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Abstract

Causal inference in cue combination is to decide whether the cues have a
single cause or multiple causes. Although the Bayesian causal inference model
explains the problem of causal inference in cue combination successfully, how
causal inference in cue combination could be implemented by neural circuits,
is unclear. The existing method based on calculating log posterior ratio with
variable elimination has the problem of being unrealistic and task-specific.
In this paper, we take advantages of the special structure of the Bayesian
causal inference model and propose a hierarchical inference algorithm based
on importance sampling. A simple neural circuit is designed to implement
the proposed inference algorithm. Theoretical analyses and experimental
results demonstrate that our algorithm converges to the accurate value as
the sample size goes to infinite. Moreover, the neural circuit we design can
be easily generalized to implement inference for other problems, such as the
multi-stimuli cause inference and the same-different judgment.

Keywords: Causal inference, importance sampling, cue combination,
neural circuit

1. Introduction

Human brain receives cues from multiple sensory modalities and inte-
grates them in an optimal way [1]. The cues from the outside world are noisy
observations of stimuli reflecting uncertainty. It has been demonstrated that,
if all cues have the same cause, the optimal process of cue combination is a
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process of Bayesian inference [2, 3, 4, 5]. However, the truth is that, we re-
ceive information from various sources simultaneously in our daily life, which
means the cues may come from different causes. How to decide whether a
single cause or multiple causes is responsible for the cues, known as causal
inference in cue combination, is an important problem. This problem is the
precondition of cue combination and is quite common in our daily life [6, 7].
For example, at a cocktail party, we need to decide whether the face and
voice belong to the person who calls our name [8]. Recently, the problem of
causal inference in cue combination is partially answered by Kording et al.[9]
and Sato et al.[10], who propose the Bayesian causal inference model. Their
causal inference model successfully explains the problem of causal inference
in cue combination. Yet, how causal inference in cue combination could be
implemented by neural circuit, is unclear. Solving this problem benefits not
only theoretical researches but also practical applications. On the one hand,
causal inference is the basis for cue combination. On the other hand, if the
causal inference could be implemented by neural circuits, the neural circuits
could be used to perform causal inference in cue combination for robots.

Over the past decade, several methods with different probability codes
have been proposed to perform probability inference with neural circuits.
Rao [11, 12, 13] establishes the relationship between the dynamic equation
of neural circuits and the inference of probabilistic graphical models. He
proves that the process that the firing rate of neurons in the recurrent neural
circuit varies with respect to time is a process of posterior probabilities in-
ference in a hidden Markov model, under the condition that the firing rate is
proportional to the log of posterior probabilities. Ott and Stoop [14] build the
relationship between the dynamical equation of continuous Hopfield network
and belief propagation on a binary Markov random field. Sampling is another
commonly accepted way to perform inference by neural circuits. Based on
Monte Carlo sampling, Huang and Rao [15] build a spiking network model
to perform approximate inference for any hidden Markov model. Maass et
al.[16, 17, 18] propose that stochastic networks of spiking neurons could im-
plement inference for graphical models by Markov chain Monte Carlo. Shi
and Griffiths [19] apply importance sampling to perform inference of chain
Bayesian model and design neural circuits to implement it. Another impor-
tant framework is Probabilistic population coding (PPC), the core idea of
which is that the neurons are encoders of distributions, instead of the values
of variables [20, 21, 22]. Ma et al.[20] present that the inference of cue inte-
gration can be conducted simply by linear combinations of each population
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activity with PPC. The method is exploited thereafter by Beck et al.[23] to
realize the Bayesian decision making and the inference of marginalization
[24].

To the best of our knowledge, the only work implementing causal inference
in cue combination with neural circuits is proposed by Ma et al. [25] in 2013.
They calculate the ratio of the posterior probabilities of both situations (a
single cause or multiple causes) with variable elimination and then design a
neural circuit to implement it. This method suffers from three shortcomings.
Firstly, the circuits they design are task-specific and only work on two stimuli.
If we want to implement multi-stimuli causal inference [26] with the same
method, the circuit will be completely different. What’s more, the required
number of operations increases faster than linear with respect to the number
of stimuli, which makes the neural circuit unrealistic [25]. Secondly, it is hard
to generalize the circuit to implement a similar task called same-different
judgment [27]. Thirdly, since how to implement logarithmic operations with
neurons remains unknown, approximations are taken in their neural circuit
so that they could only get near-optimal results.

In this paper, different from calculating the posterior ratio with variable
elimination in [25], we propose a hierarchical inference algorithm based on
importance sampling, which takes advantages of the special structure of the
causal inference model. A neural circuit with hierarchical structure is then
designed corresponding to the bottom-up inference process. The proposed
method has three advantages. Firstly, the neural circuit is simple and it is
easy to be realized by PPC and some simple plausible neural operations.
Secondly, it is easy to generalize this neural circuit to implement inference
for other problems, such as the multi-stimuli cause inference and the same-
different judgment. Thirdly, a theoretical proof is given that the sampling-
based method converges to the accurate value with probability one as sample
size tends to infinity.

The rest of this paper is organized as follows. Section 2 briefly reviews
the causal inference in cue combination. In section 3 we present a sampling-
based inference algorithm and design the corresponding neural circuit. The
experimental results are shown in section 4. We generalize our method to
solve other two problems in section 5 and make a conclusion in section 6.
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Fig. 1. The causal inference model in cue combination.

2. The Causal Inference Model In Cue Combination

The problem of causal inference in cue combination is to infer whether
cues come from a single or multiple causes. Kording et al. [9] and Sato et al.
[10] propose a causal inference model of cue combination respectively, which
could explain physiological and psychological experiments successfully. Here,
we briefly review this model and the stimuli considered here only include
visual and auditory ones. The multi-stimuli problem will be explained in
section 5. In Fig. 1, node C represents the common-cause variable, S, S1, and
S2 express the stimuli. X1 and X2 are cues received by the sensory system.
The state of cause C is 1 or 2, where C = 1 means the cues have the same
cause and C = 2 means the cues have two different causes. For simplicity, we
assume that P (C = 1) is equal to P (C = 2), both of which have a probability
0.5. When C = 1 , there is a stimulus S with distribution P (S) corresponding
to the common cause, where P (S) is a Gaussian distribution with mean 0
and variance σ2

S. Two measurements X1 and X2 are generated from two
Gaussian distributions with different variances σ2

1 and σ2
2, but with the same

mean S. When C = 2, there are two different stimuli S1 and S2, which are
drawn from the same Gaussian distribution with mean 0 and variance σ2

S.
Then two measurements X1 and X2 are drawn from two different Gaussian
distributions with their means being S1 and S2, and their variances being
σ2
1 and σ2

2 respectively. Based on the definitions above, the causal inference
problem is to decide whether C = 1 or C = 2 according to the measurements
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Fig. 2. The three-layer Bayesian network equivalent to the causal inference
model in Fig. 1.

X1 and X2.

3. Sampling-Based Causal Inference

In this section, we first convert the causal inference model to a three-layer
Bayesian network. Then we propose a sampling-based hierarchical inference
method and design the corresponding neural circuit. We demonstrate that
this circuit can be realized by PPC and simple plausible neural operations.

3.1. The three-layer Bayesian network model

In this paper, the problem is to infer the state of node C. In order to
simplify inference, we convert the causal inference model above to a three-
layer Bayesian model (Fig. 2) with some appropriate prior probabilities
and conditional probabilities. In the new model, node C is the common-
cause variable, which is similar to that in the causal inference model. S1

and S2 refer to two different stimuli, such as visual and auditory stim-
uli. The conditional probability of S1 and S2 under C is expressed as

P (S1, S2|C). We define P (S1, S2|C = 1) = δ (S1 − S2)
1√

2πσS
exp

(
− S2

1

2σ2
S

)
and P (S1, S2|C = 2) = 1

2πσ2
S

exp
(
−S2

1+S
2
2

2σ2
S

)
, where δ (S1 − S2) is the Dirac

Delta distribution. X1 and X2 are measurements from S1 and S2 respec-
tively. The conditional probability of X1 under S1 is defined by P (X1|S1) =

1√
2πσ1

exp
(
− (X1−S1)

2

2σ2
1

)
and the conditional probability of X2 under S2 is de-
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fined by P (X2|S2) = 1√
2πσ2

exp
(
− (X2−S2)

2

2σ2
2

)
. It is easy to verify that this

Bayesian network is equivalent to the causal inference model in Fig. 1.

3.2. Sampling-based inference algorithm

Several methods have been developed to perform inference for the Bayesian
model shown in Fig. 2, such as belief propagation (BP) [28] and Markov chain
Monte Carlo (MCMC) [29], all of which are able to be implemented by neu-
ral circuits [30, 31, 16, 17]. However, all the circuits have the shortcoming
of being task-specific. Specifically, the neural circuit for belief propagation
[30, 31] requires pools of spiking neurons to represent function nodes of the
factor graph. It is hard to generalize the circuit of the Bayesian model in Fig.
2 to implement multi-stimuli causal inference. Similarly, the neural circuit
[16, 17] based on MCMC should meet the neural computability condition
(NCC) and the circuit will be completely different for multi-stimuli causal
inference. In this paper, we aim to build a general-purpose neural circuit for
causal inference in cue combination. Here we utilize importance sampling to
perform inference. Importance sampling is a kind of Monte Carlo methods
in statistics, which is used to estimate the intractable integrals by random
sampling. Different from other Monte Carlo methods, importance sampling
generates samples from a simple distribution rather than the original distri-
bution [32, 33]. Here we give a simple example.

E(f (X))P (X)

=
∫
X

f (X)P (X)dX

=
∫
X

f(X)P (X)
g(X)

g (X) dX

= E
(
f(X)P (X)
g(X)

)
g(X)

≈ 1
m

m∑
i=1:

Xi∼g(X)

f(Xi)P (Xi)
g(Xi)

(1)

In equation (1), the goal is to calculate the mathematical expectation
of f (X), where X follows the distribution P (X). There are cases where
we can’t sample from the original distribution P (X) of variable X directly.
Instead, we can calculate the expectation of f (X)P (X) /g (X) with X fol-
lowing the simple distribution g (X). Note that for the region with larger
value of g (X), the sampling points should be denser, which means the sam-
ples are more important.
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Using importance sampling to perform inference has its neural basis. The
responses of neurons have been interpreted as Monte Carlo samples by Hoyer
and Hyvarinen [34], which means that the state of each neuron is drawn ran-
domly from a special distribution. Shi and Griffiths [19] have used impor-
tance sampling to perform inference of chain Bayesian network. By taking in
the idea of hierarchical inference, we generalize importance sampling to our
model. What’s more, we will prove the convergence of the sampling-based
inference method. We first consider a Bayesian network with only two nodes
A and B, where A is the parent node of B. It is easy to obtain the conditional
expectation of A given B with importance sampling:

E (f (A) |B) =
∑
A

f (A)P (A|B) =

∑
A
f(A)P (A|B)P (B)

P (B)

=

∑
A
f(A)P (B|A)P (A)∑
A
P (B|A)P (A)

=
E(f(A)P (B|A))P (A)

E(P (B|A))P (A)

≈

∑
Ai:Ai∼P (A)

f(Ai)P(B|Ai)∑
Ai:Ai∼P (A)

P (B|Ai)

=
∑

Ai:Ai∼P (A)

f (Ai)
P(B|Ai)∑

Ai:Ai∼P (A)

P (B|Ai)

(2)

In equation (2), the approximation holds as we use importance sampling
to estimate the expectation. Ai ∼ P (A) means that the sample Ai is drawn
from the distribution P (A). Here A is discrete and the sums are replaced by
integrals when A is continuous. It should be noted that the same samples of
Ai are used in both sum. When we calculate the last term in (2), we first
calculate the sum of Ai in the denominator and then calculate the sum of Ai

in the numerator. Equation (2) could be generalized to solve the inference
problem in Fig. 2:
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P (C = 1|X1 = x1, X2 = x2)
= P (C = 1|x1, x2)
=
∫

S1,S2

P (C = 1, S1, S2|x1, x2) dS1, S2

=
∫

S1,S2

P (C = 1|S1, S2)P (S1, S2|x1, x2) dS1, S2

=

∫
S1,S2

P (C=1|S1,S2)P (x1,x2|S1,S2)P (S1,S2)dS1,S2∫
S1,S2

P (x1,x2|S1,S2)P (S1,S2)dS1,S2

=
E(P (C=1|S1,S2)P (x1,x2|S1,S2))P (S1,S2)

E(P (x1,x2|S1,S2))P (S1,S2)

≈
N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

P
(
C = 1|Si

1
, Si

2

) P(x1,x2|Si1 ,S
i
2)

N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

P(x1,x2|Si1 ,S
i
2)

=
N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

P(Si1 ,S
i
2
|C=1)

P(Si1 ,S
i
2
|C=1)+P(Si1 ,S

i
2
|C=2)

P(x1,x2|Si1 ,S
i
2)

N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

P(x1,x2|Si1 ,S
i
2)

=
N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

I
(
Si

1
= Si

2

) P(x1,x2|Si1 ,S
i
2)

N∑
i=1

Si
1
,Si

2
∼P (S1,S2)

P(x1,x2|Si1 ,S
i
2)

(3)

In equation (3), the sample Si
1
, Si

2
is drawn from P (S1, S2). We ab-

breviate X1 = x1, X2 = x2 to x1, x2 and this will hold in the rest of the
paper. I

(
Si

1
= Si

2

)
is an indicator function, it equals to 1 only when Si1 =

Si2. The last equality holds due to the definitions of P (S1, S2|C = 1) and
P (S1, S2|C = 2). Note that equation (3) also holds for P (C = 1) 6= 0.5. It
is easy to find that equation (3) remains the hierarchical structure of Bayesian
model in Fig. 2. Based on this, a neural circuit with a hierarchical structure
could be designed corresponding to the bottom-up process of inference. We
will discuss this part in detail in the following subsection.

An important index for sampling-based algorithm is its accuracy. The
following theorem elucidates that our algorithm converges to the accurate
value with probability one as the sample size goes to infinity. The proof of
theorem 1 is provided in Appendix A.

Theorem 1. The distributions P (C), P (S1, S2|C), P (X1|S1) and P (X2|S1)
are defined on the Bayesian network in Fig.2. Si

1
, Si

2
∼ P (S1, S2), then for

arbitrary small number ε
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Fig. 3. The tuning curve of a neuron in the primary visual cortex (V1) and
its neural variability.

lim
N→∞

P

∣∣∣∣∣∣
N∑
i=1

P
(
C = 1|Si

1
, Si

2

) P(x1,x2|Si1 ,S
i
2)

N∑
i=1

P(x1,x2|Si1 ,S
i
2)
− P (C = 1|x1, x2)

∣∣∣∣∣∣ < ε

 = 1

(4)

3.3. Implementation with Neural Circuits

In this section, we design a neural circuit to implement sampling-based
causal inference in cue combination. According to recent studies, one of the
most accepted neural circuits to implement probability inference is based on
PPC and some plausible neural operations. Related researches include that
of Ma et al.[20], presenting that the inference of cue integration can be con-
ducted by PPC and a plausible neural operation-linear combinations. Beck et
al.[24] implement the inference of marginalization with PPC, quadratic non-
linearity and divisive normalization. Our method adopts the same structure
as that of Ma and Beck, and the neural circuit is designed based on PPC and
three types of plausible neural operations, including multiplication, normal-
ization and linear combinations. Here we first give a simple explanation of
PPC. PPC takes advantages of the variability in neuronal responses and con-
siders a population of neurons as the encoders of probability distributions,
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rather than the values of variables. Specifically, for independent Poisson
spiking neurons, the distribution of the responses r = {r1, r2, ..., rN} to the

input stimulus S is P (r|S) =
∏
i

e−fi(s)fi(s)
ri

ri!
, where fi (s) is the tuning curve

of the neuron i. The tuning curve is a function of S, which represents the
average firing rate to stimulus S over trials (In theory, an infinite number
of trials). Fig. 3 shows an example, the blue curve is the Gaussian-like
tuning curve of a neuron in the primary visual cortex (V1). This neuron
is sensitive to the moving direction of the stimulus. The red circles are the
firing rates with respect to different moving direction of the stimulus in a
trial. The red circles are not always on the blue curve because the tuning
curve is the average firing rate and neural response has variability. The neu-
ral circuits for equation (3) are shown in Fig. 4. We suppose that there
are Poisson spiking neurons S1

1S
1
2 , S2

1S
2
2 ,..., SN1 S

N
2 with their states sampling

from P (S1, S2). The tuning curve of the neuron Si1S
i
2 is proportional to

P (X1, X2|Si1, Si2). These assumptions are reasonable as physiologically stud-
ies [35, 36, 37] have demonstrated that the quantity of neurons in human
brain follows some prior distributions. The Poisson spiking neurons S1

1S
1
2 ,

S2
1S

2
2 ,..., SN1 S

N
2 are used to code the input stimuli X1, X2 and the output fir-

ing rates are r11, r
2
1,..., r

N
1 respectively. The firing rates are then normalized.

Note that the normalization operation can be realized by inhibitory neurons
[38]. If we use R to express the total firing rate, where R =

∑
i

ri, then we

can get E (ri/R|R = n) = P (X1, X2|Si1, Si2) /
(∑

i

P (X1, X2|Si1, Si2)
)

, which

is proved in [19]. The equation above means the expectation of the nor-
malized firing rate for Poisson neurons equals to normalized probability

P
(
X1, X2|Si1 , S

i
2

)
/

(
N∑
i=1

P
(
X1, X2|Si1 , S

i
2

))
. These neural activities are then

fed into the third layer with synaptic weights w1 and w2, where w1 =
I (Si1 = Si2) and w2 = I (Si1 6= Si2). In the fourth layer, a max operation
is taken to decide whether the cause is 1 or 2. Note that, the precondition
of the inference is that we have known the prior probability and conditional
probability. We suppose that the prior probability is presented by the dis-
tribution of Poisson spiking neurons, which means the states of the Poisson
spiking neurons follow the prior distribution. We also assume that the tun-
ing curves are proportional to conditional probability. With the benefit of
sampling-based inference, massive number of neurons could sample in paral-
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Fig. 5. The firing rate of the Poisson spiking neurons in a trial.

lel and calculate without iteration. This means that the neural circuit could
trade space for time thus the inference would be quite rapid.

4. Experiments

In this section, we demonstrate the merits of the proposed method with
experiments. Samples of X1 and X2 are generated according to the prior
probabilities P (C) and conditional probabilities P (S1, S2|C), P (X1|S1), P (X2|S2)
in three steps. First, we generate samples of variables C with equality prob-
abilities 0.5 for each state. Then for each sample Ci, if Ci = 1, Si1 will be
generated from a Gaussian distribution with mean 0 and variances σ2

S, and
Si2 = Si1. If Ci = 2, Si1 and Si2 will be drawn from the same Gaussian distri-
bution whose mean is 0 and variances is σ2

S. At last X i
1 and X i

2 are generated
from two different Gaussian distributions, whose means are Si1 and Si2 and
variances are σ2

1 and σ2
2 respectively.

4.1. Experiment 1: Simulating the Poisson spiking neurons and their firing
rates

Here we simulate the behaviors of the Poisson spiking neurons in Fig.
4. We first generate the input X i

1 and X i
2 randomly with the method

proposed above. The parameters are specific to σS = 4, σ1 = σ2 = 6.
Then we generate 1000 Poisson spiking neurons S1

1S
1
2 , S2

1S
2
2 ,..., S1000

1 S1000
2

by sampling from P (S1, S2). The tuning curve of the neuron Si1S
i
2 is set to

10000 × P (X1, X2|Si1, Si2). Fig. 5 represents the firing rate r11, r
2
1, ..., r

1000
1

of the 1000 Poisson spiking neurons in a trial (the firing rate could vary
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Fig. 6. The normalized firing rate compared with the normalized distribution
in a trial.

in different trials due to neural variability). Note that here we only show
the results of neurons whose indexes range from 1 to 1000 with a uniform
spacing 30. In Fig. 6, the circles on the blue curve represents the nor-

malized firing rate for neuron Si1S
i
2, which is ri1/

1000∑
i=1

ri1. Similarly, we only

show the results of neurons whose indexes range from 1 to 1000 with a uni-
form spacing 30. The plus on the red curve is the normalized probability

P (X1, X2|Si1, Si2) /
1000∑
i=1

P (X1, X2|Si1, Si2). We can see that the normalized fir-

ing rate is close to the normalized probability.

4.2. Experiment 2: Testing on the convergence and accuracy of our method

Here we simulate and present the behaviors of the neurons in the last two
layers and show the convergence and accuracy of our method. We first gen-
erate 1000 inputs of X i

1 and X i
2 randomly with the method proposed above.

For each inputs X i
1 and X i

2, σS, σ1 and σ2 are drawn randomly from a uniform
distribution on [3 7]. Then we calculate P (C = 1|X i

1, X
i
2) with the sampling-

based method and express the result as P sample (C = 1|X i
1, X

i
2). Meanwhile,

the truth of P (C = 1|X i
1, X

i
2) is expressed as P truth (C = 1|X i

1, X
i
2), which is

calculated with the elimination method in [16]. The error of samples X i
1 and

X i
2 is defined by δ =

∣∣P sample (C = 1|X i
1, X

i
2)− P truth (C = 1|X i

1, X
i
2)
∣∣. This

index expresses the gap between the sampling value and optimal value of pos-
terior probability. The mean error is calculated from 1000 different inputs.
The error rate represents the proportion of false results in the 1000 different

13
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inputs when we infer the cause. We calculate the mean error and the error
rate with different sample sizes and repeat the experiments 10 times. The
mean error of the posterior probability varying with sample size is shown in
Fig. 7. We find that the mean error decreases as the sample size increases
and converges to zero when the sample size tends to infinity. This result
demonstrates that if we have enough samples, or we have enough neurons,
our algorithm will get the optimal value. Fig. 8 plots the error rate obtained
from our method and that from the method of Ma et al [16]. The method of
Ma et al. is not related to sample size while ours could get stretchable results
(different accuracies) with different sample sizes. Obviously, our method is
superior to Ma’s when the sample size is larger than 500 (500 neurons for
each variable). We can see that in order to keep the error rate under 0.05
for two-stimuli causal inference, we need at least 1000 neurons to represent
each variable. This means N = 1000 in equation (3).

4.3. Experiment 3: Testing on the applicability of the method with different
parameters.

Experiment 1 and 2 indicate that our inference method could get the
optimal solution given enough samples. However, the parameters σ1, σ2
and σS are drawn randomly for each trial. In experiment 3, we will make a
concrete analysis of the applicability of our method with different parameters.
In this experiment, σ1, σ2 and σS can vary from 1 to 8. We test the error
rate for different σ1, σ2 and σS with the sample size being 1000 and show
the result in Fig. 9. In each sub-figure, σS is set to a fixed value while both
σ2 and σS vary from 1 to 8. We can see that the error rate is less than 0.1
for most of the parameters. However, when σS is in close proximity to zero,
the error rate turns out to be very high. This could be explained as follows.
Since σS is close to zero, the difference between S1 and S2 remains very small
no matter C = 1 or 2. Then the posterior probability of a common cause and
two different causes both will be quite near to 0.5. Due to this, a very small
error could lead to incorrect inference results, making the error rate very
high. Nevertheless, if there are adequate samples, the error rate could be
arbitrarily small, which means our method is robust to different parameters.

4.4. Experiment 4: Testing on the probability of reporting a common cause
with respect to stimulus disparity.

Stimulus disparity refers to the space difference between different stimuli,
which is defined by S2 − S1, where S1 and S2 are two different stimuli. In-
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disparity between accurate equation and our sampling-based method.

tuitively, it is more likely that there is a common cause if stimulus disparity
is small, while there are two different causes if stimulus disparity is large.
In this experiment, 200000 samples are generated with parameters σ1 = 3,
σS = σ2 = 10. For each Si1 and Si2, stimulus disparity is defined by Si2 − Si1.
The state of variable Ci is inferred by optimal equation [25] and our method
respectively. Then for the samples with the same stimulus disparity, we cal-
culate the proportion of reporting a common cause. Fig. 10 shows the result,
the red curve is obtained by optimal equation. The black, green and blue
curves are calculated by our method with sample size being 100, 300 and
1000 respectively. The result shows that as the sample size becomes larger,
the sampling-based curve tends to be closer to the accuracy curve. When
sample size equals 1000, the sampling-based curve is almost the same as the
accuracy curve. This result indicates the accuracy of our method.

5. Generalization

In this section, we generalize our sampling-based method to implement
inference for other two important problems: the multi-stimuli causal infer-
ence in cue combination and the same-different judgment.
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Fig. 11. The Bayesian model for the multi-stimuli causal inference.

5.1. Multi-stimuli causal inference

In the above experiments, situations where there are only two stimuli
were taken into consideration while in our daily life cues may come from
multiple sensory modalities, such as visual, auditory, and tactile. Despite
the fact that Bayesian model could also explain the causal inference problem
with multi-stimuli [26], how to implement inference with neural circuits is
unclear. With our sampling-based method, it is easy to generalize the neural
circuits to implement inference for multi-stimuli.

The steps are similar to that in section 3. First we convert the problem
to a Bayesian network (shown in Fig. 11). The prior probabilities and
conditional probabilities are defined according to the causal inference model,
where different states of C reflect different situations of the cause. The causal
inference problem is then converted to the inference of posterior probability,
which could be calculated by importance sampling:
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P (C = 1|X1 = x1, X2 = x2, ..., Xn = xn)
= P (C = 1|x1, x2, ..., xn)
=

∫
S1,S2,...,Sn

P (C = 1, S1, S2, ..., Sn|x1, x2, ..., xn) dS1, S2, ..., Sn

=
∫

S1,S2,...,Sn

P (C = 1|S1, S2, ..., Sn)P (S1, S2, ..., Sn|x1, x2, ..., xn) dS1, S2, ..., Sn

=

∫
S1,S2,...,Sn

P (C=1|S1,S2,...,Sn)P (x1,x2,...,xn|S1,S2,...,Sn)P (S1,S2,...,Sn)dS1,S2,...,Sn∫
S1,S2,...,Sn

P (x1,x2,...,xn|S1,S2,...,Sn)P (S1,S2,...,Sn)dS1,S2,...,Sn

=
E(P (C=1|S1,S2,...,Sn)P (x1,x2,...,xn|S1,S2,...,Sn))P (S1,S2,...,Sn)

E(P (x1,x2,...,xn|S1,S2,...,Sn))P (S1,S2,...,Sn)

≈
N∑
i=1

Si
1
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n
∼P (S1,...,Sn)

P
(
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1
, Si

2
, ..., Si

n

) P(x1,...,xn|Si1 ,S
i
2
,...,Si

n)
N∑
i=1

Si
1
,...,Si

n
∼P (S1,...,Sn)
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i
2
,...,Si

n)

=
N∑
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n
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n
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i
n)

N∑
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Si
1
,...,Si

n
∼P (S1,...,Sn)

P(x1,...,xn|Si1 ,...,S
i
n)

=
N∑
i=1

Si
1
,...,Sin∼P (S1,...,Sn)

I
(
Si

1
= Si

2
= ... = Si

n

) P(x1,...,xn|Si1 ,S
i
2
,...,Si

n)
N∑
i=1

Si
1
,...,Si

n
∼P (S1,...,Sn)

P(x1,...,xn|Si1 ,S
i
2
,...,Si

n)

(5)
Equation (5) is similar to (3) except that the stimuli here are S1, S2, ..., Sn

rather than S1, S2. According to (5), the neural circuit of multi-stimuli causal
inference is similar to that of two-stimuli causal inference except three dif-
ferences. Firstly, the states of the Poission spiking neurons sample from
P (S1, S2, ..., Sn), rather than P (S1, S2). Secondly, the tuning curve of the
neuron marked as i is proportional to P

(
x1, x2, ..., xn|Si1 , S

i
2
, ..., Sin

)
. Thirdly,

the synaptic weights are I
(
Si

1
= Si

2
= ... = Si

n

)
instead of I

(
Si

1
= Si

2

)
.

We also test on the convergence and accuracy of our method for multi-
stimuli causal inference to show its feasibility. Three-stimuli casual infer-
ence is tested because the situation is quite common in our daily life, such
as the integration of visual, auditory, and tactile input. We also test ten-
stimuli to show that our method applies to higher dimensions. We assume
that P (C = 1) is equal to P (C = 2), both of which have a probability 0.5.
Note that C = 1 means the three cues have the same cause and C = 2
means the cues have diverse causes. We define P (S1, S2, ..., St|C = 1) =
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Fig. 12. Error rate of the multi-stimuli causal inference.

1√
2πσS

exp
(
− S2

1

2σ2
S

) t∏
j=1

δ (S1 − Sj) and P (S1, S2, ..., St|C = 2) = 1(√
2πσ2

S

)t
exp

(
−S2

1+S
2
2+...+S

2
t

2σ2
S

)
. Besides, the conditional probability of Xi under Si

(i = 1, 2, ..., t) is defined by P (Xi|Si) = 1√
2πσi

exp
(
− (Xi−Si)2

2σ2
i

)
. The experi-

mental procedure is similar to that of Experiment 2 in section 3 and the result
is shown in Fig. 12. We can find that the error rate decreases as the sample
size increases and convergences to zero when sample size tends to infinity.
We also find that we don’t need to scale up the samples when dimensions
become higher. 1000 samples (neurons) are required for each variable to keep
the error rate under 0.05. These results are in good agreement with the fact
that importance sampling does not scale up with higher dimensions.

5.2. Same-different judgment

When faced with multiple objects, probably the first thing our brain needs
to do is to decide whether they are the same or not. Thus the same-different
judgment could be critical in perception and cognition. A straightforward
example is object classification. Human brains are able to recognize the same
object and assign them to the semantic classes. Berg et al. [27] propose
the optimal-observer model and prove that the same-different judgment is
a process of probability inference. As illustrated in Fig. 13, variable C
represents the judgment, C = 1 means the objects are the same while C = 2
means they are different. µ is a single value parameter variable generated
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Fig. 13. Optimal-observer model of the same-different judgment problem.

from a uniform distribution ranging from −L to L. When the objects are
the same, Si equals to µ. When they are different, Si is drawn from a
Gaussian distribution with mean µi and variance σ2

S. The distribution of
Xi is a Gaussian distribution with its mean being Si and its variance being
σ2
i . Based on these definitions, the same-different judgment problem can be

converted to the posterior probability inference problem of variable C, which
could be calculated by importance sampling:
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=

∫
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(6)
In equation (6), I

(
−L ≤ Si

1
= Si

2
= ... = Si

n
≤ L

)
is a indicative function.

It equals to 1 only when all the stimuli are the same and between −L and
L. Equation (6) differs from equation (5) in the indicative function. Due
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Fig. 14. Error rate of the same-different judgment

to this, the neural circuit for the same-different judgment are similar to
that for multi-stimuli causal inference except one difference. That is, the
synaptic weights of the neural circuit for the same-different judgment are
I
(
−L ≤ Si

1
= Si

2
= ... = Si

n
≤ L

)
, instead of I

(
Si

1
= Si

2
= ... = Si

n

)
.

We test the accuracy and convergence of our method for the same-different
judgment problem. In this experiment, we compute the error rate of same-
different judgment with three objects and ten objects respectively. Samples
of X1, X2...., and Xt are generated according to the similar method in the
section of multi-stimuli causal inference. Note that µi is generated from the
uniform distribution ranging from −10 to 10. σS and σi are drawn randomly
from a uniform distribution on [1 3]. The inference result with our method
is present in Fig. 14, which is similar to that of Fig. 13. We can find that
the error rate of same-different judgment with three objects and ten objects
both decrease as the sample size increases and convergence to zero when
sample size tends to infinity. Besides, the samples needed don’t scale up
when dimensions become higher. 5000 samples (neurons) are required for
each variable to keep the error rate under 0.05.

6. Conclusion

In this paper, we propose an inference algorithm for causal inference in
cue combination based on importance sampling and design a corresponding
neural circuit to implement this inference algorithm. The neural circuit is
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plausible as it is based on PPC and three types of plausible neural operations.
Theoretical analysis and experimental results show that our algorithm can
converge to the accurate value as sample size goes to infinite. It is worth not-
ing that our method provides a general solution to the other two important
problems, namely the multi-stimuli causal inference and the same-different
judgment.

Different from Markov chain Monte Carlo [16, 17], which represents the
distribution with variability of a neuron over time, our method utilizes the
variability over neurons to represent the distribution. This means that mas-
sive number of neurons could sample in parallel and calculate without itera-
tion, thus the inference would be quite rapid.

Despite the plausible neural implementation of inference, the question
of how to learn the prior probabilities and conditional probabilities with
learning rules found in biological studies requires considerable future work.
Besides, learning and inference should be implemented by the same neural cir-
cuits. Some recent works have provided reference experiences for implement-
ing learning. For example, Maass et al. prove that Spike-Timing-Dependent
Plasticity (STDP) is able to approximate a parameter estimation algorithm–
expectation maximization (EM) algorithm [39, 40, 41]. This principle may
be used to solve the learning problem in our paper.

Proof of Theorem 1

Lemma 1. Supposing that random variables X1, X2, ..., Xn are pairwise
independent and X i ∼ P (X). Similarly, Y 1, Y 2, ..., Y n are pairwise inde-
pendent and Y j ∼ P (Y ). Besides, E (X) = µ1, E (Y ) = µ2, µ1, µ2 6= 0,
V ar (X) = σ2

1 and V ar (Y ) = σ2
2. Then for arbitrary small number ε, we can

conclude that P

∣∣∣∣∣∣
N∑
i=1

Xi

N∑
j=1

Y j
− µ1

µ2

∣∣∣∣∣∣ < ε

 > 1− 16σ2
1

Nµ22ε
2 −

16µ21σ
2
2

Nµ42ε
2 .

Proof: As random variables X1, X2, ..., Xn are pairwise independent and
X i ∼ P (X), Y 1, Y 2, ..., Y n are pairwise independent and Y j ∼ P (Y ), We
can get

E

(
1
N

N∑
i=1

X i

)
= 1

N

N∑
i=1

E (X i) = µ1,

E

(
1
N

N∑
j=1

Y j

)
= 1

N

N∑
j=1

E (Y j) = µ2,
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V ar

(
1
N

N∑
i=1

X i

)
= 1

N2

N∑
i=1

V ar (X i) =
σ2
1

N
,

V ar

(
1
N

N∑
j=1

Y j

)
= 1

N2

N∑
j=1

V ar (Y j) =
σ2
2

N
.

For arbitrary small number ε1 and ε2 = µ2
µ1
ε1, application of the Chebyshev’s

Inequality yields the inequality:

P

(∣∣∣∣ 1N N∑
i=1

X i − µ1

∣∣∣∣ < ε1

)
≥ 1− σ2

1

Nε21
,

P

(∣∣∣∣∣ 1N N∑
j=1

Y j − µ2

∣∣∣∣∣ < ε2

)
≥ 1− σ2

2

Nε22
,

which is equivalent to

P

(
µ1 − ε1 < 1

N

N∑
i=1

X i < µ1 + ε1

)
≥ 1− σ2

1

Nε21
,

P

(
µ2 − ε2 < 1

N

N∑
j=1

Y j < µ2 + ε2

)
≥ 1− σ2

2

Nε22
.

Because 1
N

N∑
i=1

X i and 1
N

N∑
j=1

Y j are independent, so it is trivial to show that

P

µ1−ε1
µ2+ε2

<

N∑
i=1

Xi

N∑
j=1

Y j
< µ1+ε1

µ2−ε2

 ≥ (1− σ2
1

Nε21

)(
1− σ2

2

Nε22

)
.

An application of Taylor’s formula yields:

µ1−ε1
µ2+ε2

= µ1
µ2

1− ε1
µ1

1+
ε1
µ1

= µ1
µ2

(
1−

2
ε1
µ1

1+
ε1
µ1

)
= µ1

µ2
− µ1

µ2

2ε1
µ1

(
1− ε1

µ1
+
(
ε1
µ1

)2
−
(
ε1
µ1

)3
+ ...

)
> µ1

µ2
− 2ε1

µ2
> µ1

µ2
− 4ε1

µ2
,
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µ1+ε1
µ2−ε2 = µ1

µ2

1+
ε1
µ1

1− ε1
µ1

= µ1
µ2

(
1 +

2
ε1
µ1

1− ε1
µ1

)
= µ1

µ2
+ µ1

µ2

2ε1
µ1

(
1 + ε1

µ1
+
(
ε1
µ1

)2
+
(
ε1
µ1

)3
+ ...

)
< µ1

µ2
+ µ1

µ2

4ε1
µ1

= µ1
µ2

+ 4ε1
µ2
.

The equations above indicate that

P

µ1
µ2
− 4ε1

µ2
<

N∑
i=1

Xi

N∑
j=1

Y j
< µ1

µ2
+ 4ε1

µ2

 ≥ (1− σ2
1

Nε21

)(
1− σ2

2

Nε22

)
.

Next, we rewrite the equation above as

P

∣∣∣∣∣∣
N∑
i=1

Xi

N∑
j=1

Y j
− µ1

µ2

∣∣∣∣∣∣ < 4ε1
µ2

 ≥ 1− σ2
1

Nε21
− µ21σ

2
2

Nµ22ε
2
1

+
µ21σ

2
1σ

2
2

N2µ22ε
4
1
.

Then for arbitrary small number ε, we have

P

∣∣∣∣∣∣
N∑
i=1

Xi

N∑
j=1

Y j
− µ1

µ2

∣∣∣∣∣∣ < ε

 ≥ 1− 16σ2
1

Nµ22ε
2 −

16µ21σ
2
2

Nµ42ε
2 +

256µ21σ
2
1σ

2
2

N2µ62ε
4 .

We conclude that for arbitrary small number ε,

P

∣∣∣∣∣∣
N∑
i=1

Xi

N∑
j=1

Y j
− µ1

µ2

∣∣∣∣∣∣ < ε

 > 1− 16σ2
1

Nµ22ε
2 −

16µ21σ
2
2

Nµ42ε
2 .

Lemma 2. Supposing that random variables X1, X2, ..., Xn are inde-
pendent pairwise and X i ∼ P (X).Besides, we also know that E (X) = µ1,
µ1 6= 0, V ar (X) = σ2

1. Then for arbitrary small number ε,

P

∣∣∣∣∣∣ 1

1
N

N∑
i=1

Xi

− 1
µ1

∣∣∣∣∣∣ < ε

 ≥ 1− σ2
1

Nµ21ε
2 .

Proof: The proof is similar to that of Lemma 1.
Theorem 1. The distributions P (C), P (S1, S2|C), P (X1|S1) and P (X2|S1)

are defined on the Bayesian network in Fig.2. Si
1
, Si

2
∼ P (S1, S2), then for
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arbitrary small number ε,

lim
N→∞

P

∣∣∣∣∣∣
N∑
i=1

P
(
C = 1|Si

1
, Si

2

) P(x1,x2|Si1 ,S
i
2)

N∑
i=1

P(x1,x2|Si1 ,S
i
2)
− P (C = 1|x1, x2)

∣∣∣∣∣∣ < ε

 = 1

Proof: Supposing that

f1 (x1, x2) =

N∑
i=1

P(C=1|Si
1
,Si

2)P(x1,x2|Si1 ,S
i
2)

N∑
i=1

P(x1,x2|Si1 ,S
i
2)

, f2 (x1, x2) =

N∑
i=1

P(C=1|Si
1
,Si

2)P(x1,x2|Si1 ,S
i
2)

N∑
j=1

P(x1,x2|S̃j1 ,S̃
j
2)

,

where Si
1
, Si

2
∼ P (S1, S2) and S̃j

1
, S̃j

2
∼ P (S1, S2), then

E

(
1
N

N∑
i=1

P
(
x1, x2|Si1 , S

i
2

))
= 1

N

N∑
i=1

E
(
P
(
x1, x2|Si1 , S

i
2

))
= 1

N

N∑
i=1

∫
Si
1
,Si

2

P
(
x1, x2|Si1 , S

i
2

)
P
(
Si

1
, Si

2

)
dSi

1
, Si

2

= P (x1, x2) ,

E

(
1
N

N∑
j=1

P
(
x1, x2|S̃j1 , S̃

j
2

))
= P (x1, x2) ,

V ar

(
1
N

N∑
i=1

P
(
x1, x2|Si1 , S

i
2

))
= 1

N2

N∑
i=1

V ar
(
P
(
x1, x2|Si1 , S

i
2

))
= 1

N2

N∑
i=1

(
E
(
P
(
x1, x2|Si1 , S

i
2

)2)− E(P (x1, x2|Si1 , Si2))2)
= 1

N

∫
S1,S2

P (x1, x2|S1, S2)
2P (S1, S2) dS1, S2 − P (x1, x2)

2

= σ2
1,

V ar

(
1
N

N∑
j=1

P
(
x1, x2|S̃j1 , S̃

j
2

))
= σ2

1.

Note that the variance is denoted as σ2
1. It is easy to use Lemma 2 to show

that for arbitrary small number ε,
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P

∣∣∣∣∣∣ 1

1
N

N∑
j=1

P(x1,x2|S̃j1 ,S̃
j
2)
− 1

P (x1,x2)

∣∣∣∣∣∣ < ε

 ≥ 1− σ2
1

NP (x1,x2)
2ε2
,

P

∣∣∣∣∣∣ 1

1
N

N∑
i=1

P(x1,x2|Si1 ,S
i
2)
− 1

P (x1,x2)

∣∣∣∣∣∣ < ε

 ≥ 1− σ2
1

NP (x1,x2)
2ε2
.

The equations above indicate that

P

∣∣∣∣∣∣ 1

1
N

N∑
j=1

P(x1,x2|S̃j1 ,S̃
j
2)
− 1

1
N

N∑
i=1

P(x1,x2|Si1 ,S
i
2)

∣∣∣∣∣∣ < 2ε

 ≥ (1− σ2
1

NP (x1,x2)
2ε2

)2
.

As |f1 (x1, x2)− f2 (x1, x2)| ≤

∣∣∣∣∣∣ 1

1
N

N∑
j=1

P(x1,x2|S̃j1 ,S̃
j
2)
− 1

1
N

N∑
i=1

P(x1,x2|Si1 ,S
i
2)

∣∣∣∣∣∣, we can

get for arbitrary small number ε,

P (|f1 (x1, x2)− f2 (x1, x2)| < 2ε) ≥
(

1− σ2
1

NP (x1,x2)
2ε2

)2
.

We also can get that

E

(
1
N

N∑
i=1

P
(
C = 1|Si

1
, Si

2

)
P
(
x1, x2|Si1 , S

i
2

))
= 1

N

N∑
i=1

E
(
P
(
C = 1|Si

1
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2

)
P
(
x1, x2|Si1 , S

i
2
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= 1

N

N∑
i=1

{ ∫
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1
,Si
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(
P
(
C = 1|Si

1
, Si

2

)
P
(
x1, x2|Si1 , S

i
2

)
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1
, Si

2
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1
, Si

2

)}
= P (C = 1|x1, x2)P (x1, x2) ,

V ar

(
1
N

N∑
i=1

P
(
C = 1|Si

1
, Si

2

)
P
(
x1, x2|Si1 , S

i
2
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= 1

N

{ ∫
S1,S2

(
P (C = 1|S1, S2)

2P (x1, x2|S1, S2)
2

P (S1, S2) dS1, S2) − P (C = 1|x1, x2)2P (x1, x2)
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= σ2
2.
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Note that the variance is denoted as σ2
2 here. Since P (C=1|x1,x2)P (x1,x2)

P (x1,x2)
=

P (C = 1|x1, x2), it is easy to use Lemma 1 to show that for arbitrary small
number ε,

P (|f2 (x1, x2)− P (C = 1|x1, x2)| < ε) > 1− 16σ2
2

NP (x1,x2)
2ε2
− 16P (C=1|x1,x2)2σ2

1

NP (x1,x2)
2ε2

,

We also know that

P (|f1 (x1, x2)− f2 (x1, x2)| < 2ε) ≥
(

1− σ2
1

NP (x1,x2)
2ε2

)2
,

then for arbitrary small number ε,

P (|f1 (x1, x2)− P (C = 1|x1, x2)| < 3ε)

≥
(

1− σ2
1

NP (x1,x2)
2ε2

)2
− 16σ2

2

NP (x1,x2)
2ε2
− 16P (C=1|x1,x2)2σ2

1

NP (x1,x2)
2ε2

.

This term holds as P (A ∩B) ≥ P (A) +P (B)− 1. Then for arbitrary small
number ε, we have

P (|f1 (x1, x2)− P (C = 1|x1, x2)| < ε)

≥
(

1− 9σ2
1

NP (x1,x2)
2ε2

)2
− 144σ2

2

NP (x1,x2)
2ε2
− 144P (C=1|x1,x2)2σ2

1

NP (x1,x2)
2ε2

.

When N goes to infinite, we calculate the limits for both sides and conclude
that, for arbitrary small number ε,

lim
N→∞

P

∣∣∣∣∣∣
N∑
i=1

P
(
C = 1|Si

1
, Si

2

) P(x1,x2|Si1 ,S
i
2)

N∑
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∣∣∣∣∣∣ < ε

 = 1.
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