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Abstract— The proposal of a meta-cognitive learning machine that embodies the three pillars of human 

learning: what-to-learn, how-to-learn, and when-to-learn, has enriched the landscape of evolving systems. The 

majority of meta-cognitive learning machines in the literature have not, however, characterised a plug-and-play 

working principle, and thus require supplementary learning modules to be pre-or post-processed. In addition, 

they still rely on the type-1 neuron, which has problems of uncertainty. This paper proposes the Scaffolding 

Type-2 Classifier (ST2Class). ST2Class is a novel meta-cognitive scaffolding classifier that operates completely 

in local and incremental learning modes. It is built upon a multivariable interval type-2 Fuzzy Neural Network 

(FNN) which is driven by multivariate Gaussian function in the hidden layer and the non-linear wavelet 

polynomial in the output layer. The what-to-learn module is created by virtue of a novel active learning scenario 

termed the uncertainty measure; the how-to-learn module is based on the renowned Schema and Scaffolding 

theories; and the when-to-learn module uses a standard sample reserved strategy. The viability of ST2Class is 

numerically benchmarked against state-of-the-art classifiers in 12 data streams, and is statistically validated by 

thorough statistical tests, in which it achieves high accuracy while retaining low complexity.  
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1. Introduction 

The variety of concept drifts in data streams has led to an increasing demand for an autonomous learning 

machine that mimics the mental development of a human being – a machine that is capable of starting the 

learning process from scratch and evolving its knowledge base from streaming data without tedious manual 

intervention. This requires a process whereby information can be memorised through examples and experiences 

and obsolete or inconsequential knowledge can be discarded (Angelov & Filev, 2004; Lughofer, 2008; Liu el at, 

2007).  Such learning machines, known as ‘evolving systems’, have appeal for many industrial applications 

because of their ability to cope with concept drift in data streams regardless of how data distributions change – 

whether they are slow, rapid, abrupt, gradual, local, global, cyclical or otherwise. Additionally, the evolving 

system is capable of overcoming the ‘digital obesity issue’, as raised in Martin (2005) as a result of its sample-

wise learning of entire scenarios. Nonetheless, classical evolving systems are cognitive in nature and have not 

taken into account the meta-cognitive facet of human beings.  

This issue has motivated the proposal of a meta-cognitive learning machine (Suresh et al, 2010), which 

essentially transforms the meta-memory model of Nelson and Narens (1990) in the realm of machine learning: 

what-to-learn; how-to-learn; when-to-learn. However, most meta-cognitive learning models in the literature 

have two underlying deficiencies: 1) these works have not taken into account scaffolding theory, which has the 

potential to generate a plug-and-play working principle. As such, they still require pre-or-post training processes 

to produce reliable learning performance; 2) the what-to-learn constituent still requires impractical labelling 

effort and therefore does not exemplify a semi-supervised learning principle. To correct these shortcomings, a 

meta-cognitive scaffolding algorithm was proposed in Pratama et al (2014b; 2015a), in which the key principle 

is the use of scaffolding theory to govern the how-to-learn part. Scaffolding theory itself is a renowned tutoring 

theory in the area of cognitive psychology which assists learners to complete complex learning tasks. 

Nevertheless, meta-cognitive scaffolding theory as developed by Pratama et al (2014b; 2015a) still deserves 

more in-depth investigation for five reasons: 1) They have not adequately addressed the uncertainty challenge 
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caused by the disagreement of expert knowledge, noisy measurement, inexact fuzzy rule identification, and 

noisy data (Karnik, Mendel & Liang, 1999); 2) Although they are suitable for a semi-supervised learning 

environment, they always assume the availability of expert knowledge, which is inevitably laborious to elicit, in 

annotating queried samples; 3) The online feature weighting strategy is only done by the relevance measure, 

performing a fully supervised working principle. Hence, the estimate of the input contribution is inaccurate for 

the semi-supervised learning environment and does not take into account mutual information among input 

variables; 4) Existing meta-cognitive classifiers make use of less reliable cognitive components. Specifically, 

the meta-cognitive-scaffolding classifiers in Pratama et al (2014b; 2015a) impose considerable memory burden 

owing to the use of the functional link-based Chebyshev function, whereas others (Angelov, 2004) do not 

possess full mapping ability due to the use of the zero or first order Takagi-Sugeno-Kang (TSK) output weights; 

5) Their fundamental working principles are only valid for the type-1 fuzzy system, because they are 

particularly devised for the type-1 fuzzy system.  

To remedy the bottlenecks of its predecessors, a novel, evolving, plug-and-play, and computationally 

efficient type-2 meta-cognitive scaffolding classifier – Scaffolding Type-2 Classifier (ST2Class) – is proposed 

in this paper. ST2Class automates the knowledge acquisition and organization phases as practiced by 

conventional evolving systems. It demonstrates the plug-and-play working principle, in which all learning 

modules are fully incorporated in a single training process with no pre-or-post-processed training steps, and is 

carried out in single-pass learning mode to retain scalability against big data. Moreover, ST2Class adopts the 

local learning scenario in which learning in a local sub-system does not harm the stability and convergence of 

other local sub-models. It can be assumed as a loosely coupled fuzzy model.  

ST2Class’s output is inferred by a multivariable interval type-2 Takagi-Sugeno-Kang (TSK) FNN, where the 

hidden node triggers a non-axis parallel ellipsoidal cluster by means of the interval type-2 multivariate Gaussian 

function. Specifically, an interval-valued fuzzy system, which is a special case of the interval type-2 fuzzy 

system featuring an interval primary variable, is utilised (Liang and Mendel, 2000). It is worth noting that most 

interval type-2 FNNs in the existing literature actualise an interval valued fuzzy system, which is a special case 

of the interval type-2 fuzzy system that uses an interval primary membership (Bustince et al, 2015). The wavelet 

function, which possesses dilation and translation parameters, constructs the output node. This kind of output 

node was inspired by Fuzzy Wavelet Neural Networks (FWNNs) (Abiyev & Kaynak, 2008; Abiyev, Kaynak & 

Kayaran, 2013). The ST2Class learning strategy starts with what-to-learn, steered by a brand new active 

learning procedure with a self-labelling property. The what-to-learn module extracts relevant training samples to 

be fed into the how-to-learn phase for model updates.  

In the how-to-learn component, the hidden nodes are automatically generated and adjusted with respect to 

the conflict level induced by a datum admitted by the what-to-learn component to identify the regime-shifting 

properties of the system being learned. The conflict degree induced by the datum is probed by two rule-growing 

cursors termed a type-2 version of the Data Quality method and the Datum Significance concept (Pratama et al, 

2015b), to determine a suitable learning scenario for scrutinizing the datum (accretion, tuning, and 

restructuring). Once the datum qualifies as a new fuzzy rule, its parameters are initialised by activating the so-

called Bayesian class overlapping criterion to circumvent an overlapping region, induced by a new rule. 

Furthermore, the problematizing facet of the active scaffolding theory is manifested by consolidating the drift 

handling, rule pruning, rule recall and rule splitting techniques to decipher concept drift in the data stream. To 
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this end, the Type-2 Potential+ (T2P+) method is assembled, which in essence dismantles out-dated fuzzy rules 

by monitoring their density evolution with respect to up-to-date data distributions. The T2P+ method is also 

effective for executing the rule recall mechanism to overcome the circumstance of cyclic drift (Bartlett,1932), 

where the fuzzy rules deactivated by the T2P+ method can be reactivated when their attribute is compatible with 

the current data distribution. To cope with the gradual concept drift, the local error method to vet the error level 

in respective local regions is made use of orchestrating the local forgetting mechanism and adapting clusters 

more firmly to counterbalance the gradual concept drift.  The cluster-splitting mechanism is used to apportion an 

over-sized cluster to preclude the so-called cluster delamination (Lughofer, 2012) and to surmount the problem 

of incremental concept drift.  Moreover, the fading facet of the active scaffolding theory is imparted by two 

rule-based simplification procedures, where inconsequential fuzzy rules which contribute marginally during 

their lifespan are obviated by the so-called Type-2 Rule Significance concept (Pratama et al, 2015a). By 

extension, the redundant fuzzy rules, which strongly overlap other rules, are coalesced by implementing the 

vector similarity measure (Wu & Mendel, 2008).  

ST2Class is endowed with the online input weighting module by virtue of the unsupervised mutual 

information estimation (Mitra, Murthy & Pal, 2002), which plays a complexity reduction role in active 

scaffolding theory. Lastly, the passive supervision part of scaffolding theory is driven by the parameter learning 

scenario. The parameter learning scheme uses the Fuzzily Weighted Generalized Recursive Least Square 

(FWGRLS) method to adapt the output weight. In addition, the parameter learning method using the zero-order 

density maximization principle (Silva, Alexandrem & Mardues de Sa, 2005) occurs in the adaptation of the 

design factors ql and qr, and the dilation and translation parameters of the wavelet functions. It is worth 

stressing that we do not utilise the renowned Karnik and Mendel (KM) type reduction procedure due to its 

computationally demanding characteristics (Karnik, Mendel & Liang, 1999). We instead adopt the construct of 

the ql and qr design coefficients of Abiyev and Kaynak (2010). In contrast, ST2Class is equipped by the 

standard sample reserved technique for the when-to-learn scenario.  

In relation to state-of-the art classifiers, the novelty of this study lies in four factors: 

(1) The multivariable interval type-2 neuro-fuzzy architecture: ST2Class is supported by multivariable 

interval type-2 neuro-fuzzy topology, which is potent in dealing with erratic and noisy learning environments. 

Although some interval type-2 FNNs (Juang & Tsao, 2008) can be observed in the literature, they mostly rely 

on the classical interval type-2 neuro-fuzzy models, triggering an axis-parallel Gaussian function in the input 

space and a linear hyper-plane in the output space. Additionally, the fuzzy wavelet neural network put forward 

in Abiyev and Kaynak (2008) is still built upon the classical type-1 fuzzy system.  

(2) Type-2 Meta-cognitive scaffolding Algorithm: A novel type-2 meta-cognitive scaffolding theory is 

introduced in this paper which can be seen as a generalized version of the type-1 meta-cognitive scaffolding 

theory of Pratama et al (2014b; 2015a). Although several interval type-2 FNNs exist in the literature, they 

arguably suffer from three disadvantages. First, most of these works do not apply meta-cognitive scaffolding 

theory. Second, a number of important learning components are excluded from their learning engines, which 

consequently may require pre-or-post-training processes. Third, the rule-growing module is still constructed 

using a distance-based input partitioning scenario. This is deemed to be vulnerable to outliers.  

(3) The online active learning-based uncertainty method: The uncertainty method presents a novel active 

learning concept in which it is in charge of organising the what-to-learn module. In contrast to the what-to-learn 
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scenarios in Suresh et al (2010) and Savitha et al (2012), our method is capable of reducing operator labelling 

effort. Our proposed method advances the online active learning methods in Pratama (2014b; 2015a) because it 

does not necessarily request the ground truth or the expert domain knowledge in labelling the data stream as a 

result of the autonomous annotation process. Other uncertainty-based active learning techniques exist in the 

literature, but they are offline in nature due to a pool-based approach (Lewis & Carlett,1994). 

(4) The input weighting-based unsupervised mutual information estimation method: The drawback of the 

online feature weighting scenario in the meta-cognitive scaffolding classifier of Pratama (2014b; 2014c) lies in 

its fully-supervised trait. The approximation of the input significance is inaccurate in the semi-supervised 

context, and therefore produces less reliable input weights. By extension, most online feature weighting 

scenarios in the realm of evolving classifiers are often composed of a relevance measure (Lughofer, 2011a) via 

Fisher Separability Criterion (FSC) without considering redundancy among the input features (Yu & Liu, 2004). 

The viability of ST2Class was numerically validated by means of thorough empirical studies in 13 evolving 

and adaptive data streams, benchmarks with cutting-edge classifiers, and various statistical tests. In summary, 

ST2Class outperformed its counterparts in 12 study cases in attaining a trade-off between accuracy and 

complexity. The rest of this paper is structured as follows: Section 2 outlines the literature survey; Section 3 

deliberates on the cognitive aspects of ST2Class; Section 4 details the meta-cognitive scaffolding learning 

policy of ST2Class, including computational complexity analysis; Section 5 elaborates on the numerical 

validation of each learning component; Section 6 describes numerical and theoretical benchmarks with 

prominent classifiers, statistical tests, open problems; and Section 8 concludes this paper. 

2. Literature review 

This section reviews two related areas: part 2.1 discusses the basic concept of human learning involving 

schema, scaffolding and meta-cognitive theories; part 2.2 outlines the prominent evolving classifiers in the 

literature. 

2.1 Human Learning 

The major stumbling block in learning from data streams when there is no access to previous training 

patterns is the stability-plasticity dilemma (Elwell and Polikar, 2011). Controlling the stability-plasticity 

dilemma can help to achieve a trade-off between an old belief system and a new one, as elaborated in Schema 

theory, which presents a psychological model for the process of human knowledge acquisition and memory 

organization for future decision making (Flavell, 1996;Vygotsky, 1978). 

Schema theory consists of two parts – schemata construction and schemata activation. Schemata 

construction is a mechanism for building schemata that is adaptable to new information that leads to three 

possible learning scenarios – accretion, tuning and restructuring. Each phase is characterised by the degree of 

conflict caused by a data stream. Accretion characterises learning when an example causes a minuscule degree 

of conflict or none at all, and the example is simply associated with an existing schema. Tuning occurs when an 

example causes a minor degree of conflict and fine-tuning of the schema is required. Restructuring describes a 

noticeable degree of conflict and the schema needs to be reorganised or entirely replaced. Schemata activation 

denotes a self-regulatory process to assess the performance of an existing schema or extrapolate a suitable 

learning scenario for a new example.  

Scaffolding theory outlines supervision theory for students completing a complex learning task (Vygotsky, 

1978; Reiser, 2004). In essence, Scaffolding theory aims to reduce learning complexity by either actively or 

passively supervising the training process. Passive supervision of a learning scenario consolidates the 
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experience-consequence process and relies on the predictive quality of fresh data. In other words, passive 

supervision is inherent in the parameter learning scenario of the FNN such as the Recursive Least Square (RLS) 

method and gradient-descent method. Active supervision comprises three phases: complexity reduction, 

problematizing, and fading (Wood, 2001). The main goal of the complexity reduction phase is to alleviate the 

learning burden. It comprises data pre-processing and feature selection. The problematizing phase tackles 

concept drift, which can be addressed by the drift detection mechanism, and the rule splitting strategy. The 

fading phase inhibits redundancy in the knowledge base and is usually accomplished using the rule merging 

scenario or rule pruning technology.   

The introduction of scaffolding theory to the realm of machine learning boosts learning fidelity and gives 

rise to a plug-and-play algorithm in which all learning modules are contained in a single training process. Both 

schema and scaffolding learning theories focus only on human aptitude for information processing and 

encompass perception, learning, remembering, judging and problem-solving – all of which are, arguably, 

cognitive in nature. However, both concepts disregard common sense and emotional reasoning – the salient 

traits of human learning. In the realm of machine learning, such algorithms cannot normally select remarkable 

training stimuli and discard inconsequential samples, nor can they point out expedient time instants in which to 

explore the training samples. 

The ability of human beings to appraise new knowledge in the context of their previous knowledge and their 

environment has been recognised as meta-cognition (Joysula et al, 2009; Flavell, 1979). In accordance with 

Nelson and Narens (1990), the meta-memory model is composed of termination of study (when to learn), 

selection of processing method (how to learn), and item selection (what to learn) (Isacson & Fujita, 2006). 

Typically, meta-cognitive learning adds two complementary learning scenarios – one to extract relevant data 

(what-to-learn) and another to pinpoint suitable training episodes (when-to-learn) – to the how-to-learn process, 

which is the only focus of traditional machine learning. 

2.2 State-of-the art evolving classifiers 

Angelov and Zhou (2008) pioneered the construct of Evolving Classifier (eClass) for solving online 

classification problems. In Angelov, Lughofer, and Zhou (2008), various evolving classifier architectures were 

tendered which utilised eClass and FLEXFIS-class as base classifiers. The Simplified Evolving Classifier+ 

(simp_eClass+) was proposed in Baruah and Angelov (2011), with key ideas stemming from simp_eTS+ in 

Angelov (2011). Another prominent contribution was made by Lemos et al (2013), which put forward Evolving 

Multivariable Gaussian (eMG) to resolve the online fault diagnosis and detection problem. In Lughofer and 

Buchtala (2013), an all-pair classifier topology was designed to infer the decision boundary of FLEXFIS-Class, 

and an online conflict-and-ignorance active-learning approach was put into perspective. Bouchachia and 

Vanaret (2014) recently devised a zero-order evolving classifier under the framework of the interval type-2 

fuzzy set, called Growing Interval Type-2 Fuzzy Classifier (GT2FC). In Pratama et al (2014d), the so-called 

Parsimonious Classifier (pClass) was initiated, where pClass was extended from the Generic Evolving Neuro-

Fuzzy Inference System in Pratama et al (2014a). Notwithstanding the work of numerous researchers, most 

evolving classifiers are cognitive in nature and merely address the how-to-learn issue of meta-cognitive 

learning.  

To remedy the bottleneck of cognitive evolving classifiers, Suresh et al (2010) introduced the Self-Adaptive 

Resource Allocation Network (SRAN) based on the meta-memory model in (Nelson and Narens, 1990). SRAN 

was later developed into fully-complex network architecture in (Savitha et al, 2012). The projection learning 
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algorithm was offered to polish up the output parameters of a meta-cognitive-based radial basis function neural 

network in (Babu & Suresh, 2013). Meta-cognitive learning theory was actualised in the context of fuzzy 

systems in (Subramanian et al, 2013), and was later strengthened by amalgamating the interval type-2 fuzzy 

model in (Subramanian et al, 2014). Although the meta-cognitive learning has been realised in various network 

architectures, these meta-cognitive learning machines have two key shortfalls: 1) they still discount the 

scaffolding theory and thus do not characterise the plug-and-play principle; (2) They rely on impractical 

assumption of fully labelled data, which requires considerable operator intervention.  

Scaffolding theory was initiated to steer the how-to-learn module of meta-cognitive learning in (Pratama et 

al, 2014(b)) and was crafted in the generalized type-1 fuzzy neural network structure as the cognitive 

component. By extension, this work was enhanced in (Pratama et al, 2015(a)), using a local recurrent network 

architecture. However, meta-cognitive scaffolding learning machines deserve more in-depth investigation, since 

these earlier works bear five shortcomings: 1) these works are still crafted in the type-1 fuzzy system, which is 

not robust enough to encounter uncertainties in data streams; 2) They always require expert knowledge in 

labelling queried samples; 3) they adopt the supervised feature weighting algorithm, which is inaccurate to 

appraise feature contribution in the semi-supervised learning scenario; 4) the cognitive components of meta-

cognitive classifiers suffer from several major bottlenecks. 

3 Network Architecture of ST2Class 

This section articulates the inference scheme of ST2Class by virtue of the multivariable interval type-2 fuzzy 

neural network. The multivariable interval type-2 fuzzy rule empowers the multivariable Gaussian function as 

the rule antecedent and the wavelet function as the rule consequent. The ST2Class fuzzy rule is defined as 

follows: 
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iii RRR  denotes the multidimensional kernel, driven by the multivariate Gaussian function with 

uncertain non-diagonal covariance matrixes as follows: 
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where 
u

iC  1
 is the centroid of i-th Gaussian fuzzy rule, and u is the number of input dimensions. 

n
weight

n XX  is a weighted input vector, where  is the feature weight vector, produced by the online input 

weighting algorithm, outlined in Section 4.2.1 of this paper. uu
iii


 ],[

~ 111 describes uncertain 

inverse covariance matrixes that trigger upper and lower membership degrees. Their elements indicate 

interrelationships between input features and control the orientation of the non-axis-parallel ellipsoidal clusters 

in the product space. The merit of the non-axis-parallel ellipsoidal cluster over the axis-parallel ellipsoidal and 

spherical clusters is that it can form a proper zone of influence – most notably when training samples are not 

scattered in the main input axes. It can be argued that this sort of fuzzy rule can evoke extra parameters stored in 

the memory owing to the use of the non-diagonal covariance matrix. However, we disagree with this claim, 

because the generalized fuzzy rule generates more exact input space partition, presumably dampening the fuzzy 

rule requirement to capture data distributions. Apart from that, this fuzzy rule variant can prevent information 

loss in input variable interactions, while featuring the advantage of scale-invariant and thus avoiding the need 

for the data pre-normalization process. The Gaussian neuron is used as a basis function in ST2Class because it 
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possesses an infinite support property and a steady differentiable merit. In addition, it inhibits undefined input 

states and provides a smooth approximation of a local data space.  

The principal drawback of the multivariate Gaussian function in connection with the interval type-2 fuzzy 

inference scheme is that it is unable to provide the representation of the interval type-2 fuzzy set. To remedy this 

flaw, the fuzzy set representation of the multivariate Gaussian function should be extracted, which can be done 

by using Pratama et al (2013). Note that two methodologies in (Pratama et al, 2013) exist to illustrate the 

membership function of the multivariable Gaussian function. We employ the second method, since it confers 

instantaneous mathematical operation. Nevertheless, the fuzzy set form it imposes when encountering the 

ellipsoidal rule revolved around 45 degrees is too tiny. For brevity, the uncertain radii of interval type-2 

Gaussian membership function with uncertain SDs are given as follows: 
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 ii  is the diagonal element of the inverse covariance matrix and ir is the Mahalanobis  distance 

between the datum and the i-th cluster. The goal of this transformation is to estimate the uncertain radii of the 

interval type-2 Gaussian neuron and ultimately shape the Footprint of Uncertainty (FOU), which is a peculiar 

feature of the interval type-2 fuzzy set in dealing with uncertainty (Bouchachia & Vanaret, 2014; Lin, Chang & 

Lin, 2014a). The centroid of the fuzzy set is the same as the non-axis parallel ellipsoidal cluster, so it can be 

injected directly to the fuzzy set level. 
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NX  designates an extended input vector which is built upon a nonlinear 

mapping via the wavelet function to reinforce the local approximation property. We make use of a dilated and 

translated version of the Mexican Hat wavelet function
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In the vector form, 
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where jiji ba ,, , respectively represent the dilation and translation parameters. We deploy variable dilation and 

translation values in lieu of fixed values to easily figure out the different behaviours of each class and a 

nonlinear trait of the local part of the decision surface. It is worth emphasizing that the standard first order TSK 

rule output does not exhibit the full local mapping aptitude (Juang & Tsao, 2008), thus degenerating the 

classifier’s generalization On the other hand, a functional link output benefiting from the Chebyshev function 

deploys massive parameters (Pratama et al, 2015a), which are prohibitive for limited computational resources. 
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The wavelet function is a plausible remedy for this shortcoming because it has a multi-resolution property which 

rigorously captures the global and local trend of any function with instantaneous convergence and reasonable 

memory demand.  

The fuzzy inference scheme of the interval type-2 fuzzy system can be conveniently organised when (2) is 

executed, because we can conjecture that the upper and lower clusters are distinct in the higher dimensional 

space and are separated by a particular FOU. For brevity, the output of the interval type-2 hidden node can be 

produced in accordance with Mendel and John (2002) as follows: 
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where the upper fuzzy region is supposed to be larger than the lower region jiji ,,   . The upper and lower 

rule matching factors ],[
~

iii RRR   can be obtained by the t-norm operator in the interval type-2 fuzzy sense as 

follows: 
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The positive facet of the interval type-2 fuzzy system lies on its fuzzy membership degree, which is more 

effective at dealing with uncertainties in data streams than the crisp membership degree portrayed by the type-1 

fuzzy system. Nevertheless, we do not exploit the general type-2 fuzzy system because the type-1 fuzzy 

mathematics is not applicable for the type-2 fuzzy system and therefore induces over-complex working 

procedures. In addition, the best secondary grade shape in the general type-2 fuzzy system is to date unknown. 

The interval type-2 fuzzy system can be seen as a special case of its general type-2 counterpart, where the 

secondary grade is assumed to be unity (Mendel & John, 2002). Since the output of the rule layer ],[
~

iii RRR   

is an interval set, a type reduction mechanism should be carried out to provide a crisp output. The K-M iterative 

procedure is usually performed to derive the L and R end points, but this method incurs prohibitive 

computational load and is impractical in a sequential learning framework. The ql and qr design factors 

m
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are used to correct this shortcoming, in lieu of the K-M type reduction concept (Abiyev & 

Kaynak, 2010; Lin et al, 2014a) which dictates the proportion of the output intervals. This in turn lands on the 

upper and lower outputs ],[ rl yy (Lin et al, 2014b) as follows: 
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where P is the number of fuzzy rules and ],[ rl yy are the type reduced sets, which results in the final crisp 

output. Note that (8) is akin to the output expression of standard interval type-2 fuzzy system. The only 

difference lies on the use of q design factors in lieu of the KM method. Furthermore, should the MIMO 

architecture be used to output the classification decision, the maximum operator is benefited to generate the 

classifier’s output as follows   
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The MIMO architecture is chosen in this paper to craft the decision boundary, since it is widely used in the 

literature. This will also enable fair comparison with state-of-the art classifiers. The fundamental working 

principle of ST2Class is shown in Fig.1, while Fig.2 depicts the Gaussian interval type-2 membership function 

with interval SDs. 

4 Meta-Cognitive Component of ST2Class 

This section outlines the how to learn component of ST2Class, which is built upon a synergy between the 

Schema and Scaffolding theories, stemming from the cognitive psychology. 

4.1 What-to-Learn 

The meta-cognitive learning scenario is equipped by the what-to-learn mechanism, which is instrumental in 

reducing the streaming data to be learned in the training process, thus curtailing the training process. In addition, 

it is capable of boosting the classifier’s generalization, because the redundant samples can be detected and 

exempted from the training process, thus limiting the over-fitting situation. In respect of the existing meta-

cognitive learning, the sample deletion strategy was proposed to cultivate the what-to-learn scenario in the 

pioneering work on meta-cognitive classifiers (Babu & Suresh, 2013; Subramanian et al, 2013; Subramanian et 

al, 2014). This work is, nevertheless, inefficient, because it is implemented by virtue of the hinge error function, 

which necessitates fully labelled training stimuli. To correct this shortcoming, the online active learning 

mechanism is embedded in Pratama et al (2014b; 2015a) to govern the what-to-learn module, which is capable 

of lowering the operator annotation work, thus implementing the semi-supervised learning scenario. Even so, 

Pratama et al (2014b; 2015a) invoke the ground truth or the expert domain knowledge in annotating the 

unlabelled training patterns, whereas in online situations such information attracts vast manual intervention.   

This research develops a novel active-learning mechanism, namely the uncertainty measure. This method not 

only underpins ST2Class as a semi-supervised classifier, but also is equipped by an autonomous labeling 

weapon. Although the uncertainty measure is the dominant method of appraising the sample sensitivity in the 

literature, most of the uncertainty methods are offline in nature because of the pool-based approach (Lewis & 

Carlett,1994). First, the significance of the streaming data is monitored by the neighborhood probability method, 

proposed in Xiong, Azimi, & Fern (2014), in which the key notion is to approximate the probability of a datum 

belonging to the existing data clouds. It is worth noting that the original version of the neighborhood probability 

relies on a batched learning scheme, and we tailor this method for the sequential learning framework. For 

brevity, the probability of the training instance nX populating existing data clouds is predicted as follows: 
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where ),( in XXM denotes the similarity measure between the latest datum nX and the population of i-th data 

cloud iX  and in turn implies the local cluster density. This is expressed in a recursive form as follows: 
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Alternatively, (10) can be gauged by )(
weight

Ni XRP as defined in (22), if (11) is deemed too demanding to be 

carried out. Nevertheless, (22) is less accurate, because it does not compute the proximity between the datum 

and all local supports. The uncertainty of the datum is elicited by finding the entropy of its membership, 

expressed as follows: 






P

i

i
weight

ni
weight

n

weight

n NXPNXPXH

1

)(log)()(     (12)  

Once the uncertainty of the data points has been observed, we need next to determine the sensitivity of the 

datum, whether or not it can be accepted for the training process. The streaming data are admitted for the 

training process on condition that the uncertainty level of the data is lower than the uncertainty 

threshold  )( nXH , where is initialised as 5.0 . Intrinsically, the stray or spurious samples, which 

should be removed without being engaged in the training process, influence the increase in uncertainty. We also 

introduce the budget B, which is the maximum labeling cost in the training process and is fixed at B=0.2 in this 

paper. B=0.2 means 20% of the total training samples to be labeled in the training process. On the other side, the 

labeling expense is gained as
N

Zb ˆ , where Z is the number of queried streaming data, and N denotes the 

number of training observations seen so far. Nonetheless, this labeling cost formula may be insensitive for 

dealing with the lifelong learning scenario, so it is amended as follows: 

labellingnZnZ  )(ˆ)1(ˆ ,


 )1( 
 ,


Zb
ˆˆ        (13) 

where   no longer describes the number of training examples, but the size of the sliding window.   is assigned 

as 100 , while labelling signifies whether or not a datum is annotated (1 or 0). The actual labelling cost 

should not violate the allocated budget bB ˆ  otherwise the training process will be terminated. The final 

condition in respect of these two criteria for accepting the training instances is set as follows: 

 )(
weight

nXH  and bB ˆ         (14) 

The uncertainty threshold is adapted in conjunction with the learning context to deal with the changing 

learning context. It is evident that a non-stationary circumstance entails a considerably more detailed annotation 

process than a static case. Note that such situations can jeopardise the model update, because the training 

process may be capped off too early when the classifier is not yet mature enough to sort out the learning task. 

We therefore adopt the variable uncertainty sampling strategy of Zliobaite et al (2014), which aims to 

counterbalance the actual labelling expense and in turn, to consume the budget uniformly irrespective of the 

types of concept drift in the data streams. The adaptation mechanism is devised as )1(1 sNN   , where the 

threshold augments )1(1 sNN   when the training sample is trivial for the learning 

process  )(
weight

nXH . Vice versa, it diminishes )1(1 sNN   when the training sample makes a 

substantial contribution to the learning process  )(
weight

nXH . Moreover, the adjustment factor s plays a 

paramount role in specifying the step size, so it is fixed as s=0.01 according to Zliobaite et al (2014). 

The target class label is henceforth predicted in the Bayesian concept as defined in Subramanian et al (2014) 

and Suresh et al (2014), where the posterior probability is utilised as a cursor of the true class label, which can 

be written as follows: 
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where 21
ˆ,ˆ yy denote the most dominant, and second most dominant output classes. Clearly, the prediction of the 

true class label via (15) hinges on the spatial proximity between the decision boundary built upon the local sub-

models and the input pattern. Hence, the reliability of the self-labelling process is dependent on the quality of 

the rule consequent in classifying the streaming data. The autonomous labelling scenario is consequently 

undertaken when the classifier features a trustworthy decision boundary in subsuming the streaming data or the 

classifier is certain of its prediction. Expert knowledge is otherwise solicited in annotating the streaming data to 

stave off misguided information about the true class label, which exacerbates classification complexity due to an 

erroneous adjustment of the decision surface. The classifier is confident of its own prediction if the class 

posterior probability fathomed by (15) outstrips the labelling threshold as follows: 

1)ˆ( outputweight

o XyP         (16) 

where 1 designates the labelling threshold, which can be set as 55.01  . Seemingly, (16) indicates the 

dominance of the most eminent class label against the second most superior category. In conjunction with the 

classifier’s confidence, 5.0)ˆ( outputweight
o XyP points out the classifier confusion in categorizing the training 

patterns into one of these two categories. The classifier confusion can be perceived as the training stimuli lying 

on or adjacent to the decision surface in the output space. Once (14) is satisfied, the self-labelling process is 

switched on as follows: 

outputoutputweight

o
mo

n labelclasstrueXyPT __))((max
,..,1





    (17) 

In spite of partially utilizing expert domain knowledge in annotating the data stream, most unlabelled samples 

will be self-annotated. This is later confirmed by our in-depth numerical studies in Section V. 

4.2 How-to-Learn 

This section outlines the how to learn component of ST2Class, which is built upon a synergy between the 

Schema and Scaffolding theories, stemming from the cognitive psychology. 

4.2.1 Scaffolding Concept (Complexity Reduction Item) : Input Weighting Mechanism 

The complexity reduction constituent of scaffolding theory aims to unravel a complex learning problem. 

This learning module is realised with data normalization or feature selection to cope with the curse of 

dimensionality. Since the multivariate Gaussian function that possesses the scale-invariant property is employed 

in the hidden node, the normalization of the training data can be ignored. In the evolving system, the notion of 

an online feature selection method has been pioneered in several algorithms, where the online feature selection 

scenario was either compiled by the online input pruning mechanism (Angelov, 2011; Pratama et al 2014b) or 

by the sequential feature weighting procedure (Pratama et al, 2014c, Lughofer, 2011). Generally speaking, the 

underlying drawback of the online input pruning module is that once the input feature has been discarded from 

the training process, it cannot be resurrected in the future. This learning manner prompts a discontinuity of the 

training process, which invokes a retraining phase from scratch to avoid instability. To the best of our 

knowledge, the variants of the online input weighting algorithm in the literature are solely targeted at the fully 

supervised learning machine. This learning perspective is incompatible with the ST2Class learning context, 

which is designed for the semi-supervised learning scenario.  

ST2Class is underpinned by the online feature weighting mechanism, utilizing an unsupervised feature 

similarity measure termed the Maximal Information Compression Index (MICI) method (Mitra, Murthy & Pal, 
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2002). The key construct of the MICI method is to extract the mutual information conveyed by two input 

variables, where an input feature that has strong similarity to other input features can be ruled out from the 

training process by the allocation of marginal input weights, thus allowing its leverage to be smoothly 

suppressed to a low level. The MICI method is expressed as follows: 

))),(1)(var()var(4))var()(var()var()(var(
2

1
),( 2

2121
2

212121 xxxxxxxxxx   (18) 

)var()var(

),cov(
),(

21

21
21

xx

xx
xx         (19) 

where )var(),var(),,cov( 2121 xxxx can be recursively quantified by the same strategy as (22). In essence, the 

underlying construct of this measure reflects the eigenvalue for normal direction to the principal orientation of 

two input variables ),( 21 xx , in which the maximum information compression is attained when the streaming 

data are projected in the direction of their principal component. For brevity, (18) conceives the amount of 

information loss when one of these two variables is discarded from the learning process. It is worth noting that 

the MICI method is more appealing than the correlation coefficient method in (19), because (19) is sensitive to 

rotation. In summary, the MICI method holds the following appealing properties: 

1) ))var()(var(5.0),(0 2121 xxxx  . 2) 0),( 21 xx if and only if 1x and 2x are linearly dependent. 

3) ),(),( 1221 xxxx   (symmetric). 4) It is invariant to translation of the dataset, because its expression in (19) 

overlooks mean expression and only incorporates the variance and covariance terms. 4) It is insensitive to 

rotation, because the geometric interpretation of 2 incorporates a property whereby the perpendicular distance 

of a point to a line is not dependent on the rotation of the input features.  

The contribution of an input feature is thereafter pinpointed by its average similarity to other input variables. 

Accordingly, an input variable is deemed inconsequential provided that it has a strong similarity to other input 

attributes. Formally speaking, the significance of one input attribute can be defined as follows: 

jlxxmeanJ jl
uj

l 


)),,((
,..,1

        (20) 

(20) is cultivated u-times per input variable to monitor the mutual information contained in the input 

feature )],(),...,,([ 1 ull xxxx  . Since the sensitivity of an input feature is inversely proportional to (19), the 

setback of the input attribute contribution is commensurate with the decline of (19). In the high dimensional 

space, it is expected that the contribution of the input attributes will be low. Therefore, the feature 

weight ]1,0[j  is normalised in relation to the most pivotal input variable as follows: 

uj

j

j

j
J

J

,..,1

)max(


          (21) 

This input weight is exploited to craft the weighted input variable n
weight

n XX   to overcome the curse of 

dimensionality bottleneck.  

4.2.2 Scaffolding Concept (Problematizing Item) : Local Forgetting Mechanism 

The problematizing aspect of the scaffolding concept is intended to handle concept drift that is unsolved by 

the schema theory. The concept drifts resolved in the problematizing module encompass gradual, incremental 

and recurring types (Bose, van der Aalst, Zliobaite & Pechenizkiy, 2014), which are more complicated to 

manage from the adaptation viewpoint than abrupt concept drift. In the gradual drift scenario, the data regime 

gradually moves from one input space zone to another region with a particular intensity and speed. As discussed 
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in Bose, van der Aalst, Zliobaite and Pechenizkiy (2014), and Lu, Zhang and Lu (2014), new and old data 

concepts initially take place simultaneously, but the old data distribution slowly attenuates and in turn no longer 

exists in the data stream. A conventional adaptation scheme without a specific forgetting scheme is incapable of 

pursuing changing data distributions, thus resulting in a downward trend in the classifier’s accuracy. In light of 

this issue, the forgetting scheme assists in fading the old belief of the system, while emphasizing new 

knowledge. Some attempts have been made to troubleshoot the gradual concept drift by means of the global 

forgetting scheme, levelling the forgetting power to the whole feature space (Lughofer & Angelov, 2011c; 

Angelov, 2011).  Nevertheless, the major shortfall of the global forgetting procedure is the existence of an 

unnecessary cluster evolution, because the concept drift often prevails in some local regions but with different 

degrees of severity. To this end, the so-called local drift management technology was proposed in Shaker and 

Lughofer (2014), in which each local region is assigned with a unique forgetting degree by exploiting the 

extended version of the Page-Hinkley test. In Pratama et al (2014c), local data quality estimation was put 

forward. However, the central deficiency of this scheme is that changing data distribution in the feature space 

does not always mean the changing concept of the target concept. In this paper, the drift intensity is computed 

by the rate of the local system error, which is defined as follows:  

ii

i

i N
i

N
i

i

i

N

n

in

iN e
N

e
N

N

N

e

e
11

1
1

,

, 


 



, )(

11
1

2
1,

2
,  




iiii NN
i

N
i

i
iN ee

NN

N
    (22) 

where iNi
e , denotes the mean local error of the i-th rule and iNi , stands for the standard deviation of the i-th 

local error, whereas iN expresses the number of supports of the i-th cluster. Note that the i-th local error can be 

elicited as the deviation of the true class label and the local output produced by the i-th category, because we 

adopt the local learning concept. The rate of change of the local system error can be formulated 

as )(
2

,1,1
2

,, iNiNiNiN iiii
ee    , which can be regarded as the intensity of the local drift. To 

guarantee stability, the local forgetting degree should hover around ]1,9.0[i , where the substantial forgetting 

degree is given by 9.0i , whereas the minuscule forgetting level is given by 1i . To assure ]1,9.0[i , 

the following setting is explored: 

)1),9.0,1.01min(max( ii   , )99.0,min(
i

transiii NNN  , 9.99.9  i
i

trans     (23) 

The drift handling mechanism is applied in both the input and output concepts to produce more intense 

parameter adaptation, which counterbalances concept drift. The concept drift in the feature space is 

compensated for by a reduction in its population, included in the rule premise adaptation in (38)-(40), while the 

concept drift in the target space is compensated for by the local forgetting factor i , explicitly contained in the 

FWGRLS method (passive scaffolding step) in Section 4.2.8. In addition, a cluster ought to hold at least 30 

samples to activate the local forgetting scenario to deter the unlearning effect. That is, the unlearning effect 

refers to the complete or too dramatic forgetting of previously learned knowledge (Lughofer, 2006).  

4.2.3 Schema Theory 

 Measuring Conflict 

The foremost step in the schema learning theory is to perform a knowledge exploratory mechanism, which is 

instrumental in enacting appropriate learning scenarios for data streams according to the amount of conflict 

caused by the datum. In the ST2Class learning engine, two conflict cursors, namely Type-2 Data Quality 
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(T2DQ) and Type-2 Data significance (T2DS), are coupled, and are extended from their type-1 variant in 

Pratama et al (2014c). In principle, the T2DS method is potent for estimating the statistical contribution of a 

datum, which also hints at the forthcoming contribution of a datum. Suppose that an incoming datum acts as a 

hypothetical cluster, its statistical contribution can be described as follows: 
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where )(XS denotes a size of the range X, which can be simply acquired from 
X

dxXS 1)( . Note that the 

underlying assumption of this statistical contribution formula is that the streaming data are uniformly distributed 

with the sampling density function
)(
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
  PPppC labels the centroid and 

uncertain covariance matrix of the hypothetical new rule (P+1st ) tailored from the new training pattern NX . 

The hypothetical rule is created using the initialization strategy elaborated in the restructuring phase (30)-(35). 

This strategy aims to accommodate the likelihood of class overlapping in the rule-growing phase, leading to the 

accurate approximation of fuzzy rule significance. In practice, it is cumbersome set )(XS  before the process 

runs, since the true data distribution is unknown. To remedy this bottleneck, it can be substituted by the total 

contribution of all existing categories, because a contribution of a rule is shown with its contribution with 

respect to other rules. The u-fold numerical integration for any arbitrary density function )(xp is subsequently 

executed, consequently arriving at the final formula of the type-2 DS method as follows: 
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where 1

~
pV stands for the volume of the hypothetical non-axis parallel ellipsoidal cluster, which can be 

dispatched by either the determinant measure or more reliable method in Pratama et al (2014c). In essence, a 

datum deserves to be a new rule when its volume is greater than the maximum volume of the existing fuzzy 

rules as follows: 
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         (26) 

One can visualise the uniform data distribution assumption of the T2DS method, which is not in line with the 

characteristic of real-world data streams, which may follow various and even non-smooth data distributions 

(Rong, Sundarajan, Huang & Zhao, 2011). Furthermore, the u-fold numerical integration is only reliable for a 

small input dimension (u<5) (Bortman & Aladjem, 2009). To rectify this shortcoming, the Type-2 Data Quality 

(T2DQ) rule-growing strategy is embedded in the ST2Class learning engine. The crux of this method is to gauge 

the spatial relationship between a new datum and all preceding data without maintaining all the data in the 

memory. This strategy is essentially equivalent a recursive density estimation. The T2DQ method is customised 

in such a way that the interval type-2 fuzzy rule is conceived as follows: 
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This definition necessitates revisiting all previous training stimuli, thus imposing costly computational cost. 

Hence, we have to express its recursive form. To keep this paper compact, we do not show the complete 

mathematical derivation, but the interested reader is recommended to refer to Pratama et al (2014c) for clarity. 

We derive the recursive formula of (27) as follows: 
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where these recursive parameters are initialised as zero in a priori. Note that the outlier disadvantage presents in 

the DQ method, as disclosed in Wang, Ji and Jin, (2013). This issue is resolved in this paper by a weighting 

factor 1NDQ , lessening the outlier leverage in quantifying the data quality formula.  

In short, the streaming data are deemed to be paramount for the evolution of the classifier, either when 

occupying populated regions that illustrate main data orientations, or when traversing an uncharted input space 

region. Formally speaking, these two circumstances are pinpointed by the following two criteria: 

)(max
,..,1

i
Pi

N DQDQ


 or )(min
,...,1

i
Pi

N DQDQ


       (29) 

On one hand, the condition )(min
,...,1

i
Pi

N DQDQ


 paves the way for outliers to be recruited as new fuzzy rules, 

since the outliers are usually situated in a distant region far from the influence of existing clusters. Therefore, 

ST2Class should be equipped with a rule pruning mechanism, preventing outliers from being engaged in the rule 

base. On the other hand, the criterion )(max
,..,1

i
Pi

N DQDQ


  should be circumspectly executed, since it reveals the 

contingency of an overlapping fuzzy region as a result of positing a new fuzzy rule in a congested feature zone. 

In light of this problem, a class overlapping criterion should be integrated in the initialization of the new fuzzy 

rule parameters to sidestep an overlapping region with inter-class clusters that might result in misclassification.  

Measuring the conflict degree is consistent with the recent finding of the basic control theoretic notion in the 

neuroscience field, which discloses the presence of a hierarchical relationship. This module is capable of 

triggering other learning scenarios with respect to certain criteria (Roy, 2000).  

 Restructuring Phase  

If a training observation meets the criteria (26) and (29), the datum offers desirable novelties to the rule base. 

Nonetheless, this learning step should be rigorously designed to avoid the development of an overlapping region 

by a newly created fuzzy region. In Savitha et al (2012), the class overlapping strategy was proposed, in which 

the authors relied on the distance ratio principle. A majority class assumption of this method however does not 

coincide with the unclean cluster paradigm, where the cluster might contain supports from different classes. In 

Pratama et al (2014b), the so-called potential per class method is offered. However, this method has high 

computational and memory cost as a result of the update of recursive parameters in every training observation. 

The ST2Class is equipped by the Bayesian-inspired class overlapping criterion, in which the crux is to 

apprehend the spatial relationship between the datum and the class distribution.  

The point of departure of this method is to check the spatial proximity between the datum and the winning 

rule to grasp whether or not the datum possesses a high risk of redundancy. It can be solved by vetting the 

compatibility degree of the winning cluster, where a non-trivial case is designated by awinwin RR  2/)( , 
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because the training pattern lies an unsafe distance from the winning rule. a itself labels a predefined constant, 

which can be statistically stipulated by the critical value of a 
2  distribution with Z  degrees of freedom and a 

significance level of   (Tabata & Kudo, 2010), termed as )(
2
 p . A typical value of   is 5%, and the 

degree of freedom is represented by the dimensionality of the learning problem, thus resulting in uZ  . Hence, 

the predefined constant a is elicited as ))(exp(
2
 pa  . The Bayesian-inspired class overlapping criterion 

is subsequently activated to fathom the class posterior probability that reveals the best matching category for a 

data stream. This concept can be obtained by approximating the joint category-and-class probability 

),( io RyP


(Vigdor & Lerner, 2007) as follows: 
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where )](),([)
~

(),(),ˆ( iiiiio RXPRXPRXPRPRyP 
 
respectively denote the conditional probability, the prior 

probability and the likelihood function. It is worth mentioning that the joint probability )ˆ( io RyP is achieved by 

the estimate for the class joint probability ),( io RyP


making use of the frequency count approach (Sasu & 

Andonie, 2013) and the type-1 version of (30) was derived in Vigdor and Lerner (2007). The conditional 

probability, the prior probability and the likelihood function are defined as follows: 
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where
o

iN labels the number of the i-th cluster’s population falling into the o-th class. It is worth noting that the 

number of populations is incremented given that it is selected as the winning rule (40) and no new rule is grown, 

whereas their class labels can be elicited as a result of the automatic or manual labelling process from the what-

to-learn scenario (Section 4.1) (40). Moreover, a cluster can be populated by different-class samples, leading 

to
o

iN , where 




m

o

o
winwin NN

1

. Note that the formula of the prior and conditional probabilities is softened 

using the log operation from their original versions to enable a newly-born cluster to compete with older clusters 

in the category choice phase. In the following, the class overlapping situation possibly takes place 

in labelclasstrueXyP o
mo

__))((max
,..,1





, since the datum is more imminent to inter-class data clouds than those 

of the intra-class. In this circumstance, a model update exacerbates a nonlinearity degree. Therefore, we may 

end up with an over-complex decision boundary, which inevitably downgrades the generalization potential. To 

overcome this shortcoming, the new fuzzy rule should be placed in a location where it can move away from the 

inter-class data clouds to reduce the likelihood of class overlapping. To this end, suppose that ir represents the 

nearest intra-class cluster, whereas ie denotes the nearest inter-class cluster. The new fuzzy rule is initialised as 

follows: 
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where 1  labels an overlapping parameter, steering the shrinkage of the fuzzy set spread. In this context, it is set 

as a distance ratio between the inter- and intra-class clusters
j

ie
j

ir rr1 . This setting is plausible to create the 

new fuzzy region, because the influence zone of the new fuzzy rule should diminish, given that the inter-class 

cluster lies in a vicinity to the new cluster to attenuate the class overlapping contingency and vice versa. 

]1.001.0[2  indicates a problem-independent shifting factor, fixed as 0.01 in this paper. This predefined 

parameter is useful for orchestrating a shift of the centroid of the new cluster away from the winning inter-class 

cluster. Because we employ the interval type-2 Gaussian fuzzy rule with uncertain SDs, the coverage span of the 

cluster is modulated by the winning cluster population. The upper fuzzy rule should have a greater zone of 

influence by multiplying with winN , whereas the lower fuzzy rule is by
2

winN
. 

In contrast, the new fuzzy rule is more similar to the nearest intra-class cluster, if we come 

across labelclasstrueXyP o
mo

__))((max
,..,1





. This condition does not generally have a detrimental impact on the 

classifier’s generalization because there is no major modification of the decision surface in the target concept. 

Nonetheless, the winning intra-class rule and the new fuzzy rule can eventuate in a significantly overlapping 

position in the future due to the rule resonance granted to these two rules. We can guarantee that this situation 

essentially does not undermine the classifier’s accuracy, because it can be easily sorted out by the rule merging 

scenario, detailed elsewhere in this paper. As a minor likelihood of misclassification is observed, more confident 

parameters are allocated to the new rule as follows: 
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Note that although the rule-growing process on this occasion does not harm the stability of the decision 

boundary in the target space, we still need to shift the centroid of the new cluster away the gap between the 

intra-class cluster and the inter-class cluster to circumvent the rule redundancy. If the new fuzzy rule occupies a 

remote area from the existing fuzzy rules indicated by awinwin RR  2/)( , the new fuzzy rule is crafted as 

follows: 
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Clearly, this situation merely results in a subtle leverage of the evolution of other clusters, because the new 

cluster spotlights a remote fuzzy region which is uncorrelated with existing input partitions.  

The new rule consequent and the new output covariance matrix are assigned as follows: 
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~~
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111   PPP     (35) 

where indicates a large positive constant which is fixed as 510 and 
uu

PPP


  ],[~
111  stands for 

the new output covariance matrix. The new rule consequent is assigned in the same way as the winning rule to 

expedite the convergence time, because the rule consequent of the winning rule is expected to portray a 

pertinent data trend with the new rule. Note that when a data stream occupies a remote region from the coverage 

span of existing rules, such a sample is likely to have little influence on the convergence of existing rules. 

Furthermore, the adaptation of the rule output is endowed with the local forgetting factor i , which captures this 

type of situation. Meanwhile, the output covariance matrix is arranged as a large positive definite matrix which 

is capable of swiftly emulating a real solution as attained by the batched learning scheme (Lughofer, 2011b). 
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The upper and lower output covariance matrix of a new rule is initially fixed using the same setting. An interval-

valued output covariance matrix is produced after undergoing rule adaptation with the FWGRLS method in 

Section 4.2.8. As with the class overlapping criterion, the winning rule is chosen in accordance with the 

Bayesian concept, in which the rule possessing a maximum posterior probability is chosen as the winning 

rule )(maxarg ,...,1
weight

iPi XRPwin


 . The key trait of the Bayesian concept in seeking the winning rule is its 

prior probability, which investigates the true winning rule from the probabilistic standpoint. This method is 

worthwhile when some clusters are situated in on par proximity to the focal point of interest. For brevity, the 

posterior probability )(ˆ XRP i  
is expressed as follows: 
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can be found by (30) as well. In the realm of 

scaffolding theory, the restructuring phase of the schemata construction is also coincident with the 

problematizing facet of the active scaffolding theory, since the conflict measure, enumerated by the T2DS and 

T2DQ methods, can be regarded the abrupt concept drift detection. In the Bayesian sense, the concept drift 

ensues on condition that the class posterior probability changes over time )()(1
weight

oN

weight

oN XyPXyP


 , 

induced by the non-stationary component of the prior probability )ˆ( oyP or the class conditional 

probability )ˆ( o
weight yXP (Zhu et al, 2010; Elwell & Polikar, 2011). The restructuring phase in schema theory 

literally portrays the conditional probability concept drift, where the data distribution suddenly shifts from 

previously seen location, or an abrupt variation of the class conditional probability occurs. 

 Tuning Scenario 

The tuning phase of schema theory delineates a circumstance in which the training sample imposes a 

marginal conflict with the current knowledge base, thus soliciting a slightly more fine-grained rule premise of 

the winning cluster. This goal can be achieved by simply fine-tuning the rule premise of the winning rule as 

follows: 
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It can be seen that on this occasion, the datum does not bring substantial novelty to the existing rule base, since 

the datum is not located in the populated fuzzy region, nor does it convey novel knowledge. Even so, it does 

make a considerable statistical contribution, which is sufficient to trigger a rule antecedent learning process. 

Intrinsically, the winning rule can be adjusted as follows: 
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where )1(1
1


N
winN . In principle, this adaptation mechanism is motivated by the sequential maximum 

likelihood method for a spherical cluster, and is specifically customised to gear the requirement of the non-axis 

parallel ellipsoidal cluster adjustment. Moreover, (39) is modified to sustain a direct update of the uncertain 

non-diagonal inverse covariance matrixes without the re-inversion phase to avoid numerical instability when 

dealing with an ill-posed matrix. Aside from that, it is laborious to carry out the re-inversion scenario in the case 

of the high dimensionality problem.  

The accretion phase of schema theory is not recounted in this section, because it virtually deciphers a 

negligible conflict degree or the datum is superfluous to the training process. This circumstance is reflected by 

the what-to-learn scenario, when the training stimuli are ruled out from the training process. 

4.2.4 Scaffolding Concept (Fading Item) : Rule Pruning Mechanism 

The underlying aim of the fading facet in the scaffolding context is to avoid the redundancy problem, which 

can compromise the compactness and parsimony of the rule base. The fuzzy rule is superfluous to the resultant 

system output when it either contributes marginally to the learning progress or shares strong mutual information 

with another rule in the rule base. This fuzzy rule can be inevitably pruned to mitigate the rule base complexity 

without major loss of the classifier’s accuracy, while expediting the training process.  

The fading aspect of the active scaffolding is embodied by putting the rule pruning strategy, termed the 

Type-2 Extended Rule Significance (T2ERS) concept, into perspective. This strategy is developed from its type-

1 version in Pratama et al (2014b) to serve the interval type-2 fuzzy system. That is, the T2ERS method aims to 

oversee the statistical contribution of the fuzzy rule, which indicates a possible future contribution of the fuzzy 

rule. The fuzzy rules which are captured by the T2ERS method are deemed to be inactive during their lifespan, 

such that they can be dispossessed from the rule base without compromising learning stability. For brevity, the 

statistical contribution of the fuzzy rule can be seen in an identical way of the T2DQ method as follows: 
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 iiiiC indicate the centroid and covariance matrix of the i-th fuzzy rule. By applying u-

fold numerical integration, the final expression of the T2ERS method can be derived as follows: 
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The fuzzy rule is pruned if the following condition is met as follows: 
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Apart from being endowed with a solid statistical foundation, the T2ERS method analyses the significance of 

the local sub-model contribution i , in which the fuzzy rule contribution looms as the magnitude of the local 

sub-model.  

4.2.5 Scaffolding Concept (Problematizing Item) : Rule Forgetting Mechanism 

We first elaborate the problematizing item of the scaffolding concept by considering an out-dated fuzzy rule, 

which is no longer relevant for capturing up-to-date data distribution due to the regime-drifting or shifting 
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property. This rule should be deactivated to reduce computational complexity. Nevertheless, this rule is subject 

to the future rule recall mechanism to surmount the recurring concept drift. To this end, the so-called T2P+ 

method is mounted in the learning engine, where the crux is to appraise the cluster evolution in connection with 

other training samples in the feature space. The T2P+ method is written as follows: 
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This formula needs revisiting all previously seen data streams and is thus not in line with the spirit of 

incremental learning. Therefore, we need to derive the recursive formula as done in Pratama et al (2014c). 

Because of the identical centroid between the upper and lower fuzzy rules jiji cc ,,  , we arrive at the final 

expression of the T2P+ method as follows: 
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Use of the T2P+ method is seemingly appropriate for probing the obsolete fuzzy rules, because it quantifies a 

cluster’s density. One cluster is deemed to be out-dated if its presence is no longer able to apprehend the recent 

data trend. This hints at a changing data pattern, moving away from the cluster influence zone. It is worth noting 

that the T2P+ method is distinguishable from its predecessor in Pratama et al (2014b), because it is specifically 

devised to accommodate the multivariable interval type-2 fuzzy rule. Furthermore, the T2P+ method is driven 

by the Euclidean distance in lieu of Mahalanobis distance to simplify the mathematical derivation. The fuzzy 

rule is deactivated when the following condition is encountered. 
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Cyclic concept drift may occur in the data streams, which consequently drives the previously pruned fuzzy 

rules to become valid again. In the realm of a truly evolving and adaptive system, appending a completely new 

fuzzy rule without the ability to trigger the rule recall mechanism, or retrieving the fuzzy rules discarded in the 

earlier training episodes, undermines the remembering facet of the human being (Bartlett, 1932). Formally 

speaking, the fuzzy rules dispossessed by (25) are not permanently deprived and are able to be reignited in the 

future provided that their potential, designated by (25), is highly entailed by the model as follows: 
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where 
*P indicates the fuzzy rules deactivated by the T2P+ method thus far. It is worth emphasizing that the 

fuzzy rule is curbed to merely cultivate (45) without being engaged in a learning scenario. This strategy 

guarantees that the computational burden is absolutely decimated. Should the fuzzy rule comply (47), the old 

fuzzy rule is revived as follows: 
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4.2.6 Scaffolding Concept (Fading Item) : Rule Merging Mechanism 

Another fading scenario is provided by the rule merging scenario, because the fuzzy rule is definitely 

inconsequential when it has a strong similarity to another fuzzy rule in the rule base. The rule merging 

procedure is amalgamated in the ST2Class learning engine to coalesce identical fuzzy rules, thereby easing the 
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complexity while affirming the rule semantics. The notion of the rule merging scenario in the evolving interval 

type-2 fuzzy system was pioneered in Juang and Chen (2013) and Tung, Quek and Guan (2013), in which they 

either rely on the shape-based similarity measure or the distance-based similarity check without solving these 

two issues together in a joint formula. In addition, these works overlook the so-called blow up effect, in which 

the inexact representation of the merged cluster is incurred as a consequence of fusing non-homogenous 

clusters. The merged cluster risks the cluster delamination situation because it has a large coverage span. Note 

that this issue is more obvious in the non-axis-parallel ellipsoidal cluster type, since it creates the opportunity for 

a cluster to arbitrarily rotate in any direction. To correct these problems, the rule merging scenario of ST2Class 

is devised in respect to the two problems. The first issue is deciphered by employing the vector similarity 

measure concept (Wu & Mendel, 2008; 2009), which encompasses both the shape and distance of two clusters 

to determine their similarity. The volume of the merged cluster is also checked to cope with the second issue. 

The crux of the vector similarity measure is to conceive the similarity of the cluster based on the shape and 

distance of two clusters as follows: 
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where ]1,0[),(,1 iwins j
 
denotes the shape-based similarity measure and ]1,0[),(,2 iwins j

 
labels the distance-

based similarity measure, whereas the resultant similarity check is elicited by the min t-norm operator. The 

peculiar property of the vector similarity measure can be seen in its alignment procedure in quantifying shape-

based similarity, since the distance-based similarity measure is accomplished by a separate similarity measure. 

That is, one or both nwi~ and i
~

are aligned, such that jwinc , and jic , coincide jijwin cc ,,  . Furthermore, the 

shape-based similarity measure is undertaken by the extended Jaccard similarity measure, exploiting the average 

cardinality principle to quantify the overall similarity of the upper and lower fuzzy sets. 
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where and indicate the intersection and union of two fuzzy sets iwin  ~,~ . The union of two fuzzy sets can be 

arranged as follows: 

)()()()( ,,,,,, jijwinjijwinjijwin MMMM         (51) 

where (.)M stands for the area of the fuzzy set and (51) prevails for the upper fuzzy set as well )( iwinM   . 

Note that the computation of the area of the Gaussian function is highly complex, because it features a highly 

nonlinear contour. We gauge the size of the Gaussian function utilizing the triangular membership function to 

resemble the Gaussian function, as exemplified in Juang and Lin (1998; Chao et al (1996), as follows: 




 2)
2

)(
exp()(

1
,2

2

, jwinjwin dx
cx

M 


 




     (52) 

We can further simplify the similarity measure )( ,, jijwinM   in Juang and Lin (1998) and Chao et al (1996) 

due to the alignment procedure as follows: 
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where ],0max[ xh  . Performing equivalent subsequent operations for )( ,, jijwinM   in (53) and 

)( ,, jijwinM    in (51), we can generate the shape-based similarity measure in (50). 

An extended kernel-based metric approach, which was devised to cater for the type-1 fuzzy set in Lughofer, 

Bouchot and Shaker (2011(d) and Pratama et al (2013), is explored to analyse the proximity-based 

similarity ]1,0[),(,2 iwins j . In principle, we amend the traditional kernel-based metric method with the use of 

the average cardinality principle to assess the similarity of the interval type-2 fuzzy set. This mechanism 

represents shape-based similarity component of (49). The extended kernel-based metric method is defined as 

follows: 
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The reliability of the kernel-based method is borne out by its appealing properties as follows: 
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 (55) 

Executing (54) for each input feature ),(,2 iwins j  outputs the distance-based similarity measure of the fuzzy 

rule. Henceforth, this result is consolidated with the shape-based similarity measure ),(,1 iwins j  to commit (49), 

which produces the vector similarity measure. The vector similarity for each input dimension is combined with 

the min t-norm operator to conclude the resultant similarity of two rules. Two fuzzy rules are deemed to be 

similar if the following condition is satisfied. 
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where 3 denotes the similarity threshold, which steers the merging frequency. It is stipulated at 0.8 in all our 

simulations. In principle, the higher the value assigned to this parameter, the more complex the fuzzy rule base 

will be. In contrast, the smaller the value assigned to this parameter, the more frugal fuzzy rule base will be. The 

sensitivity of this parameter was examined in Pratama et al (2014e).  

The blow-up effect is intrinsically attributed by merging clusters of different orientation, where an oversised 

cluster can be induced by the merging process. Merging such clusters is undesirable and is counterproductive to 

the classifier’s generalization owing to the strong contingency of the cluster delamination, even though the two 

clusters signify a close relationship. Hence, the volume of the merged cluster is assessed by comparison with the 

total volume of standalone clusters. The merging process is cancelled when the volume of merged clusters 

surpasses the maximum allowable volume as follows: 

 )()(( iwiniwinmergedmerged VVVVuVV        (56) 

It is worth emphasizing that we include the input dimension u to stave off the calculation bias resulting from the 

curse of dimensionality issue. The rule merging strategy is activated provided that (55) and (56) are fulfilled, in 

which the merging scenario is carried out as follows: 
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It can be observed that our rule merging scenario is motivated by the weighted average strategy, where each rule 

is weighted by its accumulated supports. The cluster occupying a more populated area should impact more on 

the eventual shape and orientation of the merged cluster. This facet is noteworthy, since the merged cluster 

should be able to represent an underlying data distribution and cover the majority of both cluster populations, 

unless a loss of cluster support is imposed. We simply take into account the similarity measure of the winning 

cluster to relieve the computational burden, because this cluster is the most susceptible to overlap with other 

clusters owing to the rule premise adaptation in (38)-(40). Albeit scattered properly in the initialization phase, 

the fuzzy rule will be redundant in the next training episodes, because the streaming data may fill the gap 

between two neighbouring clusters. 

4.2.7 Scaffolding Concept (Problematizing Item) : Rule Splitting Mechanism 

One can envision that the incremental concept drift reveals a case in which the streaming data scattered in 

one local region grows incrementally, causing the cluster to uncontrollably expand its zone of influence. This is 

confirmed by the likelihood of concept drift in the variance of the data clouds (Shaker & Lughofer, 2014), 

which leads to cluster delamination. That is, the cluster delamination can jeopardise the classifier’s 

generalization, because a cluster covers two or more distinct data clouds due to an over-sized fuzzy region. To 

remedy this technical flaw, a cluster-splitting technology is assembled here which essentially monitors the 

cluster’s volume to hedge the cluster delamination. If this cluster is oversized, it is halved into two dissimilar 

clusters as follows: 
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where ]9.0,5.0[1  stands for the splitting threshold, governing the frequency of the splitting mechanism. We 

scrutinise only the volume of the winning rule because it receives the rule resonance. The rule resonance is the 

primary rationale for the widening of the cluster’s spread, which eventually ends up with the cluster 

delamination situation. If (61) is satisfied, the fuzzy rule is split into two distinct clusters as follows: 
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where ],[~
maxmaxmax    denotes the largest eigenvalue of the non-diagonal covariance matrix 

],[
~ 111 

 winwinwin and ],[~
maxmaxmax ggg  stands for its corresponding eigenvector. q is a splitting 

factor that governs the proximity of two clusters after a rule splitting scenario, and is fixed at q=0.125. Because 

we deal with the arbitrarily rotated ellipsoidal cluster, its largest eigenvalue intrinsically abstracts its underlying 

cluster expansion. Accordingly, the term maxmax
~~ g is intended to capture most cluster supports, which 

mostly lies in the underlying cluster orientation. By extension, max
~q is useful for ensuring that two clusters 

will be adequately far apart from each other to forestall the re-merging of these clusters by the rule merging item 

immediately after the cluster-splitting module has been executed. The output parameters of the new cluster are 

allocated in the same way as those of the winning cluster, because this cluster should indicate the pertinent data 
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trend, although it will differ after experiencing future rule adaptation. Fig.3 depicts the various concept drifts 

discussed in this paper.  

4.2.8 Passive Scaffolding Concept : Adaptation of Rule Consequent Mechanism 

This section articulates the passive supervision of the scaffolding theory, which is reliant on the predictive 

quality of the classifier. The underlying notion is to adapt the model in accordance with the classifier’s error, 

thereby performing a sort of action-consequence mechanism. First, this learning facet is developed by the 

adaptation of the rule consequent by virtue of the Fuzzily Weighted Generalized Recursive Least Square 

(FWGRLS) method (Pratama et al, 2014b), which forms a local learning version of the GRLS method (Xu, 

Wong & Leung, 2006). The merit of this method over the classical RLS method is in its explicit weight decay 

term, which is capable of retaining the weight vector in a small bounded interval. Consequently, a higher 

classifier generalization can be attained while at the same time achieving a more compact and parsimonious rule 

base. Since the local sub-system fluctuates in the small values, the inactive fuzzy rules, carrying minor weight 

vectors, can be easily discovered by (42). The advantage of this approach over the omnipresent adaptation 

mechanism for the interval type-2 fuzzy system as presented in Juang and Tsao (2008) is its local learning 

perspective, which offers a more attractive and interpretable rule semantic. The local learning approach also has 

immense flexibility for the evolution of learning, because the rule-growing, pruning and learning mechanisms of 

a particular rule only have a subtle effect on the convergence and stability of other rules. In the FWGRLS 

method, each rule is adjusted separately, and the same strategy is also applicable for the upper and lower fuzzy 

rules. This method is defined as follows: 
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where ],[
~

iii RRR  denotes the firing strength of i-th fuzzy rule and i expresses the local forgetting factor, 

obtained by the local drift handling mechanism (23), whereas )](),([)(~ nnn   labels the Kalman gain and 

)](),([)(~ nnn iii    stands for the output covariance matrix. Meanwhile,
uun  )( and ))1(

~
(  ni , 

respectively, illustrate the covariance matrix of the modelling error and the gradient of the weight decay 

function. The covariance matrix of the modelling error is managed as a Hessian matrix for the sake of 

simplicity, while the gradient of the weight decay function can be determined as any nonlinear function, which 

may not be differentiable. Hence, we approximate the gradient to the n-1 time step whenever it is laborious to 

obtain the gradient solution. The quadratic weight decay function 2))1(
~

(
2

1
))1(

~
(  nn ii is chosen, because it is 

capable of proportionally shrinking the weight vector to its current value, whereas 1510 indicates a case-

insensitive predefined constant. 

The passive supervision of the scaffolding theory is also actualised by the adaptation mechanism of the 

design coefficients ],[
,, oi

r
oi

l qq and of the translation and dilation parameters of the wavelet function ],[ ,, jiji ba , 

in which it is driven by the Zero-Error Density Maximization (Z-EDM) principle (Silva, Alexandrem & 

Mardues de Sa, 2005). This adjustment mechanism is deemed to be more efficacious than the conventional 
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Mean Square Error (MSE)-based method because it is capable of minimizing the error entropy. This perspective 

leads to the suppression of the proximity between the probability distribution of the target class and the decision 

boundary, thus guiding the error entropy to culminate at origin. Since it is troublesome to fix the data 

distribution of the error entropy, the cost function is calculated by the Parzen window estimation method as 

follows: 
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where N denotes the number of training observations encountered thus far and  designates the smoothing 

parameter, which is simply specified as 1. one , labels the predictive error in the n-th training cycle of the o-th 

class. In this method, the gradient descent method is used for an optimization process as follows: 
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where oa, , ob, , oq, are the adaptive learning rates. It can be seen that (70)-(72) are not in line with the spirit 

of the sequential learning concept, because it is necessary to revisit the preceding training samples in the current 

training episode. Therefore, we amend these expressions as follows: 
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The gradient terms o
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 can be gained with the help of the chain rule as follows 
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In principle, the learning rates oa, , ob, , oq,  are tailored in such a way as to speed up the convergence as 

follows: 
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where ]5.1,1(5  , )1,5.0[4   label the learning rate factors, which steer the increase and decrease of the 

learning rates to attain convergence instantaneously. Moreover, these parameters are case-insensitive and are 

assigned as 1.14  , 9.05  (Pratama et al, 2015(a)). The plausible range of the learning rates plays an 

important role in the learning process to ensure rapid convergence. Otherwise, the numerical instability to 

impair the evolution of the model may be imposed. In the following, the Lyapunov stability criterion is utilised 

to canvass the suitable range of learning rates. 

Theorem 1: the asymptotic convergence is guaranteed, should the learning rate 
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Proof: we define the Lyapunov function 
2
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kV  , and the rate of the Lyapunov function is expressed as 

follows: 
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The rate of the system error can be further derived as follows: 
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Therefore, the rate of the Lyapunov function can be established as follows: 
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Noticeably, the asymptotic convergence can be attained when 0 . This condition thus results 

in
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  and accomplishes the proof at once. On the other hand, the construct of the 

scaffolding theory is in line with the recent finding of the connectionist system (Roy, 2000), which can be 

stimulated by a non-local learning mode and even by external sources.  

4.3 When-to-Learn 

This learning module mainly functions to end the training process, which is completed by the sample 

reserved procedure. The streaming data are appointed as the reserved samples if the rule-growing and adaptation 

scenarios formulated in (26),(27),(37) are not complied with. These samples are placed in the rear of the sample 

stack to be investigated when the system is idle or the underlying samples have been fully depleted. Ideally, the 
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training process is terminated if the reserved samples are fully spent. In practice, this prerequisite is impossible 

to satisfy because we are dealing with streaming data, where prior knowledge of the total amount of streaming 

data is unknown. In lieu of the strict requirement, the training process is terminated when the number of 

reserved samples remains constant. Note that the positive impact of the sample reserved scenario is to fill gaps 

uncharted by the regular training patterns in finalizing the training process. This mechanism can apparently 

refine the generalization of the model and the completeness of the rule base. Fig. 4 depicts the working 

principles of ST2Class. 

4.3 Computational Complexity Analysis 

The resultant computational complexity of ST2Class is induced by an individual learning module, 

constructed in the context of the meta-cognitive scaffolding theory. The what-to-learn component, governed by 

the so-called uncertainty measure, bears a computational burden in the order of )(PO . The when-to-learn 

mechanism, driven by the sample reserved strategy, incurs )(NSO , because the key idea is to train the model 

using from the reserved samples 1,...,1),(  NSnsnsns TX . Furthermore, the how-to-learn constituent presents a 

synergy of the schema and scaffolding theories, which costs )27( 22* PMuPPuuuPPO  . To sum 

up, ST2Class possesses a computational load in the order of ))27(( *22 PMuPPuuPuPNSPO   , 

where  signifies the probability of the streaming data to be admitted for the training process. In relation to the 

computational burden of the state-of-the art classifiers, the computational complexity of ST2Class is 

comparable. For example, rClass in Pratama et al (2014b) and gClass in Pratama et al (2014a), which adopt the 

meta-cognitive scaffolding learning method, solicit the computational complexity 

of )2)2*62)12(22(( mPNSuPPPmmuumO  and )2)*2522)12((( mPNSPUmPUmPmO  respectively.  

Conversely, the cognitive constituent of ST2Class, exploiting the multivariable interval type-2 fuzzy neural 

network, has rule base parameters in the order of ))(2)())(2(( PuumPPuuuPO  , in which this 

rule base burden is commensurate with its counterparts of the interval type-2 fuzzy neural networks. For 

example, eT2Class of Pratama et al (2015b) charges ))12(2)())(2((  umPPuuuPO , whereas 

Simplified Interval Type-2 Fuzzy Neural Network (SIT2FNN) draws the complexity 

of ))1(2)(2)((  umPPuuPO . Moreover, the rule base cost of ST2Class is supposed to be more 

economical than its counterparts, because this network topology is anticipated to scatter fewer fuzzy rules as a 

consequence of a more appropriate cluster shape and contour crafted by the generalized fuzzy rule.  

5 Proof of Concepts 

This section demonstrates the leverage of the individual learning component on the final learning 

performance of ST2Class to analyse to what extent each learning module affects ST2Class learning 

performance. To this end, four numerical studies, containing various regime-drifting properties, are explored to 

scrutinise the impact of the meta-cognitive scaffolding learning theory, where the semi-artificial data streams of 

Minku, White and Yao (2010), namely iris and car, are exploited. These problems are drawn from the machine 

learning repository at the University of California, Irvine (http://www.ics.uci.edu/mlearn/MLRepository.html), 

and have recently been customised in Minku, White and Yao (2010) to engage the non-stationary component in 

data streams. Alongside these data streams, two time-varying synthetic studies, namely line and sin, emanating 

from the DDD database (Minku & Yao, 2012) are exploited to numerically validate the efficacy of the ST2Class 

learning modules. The characteristic of these problems is detailed in Section 5. The experimental procedure to 

http://www.ics.uci.edu/mlearn/MLRepository.html
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produce the numerical results relies on the periodic hold-out process, simulating the training and testing 

processes in real time, while our computational resources are an Intel (R) core (TM) i7-2600 CPU @3.4 GHz 

processor and 8 GB memory. Note that the periodic hold-out process partitions the number of data into the 

predetermined number of mutually exclusive time stamps to form the sub-problems. Every sub-problem 

comprises the training and testing phases and the classifier performance is concluded from the average of the 

numerical results in all sub-problems. Meanwhile, ST2Class is appraised from five evaluation standpoints, viz., 

classification rate, number of hidden nodes, runtimes, number of training samples, and number of parameters. 

The classification rate fathoms the classifier’s generalization, which is elicited as the rate of correctly classified 

testing samples. The number of hidden nodes is employed to abstract the efficiency of ST2Class, and is obtained 

in the same way as the fuzzy rules generated in the training process. The rule base complexity can be assessed 

by the number of rule base parameters, which is dependent on the cognitive constituent inferring the 

classification decision. The rule base parameter of ST2Class is acquired as presented in Section 4.4. The number 

of samples is sufficient to pinpoint the potency of the what-to-learn component in extracting the effective 

training stimuli. Conversely, the computational burden of ST2Class can be experimentally exhibited by its 

runtime, which refers to the time required to conclude the training process. The numerical results are 

summarized in Table 1.  

Our empirical studies encompass four underlying tasks detailed as follows: 1) the cognitive component of 

ST2Class is the first point of the investigation, where we benchmark ST2Class with the architecture of the 

multivariable interval type-2 fuzzy neural network as exemplified in Pratama et al (2015b), and the standard 

network topology of the interval type-2 fuzzy neural network as shown in Lin, Liao, Chang and Lin (2014). This 

experiment is articulated in Section A of Table 2. 2) The purpose of the second part is to study the potency of 

the what-to-learn component, where the ST2Class numerical result with the absence of the what-to-learn module 

is canvassed. The numerical results are summed up in Section B of Table 2. 3) We study the learning 

performance of a learning configuration of ST2Class, in which the complexity reduction component is switched 

off in another setting. The numerical results are summarized in Section C of Table 2. 4) Our study continues by 

inspecting the contribution of the problematizing aspect of scaffolding theory, in which the ST2Class 

performance without this module is investigated, and the numerical results are reported in Section D of Table 2. 

5) The efficacy of the fading component of scaffolding theory is displayed in Section E of Table 2, in which the 

impact of the fading item of scaffolding theory is probed by discharging this learning module in the training 

process. 

Clearly, ST2Class with its resultant learning configuration delivers the most encouraging numerical results, 

since it prevails in all numerical studies in almost all learning criteria. The use of Chebyshev function or first 

order TSK function in the rule output results in deterioration in the classifier generalization and retards the 

runtime, as displayed in Section A. The results justify the multi-resolution property of the wavelet function, 

which captures the temporal change in the system dynamic. Because the wavelet polynomial scatters a fewer 

number of network parameters, it is capable of shortening the training time. The absence of the what-to-learn 

module slackens the training process, because all data streams have to be consumed. This facet aggravates the 

over-fitting problem, which reduces the generalization ability. The learning performance of ST2Class worsens 

when the complexity reduction module is switched off, because it cannot cope with the curse of dimensionality. 

The efficacy of the fading facet is confirmed in Section D, where it is fruitful to simplify the network structure. 
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It can be seen that network complexity increases dramatically when the fading component is deactivated. On the 

other hand, the problematizing module contributes deciphering the concept drifts, especially the incremental and 

gradual concept drifts, which are uncharted by the Schema part. The absence of the problematizing module 

directly affects the generalization of the classifier and the sample consumption.   

6 Benchmark with Prominent Classifiers 

This section presents numerical evaluation of ST2Class in 13 non-stationary data streams and experimental 

comparisons of ST2Class with state-of-the art classifiers in the literature, which are followed by comprehensive 

statistical tests to arrive at statistically valid conclusions of learning performance of consolidated classifiers. In 

addition, the learning characteristics of benchmarked algorithms are theoretically compared and some open 

problems, which can become future research direction, are also explained.  

6.1 Numerical Comparison with State-of-the Art Classifiers 

In this section, the learning efficacy of ST2Class in processing dynamic and evolving streaming data is 

profoundly contrasted with other cutting-edge classifiers recently published in the literature. Three prominent 

meta-cognitive classifiers, namely Generic Classifier (gClass) of Pratama et al (2014b), Recurrent Classifier 

(rClass) of Pratama et al (2015a), and Meta-Cognitive Fuzzy Inference System (McFIS) of Subramanian, Suresh 

and Sundarajanan (2013), are consolidated to compete with ST2Class. ST2Class is also compared with its 

counterparts, Evolving Type-2 Classifier (eT2Class) of Pratama et al (2015b) and Parsimonious Classifier 

(pClass) of Pratama et al (2014c). Although it neglects the meta-cognitive learning scenario in the training 

process, eT2Class embodies a holistic concept of the evolving system in the context of the multivariable interval 

type-2 neuro-fuzzy system, whereas pClass is typical of the evolving system under the framework of the 

generalized type-1 fuzzy neural network. The setting of the experiment, the evaluation criteria, and the 

computational resources, are similar to those in Section IV. The consolidated classifiers are evaluated by 

exploiting 13 non-stationary synthetic and real-world streaming data, serving various concept drifts. Note that it 

is relevant to involve the artificial data streams in the numerical studies because we can precisely determine the 

exact drift type, and the time period in which the concept drift is active, by means of the synthetic data streams.  

The numerical problems, namely circle, sin, sinh, line, and Boolean, emanating from Minku and Yao (2012), 

are explored. All problems characterise a binary classification problem and the sudden concept drift. There exist 

three types for each problem in the DDD data base, where the most complicated version is employed here. The 

prominent benchmark problem, namely SEA data stream introduced in in Street and Kim (2001), is exploited. 

We do not use the original version of the SEA problem, and the version customised in Ditzler and Polikar 

(2014) is utilised in lieu of the traditional variant. This new version is slightly different to the classical version, 

since it has been amended to conceive the class imbalance problem and the cyclical concept drift. The numerical 

study is also conducted using the Gaussian data stream, designed in Elwell and Polikar (2011). This study poses 

a binary classification problem in which class 1 represents a majority class, and class 2 is a minority class. Each 

class undergoes a gradual and independent drift, which is achieved by varying the means and variance of the 

parametric equations. The semi-artificial data-streams, namely iris and car, are deployed here and have also 

been exploited in Section V. The noise corrupted data stream, which has its root in Pratama et al (2014c), is used 

in this paper. Apart from snapshotting various concept drifts and the multi-category classification problems, this 

study is worth attempting because it features a noisy property and dynamic class attributes. That is, the class 

labels are dynamically evolved and pruned during the training process to intensify the complexity. In addition to 

10 synthetic data streams, ST2Class is tested by three real world problems, well-known for their non-stationary 
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components: electricity pricing (Harries, 1999), weather (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/), and wine. The 

characteristics of all data streams are summarized in Table 2. Note that the Imbalanced Factor (IF) is computed 

as (Subramanian et al, 2014). 

Our numerical study benefits from the data stream generator, which is downloadable at 

(www.cs.bham.ac.uk/~flm/opensource/DriftGenerator.zip). The numerical results are reported in Table 3. 

Fig.5(a) shows the fuzzy rule evolution, and Fig.5(b) depicts the local forgetting evolution of fuzzy rule i ; 

these two figures are produced by the electricity pricing problem. Fig.5(c) delineates the feature weight 

evolution and Fig.5(d) visualises the system error; 5(c)-(d) are generated by the sin problem. Fig.6(a) pictorially 

exhibits the trace of classification rate of consolidated classifiers, and Fig. 6(b) visualises the trace of the fuzzy 

rule of consolidated classifiers. The trace of runtime of consolidated classifiers is depicted by Fig. 6(c) and the 

trace of number of accepted training samples of consolidated algorithms is portrayed by Fig. 6(d). All figures 

6(a)-(d) are produced using the line data stream. The rule base parameters of ST2Class and eT2Class are 

quantified as in Section 4.4, while the rule base parameter of gClass is specified 

as ))()12(( upuupumpO   because gClass is driven by the multivariate Gaussian function in the 

hidden layer and the Chebyshev polynomial in the output layer. By extension, the number of rule base 

parameters of rClass is computed as ))()12(( mpupuupupmO  , because the output is 

inferred by the generalized local recurrent network topology. McFIS is constructed by the traditional zero order 

TSK fuzzy system, which imposes )( PUPmpO  parameters. pClass is built upon the generalized first-order 

TSK fuzzy system incurring ))()1(( upuupumpO 
 
parameters. The predefined parameters of the 

classifiers are allocated as the rule of thumb in their original publications.  

Referring to Table 2, ST2Class clearly outperforms other benchmarked classifiers on three criteria, viz., 

classification rate, number of fuzzy rules and number of parameters. ST2Class is clearly superior in the aspect of 

classification accuracy, because it produces the most accurate prediction in 12 of 13 study cases. 

Notwithstanding that it is built upon the multivariable interval type-2 neuro-fuzzy architecture, ST2Class in fact 

contains fewer parameters to be stored in memory because it evolves the most compact fuzzy rule, and 

consequently alleviates the rule base load. It is worth noting that McFIS constitutes a fully supervised classifier, 

which requires all data streams to be labelled by operator, although it consumes the least number of samples in 

Table 2. ST2Class is not only a semi-supervised classifier, but also capable of suppressing operator annotation 

effort to a minimum level, because the labelling process for accepted data streams can be automatically done 

with the absence of manual intervention. It can be observed as well that although SIT2Class is constructed by 

the metacognitive scaffolding algorithm, encompassing a significant number of training scenarios, SIT2Class’s 

runtime is generally speaking comparable with other consolidated algorithms. It is as a result of its fully 

sequential working principle and the online active learning process in the what-to-learn part. The online active 

learning scenario is capable of discarding inconsequential samples from the training process, thus speeding up 

the runtime. This component renders ST2Class’s execution time faster than non-meta-cognitive classifiers: 

pClass, eT2Class.  

Inevitably, ST2Class adopts an open rule base principle in which the fuzzy rules can be augmented, refined, 

pruned, merged and recalled on demand in accordance with the given learning context, as shown by Fig.5(a). 

Fig.5(b) confirms the local forgetting mechanism of ST2Class, which outputs a unique forgetting level i to 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
http://www.cs.bham.ac.uk/~flm/opensource/DriftGenerator.zip
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unravel different drift intensities in the respective local fuzzy regions. Meanwhile, superfluous input features 

can be softly eliminated from the learning process by supplying a minuscule weight, thereby smoothly 

minimizing their influence on the model updates. In other words, the online feature weighting mechanism can 

be considered a soft feature reduction approach which is capable of surmounting the curse of dimensionality 

problem over time without explicitly pruning superfluous input features. By extension, the system errors are 

stable in a small bounded range during the training phase, which corroborates the effectiveness of the passive 

scaffolding component. The accuracy of consolidated classifiers is illustrated in Fig. 6(a), where ST2Class 

delivers the most reliable trend of the classification rate. The efficacy of ST2Class can be seen in Fig.6(b),(c), 

where it crafts the most compact and parsimonious network structure. ST2Class also consumes a low number of 

training samples, which is merely inferior to that of McFIS. Nevertheless, one should keep in mind that McFIS 

is a fully supervised classifier, costly in practise.  

6.2 Statistical Tests 

This section aims to statistically validate the efficacy of the ST2Class to reach a firm conclusion about the 

numerical results. The classifier’s rankings are tabulated in Table 5. ST2Class noticeably outstrips other 

classifiers in three evaluations with respect to the classification rate, the number of parameters and the number 

of fuzzy rules, and it is only inferior to rClass and McFIS in the runtime category. We overlook the number of 

sample criteria in our statistical test, because the consolidated algorithms utilise different what-to-learn concepts 

and thus cannot be compared on an 'apple-to-apple ' basis. We depart from our statistical analysis by means of 

the Friedman statistical test, which is a prominent statistical tool for considering whether or not there is a 

substantial performance difference between the consolidated algorithms. As shown in Demsar (2006), we land 

on 5.30,5.32,5.36,2.392 F , and the critical value of 1.0 with 5 Degrees of Freedom (DoF) is 9.24. Hence, 

the null hypothesis is rejected outright for all evaluation criteria. Nevertheless, the Friedman statistical test is too 

conservative, which encourages us to employ the Anova test. This test is akin to the Friedman test and 

investigates performance difference between the benchmarked classifiers. The critical value of 05.0 with 

(5,60) DoF is 2.38 and we arrive at 4.11,13,1.17,7.20FF , which consequently means a rejection of the null 

hypothesis. 

These two tests do not reveal the performance dissimilarity between a classifier pair, thus, it is not yet 

possible to deduce the superiority of ST2Class against other classifiers. To this end, we address this issue using 

a post-hoc Bonferrroni-Dunn test, in which the performance difference between two classifiers is deemed to be 

major if their difference transcends the critical difference. In the following, the critical difference 

with 1.0 is 95.1CD , while the performance difference between two benchmarked classifiers is quantified 

as MMQRRz ji )1(6)(  , where Q denotes the number of numerical examples deployed in our 

numerical study and M labels the number of consolidated classifiers. Table 6 tabulates the performance 

difference between ST2Class and its counterparts. It would appear that ST2Class excels compared to other 

algorithms in terms of classification accuracy. From the viewpoint of the evolved fuzzy rules and the rule base 

parameter, it is statistically better than all other classifiers except eT2Class. In contrast, McFIS surpasses 

ST2Class in runtime, while rClass outstrips ST2Class in runtime, yet the difference is subtle. 

6.3 Theoretical Comparison with State-of-the Art Classifiers 
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ST2Class makes use of the interval type-2 multivariate Gaussian function in the hidden layer and employs 

the interval-valued Wavelet polynomial in the output layer. This rule variant supports more accurate input space 

partition than that of the traditional interval type-2 Gaussian function. Accordingly, ST2Class requires the least 

number of fuzzy rules to guarantee the completeness of the rule base as shown in our experiment, where 

ST2Class is capable of generating the most compact and parsimonious network structure. The use of the wavelet 

function in the output layer is effective for boosting the local mapping aptitude of the classifier while sustaining 

low complexity. The amendment of the local output mapping property enables the production of more precise 

predictions than the first order TSK output layer, as exemplified in pClass and McFIS. By extension, the 

wavelet function is more practical than the Chebyshev polynomial-based output layer, which exists in rClass, 

gClass and eT2Class, because this rule consequent variant does not impose a higher degree of freedom, 

ultimately inducing more parameters to be accumulated in the memory. 

The what-to-learn aspect of ST2Class not only extracts relevant streaming data in the semi-supervised 

learning mode, but also reduces the manual intervention required to label the streaming data. Although McFIS 

spends the least number of rule base parameters in our numerical study, it is based on the fully supervised hinge 

loss function to foresee the contribution of the streaming data. The major difference between ST2Class and its 

predecessors is in its self-labelling process, which overcomes the lack of ground truth situations in annotating 

unlabelled streaming data. ST2Class is also endowed with the online feature weighting mechanism, which is 

carried out in an unsupervised manner. It is unlike the online feature weighting mechanisms in pClass, rClass 

and gClass, which violate the semi-supervised learning principle because they are devised from the Fisher 

separability criterion. Online feature selection is absent in McFIS, and is definitely inadequate for confronting 

the curse of dimensionality problem. It is worth stressing that ST2Class puts forward the type-2 meta-cognitive 

scaffolding mechanism, leading to the plug-and-play learning perspective, where all learning modules (rule 

pruning, merging, split, drift handling, feature selection) are coupled in a single dedicated learning process. The 

properties of the consolidated algorithms are summarized in Table 4. 

6.4 Open Problems 

This paper presents in-depth study of the type-2 fuzzy neural network classifier built upon the 

psychologically sound theories of the metacognitive scaffolding theory. Although this study has actualised 

majority of the metacognitive scaffolding components in the machine learning context, three facets at least 

remain open issues: 1) ST2Class is still designed in the conventional feed-forward network architecture, which 

has some limitations in dealing with the temporal system behaviour and the absence of system order; 2) the local 

forgetting mechanism described in Section 4.2.2 is evaluated using the rate of local error in respect to the 

previous step. This approach is deemed to be inaccurate to reflect the evolution of changing system dynamic, 

because the window size is too narrow. On the other hand, a suitable choice of window size is usually time-

consuming and problem-dependent. In addition, the local error is not an accurate measure for the gradual 

concept drift, because it is sensitive to the over-fitting and under-fitting issues; 3) the feature weighting scenario 

in Section 4.2.1 does not substantially alleviate the complexity, because superfluous features are still kept in the 

memory and only their impacts to the learning process are minimised. 

7 Conclusion and Further Study 

To correct several shortcomings of the existing machine learning variants, an incremental type-2 meta-

cognitive scaffolding algorithm, namely ST2Class, is put into perspective. The contribution of ST2Class lies in 

four aspects: 1) ST2Class features the meta-cognitive model of Nelson and Narens (1990), where the how-to-



33 
 

learn component is specifically derived from a synergy between the Schema and Scaffolding theories. It can be 

perceived as an enhanced version of Pratama et al (2015a); 2) ST2Class is driven by a multivariable interval 

type-2 fuzzy rule, which has an interval multivariate Gaussian function in the rule layer and the wavelet function 

in the consequent layer. 3) ST2Class is equipped with a new online active learning module, which features an 

autonomous labelling property. 4) The online input weighting mechanism is derived from mutual information 

estimation, which approximates the significance of input attributes in the unsupervised manner. All ST2Class 

learning modules are designed in accordance with incremental and local design concepts to attain the greatest 

possible efficiency for learning from data streams and are embedded in the single learning process to render the 

plug-and-play learning paradigm. The plug-and-play learning perspective disallows pre-and-post-training 

processes, which harm the notion of the truly online learning concept.  

ST2Class delivers a novel prospect for big scalable data analytics, and can deal with various concept drifts 

and uncertainties in data streams. It also takes a step closer to rapprochement between machine learning theories 

and cognitive psychology. The efficacy of ST2Class has been circumspectly tested by 13 synthetic and real-

world problems and has been further confirmed through rigorous statistical tests, in which ST2Class delivers the 

soundest performance in achieving a trade-off between accuracy and complexity. We envision the enhanced 

recurrent type-2 meta-cognitive scaffolding theory as our future work to deal with temporal problems and ill-

defined system, where prior knowledge of the system order is unavailable. We will also apply ST2Class to 

perform tool wear prognosis in the ball-nose end-milling process.  
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Fig.1 Network Architecture of ST2Class 
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Fig.2 Interval Type-2 Gaussian fuzzy set with uncertain SDs 
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Fig.3 some drift variants 
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Fig.4 the learning algorithm of ST2Class 
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Fig.5(a) fuzzy rule evolution, (b) local forgetting evolution, (c) feature weight 

evolution, (d)system error 
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Fig. 6: (a) evolution of classification rate, (b) evolution of fuzzy rule; (c) evolution of 

execution time; evolution of accepted training samples 
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Algorithm 1: Pseudo code of ST2Class Classifier 

Define: Input attributes and Desired class 

labels: ),..,,,...,(),( 11 munn ttxxTX   
Reserved samples: 

),...,,,...,(),( 1,,1 mnunnn tstsxsxsTSXS   

Predefined Thresholds: 
15

54321 10,9.0,1.1,8.0,01.0,5.0  
 

/*Phase 4.1: What to Learn Strategy: Active Learning Strategy/* 

For i=1 to P do 
Compute the probability of the training sample to belong to 

existing clusters (10) 

End for 
Compute the sample entropy (12) and the actual labelling expense 

(13) 

IF (14) Then 
Label the data steam using either expert knowledge or self-labeling 

approach (15)-(17) 

End IF 

/*Phase 4.2.1: Input Weighting Mechanism /* 

For j=1 to u do 

For z=1 to u do zj   

Compute compression index (18) 

End For 

End For 

For j=1 to u do 

Assign feature weight to the input feature (20),(21) 

End For 

/*Phase 4.2.2: Local Drift Handling Strategy /* 

For i=1 to P do 

Compute the local error and forgetting level (22),(23) 

End For 

/*Phase 4.2.3: Schema theory /* 

For i=1 to P do /*Measuring Conflict /* 
Compute the posterior probabilities of the fuzzy rules (36)  

Update the T2DQ method for all rules (28) 

End For 

Determine the winning rule )(maxarg ,...,1 XRPwin iPi




 
Compute the T2DS method (25) 

For i=1 to P* do 

update the T2P+ method for P* rules(45) 

End For 

IF (47)Then  /* Rule recall phase-* 

Activate rule recal mechanism (48) 

Else IF (26) and (29) Then / *Restructuring Phase/* 
Carry out the restructuring phase (30)-(34) 

Assign the output parameters as (35), 
1,1 11  

o
PP NN

 

Else IF (37)
 
/*Fine-tuning Phase/* 

Update the premise parameters of the winning rule (38)-(40) 
and increase the number of populations of winning rule 

1 winwin NN
,

1
o

win
o

win NN
 

Else IF 
Append the reserved samples with the current sample 

),(),( 11 NNNSNS TXTSXS   
End IF 

/*Phase 4.2.4: Rule Pruning Strategy /* 

For  i=1 to P do 

Enumerate the T2ERS and T2P+ method (42) and (45) 

IF  (43)Then 

Prune the fuzzy rules 

End IF 

/*Phase 4.2.5: Rule Forgetting Strategy /* 

IF  (46)Then 

Deactivate the fuzzy rules subject to the rule recall mechanism 
P*=P*+1 

End For 

/*Phase 4.2.6: Rule Merging Strategy /* 

For i=1 to P  do 

For z=1 to P do   

zi 
 

For j=1 to U do 
Compute  the vector similarity measure (49) based on shape-based 

(50) and distance-based (54) similarity measures  

End For 

End For 

End For 

IF (55)(56) Then 

Coalesce the fuzzy rules  (57)-(60) 

End IF 

/*Phase 4.2.7: Rule Splitting Mechanism /* 

IF (61) Then 

Split the winning cluster (62)-(64) 

End IF 

/*Phase 4.2.8: Passive Scaffolding Theories /* 

For i=1 to P do 
Adjust the fuzzy rule consequents (65)-(68) 

For  j=1 to u do 

Adjust the dilation and translation parameters (71),(72) 

End For 

For o=1 to m do 

Fine-tune the design factors (70) 

End For 

End For 
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Table 1. the efficacy of respective learning modules 
ALGORITHMS  Iris+ Car+ Line Sin Section 

ST2Class Classification 

rate 
0.82±0.07 0.83±0.03 0.95±0.09 0.8±0.3  

 

A 

# of Rules 1.5±0.1 3.2±0.5 1.1±0.1 1.9±0.7 

Time (s) 0.08±0.02 s 0.17±0.07 s 0.17±0.05 s 0.18±0.03 s 

# of samples 20.5±5 50.5±0.1 94.8±55.7 136.3±51.8 

# of parameters 83.3 300 17.6 30.4 

The generalized fuzzy rule with the non-linear 
Chebyshev function 

(model B) 

Classification 
rate 

0.8±0.17 0.8±0.11 0.94±0.09 0.77±0.2 

# of Rule 1.7±0.5 3.7±0.5 1.6±0.7 1.8±0.6 

Time (s) 0.13±0.02 s 0.24±0.07 s 0.27±0.06 s 0.25±0.05 s 

# of samples 22.5±5 52.5±1.1 135.6±55.7 125±51 

# of Parameters 122.4 332.8 32 36 

The standard interval type-2 fuzzy neural 
network with uncertain SDs (model C) 

Classification 
rate 

0.7±0.15 0.8±0.11 0.87±0.05 0.76±0.63 

# of Rules 1.7±0.5 3.7±0.5 1.6±0.7 1.8±0.6 

Time (s) 0.1±0.01 s 0.18±0.05 s 0.21±0.06 s 0.22±0.06 s 

# of samples 21.4±4.4 52.5±1.1 135.6±55.7 155±51 

# of Parameters 95.2 340.4 25.6 28.8 

without what-to-learn Classification 

rate 

0.8±0.18 0.78±0.13 0.94±0.1 0.77±0.24 B 

# of Rules 1.9±0.7 6±1.05 2±1.05 2.4±0.9 

Time (s) 0.18±0.01 s 0.43±0.1 s 0.33±0.11 s 0.34±0.11 s 

# of samples 34 130 200 200 

# of Parameters 114.8 552 32 38.4 

without the complexity reduction  aspect of the 

scaffolding theory 

Classification 

rate 

0.75±0.17 0.8±0.11 0.91±0.1 0.76±0.2  

C # of Rules 1.7±0.5 3.7±0.5 1.6±0.7 1.8±0.63 

Time (s) 0.15±0.01 s 0.19±0.07 s 0.23±0.02 s 0.21±0.05 s 

# of samples 22.5±0.3 52.5±1.1 135.4±55.7 165.1±5.7 

# of Parameters 104.4 345 25.6 28.8 

Without the problematizing aspect of the 

scaffolding theory 

Classification 

rate 

0.76±0.17 0.8±0.15 0.93±0.09 0.76±0.2  

D 

# of Rules 1.7±0.5 3.2±0.8 1.5±0.53 1.7±0.5 

Time (s) 0.18±0.06 s 0.17±0.06 s 0.27±0.05 s 0.19±0.06 s 

# of samples 23.5±0.01 57.8±2.04 135.9±55.2 170.1±1.7 

# of parameters 104.4 300 24 27.2 

Without the fading component of the 
scaffolding theory 

Classification 
rate 

0.81±0.17 0.75±0.16 0.93±0.09 0.77±0.25  
 

E # of Rules 2.4±0.51 3.6±0.7 1.7±0.7 2.8±0.6 

Time (s) 0.19±0.05 s 0.16±0.05 s 0.22±0.04 s 0.29±0.7 s 

# of samples 31.2±0.3 53±2.3 134.7±56.2 143±1.6 

# of parameters 140.8 336 34 43.2 
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Table 2. Characteristic of data streams 
Data stream Num of 

input 

attributes 

Num of 

classes 

Num of 

data 

points 

Num of 

time 

stamps 

Num of training 

samples 

in each time stamp 

Num of testing samples 

in each time stamp 

IF 

SEA 4 2 100000 200 250 750 0.93 
Iris+ 4 4 450 10 34 11 0.25 

Car+ 6 2 1728 10 130 42 0.17 

Wine 13 3 178 10 10 7 0.19 
Electricity pricing 8 2 45312 10 3172 1359 0.15 

Weather 

Line  
Circle 

Sin 

Sinh 
Boolean 

Noise corrupted signal 

Gaussian 

4 

2 
2 

2 

2 
3 

1 

4 

2 

2 
2 

2 

2 
2 

3 

2 

60000 

2500 
2500 

2500 

2500 
1200 

100K 

800K 

10 

10 
10 

10 

10 
10 

10 

100 

1000 

200 
200 

200 

200 
100 

7000 

400 

5000 

50 
50 

50 

50 
25 

3000 

7200 

0.26 

0 
0 

0 

0 
0 

0.25 

0.33 
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Table 3. the numerical results of consolidated algorithms 
ALGORITHMS  ST2Class eT2Class McFIS gClass pClass rClass 

SEA dataset Classification 

rate 
0.92±0.15 0.88±0.23 0.73±0.11 0.9±0.1 0.89±0.1 0.86±0.2 

# of Rule 1.09±0.42 1.5±0.5 9.9±0.4 2.5±0.8 6.6±4.2 3.8±0.6 

Time(s) 0.19±0.03 s 0.34±0.11 

s 
0.13±0.03 s 0.21±0.05 s 0.42±0.3 s 0.25±0.06 s 

# of 
Parameters 

32.7±12.5 61.3±21 52.6±1.8 82.3±27.3 157.3±101.9 136.1±20.8 

# of samples (32.7)113.9 250 10.9* 161.9 250 130.1 

Electricity pricing 

dataset 

Classification 

rate 
0.79±0.04 0.77±0.08 0.5±0.1 0.79±0.05 0.68±0.1 0.77±0.07 

# of Rule 12.4±8.8 2.3±0.5 9.6±0.7 3.7±1.3 3.5±2.4 2±0.82 

Time(s) 1.96±5.98 s 5.1±1.3 s 0.5±0.4 s 2.8±0.3 s 7.1±4.4 s 4.2±1.1 s 

# of 

Parameters 

1909.6±1352.7 354.2±74.4 104±6.99 392.2±132.7 226.8±95.6 216±88.8 

# of samples (159.1)1532.3 3172 10.6* 2271.4±330.3 3172 663.8±4.7 

Weather dataset Classification 
rate 

0.81±0.04 0.8±0.03 0.61±0.14 0.8±0.02 0.8±0.04 0.73±0.07 

# of Rules 1.7±0.8 2.3±0.3 10 1.3±0.7 2.3±0.5 15.8±12.8 

Time(s) 1.1±0.2 s 1.8±0.1 s 0.41±0.08 s 0.93±0.08 s 1.8±0.22 s 1.7±1.04 s 

# of 
parameters 

261.8±74.4 391±81 108 391±82.1 441±276.4 1706.4±1388.5 

# of samples (204.6)482.6 1000 11* 980.2 1000 222 

Sin dataset Classification 

rate 
0.8±0.3 0.71±0.3 0.76±0.18 0.77±0.2 0.72±0.2 0.75±0.24 

# of Rule 1.9±0.7 1.9±1.1 9.1±1.2 2.7±0.8 3.3±1.2 2.7±0.5 

Time(s) 0.18±0.03 s 0.24±0.03 

s 
0.08±0.03 s 0.12±0.02 s 0.17±0.04 s 0.12±0.04 s 

# of 
Parameters 

30.4±11.8 38±11.3 58.6±7.18 32.4+1.01 39.6 48.6±14.8 

# of samples (43.3)93 200 10.1* 81 200 96.9 

Circle dataset Classification 

rate 
0.9±0.06 0.89±0.05 0.8±0.14 0.87±0.06 0.72±0.13 0.85±0.08 

# of Rule 1.2±0.42 1.2±0.6 9.8±0.42 2.3±1.5 2.8±1.1 1.8±0.8 

Time(s) 0.1±0.06 s 0.16±0.15 

s 

0.12±0.05 s 0.16±0.04 s 0.17±0.008 s 0.08±0.03 s 

# of 

Parameters 
19.2±6.7 24±8.4 62.8±2.5 36.8±23.9 33.6 32.4±14.2 

# of samples (41.6)93.3 200 10.8* 179.2 200 79.6 

Line dataset Classification 

rate 

0.95±0.09 0.94±0.1 0.84±0.13 0.93±0.1 0.91±0.07 0.94±0.2 

# of Rule 1.1±0.1 1.1±0.3 9.4±1 2 2.5±0.71 1.5±0.7 

Time(s) 0.17±0.05 s 0.13±0.04 
s 

0.1±0.03 s 0.14±0.06 s 0.25±0.0009 
s 

0.09±0.02 s 

# of 

parameters 
17.6±5.1 22 60.4±6.4 24 30 27 

# of samples (40.3)54.5 200 10.4* 110.4 200 59.8 

Sinh dataset Classification 

rate 
0.71±0.06 0.69±0.06 0.64±0.15 0.7±0.06 0.71±0.09 0.7±0.03 

# of Rule 1.2±0.4 1.2±0.7 10 4.6±1.3 3.6±1.9 2±0.9 

Time(s) 0.13±0.03 s 0.18±0.05 
s 

0.1±0.02 s 0.23±0.08 s 0.27±0.01 s 0.12±0.05 s 

#  of 

Parameters 
19.2±6.7 24±8.43 64 73.6±20.2 43.2 36±16.9 

#  of samples (22.2)95.4 200 11* 155.4 200 115.5±22.2 

Iris+ dataset Classification 

rate 

0.82±0.07 0.83±0.18 0.77±0.25 0.68±0.3 0.73±0.18 0.74±0.2 

# of Rule 1.5±0.1 1.4±0.5 8.3±2.1 2.3±0.5 4.6±1.9 2.1±0.32 

Time (s) 0.13±0.02 s 0.06±0.02 
s 

0.03±0.03 s 0.02±0.008 s 0.09±0.07 s 0.04±0.002 s 

# of 

Parameters 
83.3±23.7 113.4±41.8 113.8±29.04 149.5±31.4 138 147±22.1 

# of samples (20)22.5 34 9.3* 20.8 34 26.1 

Car+ dataset Classification 
rate 

0.82±0.12 0.77±0.14 0.6±0.2 0.78±0.2 0.77±0.1 0.75±0.14 

# of Rule 1.2±0.6 1.5±0.5 9.3±0.9 3.1±1.2 2.5±0.8 3.4±3.9 

Time(s) 0.09±0.02 s 0.16±0.05 

s 
0.07±0.01 s 0.11±0.07 s 0.1±0.02 s 0.11±0.05 s 

# of 

Parameters 

110.4±58.2 156±54.8 80.4±7.6 210.8±81.4 140±47.6 238±276.5 

#  of samples (27.7)61.3 130 10.3* 72.2±36.4 130 73.9 
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Noise corrupted 

signal dataset 

Classification 

rate 
0.74±0.12 0.73±0.10 0.69±0.14 0.73±0.16 0.72±0.12 0.73±0.12 

# of Rule 1 1.4±0.5 9.6±3.4 2 3±1.2 2.5±0.1 

Time(s) 5.4±0.17 s 10.4±3.1 s 2.6±1 s 10.2±0.3 s 6.4±0.7 s 3.9±0.06 s 

# of 

Parameters 
9 12.6±4.64 36.2±14.6 28 24 36 

#  of samples 3404.9±1.9 7000 10.6* 6907.2 7000 1439 

Boolean dataset  Classification 
rate 

0.92±0.2 0.91±0.15 0.86±0.2 0.89±0.2 0.83±0.2 0.88±0.2 

# of Rules 1.3±0.5 s 1.8±0.4 7.4±1.9 2.6±1.1 2.6±0.8 1.4±0.5 

Time (s) 0.05±0.01 0.13±0.02 

s 

0.05±0.05 s 0.07±0.02 s 0.08±0.002 s 0.06±0.01 s 

# of 

Parameters 
37.7±14 63±14.8 65.2±15.6 52±21.5 52 39.2±14.4 

# of samples (24.5)44.7 100 8.4* 76.1 100 39.3 

Gaussian dataset Classification 
rate 

0.75±0.1 0.72±0.13 0.66±0.13 0.74±0.01 0.74±0.2 0.72±0.3 

# of Rules 1.01±0.1 1.4±0.5 8.05±1.9 2.9±1 3.3±1.1 2.1±0.3 

Time(s) 1.3±0.06 s 1.6±0.3 s 0.93±0.4 s 0.7±0.08 s 0.74±0.05 s 0.9±0.03 s 

# of 

Parameters 
17.7±1.7 35.5±12.4 34.2±7.6 60.7±20.6 49.5±17 50.2±6.9 

# of samples (179.3)185 400 9.05* 140.1 400 100 

Wine dataset Classification 

rate 
0.96±0.08 0.94±0.07 0.69±0.13 0.95±0.05 0.86±0.07 0.87±0.08 

# of Rules 2 2 15 2 2.1±0.32 2 

Time(s) 0.1±0.006 0.11±0.001 0.11±0.006 0.15±0.006 0.2±0.16 0.12±0.006 

# of 

Parameters 

864 864 253 526 470.4 526 

# of samples 51 161 16 144.7 161 51.7±0.5 

*:data are fully labelled, (): the number of self-labelled data 
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Table 4. Summary of learning features of benchmarked algorithms 
 Hidden Layer  Output Layer What-to-learn How-to-learn When-to-

learn 

Classifier 

type 

ST2Class  Interval type-2 
multivariate Gaussian 

function 

Interval-valued 
Wavelet functions 

Active Learning  
with self-labelling 

Type-2 Schema and 
Scaffolding theory 

Sample 
reserved 

Semi-
supervised 

eT2Class Interval type-2 
multivariate Gaussian 

function 

Interval-Valued 
Chebyshev function 

N/A Schema theory  Sample 
reserved 

Fully-
supervised 

rClass Recurrent type-

1multivariate Gaussian 
function 

Type-1 Chebyshev 

function 

Active Learning 

with ground truth 

Schema theory Sample 

reserved 

Semi-

supervised 

gClass Multivariate type-1 

Gaussian function 

Type-1 Chebyshev 

function 

Active learning 

with ground truth 

Schema theory+ 

input weighting 

Sample 

reserved 

Semi-

supervised 

McFIS Uni-variable type-1 
Gaussian function 

Type-1 First order 
TSK  

Sample-deletion Schema theory Sample 
reserved 

Fully 
supervised 

pClass Multivariate ype-1 

Gaussian functions 

Type-1 First order 

TSK 

N/A Schema theory N/A Fully-

supervised 
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Table 5. Classifier ranking according to classification rate 
Study cases ST2Class (CR, 

R, ET, RB) 

eT2Class 

(CR, R, ET, 
RB) 

McFIS (CR, 

R, ET, RB) 

gClass(CR, R, 

ET, RB) 

pClass(CR, R, 

ET, RB) 

rClass(CR, R, 

ET, RB) 

Sea dataset (1,1,2,1) (4,2,5,3) (6,6,1,2) (2,3,3,4) (3,5,6,6) (5,4,4,5) 

Electricity pricing dataset (1,6,2,6) (4,2,5,4) (6,5,1,1) (2,4,3,5) (5,3,6,3) (3,1,4,2) 

Weather dataset (1,2,3,2) (3,3,4,5) (6,5,1,1) (2,1,2,4) (4,4,6,5) (5,6,4,6) 

Sin dataset (1,1,5,1) (6,2,6,3) (3,6,1,6) (2,3,2,2) (5,5,4,4) (4,3,3,3) 

Circle dataset (1,1,2,1) (2,2,5,2) (5,6,3,6) (3,4,4,5) (6,5,6,6) (4,3,1,4) 

Line dataset (1,1,5,1) (2,2,3,2) (6,6,1,6) (4,4,4,3) (5,5,6,5) (3,3,1,4) 

Sinh dataset (1,1,3,1) (5,2,4,2) (6,6,1,5) (4,5,5,6) (2,4,6,4) (3,3,2,4) 

Iris+ dataset (2,2,6,1) (1,1,4,2) (4,6,2,3) (6,4,1,6) (5,5,6,4) (4,3,3,5) 

Car dataset (1,1,2,2) (4,2,6,3) (6,6,1,1) (2,4,5,5) (3,3,4,3) (5,5,4,6) 

Noise corrupted signal 

dataset 

(1,1,3,1) (2,2,6,2) (6,6,1,6) (4,3,5,4) (5,5,4,3) (3,4,2,5) 

Boolean dataset (1,1,1,1) (2,3,6,5) (5,6,2,6) (3,5,5,4) (6,4,5,3) (4,2,3,2) 

Gaussian dataset (1,1,5,1) (4,1,6,3) (6,6,2,2) (2,4,1,6) (4,5,3,4) (5,3,3,5) 

Wine dataset (1,1,1,4,2) (3,1,2,4,5) (6,3,3,1,1) (2,1,5,3,4) (5,2,6,2,5) (4,1,4,3,5) 

Average (1.1,1.6,3.2,1.6) (3.2,5,3) (5.4,5.8,1.4,3.

8) 

(3,3.7,3.3,4.5) (4.4,4.4,5.2,4.2) (4,3.3,2.8,4.3) 

CR=Classification Rate, R=Rule, RB= Rule Base Parameters, ET=Execution Time 
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