 F18 F1 F13 F20 F15 F3 F2 F6 F21 

15 F22 F18 F1 F13 F20 F15 F3 F2 F6 F21 F19 F12 F17 F10 F5 

20 F22 F18 F1 F13 F20 F15 F3 F2 F6 F21 F19 F12 F17 F10 F5 F8 F9 F7 F11 F4 

 

Fig.8. Trends of classification accuracy for different feature subset by changing the value of 

parameter C when parameter γ=1. 



Table 8 Performance of KELM using different feature subsets.  

Value inside the square brackets shows standard deviation of 10 runs of 10-fold CV. 

Feature 

subset  
AUC ACC Sensitivity Specificity 

Optimal 

parameter 

pair 

1 
0.7689 

[0.0188] 

0.8562 

[0.0017] 

0.9320 

[0.0021] 

0.6059 

[0.0368] 
(9,1) 

5 
0.8436 

[0.0151] 

0.8988 

[0.0087] 

0.9571 

[0.0087] 

0.7301 

[0.0235] 
(92,1) 

10 
0.8845 

[0.0226] 

0.9283 

[0.0114] 

0.9679 

[0.0077] 

0.8012 

[0.0426] 
(85,1) 

15 
0.9419 

[0.0141] 

0.9549 

[0.0061] 

0.9727 

[0.0067] 

0.9111 

[0.0274] 
(86,1) 

20 
0.9437 

[0.0076] 

0.9597 

[0.0050] 

0.9761 

[0.0076] 

0.9112 

[0.0140] 
(84,1) 

All 

features 

0.9285 

[0.0153] 

0.9463 

[0.0075] 

0.9693 

[0.0058] 

0.8878 

[0.0317] 
(62,1) 

 

From the above analysis, we can find that with the aid of feature selection using mRMR, 

KELM has improved its performance for PD diagnosis in terms of AUC, ACC, sensitivity and 

specificity. In addition, it is interesting to find that the standard deviation of KELM is becoming 

smaller than before in most cases, which indicates that KELM has become more robust and 

reliable through feature selection. Table 9 also presents the optimal confusion matrices obtained 

by KELM models over the 10 runs of 10-fold CV with different feature subsets. As can be seen 

from Table 9, KELM with feature subset size of 15 and 20 can correctly classify 144 PD cases out 

of 147 total PD cases, while misclassify 3 patients with PD as healthy persons and 4 cases of 

healthy persons as patients with PD. While KELM with the whole features correctly classifies 143 

PD cases out of 147 total PD cases, misclassifies 5 patients with PD as healthy persons and 4 

healthy persons as patients with PD.  



Table 9 Optimal Confusion matrix of KELM using different feature subsets. 

Feature 

subset  
 

Predicted patients with PD Predicted healthy persons 

1 

Actual patients 

with PD  
137 10 

Actual healthy 

persons 
18 30 

5 

Actual patients 

with PD  
142 5 

Actual healthy 

persons 
13 35 

10 

Actual patients 

with PD  
144 3 

Actual healthy 

persons 
8 40 

15 

Actual patients 

with PD  
144 3 

Actual healthy 

persons 
4 44 

20 

Actual patients 

with PD  
144 3 

Actual healthy 

persons 
4 44 

All 

features 

Actual patients 

with PD  
143 5 

Actual healthy 

persons 
4 43 

 

To show the trends of the classification performance of KELM and ELM over the different 

feature space, KELM and ELM with different parameter values are implemented. For convenience, 

the hidden neurons of ELM are set to be 10, 50 and 100, and they are named ELM1, ELM2 and 

ELM3 respectively. The parameter pair for KELM are set to be (1, 10), (1, 50) and (1, 100), and 

they are named KELM1, KELM2 and ELM3 respectively. Fig. 9 shows the comprehensive results 

obtained by the KELM and ELM classifiers in terms of ACC, AUC, sensitivity and specificity in 

one run of 10-fold CV on the reduced feature space where the ranked features obtained by mRMR 

range from 1 to 22 with the step size of 1. It can be observed that KELM achieves the better 

results than ELM in terms of ACC, AUC, sensitivity and specificity on the reduced space in most 

cases. However, the sensitivity obtained by ELM1 is very close to that of KELM models. It means 

that ELM with the hidden neuron of 10 can achieve the same ability to discriminate the patients 

with PD as that of KELM. 



 

Fig.9. Trends of the classification performance over different reduced feature space. 

 

For comparison purpose, the classification accuracies obtained by the previous methods on the 

same the PD dataset are listed in Table 10. It can be seen that our developed approach has 

achieved promising results with the highest accuracy of 96.47% and mean accuracy of 95.97%. 

The promising performance of the proposed hybrid method might be very helpful in assisting the 

physicians to make the accurate diagnosis on the patients and will show great potential in the area 

of clinical PD diagnosis. 

 



Table 10 Classification accuracies obtained with our method and other methods 

 

Study Method Accuracy (%) 

Little et al. (2009)  Pre-selection filter + Exhaustive search + 

SVM  

91.4(bootstrap with 

50 replicates) 

Shahbaba et al. (2009) Dirichlet process mixtures 87.7(5-fold CV) 

Das (2010) ANN 92. (hold-out) 

Sakar et al. (2010) Mutual information based feature selection 

+ SVM 

92.75(bootstrap with 

50 replicates) 

Psorakis et al. (2010) Improved mRVMs 89.47(10-fold CV) 

Guo et al. (2010) GP-EM 93.1(10-fold CV) 

Ozcift et al. (2011) CFS-RF 87.1(10-fold CV) 

Li et al. (2011) Fuzzy-based non-linear transformation + 

SVM 

93.47(hold-out) 

Luukka (2011)  Fuzzy entropy measures + Similarity 

classifier 

85.03(hold-out) 

Spadoto et al. (2011)  Particle swarm optimization + OPF 73.53(hold-out) 

 Harmony search + OPF 84.01(hold-out) 

 Gravitational search algorithm + OPF 84.01(hold-out) 

AStröm et al. (2011) Parallel NN 91.20(hold-out) 

Chen et al. (2013) PCA-FKNN 96.07 (average 

10-fold CV) 

This Study mRMR-KELM 95.97(average 

10-fold CV) 

96.47(10-fold CV) 

 

6. Conclusions and future works 

In this work, we have developed an efficient hybrid method, mRMR-KELM, for addressing PD 

diagnosis problem. The core component of the proposed method is the KELM classifier, whose 

key parameters are explored in detail. With the aid of the feature selection techniques, especially 

the mRMR filter, the performance of KELM classifier is ameliorated with much smaller features. 

The promising performance obtained on the PD dataset has proven that the proposed hybrid 

method can distinguish well enough between patients with PD and healthy persons. It is observed 

that mRMR-KELM achieves the highest classification accuracy of 96.47% via 10-fold CV 

analysis. Based on the empirical analysis, it can be safely concluded that, the developed diagnosis 

method can assist the physicians to make accurate diagnostic decision. The future investigation 

will pay much attention to evaluating the proposed method in other medical diagnosis problems.  
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