
Adaptive structure metrics for automated
feedback provision in intelligent tutoring

systems

Benjamin Paassen ∗, Bassam Mokbel and Barbara Hammer

CITEC centre of excellence
Bielefeld University - Germany

(This is a preprint of the publication [1], as provided by the authors.)

Abstract

Typical intelligent tutoring systems rely on detailed domain-knowledge
which is hard to obtain and difficult to encode. As a data-driven alterna-
tive to explicit domain-knowledge, one can present learners with feedback
based on similar existing solutions from a set of stored examples. At the
heart of such a data-driven approach is the notion of similarity. We present
a general-purpose framework to construct structure metrics on sequential
data and to adapt those metrics using machine learning techniques. We
demonstrate that metric adaptation improves the classification of wrong
versus correct learner attempts in a simulated data set from sports train-
ing, and the classification of the underlying learner strategy in a real Java
programming dataset.

1 Introduction
Intelligent tutoring systems (ITSs) have made great strides in recent years;
they offer the promise of individual one-on-one computer based support in the
context of scarce human resources, as it is common in massive open online
courses (MOOCs), for example [2]. However, researchers have reported 100
- 1,000 hours of authoring time for one hour of instructions in ITSs [3]; in
addition, ITSs usually require an underlying domain theory such that their
applicability is limited in areas where problems and their solution strategies
are not easy to formalize [4, 5]. In such domains, data-driven approaches are
possible, providing feedback based on a set of existing examples for (correct)
solutions of the underlying task [5, 6]: If the students requires a hint on how
to change her attempt to get closer to a correct solution, it can be compared

∗Corresponding Author

1

Preprint of the publication [1], as provided by the authors. 2

to a similar example from the set, and the dissimilarities between her attempt
and the example can be contrasted or highlighted in order to help the student
to improve her own solution [7, 8, 9].

As key ingredients such techniques require data and a suitable metric based
on which to compare solutions. More specifically, a suitable metric has to meet
at least three requirements in order to be suitable: (A) Solutions are typically
non-vectorial. Instead, they are given as structured data, that is: as sequences,
trees or graphs. Therefore, structure metrics have to be used that need to fit the
given domain. (B) Feedback should be given based on examples that implement
the same underlying strategy. Therefore the metric should emphasize differences
in strategy, while being insensitive to differences in style across students. This
corresponds to the choice of the metric as well as the choice of parameters for
the metric. (C) In order to provide helpful feedback, the metric should be
interpretable, in the sense that it should be possible to retrieve the parts of
both solutions, which differ from each other.

In this contribution, we focus on alignment metrics for sequential data: Re-
cently it has been shown that such metrics can be expressed in terms of a general
framework, called algebraic dynamic programming (ADP) [10], which addresses
the first requirement (A). Further, we show in this work that all alignment algo-
rithms expressed in that framework can be systematically adapted, as required
(B). Finally, all these alignment algorithms allow to retrieve detailed information
which parts of both input solutions are similar and which are not: Alignment
algorithms match similar parts of both solutions and identify parts which can
not be matched, thereby providing interpretable and actionable knowledge for
feedback (requirement C), see e.g. [9].

1.1 Contribution and Overview
The main contributions of this paper are the following: First, we show that the
general framework of algebraic dynamic programming (ADP) enables us to ex-
press a broad class of structure metrics, namely alignment distances. Exemplary,
we use ADP to express four alignment algorithms: Global sequence alignment,
affine sequence alignment, dynamic time warping and the Sakoe-Chiba approx-
imation of dynamic time warping. Second, we demonstrate that gradients on
alignment distances can be calculated efficiently using ADP. Third, we use the
calculated gradients for structure metric learning : We adapt metric parameters
to improve the classification accuracy of a relational generalized learning vector
quantization (RGLVQ) classifier. Finally, we apply the structure metric learn-
ing scheme using four different alignment algorithms on two different datasets
from the domain of intelligent tutoring systems.

Note, that the techniques presented in this work are by no means limited
to intelligent tutoring systems but can be applied in all settings, where met-
rics on sequential data are required and should be adapted to optimize some
(differentiable) cost function (see e.g. [11] for an example from the biomedical
domain).

The outline of this paper is as follows: In Section 2 we discuss related work,

Preprint of the publication [1], as provided by the authors. 3

in particular data-driven intelligent tutoring systems (ITSs), similarity-based
machine learning, structure metrics and structure metric learning. We also dis-
cuss our choice of datasets in the context of existing literature on ITSs. In
Section 3, we introduce a simplified version of ADP as generalization of align-
ment algorithms and use it to express four example metrics, which we evaluate
in the experiments later on. We explain metric learning on ADP alignment
algorithms using RGLVQ in Section 4. Finally, we report our experiments in
Section 5.

2 Related Work
This research connects several, seemingly disconnected fields, such as artificial
intelligence in education, educational data mining, classic machine learning,
structure metrics, metric learning and formal languages. In this section, we
provide an overview of these different connections and also embed our own
work in the context of the existing literature.

2.1 Data-Driven Intelligent Tutoring Systems
Intelligent tutoring systems (ITSs) are systems to enhance student learning
via artificial intelligence methods. Most of the time, students proceed through
a curriculum of different tasks to obtain skills and knowledge. The systems
job is to select the next task depending on the current level of knowledge and
individual parameters of the student (outer loop) and to support her solving the
current task (inner loop) [5]. Such systems have been successfully applied in
many contexts, especially in learning logic and math concepts, and have been
proven to lead to positive learning outcomes for students [12, 6].

However, they usually rely on extensive knowledge engineering to formalize
domain concepts and explicitly track student knowledge, which is both costly
and difficult, especially in domains where explicit and detailed knowledge about
the domain can not be obtained (so-called ill-defined domains) [3, 4, 5]. To
relieve ITS engineers from the burden of knowledge engineering, data-driven ap-
proaches have emerged. Such approaches try to replace pre-defined and explicit
domain knowledge by inference based on example-data of students interacting
with the system [5, 6].

Here, we focus on the inner loop mentioned before: To support students
in solving a task, utilizing only example solution attempts handed in by other
students. An intuitive solution to this problem is to base student support on a
notion of similarity to existing solutions: We can approximate a student model
by considering the similarity of her solution to all solutions in the example set. A
hint to improve her solution can be based on the difference between her solution
and a similar (but better) solution [7, 8, 9].

Further, a proper similarity measure enables ITS engineers to apply machine
learning techniques for further problems: One can try to detect outliers or buggy
solutions, one can estimate the quality of solutions based on the known quality

Preprint of the publication [1], as provided by the authors. 4

for some examples (regression) and one can cluster or classify solutions into dis-
crete, meaningful sets. In our experiments we focus on the latter and distinguish
between correct and wrong executions of a sports exercise (see Section 5.1) and
between the underlying algorithms of computer programs (see Section 5.2).

Such an approach requires a proper similarity measure (that is: a metric)
as key ingredient. Note, that most common similarity measures, such as the
Euclidean distance or the radial basis function kernel, are based on a vectorial
data representation. While first approaches exist to transform student data
into a vectorial format, most data is still only available as structured data,
such as sequences, trees or graphs [13]. Thus, we face a three-fold challenge:
Constructing a similarity measure that works on the available data in the first
place, adjusting this similarity measure to be apt for the task at hand and
utilizing the similarity measure to generate actionable knowledge for an ITS.
The latter is the general topic of similarity-based machine learning, the former
two refer to structure metrics and (structure) metric learning respectively.

2.2 Similarity-Based Machine Learning
From early on, machine learning methods based on similarity measures have
been utilized, starting with simple schemes like k-nearest neighbor classification
[14] or k-means clustering [15]. The general rationale is that data which are
similar to each other in some respect may be similar in other respects as well.
Research on similarity-based machine learning has flourished in recent years,
mainly driven by the development of powerful kernel-approaches, and includes
such popular methods such as the Support Vector Machine, extended nearest
neighbor-schemes and Gaussian process regression [16, 17].

Here, we require a method which lends itself to gradient-based optimization.
Gradient-based schemes in similarity-based machine learning have been applied
successfully in the case of relational learning vector quantization (RGLVQ) [18],
which we describe in more detail in Section 4.

Note, however, that the focus of this work is not so much on demonstrating
the capabilities of methods based on an existing similarity measure (here, the
interested reader is referred to the literature cited above), but rather how to
obtain a proper (structure) similarity measure in the first place.

2.3 Structure Metrics
Over the years, multiple structure metrics have been suggested, reaching from
sequential data over trees to graphs, see e.g. [19] for a recent review. Kernel-
approaches have been especially popular, such as the diffusion or convolution
kernel approach [20, 21]. Unfortunately, most of these approaches can not di-
rectly deal with rich data attached to the graph nodes and/or are runtime-
inefficient.

In this contribution, we focus on sequential data, where we can rely on the
abundant work on edit or alignment distances. Such methods extend both input
sequences, such that similar elements are aligned. They have been successfully

Preprint of the publication [1], as provided by the authors. 5

applied in diverse domains, such as automatic spell-checking [22, 23], bioinfor-
matics [24, 25, 26] and speech processing [27]. All of those alignment distances
can be efficiently calculated using dynamic programming with a worst-case run-
time of O(M ·N), with M and N being the number of sequence elements in the
first and the second input sequence respectively.

Given the abundance of alignment algorithms in the literature, we can select
a suitable one for our data: For motion data, dynamic time warping is a well
established technique [27], accompanied even by techniques to make it a linear-
time algorithm [28]. For comparing syntactic building blocks, however, classic
edit distance approaches like [22, 24, 26] are more common. Of course, it would
be tedious (and error-prone) to implement every possible alignment algorithm
by hand. Fortunately, Giegerich and colleagues recently proposed algebraic dy-
namic programming (ADP) as a generalization of dynamic programming over
sequential data [10]. Thus it is possible to summarize a broad class of alignment
algorithms, including the ones mentioned before, in a common framework (see
Section 3).

2.4 Structure Metric Learning
In many scenarios, a-priori assumptions regarding the parameters of a structure
metric might be unavailable or wrong. In bioinformatics in particular, this
topic has been investigated under the term inverse alignment problem, which
has been addressed by linear programming methods to find metric parameters
that generate desired, pre-defined alignments [29]. However, such approaches
require detailed knowledge regarding (at least a few) desired optimal alignments,
which are unknown in our educational setting.

Inferring metric parameters for classification tasks, using label information
only, is the topic of metric learning in the machine learning community. Pop-
ular and powerful algorithms have been designed for vectorial data, see e.g.
[30, 31, 32]. However, only few approaches exist for structure metrics and align-
ment distances in particular, making it a novel and challenging field of machine
learning research [30, 33, 11].

We build on the work of [11] and optimize metric parameters with respect to
the cost function of a popular machine learning classifier, learning vector quanti-
zation. Thereby, metric parameter learning turns into a nonlinear optimization
problem, which we solve via gradient descent. Here, the ADP framework en-
ables us to efficiently compute alignment distances and their gradients w.r.t.
the metric parameters for arbitrary alignment algorithms, as we demonstrate in
Section 4.

2.5 Experimental data
In this paper, we investigate how to efficiently obtain a proper metric for two
example datasets (see Section 5): In sports training, students need to learn
how to execute a certain motion or exercise. Virtual reality-based systems have
been applied in this domain, to contrast a students movement with the correct

Preprint of the publication [1], as provided by the authors. 6

execution done by a 3D virtual trainer [34]1. A natural representation of human
motion is a sequence of frames, where each frame contains the position and/or
rotation of the body parts (e.g. the position of the hands, the feet, the head,
etc. in three-dimensional space)2. However, to distinguish between correct and
wrong executions of an exercise, only few features matter (e.g. the position of the
arms is hardly relevant when executing a squat). We simulate executions of a
sports exercise by generating 10-dimensional sequences via dynamical movement
primitives [35], where the motion in 9 dimension is irrelevant for the distinction
between correct and wrong executions, while the first dimension matters (see
Section 5.1).

Our second dataset is a benchmark dataset from [11], consisting of 64 Java
programs sorting an input array of integers in ascending order. Here, we consider
only correct solutions and investigate a different aspect of data-driven tutoring
systems: Oftentimes, there are many correct solutions for a given programming
problem. If a student applies a certain solution strategy, feedback based on an
example with a different underlying strategy might be confusing. Therefore, one
would like to obtain a metric that is sensitive do differences in the underlying
strategy. In our example dataset, we consider the classification of BubbleSort
implementations versus InsertionSort implementations (see Section 5.2).

3 Algebraic Dynamic Programming
In this section we introduce the notion of sequence, alignment and alignment
distance more formally. We formalize the problem an alignment algorithm has
to solve and introduce a simplified version of algebraic dynamic programming
(ADP) as a generalized solution for this problem.

Definition 1. Let {Σκ}κ=1,...,K ,K ∈ N be arbitrary sets. We define a sequence
x̄ as a succession of elements x ∈ Σ×, where:

Σ× :=
K×
κ=1

Σκ (1)

That means: We consider sequences with multidimensional elements, where
the entries in each dimension stem from different, arbitrary sets.

Definition 2. Let x̄ and ȳ be sequences. An alignment is defined as two
extensions x̄∗ and ȳ∗ of those sequences that have the same number of elements.
Extensions should always contain the elements of the original sequences and
may contain additional elements in between. The permitted additional elements
differ between alignment algorithms.

Let d be a metric on Σ× ∪ {−} and let (x̄∗, ȳ∗) be an alignment of the
sequences x̄, ȳ. Let |x̄∗| be the number of elements of x̄∗. We define the cost of

1Another project in this regard can be found at https://www.cit-ec.de/de/content/
intelligent-coaching-space

2see e.g. http://mocap.cs.cmu.edu/,

https://www.cit-ec.de/de/content/intelligent-coaching-space
https://www.cit-ec.de/de/content/intelligent-coaching-space
http://mocap.cs.cmu.edu/

Preprint of the publication [1], as provided by the authors. 7

(x̄∗, ȳ∗) as:

F(x̄∗, ȳ∗) :=

|x̄∗|∑
i=1

d(x̄∗i , ȳ
∗
i) (2)

The alignment (x̄∗, ȳ∗) is called optimal iff

F(x̄∗, ȳ∗) = min{F(x̄∗, ȳ∗)|(x̄∗, ȳ∗) is an alignment of (x̄, ȳ)} (3)

The cost of an optimal alignment is called the alignment distance D(x̄, ȳ).

As an example, consider the two character sequences x̄ = ac and ȳ = bc.
Possible alignments include:

(ac, bc), (−ac, a−c), (ac−,−bc) (4)

In the first alignment, we do not insert additional elements in any of the se-
quences. In the second alignment, we add a − in the front of x̄ and in the
middle of ȳ and in the last example we add a ba in front of x̄ and a aa in the
middle of ȳ. Assume that we apply a simple metric d of the form:

d(a, b) := 1− δ(a, b) (5)

where δ is the Kronecker-Delta, defined as

δ(a, b) :=

{
1 if a = b

0 if a 6= b
(6)

Then, the costs of the alignments are:

F(ac, bc) = 1,F(−ac, a−c) = 2,F(ac−,−bc) = 3 (7)

which would make the first one the optimal alignment.
Obviously, the set of possible alignments grows exponentially with increasing

length of the input sequences. However, the optimal alignment can still be found
in polynomial time via dynamic programming. The first algorithm of that kind
to be discovered is the classic edit distance: If extensions may only contain
gap symbols (−) as additional elements, the alignment distance for the two
sequences x̄ and ȳ with lengths M and N respectively can be expressed in
terms of a Bellman equation [22, 24, 36]:

D(M + 1, N + 1) :=0 (8)
D(i,N + 1) :=M + 1− i (9)
D(M + 1, j) :=N + 1− j (10)

D(i, j) := min{D(i+ 1, j + 1) + d(xi, yj), (11)
D(i+ 1, j) + d(xi,−),

D(i, j + 1) + d(−, yj)}
d(a, b) :=1− δ(a, b) (12)

Preprint of the publication [1], as provided by the authors. 8

This can be solved in O(M ·N), if one creates a table for D of size (M + 1)×
(N + 1) and iteratively calculates the entries in two nested loops starting at
D(M + 1, N + 1) and ending at D(1, 1), which then contains the alignment
distance.

Accordingly, we define the more general alignment problem as finding the
(cost of the) optimal alignment for two input sequences x̄ and ȳ, given the
metric d in polynomial time, more specifically in O(M · N). As history has
shown, this problem is not a trivial one and solving it required quite a bit of
skill and ingenuity for each variation of the original alignment scheme. Few very
successful algorithms were carefully crafted over the past decades, most notably
in bioinformatics [24, 25, 26] and speech processing [27].

It was only in 2004, that Giegerich and colleagues proposed a much more
general framework for dynamic programming over sequential data, in the form
of algebraic dynamic programming (ADP) [10]. This framework provides a clear
separation of concepts: First, users have to define the operations permitted on
both input sequences. The set of all combinations of such operations forms
the set of possible alignments. By defining a regular tree grammar the user
can specify the possible combinations of operations in more detail. Finally, the
cost of alignments has to be abstractly specified as an algebra on some given
combination of operations.

Given these three ingredients, ADP automatically provides a dynamic pro-
gramming scheme to calculate the respective alignment distance for any given
input in O(M ·N), thereby solving the general alignment problem.

In the remainder of this chapter we introduce operations, combinations of
operations (ADP trees), algebrae and grammars more formally. We show how
these ingredients imply an alignment distance and we provide a general-purpose
algorithm to calculate the respective alignment distance efficiently. Finally, we
express four different alignment schemes using ADP: The classic edit distance
(also known as global sequence alignment), affine alignment, dynamic time warp-
ing and the Sakoe-Chiba approximation of dynamic time warping. We use the
classic edit distance as example to explain each ADP concept in more detail.

Definition 3. We call T := {empty,peek, read} the set of sequence operations.
We define an alignment operation as a tuple of two sequence operations and a
name, where one of the operations has to be read. More formally:

(t, x, y) where x, y ∈ T and x = read or y = read (13)

Finally, we define a signature as a set of alignment operations.

Note that empty is meant to express that the respective operation does not
manipulate the respective sequence at all. peek means that it does refer to
an element of the sequence, but does not remove it and read means that the
element is removed from the sequence.

As an example consider the signature

Tedit = {(rep, read, read), (del, read, empty), (ins, empty, read)} (14)

Preprint of the publication [1], as provided by the authors. 9

rep

read del

read ins

empty nil read

empty

read

rep

read ins

empty del

read nil empty

read

read

Figure 1: Two example alignment trees for the signature Tedit and the sequences
x̄ = ab and ȳ = ac over elements from Σ× := Σ1 := {’a’, ’b’, ’c’}. The corre-
sponding alignments are (ab−, a−c) and (a−b, ac−) respectively.

for the edit distance. The first operation is commonly called replacement, the
second deletion and the latter insertion.

Based on a signature, we can rephrase the notion of an alignment in an ADP
sense, as alignment trees:

Definition 4. Let T be an ADP signature and Σ× be an arbitrary set. We
define an ADP tree T recursively as either

T = nil() or (15)
T = t(x, T ′, y) (16)

where T ′ is an ADP tree and (t, x, y) ∈ T .
We define the size |T | of a tree T recursively as:

|T | :=

{
(0, 0) if T = nil()(
m+ δ(x, read), n+ δ(y, read)

)
if T = t(x, T ′, y)

(17)

where (m,n) := |T ′| and δ is the Kronecker-delta. Note, that the size is in effect
just the number of read-operations on both sides of the tree.

Finally, Let x̄, ȳ be sequences of elements from Σ×. Let M and N be the
respective lengths of the sequences. Then, T is called an alignment tree for x̄
and ȳ, iff

|T | = (M,N) (18)

Note that the notion of an ADP tree is independent of the specific input
sequences. Further, the definition of an alignment tree for some two sequences
x̄ and ȳ is only dependent on the lengths of x̄ and ȳ. This is an important
observation: The search space of possible alignment trees can be constructed
independent of the specific input. ADP exploits this observation by separating
the concerns of constructing the search space and finding the optimum in that
search space. The former is done by a regular tree grammar, the latter by an
algebra on alignment trees.

Preprint of the publication [1], as provided by the authors. 10

Two example alignment trees for Tedit and the input sequences x̄ = ab and
ȳ = ac are shown in Figure 1. Note that alignment trees do indeed express
alignments: Each empty-operation creates a −, each read introduces exactly
one element of the input sequence and each peek repeats an element of the
input sequence.

We generalize the notion of the cost of an alignment using the ADP concept
of an algebra:

Definition 5. Let X be a set of sequences of elements from Σ× :=×K

κ=1
Σκ, let

T be an ADP signature and (t, x, y) ∈ T . We define an ADP algebra F(T ,Σ×)

as a set of comparator functions {ctκ}
(t,x,y)∈T
κ=1,...,K . A comparator function, in turn,

is defined as some function

ctκ : (Σκ)Ix+Iy → R+ where (19)

Ix := 1{peek,read}(x) :=

{
1 , if x ∈ {peek, read}
0 , if x /∈ {peek, read}

(20)

Iy is defined analogously to Ix.
Given an algebra, we can define the according algebra functions. Let x, y ∈

Σ×∪{ε}. We define the algebra function for an alignment operation (t, x, y) ∈ T
as

dt : (Σ×)Ix+Iy → R+ (21)

dt(x, y) :=

K∑
κ=1

λκc
t
κ(xκ, yκ) (22)

where {λκ}κ=1,...,K are positive, real numbers that sum up to 1. We call these
numbers relevance weights.

Finally, let T be an alignment tree for the sequences x̄, ȳ. we define the
application of an algebra F on an T and x̄, ȳ as:

F
(
x̄, nil(), ȳ

)
:= 0 (23)

F
(
x̄, t(x, T ′, y), ȳ

)
:= dt(x′, y′) + F(x̄′, T, ȳ′) where (24)

x′ :=

{
x1 if x ∈ {read,peek}
ε if x = empty

(25)

x̄′ :=

{
(x2, . . . , xM) if x = read
x̄ if x ∈ {peek, empty}

(26)

y′ and ȳ′ are defined analogously to x and x̄.

As an example, consider the following algebra for the signature Tedit:

Fedit :=

{
crep
κ (a, b) := δ(a, b), cdel

κ (a) := 1, cins
κ (b) := 1

∣∣∣∣κ ∈ {1, . . . ,K}} (27)

Preprint of the publication [1], as provided by the authors. 11

where δ is the Kronecker-Delta. Consider the left example tree in Figure 1.
There, we have K = 1 with λ1 = 1. The corresponding application of Fedit is
given as:

Fedit(x̄, T, ȳ) = Fedit
(
ab, rep(read,del(read, ins(empty,nil(), read), empty), read), ac

)
(28)

= drep(a, a) + Fedit
(
b,del(read, ins(empty,nil(), read), empty), c

)
(29)

= crep
1 (a, a) + cdel

1 (b) + Fedit
(

(), ins(empty,nil(), read), c
)

(30)

= crep
1 (a, a) + cdel

1 (b) + cins
1 (c) + Fedit

(
(),nil(), ()

)
(31)

= 0 + 1 + 1 + 0 = 2 (32)

Finally, we introduce the notion of a grammar to limit our search space of
possible ADP trees.

Definition 6. Let T be an ADP signature. Then we define an ADP grammar
as a tuple

G(T) = (Φ,Φ∗,A∗,∆) (33)

where Φ is a finite set of nonterminal symbols, Φ∗ is a subset of Φ called accepting
nonterminal symbols, A∗ is an element of Φ called the axiom and ∆ is a set of
production rules δ of the form:

A→ t(x,B, y) (34)

where A,B ∈ Φ and (t, x, y) ∈ T .3
Further, we permit the application of the production rule

A→ nil() (35)

for each accepting nonterminal symbol. An application of this production rule
removes the single existing nonterminal symbol from the expression and makes
it a tree. Therefore, we can define the language L of an ADP grammar G as the
set of all trees that can be generated by successive applications of production
rules in ∆, starting with the axiom A∗.

3Note that we deviate from the standard formalism of regular tree grammars here: For-
mally, the symbols in T are applied here as nullary elements of the alphabet, while all elements
in a signature T are non-nullary elements. However, these definitions are only to provide a
clearer separation of concepts. Each ADP grammar according to this definition is also a stan-
dard regular tree grammar if one considers the union of T, the names in T and {nil()} as the
alphabet and adds the rule A→ nil() to the production rules instead of separately specifying
a set of accepting nonterminal symbols.

Preprint of the publication [1], as provided by the authors. 12

As an example, consider the ADP grammar Gedit for signature Tedit, which
we define as:

Gedit :=
(
{ALI}, {ALI},ALI,∆edit

)
(36)

∆edit :=
{
ALI→ rep(read,ALI, read), (37)
ALI→ del(read,ALI, empty), (38)

ALI→ ins(empty,ALI, read)
}

(39)

The left example tree in Figure 1 can be produced as follows:

ALI→ rep(read,ALI, read)→ rep(read,del(read,ALI, empty), read) (40)
→ rep(read,del(read, ins(empty,ALI, read), empty), read) (41)
→ rep(read,del(read, ins(empty,nil(), read), empty), read) (42)

Using this concept of a grammar, we can find an alternative formulation for
the problem of an alignment algorithm:

Definition 7. Let x̄ and ȳ be two sequences of elements from Σ× with lengths
M and N respectively. Further, let T be a signature, F(T ,Σ×) an algebra and
G(T) = (Φ,Φ∗,A∗,∆) be a grammar. Then the optimal alignment tree of x̄ and
ȳ with respect to T , F and G is defined as

T ∗ := argmin
T∈L(G)

{
F(x̄, T, ȳ)

∣∣∣|T | = (M,N)
}

(43)

Accordingly, the alignment distance of x̄ and ȳ with respect to T , F and G is

D(x̄, ȳ) = min
T∈L(G)

{
F(x̄, T, ȳ)

∣∣∣|T | = (M,N)
}

(44)

As mentioned before, ADP only requires the definition of signature, algebra
and grammar. Given these ingredients, ADP provides an efficient dynamic
programming scheme for the calculation of the respective alignment distance
automatically:

Theorem 1. Let x̄ and ȳ be two sequences of elements from Σ× with lengths
M and N respectively. Further, let T be a signature, F(T ,Σ×) an algebra
and G(T) = (Φ,Φ∗,A∗,∆) be a grammar. Then, algorithm 1 calculates the
alignment distance D(x̄, ȳ), and it does so in O(M ·N).

For the algorithm, we define a production rule δ = A→ t(x,B, y) from ∆ as
applicable iff

(x 6= read ∨ i < M + 1) ∧ (y 6= read ∨ j < N + 1) (45)

Further work on applicability can be found in [37].

Proof. The general proof has been provided by Giegerich and others in [10].
Here, we provide a sketch of the proof: The algorithms creates a dynamic pro-
gramming table A for every nonterminal symbol A in the grammar G. An entry

Preprint of the publication [1], as provided by the authors. 13

at position (i, j) stores the alignment distance for the subsequences xi, . . . , xM
and yj , . . . , yN . Each element θl = dt(. . .)+B(. . .) adds the cost of an alignment
operation to extend this partial alignment distance to the alignment distance for
the subsequences xi′ , . . . , xM and yj′ , . . . , yN . By applying the minimum, we use
the best possible operation in each step. Therefore, A(i, j) = min{θ1, . . . , θL}
is indeed a decomposition of the problem of finding an optimal alignment. This
is only valid, however, if the entries in all tables A are monotonically increasing
for lower i or j. This is guaranteed because dt(. . .) is non-negative by definition
(see Definition 5), which implies θl ≥ B(. . .) for all l.

Finally, the worst-case runtime is obvious as the number of nonterminal
symbols and the number of applicable production rules are constants and the
two nested for-loops lead to O(M ·N).

Algorithm 1 An abstract dynamic programming algorithm to calculate any
alignment distance corresponding to a given combination of a signature T , al-
gebra F and grammar G.
Let x̄ and ȳ be two input sequences over the set Σ× with lengths M and N .
Let T be a signature, F(T ,Σ×) an algebra and G(T) = (Φ,Φ∗,A∗,∆) be a
grammar.
for A ∈ Φ do

Initialize A as a table of size (M + 1)× (N + 1).
end for
for A ∈ Φ∗ do

A(M + 1, N + 1)← 0.
end for
for i←M + 1, . . . , 1 do

for j ← N + 1, . . . , 1 do
for A ∈ Φ do

Let {δl}l=1,...,L be the applicable production rules for A.
for l ∈ {1, . . . , L} do

Let δl = A→ t(x,B, y).
θl ← dt(x′, y′) +B(i′, j′), where
x′ = ε if x = empty and x′ = xi otherwise and
i′ = i+ 1 if x = read and i′ = i otherwise.

end for
A(i, j)← min{θ1, . . . , θL}.

end for
end for

end for
return Dλ(x̄, ȳ) = A∗(1, 1).

This general scheme allows for easy construction of alignment algorithms for
different situations. The simple edit distance mentioned above can be expressed
as the combination of Tedit, Fedit and Gedit as mentioned before. Dynamic time

Preprint of the publication [1], as provided by the authors. 14

warping (DTW) can be expressed like this:

TDTW :=
{

rep(read, read), rep_del(read,peek), rep_ins(peek, read)
}

(46)

FDTW :=
{
ctκ(a, b) := ‖a− b‖2

∣∣∣κ ∈ {1, . . . ,K}, (t, x, y) ∈ TDTW

}
(47)

GDTW :=
(
{ALI}, {ALI},ALI,∆DTW

)
(48)

∆DTW :=
{
ALI→ rep(read,ALI, read), (49)

ALI→ rep_del(read,ALI,peek),

ALI→ rep_ins(peek,ALI, read)
}

DTW can be accelerated by slightly changing Algorithm 1 and permitting the
second and third rule only if |i − j| < W , where W ∈ N is the so-called Sakoe
Chiba-bandwidth [28]. This leads to a worst case runtime of O(max{M,N} ·
W) = O(max{M,N}). We use these two algorithms in our first experiment on
motion data (see Section 5.1).

To compare Java programs, we apply a variant of the edit distance men-
tioned above: We do not only permit the algorithm to delete or insert, but also
to skip consecutive subsequences of both inputs. For this, we define a relatively
high initial opening cost s for such a region, while each following skip is rela-
tively cheap with a cost of ŝ < s. Thereby, the algorithm is enabled to skip
subsequences that could only be aligned at high cost, such that those long, con-
secutive subsequences do not drive the alignment distance as much. Conversely,
one can also interpret this form of alignment as identifying those subsequences
of both inputs that match best and ignore the rest. This alignment approach
is called affine alignment in the bioinformatics community and was first intro-
duced by [26]. The according ADP signature, algebra and grammar are given
as Taffine, Faffine and Gaffine below.

Preprint of the publication [1], as provided by the authors. 15

Taffine := { rep := (read, read), (50)
del := (read, empty), ins := (empty, read),

skip_del := (read, empty), skip_ins := (empty, read),

skip_del_open := (read, empty), skip_ins_open := (empty, read)}

Faffine :=

{
crep
κ (a, b) :=

{
0 , if a = b

1 , if a 6= b
, (51)

cdel
κ (a) := cins

κ (b) := 1,

c
skip_del_open
κ (a) := c

skip_ins_open
κ (b) := s,

c
skip_del
κ (a) := c

skip_ins
κ (b) := ŝ,

∣∣∣∣κ ∈ {1, . . . ,K}}
Gaffine :=

(
Φaffine,Φaffine,ALI,∆affine

)
(52)

Φaffine := { ALI, SKIPDEL, SKIPINS} (53)

∆affine :=
{
ALI→ skip_del_open(read, SKIPDEL, empty), (54)
ALI→ skip_ins_open(empty, SKIPINS, read),

ALI→ rep(read,ALI, read),

ALI→ del(read,ALI, empty),

ALI→ ins(empty,ALI, read),

SKIPDEL→ skip_del(read, SKIPDEL, empty),

SKIPDEL→ rep(read,ALI, read),

SKIPINS→ skip_ins(empty, SKIPINS, read),

SKIPINS→ rep(read,ALI, read)
}

4 Metric Learning using RGLVQ
The definition of algebrae in Section 3 provides us with the parameters λκ,
which capture the relevance (and scaling) of the different dimensions κ in each
sequence element. This formulation is inspired by the generalized quadratic
form metric in vectorial settings [31, 30, 32]:

DΛ(~x, ~y) := (~x− ~y)TΛTΛ(~x− ~y) = (Λ~x− Λ~y)T (Λ~x− Λ~y) (55)

If one restricts Λ to diagonal matrices, this is equivalent to a weighting of the
dimensions:

DΛ(~x, ~y) = (~x− ~y)Tdiag(Λ)Tdiag(Λ)(~x− ~y) =

K∑
κ=1

λ2
κ(xκ − yκ)2 (56)

Metric learning is the challenge of finding optimal parameters Λ for the task
at hand. In particular, metric learning has been applied to classification tasks:

Preprint of the publication [1], as provided by the authors. 16

If a classification algorithm provides a model based on Λ and/or the distances
created with it, one can adjust Λ to optimize classification accuracy. Numerous
such metric learning approaches exist for the vectorial setting, as can be seen
in the summaries [31, 30].

In this paper, we build in particular on recent work on learning vector quan-
tization (LVQ) schemes: Such a scheme classifies a data point x by representing
the classes by prototypes {~ws}s=1,...,S and assigning the data point x to its
closest prototype in a winner-takes-all fashion. Learning an LVQ model means
moving the prototypes in the data space, such that the classification accuracy
is optimal. Apparently, the classification accuracy of LVQ critically relies on
distances between data points and prototypes can profit from metric learning
approaches: Generalized relevance learning vector quantization (GRLVQ) [32],
optimizes a diagonal Λ matrix in the vectorial case. Relational generalized learn-
ing vector quantization (RGLVQ) extends LVQ to relational data, based solely
on the dissimilarities between data points [18]. Thereby, RGLVQ is able to
classify structure data as well, if a suitable structure metric is given. Both
approaches have been merged in the work of [11], providing a metric learning
scheme on edit distances. We extend this approach using algebraic dynamic
programming towards more sophisticated alignment schemes.

RGLVQ is based on the insight that data, given only in terms of pairwise,
symmetric dissimilarities with vanishing self-dissimilarities, can be embedded as
vectors in a pseudo-Euclidean space, in which regular (G)LVQ could be applied
[38]. Interestingly though, one does not have to compute this vectorial repre-
sentation explicitly, but can compute an RGLVQ model based on the pairwise
dissimilarities alone. The LVQ prototypes {~ws}s=1,...,S are assumed to be given
as convex combinations of the embedded data points {~xr}r=1,...,R:

~ws :=

R∑
r=1

αsr~xr with
R∑
r=1

αsr = 1 and ∀s, r : αsr ≥ 0 (57)

Therefore, the dissimilarities between prototypes and data points are given in
terms of pairwise dissimilarities only:

Dλ(x̄r, ws) :=

R∑
r′=1

αsr′Dλ(x̄r, x̄r′)−
1

2

R∑
r′=1

R∑
r′′=1

αsr′αsr′′Dλ(x̄r′ , x̄r′′) (58)

These distances can be plugged into the usual GLVQ cost function:

EGLVQ :=

R∑
r=1

Φ

(
Dλ(x̄r, w

+)−Dλ(x̄r, w
−)

Dλ(x̄r, w+) +Dλ(x̄r, w−)

)
(59)

where w+ is the closest prototype with the same label as x̄r and w− is the
closest prototype with a different label than x̄r. In usual RGLVQ, the position
of the prototypes is adapted to minimize wrong labeling of data points [18]. In
[11] the authors suggest to also optimize the metric parameters λκ by gradient
descent. The detailed formulas can be found there. We want to highlight, that

Preprint of the publication [1], as provided by the authors. 17

a gradient descent on the GLVQ cost function with respect to λκ depends on a
gradient of the pairwise dissimilarities Dλ(x̄, ȳ) with respect to λκ. In [11], this
gradient has been derived for the simple edit distance case. For the formulas
given in Algorithm 1, we arrive at:

∂

∂λκ
A(i, j) =

∂

∂λκ
min{θ1, . . . , θL} (60)

As the minimum function is non-differentiable, we replace it by the differentiable
approximation

softmin{θ1, . . . , θL} :=

∑L
l=1 exp(−β · θl) · θl∑L
l=1 exp(−β · θl)

(61)

This approximation converges exponentially towards the strict minimum with
higher β [11, 37]. This leads us to:

∂

∂λκ
A(i, j) =

L∑
l=1

softmin′(θl) ·
(

∂

∂λκ
θl

)
where (62)

softmin′(θl) :=
exp(−β · θl) · θl∑L
l′=1 exp(−β · θl′)

·
(

1− β · (θl − softmin{θ1, . . . , θL})
)

(63)

∂

∂λκ
θl =

∂

∂λκ
dt(x′i, y

′
j) +

∂

∂λκ
B(i′, j′) = ctκ(x′i, y

′
j) +

∂

∂λκ
B(i′, j′) (64)

This does not only provide a generalized formula for the gradient on alignment
distances. We also observe, that this formula follows the same recursive scheme
as the original distance calculation. Therefore, we can calculate it using Al-
gorithm 1, using the same ADP signature and grammar, but softmin instead
of a strict minimum as well as a different algebra. This also implies that the
gradient calculation can be done efficiently in O(M ·N). Gradient calculation
with respect to parameters of the comparator functions ctκ are possible as well
and result in a Hebbian learning scheme for the case of an explicit parameter
matrix [11, 37]. Further, one can apply approximations to limit the number of
calculated cells in the dynamic programming tables, such that further runtime
improvements are possible [11].

5 Experiments
We present experimental results on two example datasets, an artificial one on
sports coaching and a real one on Java programming. In both experiments,
we adapt the underlying alignment metric parameters λκ in order to increase
the classification accuracy of an RGLVQ classifier with one prototype per class.
The classes are defined as correct and wrong executions of a sports exercise
in the first dataset, and as two different programming strategies in the second
dataset. Our experimental hypotheses are: (A) metric learning does improve

Preprint of the publication [1], as provided by the authors. 18

0 50 100

−1

0

1

frame

va
lu
e

wrong
correct

(a) The movement in the first (and rel-
evant) dimension over time. All ex-
ecutions start at position 0 and end
(roughly) at position one. Intermedi-
ately, however, the wrong executions go
into the wrong direction.

0 50 100

−1

0

1

frame

va
lu
e

(b) The movement in the second (irrel-
evant) dimension. All executions start
at position 0 and end at a random posi-
tion around 0. The nonlinear motion in
between is also determined by Gaussian
random noise.

Figure 2: Some example executions for our fictional sports exercise. The position
of a body part is shown over time (in frames). Wrong executions are shown in
red (and dashed), correct executions in blue.

the classification accuracy of an RGLVQ classifier, (B) the learned metric leads
to better classification accuracy for k-nearest neighbor (KNN) classifiers and
support vector machine (SVM) as well, and (C) the resulting relevance profile
makes sense with respect to the task.

We initialized the weights as λκ := 1
K for all κ ∈ {1, . . . ,K}. We applied 10

gradient steps with a learning rate of η := 2
|X|·〈M〉 in the first and η := 0.1

|X|·〈M〉
in the second experiment, where |X| is the number of sequences and 〈M〉 is
the mean sequence length. For comparison with SVM, we transformed the
dissimilarity matrix into a kernel matrix by double centering and flip-correction
of the negative eigenvalues.

5.1 Motion Data
We simulated executions of a sports exercise using dynamical movement prim-
itives (DMPs). DMPs are a well-established mean to describe movements by
dynamical systems [35]. We use the fixed point attractor version of the DMP
framework to generate 60 sample trajectories (30 per class) from the origin of
the coordinate system to a goal point ~g. Each element in our trajectories simu-
lates a frame in motion tracking, and each dimension simulates the position of
a body part or the angle of a joint in the human body. In our fictional exer-
cise, we assume that the movement of only one body part is relevant, while the
remaining parts of the body may move freely.

We simulated the movement over 20 seconds using step-wise approximations

Preprint of the publication [1], as provided by the authors. 19

Method Train (Std.) Test (Std.) SVM (Std.) 5-NN Sep.
DTW 0.70 (0.06) 0.55 (0.11) 0.58 (0.16) 0.42 0.94

DTW adapted 0.94 (0.02) 0.94 (0.06) 0.88 (0.11) 0.92 0.57
SC-DTW 0.81 (0.04) 0.65 (0.14) 0.71 (0.16) 0.58 0.93

SC-DTW adapted 0.98 (0.01) 0.98 (0.03) 0.95 (0.06) 1.00 0.35

Table 1: The results for the motion dataset. The rows represent different con-
figurations of the metric (unrestricted dynamic time warping (DTW) without
and with metric learning and Sakoe-Chiba approximation (SC-DTW) without
and with metric learning). In the first two columns, we show average training
and test accuracy for RGLVQ over a 5-fold crossvalidation with 5 repeats (the
standard deviation is shown in brackets). The third column shows mean test ac-
curacy across crossvalidation trials for a support vector machine (SVM) as well
as the standard deviation in brackets. Column four contains the test accuracy
of a 5-nearest neighbor (5-NN) classifier and column 5 the class separation ratio
(Sep.; summed intra-class distances divided by summed inter-class distances; a
low value is better) respectively.

of the differential equations with a standard Euler approach. To simulate dif-
ferent movement speeds of the learners, the step size was randomly chosen as
∆t = µ+ ρ2 with µ = 0.2s, where ρ in turn was a random variable drawn from
the normal distribution N (µ = 0s, σ = 0.2s). This leads to an average sequence
length of 89 frames (standard deviation: ≈ 15). In our fictional sports exercise,
students should move the body part corresponding to the first dimension from
the origin to position 1. In our simulation, we assumed that students where
generally able to do that (the actual goal of the movement was selected from
N (µ = 1, σ = 0.1)), but erroneous executions first moved the arm a little in
the wrong direction, before proceeding towards the goal. Thereby, we simulated
execution errors that might be harmful to students, e.g. due to hyper-extension.
We simulated these errors by utilizing the nonlinear force term of the DMP
framework with weights ~wr chosen from N (−1, 1) for the erroneous executions
and N (1, 1) for the correct executions. The random noise simulates differences
in style. We simulated the movement of other body parts by 9 additional di-
mensions, which are not related to the exercise and thus do not help for the
classification task. The goal position in these dimensions as well as the nonlin-
ear force weights were selected from N (0, 1). The first two dimensions for some
sample trajectories are visualized in Figure 2.

To compare such time series of different lengths, warping techniques are
required and dynamic time warping (DTW) is probably the best-known warping
technique available [27]. We applied DTW as introduced in Section 3 as well as
the Sakoe-Chiba approximation [28].

The experimental results are shown in Table 1. Due to the high noise level,
the test classification accuracy without metric learning is close to random guess-
ing (around 55% on average in a 5-fold crossvalidation with 5 repeats), while
the accuracy goes to 94% on average with metric learning, which confirms hy-

Preprint of the publication [1], as provided by the authors. 20

pothesis (A). Interestingly, the results for the Sakoe-Chiba approximation are
even better than unrestricted dynamic time warping (10% better without metric
learning and 4% better with metric learning). This might be due to the fact,
that the additional degrees of freedom of the unrestricted DTW might under-
estimate the differences between classes. Our second research hypothesis (B) is
supported as well: The adapted metric leads to improvements of 24% or more
for SVM- and 5-NN classifiers. Also, the separation ratio between the classes is
notably improved by metric learning. Finally, we note that metric learning does
indeed identify the first dimension as the only relevant one, with λ1 going to
1 during learning, while all other weights are reduced to 0, thereby confirming
our last hypothesis (C).

5.2 Java Programs
Our Java dataset consists of 64 programs collected from 37 different web sites,
which all solve the same underlying task, namely sorting an input array of
integers in ascending order. However, the programs differed in their underlying
strategy, which was either the BubbleSort (35 programs) or the InsertionSort
(29 programs) algorithm.

In order to apply alignment algorithms on Java programs, we need a se-
quential representation of said programs as well as metrics on the element-wise
features. As proposed in [39], we transfer program code to an abstract syn-
tax tree using the Oracle Java Compiler API. Every vertex of this parse tree
is characterized by a feature vector encoding characteristic properties: the ver-
tex type, the scope, the parent vertex, code position, name, class name, return
type, external references, and internal references (number of edges). The prefix
order of the tree vertices gives us a sequential representation of the program,
which corresponds to their natural sequential order when executing the pro-
gram. We defined straightforward metrics for each feature: For the scope we
returned one minus the normalized depth of the common parent scope, for vec-
torial features (parent vertex, code position and internal references) we applied
the Manhattan-distance, for string features (name, class name, return type, ex-
ternal references) we applied a Manhattan-distance on the character frequency
vectors and we compared vertex types with a Kronecker-Delta (1 for unequal
types and 0 for equal types).

We compared two different alignment algorithms: First, the classic edit dis-
tance/global sequence alignment as baseline [22, 36, 24] and second, inspired
by bioinformatics, the affine sequence alignment proposed by Gotoh [26]. The
latter approach is motivated by the fact, that differences in programming style
might lead to long subsequences of irrelevant code, e.g. intermediate results or
diagnostic code. Affine sequence alignment permits to skip these parts of the
program at low cost and concentrating on more important differences between
the programs.

The results are shown in Table 2: Metric learning increases the classifica-
tion accuracy of RGLVQ notably (6 percent points for global alignment and 11
percent for affine alignment), confirming hypothesis (A). While the initial ac-

Preprint of the publication [1], as provided by the authors. 21

Method Train (Std.) Test (Std.) SVM (Std.) 5-NN Sep.
global 0.75 (0.03) 0.74 (0.10) 0.65 (0.16) 0.77 0.88

global adapted 0.80 (0.02) 0.80 (0.09) 0.63 (0.19) 0.92 0.75
affine 0.77 (0.03) 0.74 (0.12) 0.74 (0.12) 0.62 0.9

affine adapted 0.85 (0.03) 0.85 (0.10) 0.78 (0.17) 1.00 0.74

Table 2: The results for the Java dataset. The rows represent different config-
urations of the metric (edit distance (global) without and with metric learning
and affine alignment (affine) without and with metric learning). In the first two
columns, we show average training and test accuracy for RGLVQ over a 5-fold
crossvalidation with 5 repeats (the standard deviation is shown in brackets).
The third column shows mean test accuracy across crossvalidation trials for a
support vector machine (SVM) as well as the standard deviation in brackets.
Column four contains the test accuracy of a 5-nearest neighbor (5-NN) classifier
and column 5 the class separation ratio (Sep.; intra-class distances divided by
inter-class distances; a low value is better) respectively.

curacies for global and affine sequence alignment are the same, metric learning
showed a stronger effect for affine sequence alignment. This is reflected as well
in the accuracy of a support vector machine and a 5-nearest neighbor classifier
on the resulting dissimilarity matrix: In line with hypothesis (B), metric learn-
ing improves the result and affine alignment leads to better results (after metric
learning) than global alignment. The adapted dissimilarities also notably reduce
the class separation ratio (where low values are good).

The resulting relevances λκ (normalized by their frequency in the data) are
shown in Fig. 3. As predicted in hypothesis (C), a semantically meaningful
profile results, which marks the type and scope as most prominent structuring
elements to distinguish programming styles. In contrast, exact code position,
as well as several other features play only a very minor role, as they tend to be
sensitive to mere stylistic differences.

The improvements of the metric for the classification task can also be seen
in a t-stochastic neighborhood embedding (t-SNE [40]) of the resulting dissim-
ilarity matrix. Figure 4 shows embeddings for the unadapted and the adapted
metric. Apparently, in the embedding for the adapted metric, programs with
the same underlying strategy become visible as clusters.

6 Conclusion
We have introduced a simplified version of algebraic dynamic programming
(ADP) in order to express four different alignment algorithms (DTW, DTW
with Sakoe-Chiba approximation, global alignment and affine alignment) in a
common framework. We showed that the ADP formulation is as efficient as
the original algorithms and that one can generally compute gradients on these
alignment distances with respect to metric parameters.

Preprint of the publication [1], as provided by the authors. 22

0 2 4 6

·10−2

type
scope
parent

codePosition
name

className
returnType

externalDependencies
numberOfEdges

normalized weight λκ

fe
at
ur
e
κ

Figure 3: The relevance weights λκ after metric learning has been applied. The
weights were normalized by their frequency in the dataset.

BubbleSort InsertionSort

Figure 4: Two-dimensional t-SNE embeddings of the Java dataset without met-
ric learning (left) and with metric learning (right). BubbleSort programs are
visualized as blue squares, InsertionSort programs as red triangles. These visu-
alizations are based on the affine sequence alignment metric.

Preprint of the publication [1], as provided by the authors. 23

Based on those gradients, we introduced a learning scheme for alignment
metric parameters based on the cost function of the popular learning vector
quantization (LVQ) classifier. We demonstrated the effectiveness of this learn-
ing scheme in two datasets: classifying right versus wrong executions of a sim-
ulated sports exercise, and classifying the underlying algorithm in Java sorting
programs. In both cases, metric learning notably increased classification ac-
curacy; whereby this result is independent from the subsequent classifier used
(LVQ, kNN, and SVM). In addition, metric parameters allow for semantic in-
sight into the domain (the relevant body parts for sport executions, and the
relevant features in Java program strategy distinction).

These results lay the foundation for semantically meaningful distance mea-
sures, based on which an intelligent tutoring system can autonomously select
examples for feedback. Thereby, we provide further support for data-driven in-
telligent tutoring approaches, that do not require formalized domain knowledge
or a clear definition of correct solutions.

Furthermore, we have extended metric learning schemes for autonomous se-
lection of metric parameters towards sophisticated structure metric schemes like
affine sequence alignment, enabling the application of structure metric learning
in new situations.

In future work, it would be interesting to transfer these promising results
from GLVQ to other cost functions, such as the popular Large Margin Nearest
Neighbor approach, and to apply other nonlinear optimization methods than
gradient descent.

Acknowledgement
Funding by the DFG under grant numbers HA 2719/6-1 and HA 2719/6-2 is
gratefully acknowledged. Additionally, this research/work was supported by
the Cluster of Excellence Cognitive Interaction Technology ’CITEC’ (EXC 277)
at Bielefeld University, which is funded by the German Research Foundation
(DFG).

References

References
[1] B. Paassen, B. Mokbel, B. Hammer, Adaptive structure metrics for auto-

mated feedback provision in intelligent tutoring systems, Neurocomputing
192 (2016) 3–13. doi:10.1016/j.neucom.2015.12.108.

[2] R. Nkambou, R. Mizoguchi, J. Bourdeau, Advances in Intelligent Tutoring
Systems, Springer, 2010.

http://dx.doi.org/10.1016/j.neucom.2015.12.108

Preprint of the publication [1], as provided by the authors. 24

[3] T. Murray, S. Blessing, S. Ainsworth, Authoring tools for advanced tech-
nology learning environments: Toward cost-effective adaptive, interactive
and intelligent educational software, Springer, 2003.

[4] C. Lynch, K. D. Ashley, N. Pinkwart, V. Aleven, Concepts, structures,
and goals: Redefining ill-definedness, International Journal of Artificial
Intelligence in Education 19 (3) (2009) 253–266.

[5] K. R. Koedinger, E. Brunskill, R. S. Baker, E. A. McLaughlin, J. Stamper,
New potentials for data-driven intelligent tutoring system development and
optimization, AI Magazine 34 (3) (2013) 27–41.

[6] J. C. Stamper, M. Eagle, T. Barnes, M. Croy, Experimental evaluation of
automatic hint generation for a logic tutor, in: G. Biswas, S. Bull, J. Kay,
A. Mitrovic (Eds.), Artificial Intelligence in Education, Vol. 6738 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2011, pp. 345–352.

[7] S. Gross, B. Mokbel, B. Hammer, N. Pinkwart, How to select an example?
A comparison of selection strategies in example-based learning, in: ITS,
2014, pp. 340–347.

[8] S. Gross, B. Mokbel, B. Hammer, N. Pinkwart, Example-bases feedback
provision using structured solution spaces, International Journal on Learn-
ing Technologies 9 (3) (2014) 248–280.

[9] K. Rivers, K. R. Koedinger, Automatic generation of programming feed-
back: A data-driven approach, The First Workshop on AI-supported Edu-
cation for Computer Science (AIEDCS 2013) (2013) 50.

[10] R. Giegerich, C. Meyer, P. Steffen, A discipline of dynamic programming
over sequence data, Science of Computer Programming 51 (3) (2004) 215
– 263.

[11] B. Mokbel, B. Paaßen, F.-M. Schleif, B. Hammer, Metric learning for se-
quences in relational LVQ, Neurocomputing 169 (2015) 306–322.

[12] S. Ritter, J. R. Anderson, K. R. Koedinger, A. Corbett, Cognitive tutor:
Applied research in mathematics education, Psychonomic bulletin & review
14 (2) (2007) 249–255.

[13] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, L. J.
Guibas, Learning program embeddings to propagate feedback on student
code, in: Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, 2015, pp. 1093–1102.

[14] T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21–27.

[15] S. P. Lloyd, Least squares quantization in pcm, IEEE Transactions on
Information Theory 28 (2) (1982) 129–136.

Preprint of the publication [1], as provided by the authors. 25

[16] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, L. Cazzanti, Similarity-
based classification: Concepts and algorithms, The Journal of Machine
Learning Research 10 (2009) 747–776.

[17] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning), The MIT Press, 2005.

[18] B. Hammer, D. Hofmann, F. Schleif, X. Zhu, Learning vector quantization
for (dis-)similarities, Neurocomputing 131 (2014) 43–51.

[19] G. Da San Martino, A. Sperduti, Mining structured data, Computational
Intelligence Magazine, IEEE 5 (1) (2010) 42–49.

[20] T. Gärtner, A survey of kernels for structured data, SIGKDD Explor.
Newsl. 5 (1) (2003) 49–58.

[21] T. Gärtner, T. Horváth, S. Wrobel, Graph kernels, in: Encyclopedia of
Machine Learning, 2010, pp. 467–469.

[22] V. I. Levenshtein, Binary codes capable of correcting deletions, insertions,
and reversals, Soviet Physics Doklady 10 (8) (1965) 707–710.

[23] F. J. Damerau, A technique for computer detection and correction of
spelling errors, Commun. ACM 7 (3) (1964) 171–176.

[24] S. B. Needleman, C. D. Wunsch, A general method applicable to the search
for similarities in the amino acid sequence of two proteins, Journal of Molec-
ular Biology 48 (3) (1970) 443 – 453.

[25] T. Smith, M. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1) (1981) 195 – 197.

[26] O. Gotoh, An improved algorithm for matching biological sequences, Jour-
nal of molecular biology 162 (3) (1982) 705–708.

[27] T. Vintsyuk, Speech discrimination by dynamic programming, Cybernetics
4 (1) (1968) 52–57.

[28] H. Sakoe, S. Chiba, Readings in speech recognition, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1990, Ch. Dynamic Programming
Algorithm Optimization for Spoken Word Recognition, pp. 159–165.

[29] J. D. Kececioglu, E. Kim, Simple and fast inverse alignment, in: Research in
Computational Molecular Biology, 10th Annual International Conference,
RECOMB 2006, Venice, Italy, April 2-5, 2006, Proceedings, 2006, pp. 441–
455.

[30] A. Bellet, A. Habrard, M. Sebban, A Survey on Metric Learning for Feature
Vectors and Structured Data, ArXiv e-prints (1306.6709).

Preprint of the publication [1], as provided by the authors. 26

[31] B. Kulis, Metric learning: A survey, Foundations and Trends in Machine
Learning 5 (4) (2013) 287–364.

[32] P. Schneider, M. Biehl, B. Hammer, Adaptive relevance matrices in learning
vector quantization, Neural Computation 21 (12) (2009) 3532–3561.

[33] A. Bellet, A. Habrard, M. Sebban, Good edit similarity learning by loss
minimization, Machine Learning 89 (1-2) (2012) 5–35.

[34] U. Yang, G. J. Kim, Implementation and evaluation of “just follow me”:
An immersive, VR-based, motion-training system, Presence: Teleoperators
and Virtual Environments 11 (3) (2002) 304–323.

[35] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynami-
cal movement primitives: Learning attractor models for motor behaviors,
Neural Comput. 25 (2) (2013) 328–373.

[36] R. A. Wagner, M. J. Fischer, The string-to-string correction problem, J.
ACM 21 (1) (1974) 168–173.

[37] B. Paaßen, Adaptive affine sequence alignment using algebraic dynamic
programming, Master’s thesis (2015).

[38] E. Pękalska, The dissimilarity representation for pattern recognition: foun-
dations and applications, Ph.D. thesis (2005).

[39] B. Mokbel, S. Gross, B. Paaßen, N. Pinkwart, B. Hammer, Domain-
independent proximity measures in intelligent tutoring systems, in: EDM,
2013, pp. 334–335.

[40] L. van der Maaten, G. E. Hinton, Visualizing high-dimensional data using
t-SNE, Journal of Machine Learning Research 9 (2008) 2579–2605.

	Introduction
	Contribution and Overview

	Related Work
	Data-Driven Intelligent Tutoring Systems
	Similarity-Based Machine Learning
	Structure Metrics
	Structure Metric Learning
	Experimental data

	Algebraic Dynamic Programming
	Metric Learning using RGLVQ
	Experiments
	Motion Data
	Java Programs

	Conclusion

