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Almost Sure H,, Sliding Mode Control for
Nonlinear Stochastic Systems with Markovian
Switching and Time-Delays

Hua Yang, Zidong Wang, Huisheng Shu, Fuad E. Alsaadi and wiasHayat

Abstract

This paper investigates the almost suig, sliding mode control (SMC) problem for nonlinear stochasti
systems with Markovian switching and time-delays. An in&gliding surface is first constructed for the addressed
system. Then, by employing the stopping time method contbimiéh martingale inequalities, sufficient conditions
are established to ensure the almost surely exponentlalitstaand the H,, performance of the system dynamics
in the specified sliding surface. A SMC law is designed to gaotge the reachability of the specified sliding surface
almost surely. Furthermore, the obtained results are egypti a class of special nonlinear stochastic systems with
Markovian switching and time-delays, where the desired SBCis obtained in terms of the solutions to a set of
matrix inequalities. Finally, a numerical example is giwtershow the effectiveness of the proposed SMC scheme.

Index Terms

Nonlinear stochastic systems, Sliding mode control, Meaido switching, almost surely exponential stability.

. INTRODUCTION

Since its inception in the early 1970s [30], the sliding madatrol (SMC) (also known as variable structure
control) has been a focus of research due to its advantageofigobustness against model uncertainties, parameter
variations and external disturbances. So far, the SMC ndelbgies have found successful applications in various
engineering systems such as power systems, chemical pescesbot manipulators and aero-engineering, see [1],
[13], [18] and the references therein. Generally speakimy SMC approach can be briefly described as the design
of a discontinuous control law to force the state trajeemidnto a desired sliding surface and maintain there for
all subsequent time.

In the past few decades, considerable research attentfobe®n devoted to the theoretical research on SMC for
different systems. These systems include, but are notddnid, uncertain systems [25], [35], stochastic systems
[15], [21], [24], nonlinear systems [3] and fuzzy systemB][F-or example, In [25], a special integral-type switching
function is constructed to guarantee that the system dysaligis on the specified sliding surface. Very recently,
the SMC problem of Markovian jump systems (MJSs) has gairaticplar research interests because of their
practical applications in a variety of areas [5], [6], [LE0], [28], [33]. The main reason could be that MJSs are
very appropriate to model the dynamic systems whose steg@re subject to random abrupt variation [26], [27].
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In particular, the sliding mode controllers have been desigin [6] for the systems with actuator degradation by
estimating the loss of effectiveness of actuators, and &} fdr uncertain switched stochastic system with time-
varying delays by utilizing the average dwell time methodwséver, so far, most available literature concerning the
SMC problems for MJSs have been limited to the systems withesspecial nonlinearities, and the SMC problems
for general nonlinear stochastic systems have not beerapaiguate research attention despite its clear engineering
significance.

On the other hand, time-delays are well known to be ubigsitopractice. If not adequately taken into account in
the analysis and synthesis, time-delays will inevitablgrdee the system performances or even cause the instability
As a result, a great deal of work has been done in order to reitmior compensate the effect caused by time-
delays, see [2], [14], [17], [34], [35], [38] and the refeces therein. For example, the SMC problem has been
studied in [38] for systems subject to both the Markoviangjymrameters and time-delays. It should be pointed out
that, the widely investigated mean-square stability ieglihat the variance of the state process is asymptotically
bounded and, in this case, the system could be well-behaveleoaverage but the sample state trajectories could
have a finite probability of being arbitrarily far from thessgm’s equilibrium point. In other words, under certain
circumstances, the commonly used mean-square measurelmighude to quantify the dynamic performance and
is sometimes unacceptable for some real-world engineeritty high reliability requirements. For instance, the
precision requirement in the rocket control problem shdwddguaranteed with the probability Therefore, the
almost sure stability [22], [23], which describes the sgsteerformance from the viewpoint of system sample
paths, has recently attracted considerable attentionj4$ef 6], [17], [29] and the references therein. Up to now,
the corresponding results mainly involve the performantayesis of input-to-state stability and stochastic stabil
in almost sure sense, and the controller structure is masghendent on state/output feedback. To the best of the
authors’ knowledgethe SMC problem in almost sure serfse nonlinear stochastic systems has not been properly
investigated so far, not to mention the case when Markoweitcking and time-delays are also involved. It is,
therefore, the purpose of this paper to shorten such a gap.

Summarizing the above discussions, in this paper, we arévaed to study the SMC problem for nonlinear
stochastic systems with Markovian switching and time-gelm almost sure sense. Two essential challenges are
identified as follows: 1) how to design a sliding mode comémoto guarantee the reachability of the specified
sliding surface almost surely, and 2) how to examine the ahfram both time-delays and exogenous disturbance
on the control performance? To handle these two challengedijrst construct an integral-type sliding function
and, following intensive stochastic analysis, the stgbitiondition of the sliding mode dynamics is presented
via Hamilton-Jacobi-Isaacs (HJI) inequalities. Furthere a sliding mode controller is designed to guarantee the
trajectories of the system to be driven onto the slidingagfalmost surely. The contribution of this paper is mainly
threefold: 1) an integral-type sliding function is proposed in orderfamilitate the SMC problem later; 2) th&
performance combined with the almost sure exponentialilgyais utilized to evaluate the system performance;
and 3) a design scheme for almost sure sliding mode contrigllebtained by solving HJI inequalities for general
nonlinear stochastic systems or matrix inequalities foecal nonlinear stochastic systems.

The rest of this paper is organized as follows. In Sectioa tlass of nonlinear stochastic systems with Markovian
switching and time-delays are presented, and some preliteimare briefly outlined. In Section Ill, the main results
are established in the form of coupled HJI inequalities. sehsufficient conditions are then applied to a class of
special nonlinear stochastic systems with Markovian dwiig and time-delays in Section IV. Furthermore, a
numerical example is proposed to demonstrate the effewtse of the obtained results in Section V. Finally,
conclusions are drawn in Section VI.

Notation The notation used here is fairly standard unless othervgeeited.R"” andR™*™ denote, respectively,
then dimensional Euclidean space and the set ofalln real matrices, anit ;. = [0, 4+00). (Q, #,{%: },~¢,P) is a
complete probability space with a natural filtrati@®’}~( satisfying the usual conditions (i.e. it is right continsou
and.#, contains allP-null sets).M” represents the transpose of the matvix | - | denotes the Euclidean norm.
E{-} stands for the mathematical expectatiBq:} means the probabilityC'([—7, 0]; R™) denotes the family of all
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continuousR"-valued functiony on [—7, 0] with the norm|y| = sup{|¢(#)| : —7 < 6 < 0}. C’}O([—T, 0); R™)
is the family of all 7y-measurable bounde@([—,0); R")-value random variable$ ={£0) : —7 < 0 < 0}.
L'(R,;R,) denotes the family of functions : R, — R, such thatfO t)dt < oo. K denotes a class of
continuous (strictly) increasing functionsfrom R to R, with 1(0) = 0. K denotes a class of functionsin
IC with p(r) — oo asr — co. La2(R4,RP) denotes the space of nonanticipative stochastic pragess RP with
respect to the filtration; satisfying|y(t)|7, := E [ |y(t)[*dt < cc.

[I. PROBLEM FORMULATION
A. The nonlinear stochastic systems with Markovian switgldind time-delays

Let r(t) (¢ > 0) be a right-continuous Markov chain taking values in a fintldesspaces = {1,2,..., N} with
generatol” = (v;;) nxn given by

YijA + o(A), it i#7,

P{r(t+ A) = jlr(t) =i} :{ L+yA+o(d), if i=j

where A > 0 and~;; > 0 is the transition rate from modeto modej if i # j while v; = — Z#i Yij-
We consider a class of nonlinear stochastic systems of time fo

dx(t) = [f(x(t),w(t— 7).t 7 (8) + g(2(t), 2(t — 1), t,7(8))v(t))
B(r(t)(u(t) + ¢(x(t), o(t — 7),t,7()))]dt
G(r@)[h(xt),z(t = 7),t,r({) + s(2(t), x(t = 7), ¢, 7(8))v(t)]dw(?),
y(t) = ( (&), 2(t = 7),t,7(8)) +m(z(t), x(t = 7)., 7(8))v(?),

with initial dataz(t) = o € C% ([-7,0);R") andr(0) = ro € S, wherez(t) € R", y(t) € R™, u(t) € R? and
v(t) € Lao(]0 o0); RY) are the state vector, the controlled output, the contraliirgmd the exogenous disturbance
input, respectively. The time-delay is a known positive integer. For a fixed modé&), B(r(t)) and G(r(t))
are known constant matrices with appropriate dimensiorsufkge thatB(r(¢)) is a full column rank matrix,
o(x(t),z(t — 1),t,7(t)) is a matched nonlinear function representing the unceigainandw(t) is a zero-mean
one-dimensional Wiener process (Brownian Motion) sat&fyE[dw(t)] = 0 and E[dw?(t)] = t.

In this paper,f, g, h, s, [, m and ¢ are known smooth functions witlf(0,0,¢,7) = 0, ¢(0,0,¢,7) = 0,
h(0,0,t,7) = 0, s(0,0,t,4) = 0, ¢(0,0,t,7) = 0, 1(0,0,¢,7) = 0 andm(0,0,t,7) = 0, and satisfy the following
assumption.

Assumption 1:The measurable nonlinear functi@n which could bef, g, h, s, ¢, [ or m, satisfies the global
Lipschitz condition, that is, there is By > 0 such that

(2.1)

10(z, 2,t,1) — 0(z,2,t,1)| < Lo(jx — z| + |2 — 2|), (2.2)

forall z,z,z,ze R", t > —7, 1 € S.

Remark 1:Under Assumption 1, it is easy to verify that the functighand¢ satisfy the local Lipschitz condition
and the linear growth condition. Therefore, in terms of thadlaknown existence-and-unique theorem, one has that
the system in (2.1) wittB(r(¢)) = 0 andv(¢) = 0 has a unique solution which can be denotedzl x(, o) for
any initial datar, € C4. ([-7,0);R") and¢ > —7.

B. The sliding mode controller

Firstly, for the sake of notation simplification, dend®i) = B, and G(i) = G; for eachr(t) = ¢ € S. Also
denote the functionp(z(t),z(t — 7),t,i) ase which could bef, h, [, m or s when there is no ambiguity. Then,
the following nonlinear integral sliding mode function issigned:

o(t,i) = Hy(t) — /0 Hif(2(0), 2(6 — 7),6,4) + B.K:x(6)|d8, 2.3)
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where K; is a constant matrix to be determined. The constant ma&ffix R"**", which satisfiesH;G; = 0 with
H; B; being nonsingular, is also a parameter to be designed.

Remark 2:1t should be mentioned that, sinde; is of full column rank, the nonsingularity off; B; can be
ensured by choosindl; = BiTX,- with X; > 0, and the conditionH;G; = 0 can be confirmed by solving
(B¥X,G)T BT X;G; < BI for 3 > 0, which can be verified by using the Matlab LMI toolbox.

Now, integrating (2.1) fron® to ¢ > 0 and substitutinge(¢) into (2.3) yield

o(tyi) = Huo+ /O Hi[— BiKi2(0) + Bi(u(0) + ¢((0), 2(6 — 7),6,7)
+9(x(0), (0 — 7),0,i)v(0)]d6. (2.4)

The surfaces(t, i) = 0 is called a sliding surface. It is well known that whé(t,:) = 0, the state trajectories
of the system enter the sliding surface. In this case, thévalgat control law of the sliding mode is given by

Ueq(t) = Ki(x(t)) — d(a(t),x(t — 7),t,1) — (H; B;) *H;g(x(t), z(t — 7),t,1))v(t). (2.5)
By substituting (2.5) into (2.1), the resulting sliding n@odynamics can be written as:
dz(t) = [f(z(t),z(t — 7),t,7) + B; K;z(t)
+ (I = Bi(H;By) " Hy)g(a(t), x(t — ), t,3)v(t))]dt
+ Gilh(x(t),x(t —7),t,0) + s(x(t),x(t — 7),t,3)v(t)]dw(t),
y(t) = Ux(t),z(t —7),t,1) + m(xz(t), z(t — 7),t,1)v(t).

For each € S, letC*!(R" xR, x.S; R, ) denote the family of all nonnegative function$z, ¢,i) onR" xR, x S
that are twice continuously differentiable inand once irt. If V € C*Y(R" x R, x S; R ), define an infinitesimal
generatorC of (2.6) fromR” x R™ x Ry x S to R by

(2.6)

LV(2,6.t,0) = Vila, i)+ V(o t,0)[f + BiKix + gev(t)]

N
1
+5[Gih+ Gisv) Vau(2,1,1)[Gih + Gisv] + > 7V (2,1, ),

j=1
where
N OV (x,t,49) L (OV(x,t,1) oV (z,t,1)
Vi(z,t,1) = — a0 Ve(z, t,i) = < oo e . 7
. 82V($,t,l) o 1 .
V:L‘:C(x7taz) - <W>nxna ge = (I - BZ(HZBZ) Hl)g(x(t)Jw(t - T),t,’l).

Before formulating the problem to be dealt with in this wottke following definition is considered.
Definition 1: The systems (2.1) with(¢) = 0 is almost surely exponentially stable if there exists aacab> 0
such that 1
Jim sup — log(Jz(t; 20, 7o) ) < —A @7

for any initial datazy € C% ([—7,0);R™).
The purpose of this paper is to design a SMC law such that tleviog requirements are met simultaneously:
a) the state trajectory of system (2.6) is globally drivemoathe sliding mode surface(t,i) = 0 almost surely
and, in a subsequent time, the sliding mode dynamics (2.8) #(t) = 0 is almost surely exponentially stable;
b) under the zero initial condition, for a given disturbaret¢enuation levely > 0 and all nonzerov €
Ly(Ry; R?), the controlled outpuy satisfies

)7, <)), (2.8)
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I11. M AIN RESULTS

In this section, we aim to establish a unified framework tosahe addressed problem of almost sfitg SMC
for nonlinear stochastic systems with Markovian switchamgl time-delays. A sufficient condition is presented to
ensure that the sliding mode dynamics (2.6) is almost swgtalyle and the desireH,, performance is achieved.
Then, a design scheme of the sliding mode controller is megdo guarantee the reachability of the specified
sliding surface almost surely.

A. Performance analysis

Theorem 3.1:Consider the nonlinear stochastic system (2.6) and thanglishode surface (2.3). For aniye S,
let the disturbance attenuation lewel> 0 be given. The sliding mode dynamics (2.6) is almost surepoeentially
stable and thed, performance is achieved if there exist positive scatars., A1, A2 with A; > As, the function
V(n,t,i) € C>H(R"™ x [~7,00) x S;R ) with V(0,¢,7) = 0 and matricesk; € R™, H; € R™*" such that

arlz* < V(x,t,4) < colaf?, (3.1)
1 il 1
Vi + Vi(f + BiK;) + §hTG'fthGi ) 1V E4 M — a8 + 512 <0, (3.2)
j=1
2T — STG?VnnsGi —mTm >0, (3.3)
H,G; =0, (3.4)

hold for all (x,t,7) € R™ x [—7,00) x S, whereH;B; is nonsingular and

E:%Qf%+ﬂﬂﬁW@Gm+nFOTh%—sqﬁWhGﬁ—nﬁ ) (97 Ve + TG VoGl + m71)

Proof: Firstly, let us prove that the sliding mode dynamics (2.6hwi(¢) = 0 is almost surely exponentially
stable. For this purpose, denaté — 7) = &, V(z,t,i) = V; (i € S) and
fe(z(t),x(t —71),t,1) = f(a(t),z(t — 7),t,4) + B; K;x(t),
he(w(t)7 x(t - T)7 t, Z) = Glh(x(t)a (L’(t - T)7 t, Z)

By using (3.2) and (3.3), the infinitesimal generatdr (z, &, ¢, i) with respect to (2.6) is given as

N
1
LV (@,6,t,0) = Vit Va(f + BiK:) + ShT Gl VaahGi+ Y7V
j=1

(3.5)
<—AMW+M§—%H
< = A 4 g2
Then, by utilizing 1td’ formula, it follows from (3.1) and3(5) that
E[MV (x(t),t,7)]
t
= EV(x,0,7) + E/ MV (2(s), 5,1) + LV (x(s), z(s — 7), 5,7)]ds
0
t
< eolzol? + E/ M [Aealz(s)]? — Alz(s) ] + Aol (s — 7)[*]ds
0
t
< ealzol? + Aore sup |ao|? + E/ M [Aealz(s))? — M|z (s) > + Xae T |z(s)]?]ds. (3.6)
0

Because there is an unique root> 0 for the equatiomcy — A\; + X\2e*™ = 0, one has

E[e)‘tV(x(t),t,i)] < (e + )\27’6)‘7—) sup \xolz. 3.7)
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Letting M = % sup |zo|?, by means of the condition (3.1), we can obtain
Elz(t)]> < Me™ ™, t>0. (3.8)
Furthermore, there exists an arbitrarg (0, A/2) such that
E|z(t)]? < Me~ (A=) (3.9)

holds.
On the other hand, for any given> 0, there exists an integéy such that'k,— 1) > 7. Denoting the sequence
k=ko,ko+1,---, we can get that

2
ko
E| sup |:L"(t)|2] < PEz((k — 1)) + 3°E (/ fula(s),o(s — 7). 5. \ds>
(k—1)3<t<ks (k—1)
t ) (3.10)
+ 3%E { sup / he(x(s),z(s — 7), s,4)dw(s) ]
(k—1)0<t<ks |J (k—1)5

For the second part of the right-hand side of (3.10), it isdifficult to see that

kS 2 2
E(/ fula (o), <s—7>sz>\ds> sza(a sup |fufa(s)als — 7). s,m)
( (k—1

k—1)5 —1)6<s<ké (3.11)

2(L6)°E [ sup  (Ja(s)|? + |z (s — T(S))IZ)] -

(k—1)6<s<ks
For the third part of the right-hand side of (3.10), by applythe Burkholder-Davis-Gundy inequality, we have

(k— 1sjsl<ps<k5 ‘ /k 1)6 els =), S’i)dw(s)f]

— 7(s)),s,1)|%ds
< 4E < /(k_l)éme(m(s),x(s (5)),5,7)| d)

(3.12)
< 4E <5 sup  |he(x(s), z(s — T),S,i)|2>
(k—1)5<s<ks
< 8L?*6E sup  (|z(s)]? + |z(s — 7')|2)] .
(k—1)6<s<ks
Substituting (3.11) and (3.12) into (3.10) yields
E [ sup \x(t)\2] < $ZMe~ A k—1)
(k—1)5<t<ks
(3.13)

+ (3L)%(26% + 80)E + (3L)%(26% + 80)E sup  |z(s —7)|?

(k—1)6<s<ks

sup  |z(s)[?
(k—1)6<s<ks

For the second part of the right-hand side of above ineguéditting 6 be sufficiently small to satisfy3L)? (6% +
46) < %, and considering (3.9) and (3.13), we have

E

sup  |z(t)?| < 19Me A=) ((k=1)o=7) (3.14)
(k—1)6<t<ké

For the third part of the right-hand side of (3.13), it follevrom the fact(k — 1)6 > 7 and (3.8) that

E

sup  |a(s — 7))?| < Me= (Ao ((k=1)o=7) (3.15)
(k—1)6<s<ké
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Substituting (3.14) and (3.15) into (3.13) and using thelkebwn Chebyshev’s inequality, we have

Pw: sup lz(t)] > e~ (A=26)((k—1)6—7)/2
(k—1)6<t<ks
E [Sup(k—l)égtgké ’95(’5)’2] (3.16)
o—On—2e)((h—1)6—7)
< 19M€_€((k_1)5_T),

Applying the well-known Borel-Cantelli lemma, we can geattior almost allw € €2,

sup  |z(t)] < em A2 ((km1)o—T)/2 (3.17)
(k—1)6<t<ks
holds for all but finitely manyk. Hence there exists & (w), for all w € Q excluding aP-null set such that
(3.17) holds whenevek > max{ko, k1}. Consequently, for almost all € ©, when (k — 1)§ < ¢t < ké and
k > max{ko, k1 }, one has
AN=22)((k—1)6 —1)/2 AN=2e)((k—1)0 —7)/2

1
- < < —
> log(Jz()]) < 57 < 53 :

which implies
A— 2

1
1 — < —
Jim sup ~ log(|z(t)]) < (3.18)

Therefore, the required (2.7) follows by lettiag— 0, which means that the system (2.6) witft) = 0 is almost
surely exponentially stable.

Now, let us consider thél, performance of the sliding mode dynamics (2.6). Firstlg, ithfinitesimal generator
LV (x,&,t,1) associated with the system (2.6) is obtained as

ﬁV(xy £, t, Z)
= Vi(x,t,4) + Va(,t,0)[f + BiK]]
N
+ > i Vj + Vala, t,4)(I = Bi(H;iBi) ™ Hy)g((t), x(t — 7), ¢, i)o(t)
=1

+ %[Gih + Gisv(t)T Vi, t,1)[Gih + Gyisu(t)]

= — [v(t) — (42T = 57 GT Vo Gis — m™m) ™" (67 Vi + 8T G Viu Gil + mTl)] !
(

(3.19)
X 721 — STG;TFVmGis — me)
X [v(t) - (72[ — sTGZTVmGis —-mT )_1 (gng + sTGZTVmGih + mTl)]
+ % (geTVx + STG;TFVmGih + mTl)T (’yzf — sTG;FVmGis — me)_1
X (gL Ve + sTGL Voo Gih + mTl) + Vi(w, t,4) + Vi(2,t,9)[f + BiK;]
N
-~ N s o Lo op
+ jz:;%JV(:E,t,j) +357 (t)v(t) — " mv 5Y (t)m" mo(t).
Thus, it follows from (3.2) and (3.3) that
LV (x,&,t,1) < — M0 + M€ + 1’}/21)T(zt)v(t) —1T'mu(t) — 1vT(t)mev(t) — 1lTl
2 2 2 (3.20)

< A4 M+ LT () — Sy ()

Because of\; > Ao, integrating both sides of (3.20) frothto 7" > 0 and taking expectation result in

T
EV(z,t,i) = E/ LV (x(t),z(t —7),t,9)dt
0
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T
< E / (%VZUT(t)v(t) - %yT(t)y(t)> dt. (3.21)
0
Finally, noting the fact thaV’(z(7"),T,i) > 0 andV'(0,¢,7) = 0, we have
1 (7 5
0 < SE [ |y dt
2 Jo
1 4 2 2 -
< 5 | vh@)Fdt-EV(2,T9)
0
1 r 2 2
< 5 [ APl (3.22)
0
for all i € S andT > 0. Therefore, the conclusion (2.8) follows immediately fr¢&22) by letting7 — oc. The
proof is complete. |

Remark 3:Generally speaking, it is not easy to design a contrallgy = K,z(t) (i € S) for general nonlinear
stochastic systems by Theorem 3.1 in form of HJI inequalitiéth equality constraints. So, in the subsequent
section, for a class of special nonlinear stochastic systéme aforementioned SMC problem can be converted into
solving a set of linear matrix inequalities (LMIs).

B. Reachability analysis

In this part, we consider the reachability of the sliding malirfaces(¢,7) = 0. In the following theorem, a
SMC law is provided to guarantee that the state trajectafieystem (2.6) is globally driven onto the sliding mode
surfaceo(t,i) = 0 almost surely.

Theorem 3.2:Consider the system (2.6) with the sliding mode functign i) in (2.4). If the SMC law is chosen
as follows (H. BT o(td) ' .

uwD:{Km@—mmeﬁﬁ;, i o(t,i) 0, (3.23)
K;x(t), if o(t,i)=

where

p(t)

2c
> — + Ly|aw(t)] + Lgla(t — )| + Lol (HiBi) " Hil (Ja(t)o(t)] + |2(t — T)u(t)])
|(HiBi)"|\/lo(t,1)] !
with a small constantx > 0, then the state trajectory of system (2.6) is globally driento the sliding mode
surfaceo(t,7) = 0 almost surely.

Proof: Firstly, due to the conditiori/;G; = 0, differentiating sliding mode functiora(t,4) in (2.4) yields

o(t,i) = Hi[—B;K;x(t) + Bi(u(t) + ¢(x(t), z(t — 7),t,1)) + g(x(t), z(t — 7),t,1)v(t)]. (3.24)

Choose the Lyapunov function candidate as
V(ti) = %J(t,i)Ta(t,i). (3.25)

It follows from (3.23) and (3.24) that
V(t,i) = o(t,i) e(t,q)
= o(t,i)" Hi[-BiK;x(t) + Bi(u(t) + ¢((t), z(t — 7),1,1))

+ g(z(t),z(t — 7),t,0)v(t)] (3.26)

= o(t,i)T Hj[—B; K;x(t) + Bi(K;(z) — p(t) (

. —~

+ (;5(33‘(75), :L'(t - 7_)7 ta Z)) + g(l’(t), ﬂj‘(t - 7_)7 ta Z)U(t)
Furthermore, it follows from (3.24), (3.26) and Assumptibhat

V(t,i) < —2an/|o(t,q)|. (3.27)
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Therefore, we can get that
do(ti)| _ dyVED _
dt dt -

which implies|o(t,)| converges to zero almost surely. The proof is complete. [ |

(3.28)

IV. SMC FOR A SPECIAL CASE

To demonstrate that Theorem 3.1 serves as a theoretic batiiefproblem of almost sut®,, SMC for nonlinear
stochastic systems with Markovian switching and time-glén this section, we aim to show that Theorem 3.1 can
be specialized to a special case, that is, the linear Maakoswitching systems with Lipschitz-type nonlinearities.
The specialized result is described in terms of LMIs, whieh te solved by using the Matlab LMI toolbox.

Firstly, denote the matrix associated with thle mode byl'; = I'(r(t) = i) where the matrix® could beA, A,
B,C,Cq D, Dy, Dy, E, Eg,G,H, K, X, Y or P.

Consider the following special nonlinear stochastic systevith Markovian switching and time-delays

da(t) = [Aiz(t) + Agiz(t — 7) + f(2(t), x(t — 7),t,7(t)) + Bi(u(t) + ¢(z(t), z(t — 7),t,7(1)))
+ Duv(t)]dt + G; [EZZL'(t) + Edil’(t — 7’) + DQZ'U(t)]d(U(t), (4.1)
y(t) = Cix(t) + Cgix(t — 7) + D;jv(t),

where A;, Agi, B;, C;, D;, D1, Doy, E;, Eg;, G; are known constant matrices of appropriate dimensions jraatdix
B; has full column rank.f(z(t),z(t — 7),t,7) and h(z(t),z(t — 7),t,i) are known nonlinear functions, and
¢(x(t),z(t — 7),t,i) is an unknown nonlinear uncertainty. Furthermore, it isueesd thatf (x(¢), z(t — 7),t,1)
and ¢(x(t), z(t — 7),t,1) satisfy Assumption 1.

Now, we choose the integral sliding mode function as follows

o(t,i) = Hjz(t) — /0 H[A;jz(0) + Agix (0 — 1) + f(x(0),2(0 — 7),0,7) + B;K;x(0)]d6. (4.2)

Then, by following a similar line as in (2.4)-(2.6), the $fig mode dynamics can be obtained as
dx(t) = [Ajx(t) + Agix(t — 1) + f(x(t), z(t — 7),t,i) + B K;x(t)
+ (I — Bi(H;B;)" " H;) Dyjv(t))]dt + Gi[E;a(t) + Egin(t — 7) + Dojv(t)]dw(2), (4.3)
y(t) = Ciz(t) + Cyiz(t — 1) + Div(t).
Following the same lines as in Theorem 3.2 and Theorem 3.hawe the following two results where only the
sketches of the proofs are given in order to ensure the cemess.

Theorem 4.1:Consider the system (4.3). If there exist positive matri€es- 0, matricesY; and positive real
scalars\y, A2, A3 with A\; > )Xo satisfying the following LMIs

o, AL DIp, A, EI'GI'P, Oy 0 ¢l B,p]

x Xl 0 0 ELGTP, o V2PL; CL 0O

x o« —2I 0 DLGTP 0 0 DI 0

* * * —J; 0 0 0 0 0

* * * * —-P; 0 0 0 0 <0, Viels (4.4)
* * * * * Ay 0 0 0

* * * * * * —P; 0 0

* * * * * * 0 —I 0

* * * * * * 0 0 —=X3l

with the constraint
X3l < BB} P BiP, (4.5)
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where
Qi = AP+ PBA] + BY; + Y Bl + 7P,
Ai = [Ply"'ypi—lapi—i-lv'“7PN]7
Ji = diag{’yi_llplv U 7/71';E1Pi—177i_i_|1_1pi+17 U 7/71NPN}
Oy = [V2LyP P, A;=diag{(-P;, — I},
then the closed-loop system (4.3) witfit) = 0 is almost surely exponentially stable and, meanwhile, the
performance is achieved. In this case, the controller gaitrioes arek; = YZ-PZ.‘1 and H; = BiTPZ.‘1 forie S.
Proof: Firstly, choose the Lyapunov function candidate as
V(x,t,3) =z (t) X;x(t). (4.6)

Then, in light of Assumption 2, chood®; = B! X;. The infinitesimal generatofV (z(t), z(t — 7),t,i) associated
with the system (4.3) is given as

LV (x(t),z(t —7),t,17)
= 22T () Xi[ A (t) + Agiw(t — 1) + f(2(t), (t —7),t,4) + B K;x(t)

+ (I — Bi(BT X;B;) "B X;)Dyv(t))] + Z%ﬂ: x(t) @0
+ [Gi(Eix(t) + Egiz(t — 7) + Dyv(t ))]TX,-[G,-( a(t) + Egx(t — 1) 4+ Dogu(t))].
In terms of Assumption 1, it is not difficult to obtain that
207 () X, f(x(t), x(t — 7),t,7)
< el () XFa(t) + fat),2(t —7),t,0)" f2(t), 2(t —7),t,7)
<l () X7 (t) + Li(|l(t)] + et = 7)])?
<zl X2x(t) + 2L Ty (t) + 2Lf3: (t—7)x(t — 7). (4.8)
Therefore, one has
EV(QE‘(f), :E(t - 7_)7 ta Z)
N
gxﬂwL&A,+Aﬁ&+a&BﬂQ+deﬁx¢+xﬁ+ﬂﬁf+2;%¢@4n&BxBﬁ&Bg*BfX4x@%4%
+ 227 () Agia(t — 1) + 2L5a" (t — 7)a(t — 7) + 227 (1) X; Dy (t) +v" (1) DT, X; Dy (t)
+ [GZEZx(t) + GiEdix(t — T) + G,-Dg,-v(t)]TXi [GZEZI'(ZL/) + GiEdiw(t — T) + GiDQi'U(t)].
Furthermore, for(t) = 0, substituting (4.8) into (4.9) results in
LV (x(t),z(t —7),t,3) + A\ 'a? = Nz (t —7) < [¢T(t) 2T (t — 7))L x(f(—t)T) ] , (4.10)

where N
U; = X;A; + AT X, + XiBiK; + KBTI X; + ) "5, X + X7 + 2031 + AT,
g=1 (4.11)

v; XiAgi
d Xi[GiE; GiEg).

ALX 250 — Mol

EfGY

I, =
’ EGGY

_l’_
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By using the Schur Complement Lemnid;, < 0 (Vi € S) is equivalent to

(U, XAy A EIGTX; Oy 0
* =Xl 0 ELGIX; 0 V2L;X;
* x  —J; 0 0 0 .
. . . X, 0 0 <0, Viels, (4.12)
* * * * A; 0
| * * * * * -X; |

where

\i’i = XzAz + AZTXZ + XZ‘BZ‘KZ' + KZTBZTXZ + ’YiiXi,

Ai = [X1,- X, Xigt, o XN nx (N 1)
i = dlag{’yz_lle 77i_ii1Xi—177i_i-|1-1Xi+17"' 772_]\/}XN}7
éli = [\/iLfXZ I], Az = diag{—XZ-, — /\1[}

In what follows, letP;, = X; ' and define
jli - dlag{P17 tee 7Pi—17 })Z'—‘rl) e 7PN}7 jQi = dlag{PZa })Z}
Pre- and post-multiplying (4.12) by diég;, I, Ji;, P;, J2i, P;} yield

[Q; Azl;- A; EZ-TGiTPi O1; 0
x —XI 0 ELGTP, 0 V2PLy
* * —J; 0 0 0 .
. . . _p 0 0 <0, Viels. (4.13)
* * * * —A; 0
| * * * * A

Therefore, it follows from (4.4) and (4.13) that, for &’ (t) z7(t — 7)]7 #0
LV (x(t),z(t —7),t,4) < =\ 2 + X (t — 1), (4.14)

which means that the sliding mode dynamics (2.6) with) = 0 is almost surely exponentially stable.
Similarly, it follows from (4.4), (4.8) and (4.9) that, fotldz” (t) z7(t —7) o7 (¢t)]" # 0, the inequality

LV (x(t),z(t —7),t,4) < A\ 22 () + Xox?(t — 7) + ¥ v —yTy (4.15)

is true. Therefore, the requirell,, performance now follows from Theorem 3.1 by the similar liide proof is
complete. [ |

Now we are ready to give the design technique of the SMC clertro

Theorem 4.2:Consider the system (4.1) with the sliding mode functédh, i) in (4.2). The state trajectories of
the sliding mode dynamics (4.3) are globally driven onto $hiding mode surface(¢,i) = 0 almost surely by
adopting the SMC law (3.23) in Theorem 3.2 where the gainioesté<; and H; satisfy the conditions in Theorem
4.1.

Remark 4: The main results in Theorems 3.2-4.2 are described in tefrttsecfeasibility to a few LMIs. Note
that, for the standard LMI system, the algorithm has a palyiabtime complexity. That is, the numbe¥ (c)
of flops needed to compute araccurate solution is bounded Iy MN?3log(V/¢)), where M is the total row
size of the LMI system)\ is the total number of scalar decision variabl¥sis a data-dependent scaling factor,
ande is relative accuracy set for algorithm. Obviously, the comagional complexity of the LMI-based algorithms
depends polynomially on the network size and the variabteedsions. In order to reduce the computation burden,
a possible way is to obtain the estimator gains in a nodedaemway. Fortunately, research on LMI optimization is
a very active area in the applied mathematics, optimizadioth the operations research community, and substantial
speed-ups can be expected in the future.
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V. AN ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to destrate the effectiveness of the proposed design scheme
of sliding mode controllers for nonlinear stochastic sgsevith Markovian switching and time-delays in the form

of (4.1).
Let the generatol be
o | M2 _ 0.6 —0.6
Vo1 722 —-0.2 0.2
Suppose that the system involves two modes, and the systenadagiven as follows:
Mode 1:

~12 3 02 —02 03 01 0.7 —1.3
A =103 —25 04|, Ap=|01 —05 02|, Bi=|-03 08],
—08 04 —03 03 —06 —0.25 06 —1
[0.12 0.1 —0.05
04 01 0.6 0.1 0.12 0.2
D11 =102], Gl = 10.3 0.1 5 by = ] 5 dl = [ ] )
3 05 1. 2 04 01
o1 0o o 0.3 05 1.0 02 04 0
[0.15 0.7 02 03 02 05 —04 0.2
21 0.22]’ ! [0.25 0.3 0.4]’ Ca [0.5 ~0.3 0.25]’ ! [0.15]

The nonlinear functiory and¢ are as follows

Fla(t), 2t = 7),6.1) = [014/ZF0 + B O sinas(t) 013/ feaas(t —7)]  0.15/2%(0) + a3(0)|

o(x(t), z(t —7),t,1) = [0.17sinz1 (t —7) 0.25sinzo(t) 0.26sin z3(t)]”

T
)

Mode 2:
~15 02 03 02 —03 0.12 08 —1.3
Ay = |—01 —05 04|, Ap=]01 04 —05|, By=|-03 07|,
06 02 —05 —04 —03 02 05 —08
0.2 0.20.05 02 02 03 01 02 0.1
Do =011, Ge=101 01, Ea=11 o0 g5l F2= 0o 03 015]°
0.13 012 0.1 - ' ' <
0.1 ~05 03 0.1 04 02 —03 0.1
D pr— C pr— C pr— D pr— .
27 10147 02 —04 0257 7 1_06 04 0.2]’ 2 [0.3]

The nonlinear functiory and ¢ are as follows
flz(t),z(t —71),t,2) = [0.2\/33%(75) +23(t)  0.14/[z2(t)xs(t — 7)|sinzi(t)  0.1/22(t) + w%(t)]T’
d(z(t),z(t —7),t,2) = [0.35sinzy (t —7) 0.25sinzo(t) 0.3sinas(t)]”.

It is easy to see that Assumption 1 can be met Mifh= 0.25 and L, = 0.39. By using Matlab LMIs toolbox to
solve the LMIs (4.4) with constraint (4.5), we can get thenpigtied minimumry is 0.4432 and the feasible solution
/\1 = 0.2, )\2 = 0.04, )\3 = 0.005 and

0.0337  0.0165 —0.0068] 0.0243  0.0055 —0.0045
P, =10.0166 0.0379 —0.0140|, P,= | 0.0055 0.0231 —0.0062],
—0.0068 —0.0140 0.0274 —0.0045 —0.0062 0.0239
v —118.9170 —930.8616 —520.7245 ] v —155.0931 —602.6083 —248.9477
D71 82,0009 —462.5317 —229.0995|° 2 | —93.7367 —360.1865 —129.0207] "
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Then, the desired parameters of sliding mode controllerbmadesigned as

_ |—15.8220 —29.9526 —0.3882  [-5.9825 —13.2598 —1.5402
D71 288347 —15.6761 0.7730 |7 % |—-3.6908 —8.0531 —0.4427]|°

_ | 0.0024  0.0002 —0.0020 7, — —0.0029 —0.0005 0.0056
"7 |-0.0072 —0.0007 0.0065 |’ >~ 0.0050  0.0009 —0.0095] "

In the simulation, the exogenous disturbance input is sedeasv(t) = %, the step sizeA\ and the time-

delayr are0.001 and0.2, respectively. Simulation results are shown in Figs4lwhere Fig. 1 and Figs. 2 depict,
respectively, the trajectories of stat¢t) without v(¢) and the trajectories of state,(t) with v(t), Figs. 3 plots
the control signals:; () and Figs. 4 shows the trajectoriesaf(t) with v(¢), which verifies the design scheme of
sliding mode controller proposed in this paper.

V1. CONCLUSIONS

In this paper, we have investigated the almost dilige SMC problems for a class of nonlinear stochastic systems
with Markovian switching and time-delays. An integral-¢ypliding function has been constructed and a SMC law
has been designed such that the closed-loop system redehspdcified sliding mode surface almost surely. By
employing the stopping time method combined with martiagakqualities, some sufficient conditions have been
proposed to guarantee that the sliding dynamics is almastysexponentially stable and th€.,, norm from the
external inputs to the controlled outputs is less than arglegel v. Furthermore, based on the proposed results,
for a class of special nonlinear stochastic systems withkbaan switching and time-delays, the desired SMC
law has been designed by solving a set of LMIs. Finally, a migzaksimulation example has been provided to
demonstrate the effectiveness and applicability of theppsed design approach. Future research topics would
include the extension of the main results to more completesys such as networked control systems with fading
measurements [7], [8], [10] and randomly occurring phenaoanid 1], [12], [32], [37].
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