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Almost Sure H∞ Sliding Mode Control for
Nonlinear Stochastic Systems with Markovian

Switching and Time-Delays
Hua Yang, Zidong Wang, Huisheng Shu, Fuad E. Alsaadi and Tasawar Hayat

Abstract

This paper investigates the almost sureH∞ sliding mode control (SMC) problem for nonlinear stochastic
systems with Markovian switching and time-delays. An integral sliding surface is first constructed for the addressed
system. Then, by employing the stopping time method combined with martingale inequalities, sufficient conditions
are established to ensure the almost surely exponential stability and theH∞ performance of the system dynamics
in the specified sliding surface. A SMC law is designed to guarantee the reachability of the specified sliding surface
almost surely. Furthermore, the obtained results are applied to a class of special nonlinear stochastic systems with
Markovian switching and time-delays, where the desired SMClaw is obtained in terms of the solutions to a set of
matrix inequalities. Finally, a numerical example is givento show the effectiveness of the proposed SMC scheme.
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I. INTRODUCTION

Since its inception in the early 1970s [30], the sliding modecontrol (SMC) (also known as variable structure
control) has been a focus of research due to its advantage of strong robustness against model uncertainties, parameter
variations and external disturbances. So far, the SMC methodologies have found successful applications in various
engineering systems such as power systems, chemical processes, robot manipulators and aero-engineering, see [1],
[13], [18] and the references therein. Generally speaking,the SMC approach can be briefly described as the design
of a discontinuous control law to force the state trajectories onto a desired sliding surface and maintain there for
all subsequent time.

In the past few decades, considerable research attention has been devoted to the theoretical research on SMC for
different systems. These systems include, but are not limited to, uncertain systems [25], [35], stochastic systems
[15], [21], [24], nonlinear systems [3] and fuzzy systems [36]. For example, In [25], a special integral-type switching
function is constructed to guarantee that the system dynamics lies on the specified sliding surface. Very recently,
the SMC problem of Markovian jump systems (MJSs) has gained particular research interests because of their
practical applications in a variety of areas [5], [6], [19],[20], [28], [33]. The main reason could be that MJSs are
very appropriate to model the dynamic systems whose structures are subject to random abrupt variation [26], [27].
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In particular, the sliding mode controllers have been designed in [6] for the systems with actuator degradation by
estimating the loss of effectiveness of actuators, and in [19] for uncertain switched stochastic system with time-
varying delays by utilizing the average dwell time method. However, so far, most available literature concerning the
SMC problems for MJSs have been limited to the systems with some special nonlinearities, and the SMC problems
for general nonlinear stochastic systems have not been paidadequate research attention despite its clear engineering
significance.

On the other hand, time-delays are well known to be ubiquitous in practice. If not adequately taken into account in
the analysis and synthesis, time-delays will inevitably degrade the system performances or even cause the instability.
As a result, a great deal of work has been done in order to eliminate or compensate the effect caused by time-
delays, see [2], [14], [17], [34], [35], [38] and the references therein. For example, the SMC problem has been
studied in [38] for systems subject to both the Markovian jump parameters and time-delays. It should be pointed out
that, the widely investigated mean-square stability implies that the variance of the state process is asymptotically
bounded and, in this case, the system could be well-behaved on the average but the sample state trajectories could
have a finite probability of being arbitrarily far from the system’s equilibrium point. In other words, under certain
circumstances, the commonly used mean-square measure might be crude to quantify the dynamic performance and
is sometimes unacceptable for some real-world engineeringwith high reliability requirements. For instance, the
precision requirement in the rocket control problem shouldbe guaranteed with the probability1. Therefore, the
almost sure stability [22], [23], which describes the system performance from the viewpoint of system sample
paths, has recently attracted considerable attention, see[4], [16], [17], [29] and the references therein. Up to now,
the corresponding results mainly involve the performance analysis of input-to-state stability and stochastic stability
in almost sure sense, and the controller structure is mostlydependent on state/output feedback. To the best of the
authors’ knowledge,the SMC problem in almost sure sensefor nonlinear stochastic systems has not been properly
investigated so far, not to mention the case when Markovian switching and time-delays are also involved. It is,
therefore, the purpose of this paper to shorten such a gap.

Summarizing the above discussions, in this paper, we are motivated to study the SMC problem for nonlinear
stochastic systems with Markovian switching and time-delays in almost sure sense. Two essential challenges are
identified as follows: 1) how to design a sliding mode controller to guarantee the reachability of the specified
sliding surface almost surely, and 2) how to examine the impact from both time-delays and exogenous disturbance
on the control performance? To handle these two challenges,we first construct an integral-type sliding function
and, following intensive stochastic analysis, the stability condition of the sliding mode dynamics is presented
via Hamilton-Jacobi-Isaacs (HJI) inequalities. Furthermore, a sliding mode controller is designed to guarantee the
trajectories of the system to be driven onto the sliding surface almost surely. The contribution of this paper is mainly
threefold:1) an integral-type sliding function is proposed in order tofacilitate the SMC problem later; 2) theH∞

performance combined with the almost sure exponential stability is utilized to evaluate the system performance;
and 3) a design scheme for almost sure sliding mode controller is obtained by solving HJI inequalities for general
nonlinear stochastic systems or matrix inequalities for special nonlinear stochastic systems.

The rest of this paper is organized as follows. In Section II,a class of nonlinear stochastic systems with Markovian
switching and time-delays are presented, and some preliminaries are briefly outlined. In Section III, the main results
are established in the form of coupled HJI inequalities. These sufficient conditions are then applied to a class of
special nonlinear stochastic systems with Markovian switching and time-delays in Section IV. Furthermore, a
numerical example is proposed to demonstrate the effectiveness of the obtained results in Section V. Finally,
conclusions are drawn in Section VI.

Notation The notation used here is fairly standard unless otherwise specified.Rn andRn×m denote, respectively,
then dimensional Euclidean space and the set of alln×m real matrices, andR+ = [0,+∞). (Ω,F , {Ft}t≥0,P) is a
complete probability space with a natural filtration{L }t≥0 satisfying the usual conditions (i.e. it is right continuous
andF0 contains allP-null sets).MT represents the transpose of the matrixM . | · | denotes the Euclidean norm.
E{·} stands for the mathematical expectation.P{·} means the probability.C([−τ, 0];Rn) denotes the family of all
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continuousRn-valued functionϕ on [−τ, 0] with the norm|ϕ| = sup{|ϕ(θ)| : −τ ≤ θ ≤ 0}. Cb
F0
([−τ, 0);Rn)

is the family of all F0-measurable boundedC([−τ, 0);Rn)-value random variablesξ = {ξ(θ) : −τ ≤ θ ≤ 0}.
L1(R+;R+) denotes the family of functionsλ : R+ → R+ such that

∫∞
0 λ(t)dt < ∞. K denotes a class of

continuous (strictly) increasing functionsµ from R+ to R+ with µ(0) = 0. K∞ denotes a class of functionsµ in
K with µ(r) → ∞ asr → ∞. L2(R+,R

p) denotes the space of nonanticipative stochastic processy(t) ∈ R
p with

respect to the filtrationFt satisfying|y(t)|2L2
:= E

∫∞
0 |y(t)|2dt < ∞.

II. PROBLEM FORMULATION

A. The nonlinear stochastic systems with Markovian switching and time-delays

Let r(t) (t ≥ 0) be a right-continuous Markov chain taking values in a finite state spaceS = {1, 2, . . . , N} with
generatorΓ = (γij)N×N given by

P{r(t+∆) = j|r(t) = i} =

{

γij∆+ o(∆), if i 6= j,

1 + γii∆+ o(∆), if i = j,

where△ > 0 andγij ≥ 0 is the transition rate from modei to modej if i 6= j while γii = −∑j 6=i γij .
We consider a class of nonlinear stochastic systems of the form























dx(t) =
[

f(x(t), x(t− τ), t, r(t)) + g(x(t), x(t − τ), t, r(t))v(t))

+B(r(t))(u(t) + φ(x(t), x(t − τ), t, r(t)))
]

dt

+G(r(t))[h(x(t), x(t − τ), t, r(t)) + s(x(t), x(t− τ), t, r(t))v(t)]dω(t),

y(t) = l(x(t), x(t− τ), t, r(t)) +m(x(t), x(t− τ), t, r(t))v(t),

(2.1)

with initial datax(t) = x0 ∈ Cb
F0
([−τ, 0);Rn) and r(0) = r0 ∈ S, wherex(t) ∈ R

n, y(t) ∈ R
m, u(t) ∈ R

p and
v(t) ∈ L2([0 ∞); R

q) are the state vector, the controlled output, the control input and the exogenous disturbance
input, respectively. The time-delayτ is a known positive integer. For a fixed moder(t), B(r(t)) and G(r(t))

are known constant matrices with appropriate dimension. Assume thatB(r(t)) is a full column rank matrix,
φ(x(t), x(t − τ), t, r(t)) is a matched nonlinear function representing the uncertainties, andω(t) is a zero-mean
one-dimensional Wiener process (Brownian Motion) satisfying E[dω(t)] = 0 andE[dω2(t)] = t.

In this paper,f , g, h, s, l, m and φ are known smooth functions withf(0, 0, t, i) = 0, g(0, 0, t, i) = 0,
h(0, 0, t, i) = 0, s(0, 0, t, i) = 0, φ(0, 0, t, i) = 0, l(0, 0, t, i) = 0 andm(0, 0, t, i) = 0, and satisfy the following
assumption.

Assumption 1:The measurable nonlinear functionθ, which could bef , g, h, s, φ, l or m, satisfies the global
Lipschitz condition, that is, there is aLθ > 0 such that

|θ(x, z, t, i) − θ(x̄, z̄, t, i)| ≤ Lθ(|x− x̄|+ |z − z̄|), (2.2)

for all x, z, x̄, z̄ ∈ R
n, t ≥ −τ, i ∈ S.

Remark 1:Under Assumption 1, it is easy to verify that the functionsf andφ satisfy the local Lipschitz condition
and the linear growth condition. Therefore, in terms of the well-known existence-and-unique theorem, one has that
the system in (2.1) withB(r(t)) = 0 andv(t) = 0 has a unique solution which can be denoted byx(t;x0, r0) for
any initial datax0 ∈ Cb

F0
([−τ, 0);Rn) and t ≥ −τ .

B. The sliding mode controller

Firstly, for the sake of notation simplification, denoteB(i) = Bi andG(i) = Gi for eachr(t) = i ∈ S. Also
denote the functionϕ(x(t), x(t − τ), t, i) asϕ which could bef , h, l, m or s when there is no ambiguity. Then,
the following nonlinear integral sliding mode function is designed:

σ(t, i) = Hix(t)−
∫ t

0
Hi[f(x(θ), x(θ − τ), θ, i) +BiKix(θ)]dθ, (2.3)
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whereKi is a constant matrix to be determined. The constant matrixHi ∈ R
m×n, which satisfiesHiGi = 0 with

HiBi being nonsingular, is also a parameter to be designed.
Remark 2: It should be mentioned that, sinceBi is of full column rank, the nonsingularity ofHiBi can be

ensured by choosingHi = BT
i Xi with Xi > 0, and the conditionHiGi = 0 can be confirmed by solving

(BT
i XiGi)

TBT
i XiGi ≤ βI for β ≥ 0, which can be verified by using the Matlab LMI toolbox.

Now, integrating (2.1) from0 to t > 0 and substitutingx(t) into (2.3) yield

σ(t, i) = Hix0 +

∫ t

0
Hi[−BiKix(θ) +Bi(u(θ) + φ(x(θ), x(θ − τ), θ, i))

+g(x(θ), x(θ − τ), θ, i)v(θ)]dθ. (2.4)

The surfaceσ(t, i) = 0 is called a sliding surface. It is well known that whenσ̇(t, i) = 0, the state trajectories
of the system enter the sliding surface. In this case, the equivalent control law of the sliding mode is given by

ueq(t) = Ki(x(t))− φ(x(t), x(t − τ), t, i) − (HiBi)
−1Hig(x(t), x(t − τ), t, i))v(t). (2.5)

By substituting (2.5) into (2.1), the resulting sliding mode dynamics can be written as:






















dx(t) = [f(x(t), x(t− τ), t, i) +BiKix(t)

+ (I −Bi(HiBi)
−1Hi)g(x(t), x(t − τ), t, i)v(t))]dt

+Gi[h(x(t), x(t − τ), t, i) + s(x(t), x(t− τ), t, i)v(t)]dω(t),

y(t) = l(x(t), x(t− τ), t, i) +m(x(t), x(t− τ), t, i)v(t).

(2.6)

For eachi ∈ S, letC2,1(Rn×R+×S;R+) denote the family of all nonnegative functionsV (x, t, i) onRn×R+×S

that are twice continuously differentiable inx and once int. If V ∈ C2,1(Rn×R+×S;R+), define an infinitesimal
generatorL of (2.6) fromR

n × R
n × R+ × S to R by

LV (x, ξ, t, i) = Vt(x, t, i) + Vx(x, t, i)[f +BiKix+ gev(t)]

+
1

2
[Gih+Gisv]

TVxx(x, t, i)[Gih+Gisv] +

N
∑

j=1

γijV (x, t, j),

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(

∂V (x, t, 1)

∂xi
, · · · , ∂V (x, t, i)

∂xn

)

,

Vxx(x, t, i) =

(

∂2V (x, t, i)

∂xi∂xj

)

n×n

, ge = (I −Bi(HiBi)
−1Hi)g(x(t), x(t − τ), t, i).

Before formulating the problem to be dealt with in this work,the following definition is considered.
Definition 1: The systems (2.1) withv(t) = 0 is almost surely exponentially stable if there exists a scalar λ > 0

such that
lim
t→∞

sup
1

t
log(|x(t;x0, r0)|) ≤ −λ (2.7)

for any initial datax0 ∈ Cb
F0
([−τ, 0);Rn).

The purpose of this paper is to design a SMC law such that the following requirements are met simultaneously:
a) the state trajectory of system (2.6) is globally driven onto the sliding mode surfaceσ(t, i) = 0 almost surely

and, in a subsequent time, the sliding mode dynamics (2.6) with v(t) ≡ 0 is almost surely exponentially stable;
b) under the zero initial condition, for a given disturbanceattenuation levelγ > 0 and all nonzerov ∈

L2(R+; R
q), the controlled outputy satisfies

|y(t)|2L2
≤ γ2|v(t)|2L2

. (2.8)
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III. M AIN RESULTS

In this section, we aim to establish a unified framework to solve the addressed problem of almost sureH∞ SMC
for nonlinear stochastic systems with Markovian switchingand time-delays. A sufficient condition is presented to
ensure that the sliding mode dynamics (2.6) is almost surelystable and the desiredH∞ performance is achieved.
Then, a design scheme of the sliding mode controller is proposed to guarantee the reachability of the specified
sliding surface almost surely.

A. Performance analysis

Theorem 3.1:Consider the nonlinear stochastic system (2.6) and the sliding mode surface (2.3). For anyi ∈ S,
let the disturbance attenuation levelγ > 0 be given. The sliding mode dynamics (2.6) is almost surely exponentially
stable and theH∞ performance is achieved if there exist positive scalarsc1, c2, λ1, λ2 with λ1 > λ2, the function
V (η, t, i) ∈ C2,1(Rn × [−τ,∞)× S;R+) with V (0, t, i) = 0 and matricesKi ∈ R

m, Hi ∈ R
m×n such that

c1|x|2 ≤ V (x, t, i) ≤ c2|x|2, (3.1)

Vt + Vx(f +BiKi) +
1

2
hTGT

i VxxhGi +

N
∑

j=1

γijVj + Ξ + λ1x
2 − λ2ξ

2 +
1

2
l2 < 0, (3.2)

γ2I − sTGT
i VηηsGi −mTm > 0, (3.3)

HiGi = 0, (3.4)

hold for all (x, t, i) ∈ R
n × [−τ,∞)× S, whereHiBi is nonsingular and

Ξ =
1

2

(

gTe Vx + sTGT
i VxxGih+mT l

)T (
γ2I − sTGT

i VxxGis−mTm
)−1 (

gTe Vx + sTGT
i VxxGih+mT l

)

.

Proof: Firstly, let us prove that the sliding mode dynamics (2.6) with v(t) = 0 is almost surely exponentially
stable. For this purpose, denotex(t− τ) = ξ, V (x, t, i) = Vi (i ∈ S) and

fe(x(t), x(t − τ), t, i) = f(x(t), x(t− τ), t, i) +BiKix(t),

he(x(t), x(t− τ), t, i) = Gih(x(t), x(t − τ), t, i).

By using (3.2) and (3.3), the infinitesimal generatorLV (x, ξ, t, i) with respect to (2.6) is given as

LV (x, ξ, t, i) = Vt + Vx(f +BiKi) +
1

2
hTGT

i VxxhGi +

N
∑

j=1

γijVj

< − λ1x
2 + λ2ξ

2 − 1

2
l2

≤ − λ1x
2 + λ2ξ

2.

(3.5)

Then, by utilizing Itô’ formula, it follows from (3.1) and (3.5) that

E[eλtV (x(t), t, i)]

= EV (x0, 0, i) + E

∫ t

0
eλs[λV (x(s), s, i) + LV (x(s), x(s − τ), s, i)]ds

≤ c2|x0|2 + E

∫ t

0
eλs[λc2|x(s)|2 − λ1|x(s)|2 + λ2|x(s− τ)|2]ds

≤ c2|x0|2 + λ2τe
λτ sup |x0|2 + E

∫ t

0
eλs[λc2|x(s)|2 − λ1|x(s)|2 + λ2e

λτ |x(s)|2]ds. (3.6)

Because there is an unique rootλ > 0 for the equationλc2 − λ1 + λ2e
λτ = 0, one has

E[eλtV (x(t), t, i)] ≤ (c2 + λ2τe
λτ ) sup |x0|2. (3.7)
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Letting M = c2+λ2τeλτ

c1
sup |x0|2, by means of the condition (3.1), we can obtain

E|x(t)|2 ≤ Me−λt, t ≥ 0. (3.8)

Furthermore, there exists an arbitraryε ∈ (0, λ/2) such that

E|x(t)|2 ≤ Me−(λ−ε)t (3.9)

holds.
On the other hand, for any givenδ > 0, there exists an integerk0 such that(k0−1)δ ≥ τ . Denoting the sequence

k = k0, k0 + 1, · · · , we can get that

E

[

sup
(k−1)δ≤t≤kδ

|x(t)|2
]

≤ 32E|x((k − 1)δ)|2 + 32E

(

∫ kδ

(k−1)δ

∣

∣fe(x(s), x(s − τ), s, i)
∣

∣ds

)2

+ 32E



 sup
(k−1)δ≤t≤kδ

∣

∣

∣

∣

∣

∫ t

(k−1)δ
he(x(s), x(s − τ), s, i)dw(s)

∣

∣

∣

∣

∣

2


 .

(3.10)

For the second part of the right-hand side of (3.10), it is notdifficult to see that

E

(

∫ kδ

(k−1)δ
|fe(x(s), x(s − τ), s, i)|ds

)2

≤ E

(

δ sup
(k−1)δ≤s≤kδ

|fe(x(s), x(s − τ), s, i)|
)2

≤ 2(Lδ)2E

[

sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x(s− τ(s))|2)
]

.

(3.11)

For the third part of the right-hand side of (3.10), by applying the Burkholder-Davis-Gundy inequality, we have

E

[

sup
(k−1)δ≤s≤kδ

∣

∣

∣

∫ t

(k−1)δ
|he(x(s), x(s − τ), s, i)dw(s)

∣

∣

∣

2
]

≤ 4E

(

∫ kδ

(k−1)δ
|he(x(s), x(s − τ(s)), s, i)|2ds

)

≤ 4E

(

δ sup
(k−1)δ≤s≤kδ

|he(x(s), x(s − τ), s, i)|2
)

≤ 8L2δE

[

sup
(k−1)δ≤s≤kδ

(|x(s)|2 + |x(s− τ)|2)
]

.

(3.12)

Substituting (3.11) and (3.12) into (3.10) yields

E

[

sup
(k−1)δ≤t≤kδ

|x(t)|2
]

≤ 32Me−(λ−ε)(k−1)δ

+ (3L)2(2δ2 + 8δ)E

[

sup
(k−1)δ≤s≤kδ

|x(s)|2
]

+ (3L)2(2δ2 + 8δ)E

[

sup
(k−1)δ≤s≤kδ

|x(s− τ)|2
]

.

(3.13)

For the second part of the right-hand side of above inequality, letting δ be sufficiently small to satisfy(3L)2(δ2+
4δ) < 1

4 , and considering (3.9) and (3.13), we have

E

[

sup
(k−1)δ≤t≤kδ

|x(t)|2
]

≤ 19Me−(λ−ε)((k−1)δ−τ) . (3.14)

For the third part of the right-hand side of (3.13), it follows from the fact(k − 1)δ ≥ τ and (3.8) that

E

[

sup
(k−1)δ≤s≤kδ

|x(s− τ)|2
]

≤ Me−(λ−ε)((k−1)δ−τ). (3.15)
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Substituting (3.14) and (3.15) into (3.13) and using the well-known Chebyshev’s inequality, we have

P

{

ω : sup
(k−1)δ≤t≤kδ

|x(t)| > e−(λ−2ε)((k−1)δ−τ)/2

}

≤
E

[

sup(k−1)δ≤t≤kδ |x(t)|2
]

e−(λ−2ε)((k−1)δ−τ)

≤ 19Me−ε((k−1)δ−τ).

(3.16)

Applying the well-known Borel-Cantelli lemma, we can get that for almost allω ∈ Ω,

sup
(k−1)δ≤t≤kδ

|x(t)| ≤ e−(λ−2ε)((k−1)δ−τ)/2 (3.17)

holds for all but finitely manyk. Hence there exists ak1(ω), for all ω ∈ Ω excluding aP-null set such that
(3.17) holds wheneverk ≥ max{k0, k1}. Consequently, for almost allω ∈ Ω, when (k − 1)δ ≤ t ≤ kδ and
k ≥ max{k0, k1}, one has

1

t
log(|x(t)|) ≤ −(λ− 2ε)((k − 1)δ − τ)/2

2t
≤ −(λ− 2ε)((k − 1)δ − τ)/2

2kδ
,

which implies

lim
t→∞

sup
1

t
log(|x(t)|) ≤ −λ− 2ε

2
. (3.18)

Therefore, the required (2.7) follows by lettingε → 0, which means that the system (2.6) withv(t) ≡ 0 is almost
surely exponentially stable.

Now, let us consider theH∞ performance of the sliding mode dynamics (2.6). Firstly, the infinitesimal generator
LV (x, ξ, t, i) associated with the system (2.6) is obtained as

LV (x, ξ, t, i)

= Vt(x, t, i) + Vx(x, t, i)[f +BiKi]

+

N
∑

j=1

γijVj + Vx(x, t, i)(I −Bi(HiBi)
−1Hi)g(x(t), x(t − τ), t, i)v(t)

+
1

2
[Gih+Gisv(t)]

TVxx(x, t, i)[Gih+Gisv(t)]

= −
[

v(t) −
(

γ2I − sTGT
i VxxGis−mTm

)−1 (
gTe Vx + sTGT

i VxxGih+mT l
)

]T

×
(

γ2I − sTGT
i VxxGis−mTm

)

×
[

v(t) −
(

γ2I − sTGT
i VxxGis−mTm

)−1 (
gTe Vx + sTGT

i VxxGih+mT l
)

]

+
1

2

(

gTe Vx + sTGT
i VxxGih+mT l

)T (
γ2I − sTGT

i VxxGis−mTm
)−1

×
(

gTe Vx + sTGT
i VxxGih+mT l

)

+ Vt(x, t, i) + Vx(x, t, i)[f +BiKi]

+

N
∑

j=1

γijV (x, t, j) +
1

2
γ2vT (t)v(t)− lTmv − 1

2
vT (t)mTmv(t).

(3.19)

Thus, it follows from (3.2) and (3.3) that

LV (x, ξ, t, i) ≤ − λ1η
2 + λ2ξ

2 +
1

2
γ2vT (t)v(t) − lTmv(t)− 1

2
vT (t)mTmv(t)− 1

2
lT l

≤ − λ1η
2 + λ2ξ

2 +
1

2
γ2vT (t)v(t) − 1

2
yT (t)y(t).

(3.20)

Because ofλ1 > λ2, integrating both sides of (3.20) from0 to T > 0 and taking expectation result in

EV (x, t, i) = E

∫ T

0
LV (x(t), x(t − τ), t, i)dt
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≤ E

∫ T

0

(

1

2
γ2vT (t)v(t) − 1

2
yT (t)y(t)

)

dt. (3.21)

Finally, noting the fact thatV (x(T ), T, i) ≥ 0 andV (0, t, i) = 0, we have

0 ≤ 1

2
E

∫ T

0
|y(t)|2dt

≤ 1

2

∫ T

0
γ2|v(t)|2dt− EV (x, T, i)

≤ 1

2

∫ T

0
γ2|v(t)|2dt, (3.22)

for all i ∈ S andT > 0. Therefore, the conclusion (2.8) follows immediately from(3.22) by lettingT → ∞. The
proof is complete.

Remark 3:Generally speaking, it is not easy to design a controlleru(t) = Kix(t) (i ∈ S) for general nonlinear
stochastic systems by Theorem 3.1 in form of HJI inequalities with equality constraints. So, in the subsequent
section, for a class of special nonlinear stochastic systems, the aforementioned SMC problem can be converted into
solving a set of linear matrix inequalities (LMIs).

B. Reachability analysis

In this part, we consider the reachability of the sliding mode surfaceσ(t, i) = 0. In the following theorem, a
SMC law is provided to guarantee that the state trajectoriesof system (2.6) is globally driven onto the sliding mode
surfaceσ(t, i) = 0 almost surely.

Theorem 3.2:Consider the system (2.6) with the sliding mode functionσ(t, i) in (2.4). If the SMC law is chosen
as follows

u(t, i) =

{

Kix(t)− ρ(t) (HiBi)T σ(t,i)
|(HiBi)T σ(t,i)| , if σ(t, i) 6= 0,

Kix(t), if σ(t, i) = 0
(3.23)

where

ρ(t) ≥ 2α

|(HiBi)T |
√

|σ(t, i)|
+ Lφ|x(t)|+ Lφ|x(t− τ)|+ Lg|(HiBi)

−1Hi|(|x(t)v(t)| + |x(t− τ)v(t)|)

with a small constantα > 0, then the state trajectory of system (2.6) is globally driven onto the sliding mode
surfaceσ(t, i) = 0 almost surely.

Proof: Firstly, due to the conditionHiGi = 0, differentiating sliding mode functionσ(t, i) in (2.4) yields

σ̇(t, i) = Hi[−BiKix(t) +Bi(u(t) + φ(x(t), x(t − τ), t, i)) + g(x(t), x(t − τ), t, i)v(t)]. (3.24)

Choose the Lyapunov function candidate as

V (t, i) =
1

2
σ(t, i)Tσ(t, i). (3.25)

It follows from (3.23) and (3.24) that

V̇ (t, i) = σ(t, i)T σ̇(t, i)

= σ(t, i)THi[−BiKix(t) +Bi(u(t) + φ(x(t), x(t − τ), t, i))

+ g(x(t), x(t − τ), t, i)v(t)]

= σ(t, i)THi[−BiKix(t) +Bi(Ki(x)− ρ(t)
(HiBi)

Tσ(t, i)

|(HiBi)Tσ(t, i)|
+ φ(x(t), x(t − τ), t, i)) + g(x(t), x(t − τ), t, i)v(t)].

(3.26)

Furthermore, it follows from (3.24), (3.26) and Assumption1 that

V̇ (t, i) ≤ −2α
√

|σ(t, i)|. (3.27)



REVISED 9

Therefore, we can get that
d|σ(t, i)|

dt
=

d
√

V (t, i)

dt
≤ −α, (3.28)

which implies|σ(t, i)| converges to zero almost surely. The proof is complete.

IV. SMC FOR A SPECIAL CASE

To demonstrate that Theorem 3.1 serves as a theoretic basis for the problem of almost sureH∞ SMC for nonlinear
stochastic systems with Markovian switching and time-delays, in this section, we aim to show that Theorem 3.1 can
be specialized to a special case, that is, the linear Markovian switching systems with Lipschitz-type nonlinearities.
The specialized result is described in terms of LMIs, which can be solved by using the Matlab LMI toolbox.

Firstly, denote the matrix associated with theith mode byΓi , Γ(r(t) = i) where the matrixΓ could beA, Ad,
B, C, Cd, D, D1, D2, E, Ed, G, H, K, X, Y or P .

Consider the following special nonlinear stochastic systems with Markovian switching and time-delays










dx(t) = [Aix(t) +Adix(t− τ) + f(x(t), x(t− τ), t, r(t)) +Bi(u(t) + φ(x(t), x(t− τ), t, r(t)))

+D1iv(t)]dt+Gi[Eix(t) + Edix(t− τ) +D2iv(t)]dω(t),

y(t) = Cix(t) + Cdix(t− τ) +Div(t),

(4.1)

whereAi, Adi, Bi, Ci,Di,D1i,D2i, Ei, Edi, Gi are known constant matrices of appropriate dimensions, andmatrix
Bi has full column rank.f(x(t), x(t − τ), t, i) and h(x(t), x(t − τ), t, i) are known nonlinear functions, and
φ(x(t), x(t − τ), t, i) is an unknown nonlinear uncertainty. Furthermore, it is assumed thatf(x(t), x(t − τ), t, i)

andφ(x(t), x(t − τ), t, i) satisfy Assumption 1.
Now, we choose the integral sliding mode function as follows:

σ(t, i) = Hix(t)−
∫ t

0
Hi[Aix(θ) +Adix(θ − τ) + f(x(θ), x(θ − τ), θ, i) +BiKix(θ)]dθ. (4.2)

Then, by following a similar line as in (2.4)-(2.6), the sliding mode dynamics can be obtained as










dx(t) = [Aix(t) +Adix(t− τ) + f(x(t), x(t− τ), t, i) +BiKix(t)

+ (I −Bi(HiBi)
−1Hi)D1iv(t))]dt +Gi[Eix(t) + Edix(t− τ) +D2iv(t)]dω(t),

y(t) = Cix(t) + Cdix(t− τ) +Div(t).

(4.3)

Following the same lines as in Theorem 3.2 and Theorem 3.1, wehave the following two results where only the
sketches of the proofs are given in order to ensure the conciseness.

Theorem 4.1:Consider the system (4.3). If there exist positive matricesPi > 0, matricesYi and positive real
scalarsλ1, λ2, λ3 with λ1 > λ2 satisfying the following LMIs

































Ωi AT
di DT

1iPi Λi ET
i G

T
i Pi Θ1i 0 CT

i BiPi

∗ −λ2I 0 0 ET
diG

T
i Pi 0

√
2PiLf CT

di 0

∗ ∗ −γ2I 0 DT
2iG

T
i Pi 0 0 DT

i 0

∗ ∗ ∗ −Ji 0 0 0 0 0

∗ ∗ ∗ ∗ −Pi 0 0 0 0

∗ ∗ ∗ ∗ ∗ −∆i 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −Pi 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 −I 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0 −λ3I

































< 0, ∀i ∈ S (4.4)

with the constraint
λ3I ≤ PiB

T
i P

−1
i BiPi (4.5)
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where

Ωi = AiPi + PiA
T
i +BiYi + Y T

i BT
i + γiiPi,

Λi = [P1, · · · , Pi−1, Pi+1, · · · , PN ],

Ji = diag{γ−1
i1 P1, · · · , γ−1

ii−1Pi−1, γ
−1
ii+1Pi+1, · · · , γ−1

iN PN},
Θ1i = [

√
2LfPi Pi], ∆i = diag{−Pi, − λ1I},

then the closed-loop system (4.3) withv(t) = 0 is almost surely exponentially stable and, meanwhile, theH∞

performance is achieved. In this case, the controller gain matrices areKi = YiP
−1
i andHi = BT

i P
−1
i for i ∈ S.

Proof: Firstly, choose the Lyapunov function candidate as

V (x, t, i) = xT (t)Xix(t). (4.6)

Then, in light of Assumption 2, chooseHi = BT
i Xi. The infinitesimal generatorLV (x(t), x(t− τ), t, i) associated

with the system (4.3) is given as

LV (x(t), x(t− τ), t, i)

= 2xT (t)Xi[Aix(t) +Adix(t− τ) + f(x(t), x(t− τ), t, i) +BiKix(t)

+ (I −Bi(B
T
i XiBi)

−1BT
i Xi)D1iv(t))] +

N
∑

j=1

γijx
T (t)Xjx(t)

+ [Gi(Eix(t) + Edix(t− τ) +D2iv(t))]
TXi[Gi(Eix(t) + Edix(t− τ) +D2iv(t))].

(4.7)

In terms of Assumption 1, it is not difficult to obtain that

2xT (t)Xif(x(t), x(t− τ), t, i)

≤ xT (t)X2
i x(t) + f(x(t), x(t− τ), t, i)T f(x(t), x(t− τ), t, i)

≤ xT (t)X2
i x(t) + L2

f (|x(t)|+ |x(t− τ)|)2

≤ xT (t)X2
i x(t) + 2L2

fx
T (t)x(t) + 2L2

fx
T (t− τ)x(t− τ). (4.8)

Therefore, one has

LV (x(t), x(t− τ), t, i)

≤ xT (t)
[

XiAi +AT
i Xi +XiBiKi +KT

i B
T
i Xi +X2

i + 2L2
f I +

N
∑

j=1

γijXj +XiBi(B
T
i XiBi)

−1BT
i Xi

]

x(t)

+ 2xT (t)Adix(t− τ) + 2L2
fx

T (t− τ)x(t− τ) + 2xT (t)XiD1iv(t) + vT (t)DT
1iXiD1iv(t)

+ [GiEix(t) +GiEdix(t− τ) +GiD2iv(t)]
TXi[GiEix(t) +GiEdix(t− τ) +GiD2iv(t)].

(4.9)

Furthermore, forv(t) = 0, substituting (4.8) into (4.9) results in

LV (x(t), x(t − τ), t, i) + λ−1
1 x2 − λ2x

2(t− τ) ≤ [xT (t) xT (t− τ)]Πi

[

x(t)

x(t− τ)

]

, (4.10)

where

Ψi = XiAi +AT
i Xi +XiBiKi +KT

i B
T
i Xi +

N
∑

j=1

γijXj +X2
i + 2L2

f I + λ−1
1 I,

Πi =

[

Ψi XiAdi

AT
diXi 2L2

fI − λ2I

]

+

[

ET
i G

T
i

ET
diG

T
i

]

Xi[GiEi GiEdi].

(4.11)
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By using the Schur Complement Lemma,Πi < 0 (∀i ∈ S) is equivalent to


















Ψ̄i XiAdi Λ̄i ET
i G

T
i Xi Θ̄1i 0

∗ −λ2I 0 ET
diG

T
i Xi 0

√
2LfXi

∗ ∗ −J̃i 0 0 0

∗ ∗ ∗ −Xi 0 0

∗ ∗ ∗ ∗ ∆̄i 0

∗ ∗ ∗ ∗ ∗ −Xi



















< 0, ∀i ∈ S, (4.12)

where

Ψ̄i = XiAi +AT
i Xi +XiBiKi +KT

i B
T
i Xi + γiiXi,

Λ̄i = [X1, · · · ,Xi−1,Xi+1, · · · ,XN ]n×(N−1)n,

J̃i = diag{γ−1
i1 X1, · · · , γ−1

ii−1Xi−1, γ
−1
ii+1Xi+1, · · · , γ−1

iN XN},
Θ̄1i = [

√
2LfXi I], ∆̄i = diag{−Xi, − λ1I}.

In what follows, letPi = X−1
i and define

J̄1i = diag{P1, · · · , Pi−1, Pi+1, · · · , PN}, J̄2i = diag{Pi, Pi}.
Pre- and post-multiplying (4.12) by diag{Pi, I, J̄1i, Pi, J̄2i, Pi} yield



















Ωi AT
di Λi ET

i G
T
i Pi Θ1i 0

∗ −λ2I 0 ET
diG

T
i Pi 0

√
2PiLf

∗ ∗ −Ji 0 0 0

∗ ∗ ∗ −Pi 0 0

∗ ∗ ∗ ∗ −∆i 0

∗ ∗ ∗ ∗ ∗ −Pi



















< 0, ∀i ∈ S. (4.13)

Therefore, it follows from (4.4) and (4.13) that, for all[xT (t) xT (t− τ)]T 6= 0

LV (x(t), x(t − τ), t, i) ≤ −λ−1
1 x2 + λ2x

2(t− τ), (4.14)

which means that the sliding mode dynamics (2.6) withv(t) ≡ 0 is almost surely exponentially stable.
Similarly, it follows from (4.4), (4.8) and (4.9) that, for all [xT (t) xT (t− τ) vT (t)]T 6= 0, the inequality

LV (x(t), x(t− τ), t, i) ≤ −λ−1
1 x2(t) + λ2x

2(t− τ) + γ2vT v − yT y (4.15)

is true. Therefore, the requiredH∞ performance now follows from Theorem 3.1 by the similar line. The proof is
complete.

Now we are ready to give the design technique of the SMC controller.
Theorem 4.2:Consider the system (4.1) with the sliding mode functionσ(t, i) in (4.2). The state trajectories of

the sliding mode dynamics (4.3) are globally driven onto thesliding mode surfaceσ(t, i) = 0 almost surely by
adopting the SMC law (3.23) in Theorem 3.2 where the gain matricesKi andHi satisfy the conditions in Theorem
4.1.

Remark 4:The main results in Theorems 3.2-4.2 are described in terms of the feasibility to a few LMIs. Note
that, for the standard LMI system, the algorithm has a polynomial-time complexity. That is, the numberN (ε)

of flops needed to compute anε-accurate solution is bounded byO(MN 3 log(V/ε)), whereM is the total row
size of the LMI system,N is the total number of scalar decision variables,V is a data-dependent scaling factor,
andε is relative accuracy set for algorithm. Obviously, the computational complexity of the LMI-based algorithms
depends polynomially on the network size and the variable dimensions. In order to reduce the computation burden,
a possible way is to obtain the estimator gains in a node-by-node way. Fortunately, research on LMI optimization is
a very active area in the applied mathematics, optimizationand the operations research community, and substantial
speed-ups can be expected in the future.
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V. A N ILLUSTRATIVE EXAMPLE

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed design scheme
of sliding mode controllers for nonlinear stochastic systems with Markovian switching and time-delays in the form
of (4.1).

Let the generatorΓ be

Γ =

[

γ11 γ12
γ21 γ22

]

=

[

0.6 −0.6

−0.2 0.2

]

Suppose that the system involves two modes, and the system data are given as follows:
Mode 1:

A1 =







−1.2 3 0.2

0.3 −2.5 0.4

−0.8 0.4 −0.3






, Ad1 =







−0.2 0.3 0.1

0.1 −0.5 0.2

0.3 −0.6 −0.25






, B1 =







0.7 −1.3

−0.3 0.8

0.6 −1






,

D11 =







0.12

0.2

0.1






, G1 =







0.1 −0.05

0.3 0.1

0.2 0






, E1 =

[

0.4 0.1 0.6

0.3 0.5 1.0

]

, Ed1 =

[

0.1 0.12 0.2

0.2 0.4 0.1

]

,

D21 =

[

0.15

0.22

]

, C1 =

[

−0.7 0.2 0.3

0.25 0.3 0.4

]

, Cd1 =

[

0.2 0.5 −0.4

0.5 −0.3 0.25

]

, D1 =

[

0.2

0.15

]

.

The nonlinear functionf andφ are as follows

f(x(t), x(t− τ), t, 1) =
[

0.14
√

x21(t) + x22(t) sinx3(t) 0.13
√

|x2(t)x3(t− τ)| 0.15
√

x21(t) + x23(t)
]T

,

φ(x(t), x(t− τ), t, 1) = [0.17 sin x1(t− τ) 0.25 sin x2(t) 0.26 sin x3(t)]
T .

Mode 2:

A2 =







−1.5 0.2 0.3

−0.1 −0.5 0.4

−0.6 0.2 −0.5






, Ad2 =







0.2 −0.3 0.12

0.1 0.4 −0.5

−0.4 −0.3 0.2






, B2 =







0.8 −1.3

−0.3 0.7

0.5 −0.8






,

D12 =







0.2

0.1

0.13






, G2 =







0.2 0.05

0.1 0

0.12 0.1






, E2 =

[

0.2 0.2 0.3

0.1 0.25 0.5

]

, Ed2 =

[

0.1 0.2 0.1

0.25 0.3 0.15

]

,

D22 =

[

0.1

0.14

]

, C2 =

[

−0.5 0.3 0.1

0.2 −0.4 0.25

]

, Cd2 =

[

0.4 0.2 −0.3

−0.6 0.4 0.2

]

, D2 =

[

0.1

0.3

]

.

The nonlinear functionf andφ are as follows

f(x(t), x(t− τ), t, 2) =
[

0.2
√

x21(t) + x22(t) 0.14
√

|x2(t)x3(t− τ)| sinx1(t) 0.1
√

x21(t) + x23(t)
]T

,

φ(x(t), x(t − τ), t, 2) = [0.35 sin x1(t− τ) 0.25 sin x2(t) 0.3 sin x3(t)]
T .

It is easy to see that Assumption 1 can be met withLf = 0.25 andLφ = 0.39. By using Matlab LMIs toolbox to
solve the LMIs (4.4) with constraint (4.5), we can get the permitted minimumγ is 0.4432 and the feasible solution
λ1 = 0.2, λ2 = 0.04, λ3 = 0.005 and

P1 =







0.0337 0.0165 −0.0068

0.0165 0.0379 −0.0140

−0.0068 −0.0140 0.0274






, P2 =







0.0243 0.0055 −0.0045

0.0055 0.0231 −0.0062

−0.0045 −0.0062 0.0239






,

Y1 =

[

−118.9170 −930.8616 −520.7245

−82.0009 −462.5317 −229.0995

]

, Y2 =

[

−155.0931 −602.6083 −248.9477

−93.7367 −360.1865 −129.0207

]

.
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Then, the desired parameters of sliding mode controller canbe designed as

K1 =

[

−15.8220 −29.9526 −0.3882

−8.8347 −15.6761 0.7730

]

, K2 =

[

−5.9825 −13.2598 −1.5402

−3.6908 −8.0531 −0.4427

]

.

H1 =

[

0.0024 0.0002 −0.0020

−0.0072 −0.0007 0.0065

]

, H2 =

[

−0.0029 −0.0005 0.0056

0.0050 0.0009 −0.0095

]

.

In the simulation, the exogenous disturbance input is selected asv(t) = exp(1/t)
1+t , the step size△ and the time-

delayτ are0.001 and0.2, respectively. Simulation results are shown in Figs. 1∼4, where Fig. 1 and Figs. 2 depict,
respectively, the trajectories of statex(t) without v(t) and the trajectories of statex2(t) with v(t), Figs. 3 plots
the control signalsu1(t) and Figs. 4 shows the trajectories ofσ1(t) with v(t), which verifies the design scheme of
sliding mode controller proposed in this paper.

VI. CONCLUSIONS

In this paper, we have investigated the almost sureH∞ SMC problems for a class of nonlinear stochastic systems
with Markovian switching and time-delays. An integral-type sliding function has been constructed and a SMC law
has been designed such that the closed-loop system reaches the specified sliding mode surface almost surely. By
employing the stopping time method combined with martingale inequalities, some sufficient conditions have been
proposed to guarantee that the sliding dynamics is almost surely exponentially stable and theH∞ norm from the
external inputs to the controlled outputs is less than a given level γ. Furthermore, based on the proposed results,
for a class of special nonlinear stochastic systems with Markovian switching and time-delays, the desired SMC
law has been designed by solving a set of LMIs. Finally, a numerical simulation example has been provided to
demonstrate the effectiveness and applicability of the proposed design approach. Future research topics would
include the extension of the main results to more complex systems such as networked control systems with fading
measurements [7], [8], [10] and randomly occurring phenomena [11], [12], [32], [37].
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