1601.05654v1 [astro-ph.IM] 21 Jan 2016

arXiv

Model-Coupled Autoencoder for Time Series Visualisation

Nikolaos Gianniotis!, Sven D. Kiigler!, Peter Tifo! and Kai L. Polsterer?

L Astroinformatics Group, Heidelberg Institute for Theoretical Studies (HITS),
Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
2School of Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT,
United Kingdom

Abstract

We present an approach for the visualisation of a set of time
series that combines an echo state network with an autoen-
coder. For each time series in the dataset we train an echo
state network, using a common and fixed reservoir of hidden
neurons, and use the optimised readout weights as the new
representation. Dimensionality reduction is then performed
via an autoencoder on the readout weight representations.
The crux of the work is to equip the autoencoder with a loss
function that correctly interprets the reconstructed read-
out weights by associating them with a reconstruction error
measured in the data space of sequences. This essentially
amounts to measuring the predictive performance that the
reconstructed readout weights exhibit on their correspond-
ing sequences when plugged back into the echo state network
with the same fixed reservoir. We demonstrate that the pro-
posed visualisation framework can deal both with real valued
sequences as well as binary sequences. We derive magnifica-
tion factors in order to analyse distance preservations and
distortions in the visualisation space. The versatility and
advantages of the proposed method are demonstrated on
datasets of time series that originate from diverse domains.

1 Introduction

Time seried] are sequences of observations that exhibit short
or long term dependencies between them in time. These de-
pendencies can be thought of as manifestations of a latent
regime (e.g. natural law) governing the behaviour of the time
series. Machine learning approaches designed to deal with
data of a vectorial nature have no knowledge of such tem-
poral dependencies. By introducing a model that accounts
for temporal behaviour, algorithms can become “aware” of
the sequential nature of the data and make the most of the
available information.

I'We interchangeably use the terms time series and sequence.

Echo state networks (ESNs) [15] are discrete time recur-
rent neural networks that have emerged as a popular method
to capture the latent regime underlying a time series. ESNs
have the great advantage that the hidden part, the reser-
voir of neurons, is fixed and only the output weights need
to be trained. The ESN is thus essentially a linear model
and so the output weights, also known as readout weights,
can thus be easily optimised via least squares. The pro-
cessing of structured data has been a topic of research for
a long time [I0} [T1]. Regarding time series, recent attempts
[4, Bl [6] have exploited the predictive capabilities of ESNs
in regression and classification tasks. In the unsupervised
setting, the work in [I7] suggests compressing a linear state
space model through a linear autoencoder in order to ex-
tract vectorial representations of structured data. The work
in [I9] considers the visualisation of individual observations
belonging to a single sequence by temporally linking them
using an ESN.

In this work, we employ the ESN in the formulation of a
dimensionality reduction algorithm for visualising a dataset
of time series (we extend previous work presented in [7]).
Given a fixed reservoir, the only free parameters in the ESN
are in the readout weight vector which maps the state space
to the sequence space. Thus, an optimised (i.e. trained)
readout weight vector uniquely addresses an instance of the
ESN (always for the same fixed reservoir) that best predicts
on a given sequence. We can also reason backwards: given
an observed sequence, we can train the ESN (Section 2.1
and identify the readout weight vector that best predicts the
given sequence. Hence, each sequence in the dataset can be
mapped to the readout weight vector that exhibits the best
predictive performance on it. These readout weight vectors
in conjunction with the common and fixed reservoir, capture
temporal features of their respective sequences. Represent-
ing sequences as weight vectors, constitutes the first part of
our proposed approach (Section B.T]).

The second stage of our approach involves training an au-
toencoder [12] on the obtained readout weight vectors in
order to induce a two-dimensional representation, the visu-

http://arxiv.org/abs/1601.05654v1

time series y

reconstructed
time series Y = XW~

stage 1 - embed time series as weights

Fig.

stage 2 - autoencode readouts

1: Sketch of proposed method. In a first stage, time series y are cast to readout weights w in the weight space

(see Section BT)). In a second stage, the autoencoder projects readout weights w onto coordinates z residing in a two-
dimensional space, and reconstructs them again as w (see Section [3.2)). By multiplying with the state space, given by X,
we map the reconstructed readout weights w to the sequence space where reconstruction error is measured (see Eq. ().

alisation, at the bottleneck. At the heart of the autoencoder
lies the reconstruction error function which drives the visu-
alisation induced at the bottleneck. During training, the
autoencoder receives readout weights as inputs, compresses
them at the bottleneck, and outputs an approximate ver-
sion of the inputs, the reconstructed readout weights. Typ-
ically, one would take as the reconstruction error function
the Lo norm between the original readout weights and recon-
structed readout weights. In the proposed work, we equip
the autoencoder with a different reconstruction function
that assesses how well the reconstructed readout weights
still predict on the sequence that it represents. If it predicts
well, we deem it a good reconstruction; if it predicts poorly,
we deem it a poor reconstruction (SectionB.2)). An overview
of the proposed method is displayed in Fig. [

In Section [l we show that the autoencoder with the pro-
posed reconstruction error function is capable of interpret-
ing similarities between time series better than other dimen-
sionality reduction algorithms. In Section [7] we discuss the
possibility of alternative formulations of the proposed ap-
proach before concluding with some remarks on future work
in Section

2 Preliminary

This section introduces some notation and terminology while
briefly reviewing ESNs and the autoencoder.

2.1 Echo State Networks

An ESN is a discrete-time recurrent neural network with
fading memory. It processes time series composed by a se-
quence of observations y(t) € R over time ¢ that we de-

note here by y = (y(1),...,y(T)), where T is the lengtt
of the sequences. Hence y € RT*!. Given an input y(t),
the task of the ESN is to make a prediction g(¢ + 1) for
the observation y(t 4+ 1) in the next time step. Similarly to
a feedforward neural network, the ESN comprises an input
layer with weights v € RP*! a hidden layer with weights
U € RP*D (hence D is the size of the reservoir) and an
output layer with weights w € RP*!, the latter weights
w also known as readout weights. However, in contrast to
feedforward networks, ESNs equip the hidden neurons with
feedback connections. The operation of an ESN is specified
by the equations:

xz(t+1)=h(Ux(t) +vy(t)) ,
gt +1)=wlx(t+1),

(1)
(2)

where z(t) € RP*1 are the hidden activations of the reser-
voir at time ¢, and h(-) is a nonlinear function commonly
chosen as the tanh(-) function. Bias terms have been omit-
ted in the formulation for the sake of clarity in notation.
According to standard ESN methodology [15], parameters
v and U in Egs. (@), @) are randomly generatecé3 and fixed.
The only trainable parameters are the readout weights w.
Training involves feeding at each time step ¢ an observation
y(t) and recording the resulting activations x(t) row-wise
into a matrix X € RT*P_ Usually, some initial observa-
tions are dismissed in order to “washout” [I5] dependence
on the initial arbitrary reservoir state (e.g. (1) = 0). Given
matrix X, the following objective function is minimised:

l(w) = || Xw —yl* . (3)

2In general, each sequence can have its own length T},. For ease of
exposition, here all sequences have the same T'.

3The spectral radius of the reservoir’s weight matrix U is made < 1
to encourage the Echo State Property.

The above objective can be supplemented by a regularisa-
tion term and so the combined objective is £(w) + p?||w||?.
The combined objective can be exactly minimised by solv-
ing the pertaining least squares problem and obtaining
w = (XTX + p2Ip) ' X"y as the solution, where Ip is
the D x D identity matrix. Given this result, we introduce
function ¢g(y) that maps a given time series to the optimal
readout weights:

g(y) = (XX +pIp) ' XTy=w. (4)

2.2 Deterministically Constructed Echo
State Networks

In the original formulation of the ESN [I5] the weights in
v and U are generated stochastically and so are the con-
nections between the hidden neurons in the reservoir. This
makes the training and use of the ESN dependent on random
initialisations. In order to avoid this source of randomness,
we make use of a class of ESNs that are constructed in a
deterministic fashion [16].

Deterministic ESNs make several simplifications over
standard ESNs. All entries in v have the same absolute
value of a single scalar parameter v > 0. The signs of the
entries in v are deterministically generated by an aperiodic
sequence: e.g. a pseudorandom binary sequence (coin flips),
with outcomes 0 and 1 corresponding to — and + respec-
tively. Similarly, the entries in U are parametrised by a
single scalar u > 0. As opposed to random connectivity,
deterministic ESNs impose a fixed regular topology on the
hidden neurons in the reservoir. Amongst possible choices,
one can arrange the neurons in a cycle. A cyclic arrangement
imposes the following structure on U: the only nonzero en-
tries in U are on the lower sub-diagonal U;11,; = u, and at
the upper-right corner U, p = u. An illustration of a cyclic
deterministic ESN is shown in Fig.

In this work we employ deterministic ESNs with a cyclic
connectivity. Deterministic ESNs have three degrees of free-
dom: the reservoir size D, the input weight v and reservoir
weight w. Hence, the triple (D,v,u) completely specifies
an ESN. It has been shown empirically and theoretically
(memory capacity) [16] that deterministic ESNs perform up
to par with their stochastic counterparts. Training of a de-
terministic ESN is performed in exactly the same fashion as
in stochastically constructed ESNs using the objective £(w)

in Eq. @).

Fig. 2: Deterministic ESN with cyclic architecture, see Sec-
tion Circles denote neurons and arrows connections
between neurons. All input neurons connect to the hidden
neurons, and all hidden neurons connect to the output neu-
rons. Hidden neurons are connected in a cyclic fashion to
each other. All input weights have the same absolute value
v, and the sign is determined by a deterministic aperiodic
sequence. The hidden reservoir weights are fixed to the same
scalar u. The readout weights w are the only adaptable part
of the ESN.

2.3 Autoencoder

The autoencoder [12] is a feedforward neural network that
defines a three hidden layer architecturd] with the middle
layer, the “bottleneck”, being smaller than the others in
terms of the number of neurons denoted by (. The autoen-
coder learns an identity mapping by training on targets iden-
tical to the inputs. Learning is hampered by the bottleneck
that forces the autoencoder to reduce the dimensionality of
the inputs, and hence the output is only an approximate
reconstruction of the input.

Given general vectors s, we want to reduce them to a
Q-dimensional representation. The autoencoder is the com-
position of an encoding fe,. and a decoding fg4.. function.
Encoding maps inputs s to low-dimensional compressed ver-
sions, fene(s) = z € R, while decoding maps approxi-
mately back to the inputs, fiec(z) = 8. The complete au-
toencoder is the function f(8;0) = faec(fenc(8)) = 8, where
0 are the weights of the autoencoder. Training the autoen-
coder involves minimising the Ls norm between N given
vectors s and their reconstructions:

N N
ZHén_SnHQZZHf(Sn;G)_SnHQ' (5)
n=1 n=1

4To be perfectly precise, we use what is widely considered the stan-
dard autoencoder specified in [2, Sec. 12.4.2]).

3 Model Formulation

The proposed approach consists of two stages. In Section
Bl we discuss how time series y are embedded in the space
of readout weight vectors w. Section discusses how an
autoencoder with a modified reconstruction function is ap-
plied on the readout weight vectors in a meaningful manner.

3.1 Embedding time series in the space of
readout weights

Given a deterministically constructed and fixed reservoir
(D,v,u), we cast a dataset {yy,...,yyx} via g(y,,) = w,
to a new dataset of readout weights {w1,...,wy}. We
emphasise that all time series are embedded in the space of
readout weights with respect to the same fized dynamic reser-
voir (D,v,u). After this embedding, visualisation proceeds
by performing dimensionality reduction on the new repre-
sentations w,. We take the view that the readout weight
wy, is a good representation for a sequence y,, with respect
to the fixed reservoir (D, v,u). The readout weight w,, cap-
tures important information about y,, in the sense that it
exhibits good predictive power on it. Moreover, the read-
out weight vector w,, features time-shift invariance, and can
accommodate sequences of variable length.

A prerequisite for a successful embedding is a common,
fixed reservoir that enables good predictive performance
on the data. To find this reservoir, we opt for a sim-
ple strategy. For both v and u we take a regular grid of
e.g. 10 candidate values [1072,...,1.0]. For each combina-
tion (u,v) € [1072,...,1.0] x [1072, ..., 1.0], we perform the
following;:

(train)

1. Split each sequence y in two halves yy, and ygest)'

2. According to Eq. @), train ESN on ySf”i") by minimis-
ing ((train) (qp) = || X (Frain) gy — 4™ 12 which yields

w,,.
3. Measure test error via (0t (w,) = || XD, —
T

Matrices X ™ and X (1)) respectively record row-wise
the activations y" "™ (t) and yltest (t) as specified in Sec-
tion [ZI1 The combination (u,v) with the lowest test error
over all sequences S 0_ () (qp,,), determines the ESN
that will cast all time series in the dataset to readout
weights. Parameters D and p may also be included in this
simple validation scheme.

3.2 ESN-coupled Autoencoder

We want to reduce the dimensionality of the new represen-
tations {w1, ..., wx} using an autoencoder. One possibil-
ity is to directly apply the autoencoder taking as input the
readout weights and returning their reconstructed versions,
f:RP*1 5 RPX1 We could then minimise the following

objective function with respect to the autoencoder weights
0:

N N
D I (wn; 0) = wa|* = [y — wl*. (6)
n=1 n=1

A limitation of the above objective function is that it merely
measures how well the reconstructions f(w;80) = w approx-
imate the original inputs w in the Ly sense.

A better objective would measure reconstruction error
in the sequence space as opposed to the space of readout
weights. To that purpose, we map the reconstructed read-
out weights w to the sequence space by multiplying with the
respective state matrix, Xw = gy. In actual fact, function
{(+) in Eq. @) is cut out for this task: if (w) returns high
likelihood, then w is a good reconstruction; if ¢(w) returns
low likelihood, then w is a poor reconstruction. The new
objective function reads:

N N N
D la(f(wn;0)) = [X0 f (wn; 0) =y, 1> =D T, =yl
n=1 n=1 n=1

(7)

where /,, and X ,, are respectively the objective function and
state space pertaining to sequence y,,, see Eq. (B). The gra-
dient of the new objective function in Eq. (@) with respect to
the weights 0, is calculated by backpropagation [2]. We use
L-BFGS as the optimisation routine for training the weights
6.

3.3 Data Projection

Having trained the autoencoder f(w,;®), we would like to
project a time series y* to a coordinate z* € R?. To that
end, we first use the fixed ESN reservoir to cast the time
series to g(y*) = w*. Then, the readout weight w* is pro-
jected using the encoding part of the autoencoder to obtain
fenc(w*) =z".

4 Binary Sequences

The time series considered so far are sequences of reals
y(t) € R. However, it is possible to extend the proposed

approach to the processing of symbolic sequences. In par-
ticular, we consider binary sequences composed of obser-
vations y(t) € {0,1}. For an ESN to process binary se-
quences, we pass its outputs through the logistic function
o(-) = (1 +exp(-))~! (link function of the Bernoulli distri-
bution). Hence, the equations specifying the operation of
the ESN now readd:

x(t+1) =h(Uz(t) +v(y(t) — 0.5)) ,
gt +1)=o(wlx(t+1)) .

(8)
9)

Here the output ¢(t + 1) € [0...1] of the ESN is inter-
preted as the probability of the next observation y(t + 1)
being equal to 1, i.e. §(t+ 1) = p(y(t+ 1) = 1). Accord-
ingly, the objective function ¢(w) in Eq. [B) needs to be
redefined. Instead of solving a least squares problem, we
minimise the cross-entropy:

T

e (w) = = y(t)log§(t) -

t=1

(10)

Training of the ESN is carried out by iterative gradient min-
imisation of Eq. ([0 preceded by a period of washout.

The above modifications to the ESN, call for a modifica-
tion also in the autoencoder. While in Eq. ([]) reconstruction
is measured via the least-squares based function £(w), we
now use the cross-entropy based function £°¢(w). In order
for the autoencoder to process correctly the weights coming
from binary sequences, its objective function needs to be
changed to:

N N
e (fwn;0)) ==) y(t)log o(f(wn; 0) @ (t+1)) .

n=1t=1
(11)
In the case of binary sequences, the outputs of the autoen-
coder f(w;@) are put though the function £°¢().

By adopting a 1-of-K coding scheme for the symbols, and
the softmax function in the place of the logistic function, an
extension to K number of symbols is possible. The result-
ing objective for training the ESN is again a cross-entropy
function.

5 Magnification Factors

In Fig. Bl the smooth nonlinear function fge.(2z) embeds the
low-dimensional visualisation space V as a ()-dimensional
manifold M in the space of readout weights w. Each point

5 In Eq. @) we subtract 0.5 from y(t), since the symmetric tanh(-)
transfer function A is used in the dynamic reservoir.

Fig. 3: Stylised sketch: mapping fge.(z) embeds the visu-
alisation space V as a manifold M in the space of readout
weights. Each point z addresses a probabilistic ESN with
readout weights w.

z € V addresses an ESN modeld with readout weights w €
M. The ESN model may be viewed as a probabilistic model,
if we assume that observations y(t) are corrupted by i.i.d.

Gaussian noise of zero mean and variance €:

y=Xw+e€,
p(y;w) =N (y|Xw,elr),

(12)
(13)

Thus, each point z addresses a probabilistic model
p(Y; faec(2)), and M is a manifold of probabilistic models
P(Y; faec(2))-

Manifold M is endowed with a natural metric for mea-
suring distances between probabilistic models p(y; faec(2)).
Specifically, the metric tensor on a statistical manifold at a
given point z is the @ x @ Fisher information matrix (FIM)
[13]. Here, we approximate it through the observed FIM
over the given dataset of sequences:

Fe)—-) (55 e o)) (2 i e) |

n=1

(14)
We note that the visualisation space V does not necessar-
ily reflect distances between models on M. In Fig. Bl we
see how neighbourhoods of z, depicted as dotted ellipses,
transform on M. Thus, in order to interpret distances in
V, it is important to push-forward the natural notion of
distances on M onto the visualization space V. In the to-
pographic mapping literature the induced metric in the vi-
sualization space from the data space is usually represented
through magnification factors [3]. In the following we show
how magnification factors can be computed in the ESN-AE

setting.
Given the FIM, one can push forward local distances Az
from M onto V via Az F(2)Az. In particular, at a given
point Az it is possible to estimate in which direction dz the

6We always have the same fixed reservoir.

distance changes the most. This can be easily calculated by
solving the following constrained problem:

maximise Az” FAz over Az, subject to ||Az|? = 1.
(15)
The solution to this problem is given by setting Az* to
the eigenvector corresponding to the largest eigenvalue *.
Eigenvalue A* informs us of the maximum local distortion
in distance and can be taken as a measure for the local
magnification factor.

6 Numerical Experiments

In the following we compare the proposed method to other
visualisation algorithms and discuss the results.

6.1 Datasets

In order to judge whether a visualisation truly captures sim-
ilarities, we need to know a priori which time series are sim-
ilar to which. We therefore employ the following particular
datasets whose data items fall under known classes and are
labelled. For these datasets, there is a very strong a pri-
ori expectation that the classes are governed by qualitatively
distinct dynamical regimes. Thus, time series of the same
class are expected to appear similar (close together) in the
visualisation, while time series belonging to different classes
are expected to appear dissimilar (separate) in the visuali-
sation.

NARMA We generate 100 sequences of length 1000 from
the three qualitatively different NARMA classes [16] of or-
ders 10,20,30. The NARMA time series is an interesting
benchmark problem due to the presence of long-term de-
pendencies.

Cauchy We sample sequences from a stationary Gaus-
sian process with correlation function given by c(x¢, x41p) =
(1 + |h|*)~% [B]. We generated 4 classes by permuting pa-
rameters a € {0.65,1.95} and b € {0.1,0.95}. We generated
from each class 100 time series of length 1,000. Parameters a
and b are respectively related to the fractal dimension (mea-
suring self-similarity) and the Hurst coefficient (measuring
long-memory dependence) of the series. By construction,
the four classes have distinct characteristics.

X-ray The binary system GRS1915+105 is composed of
an extremely heavy stellar black hole and a low-mass star.
Material is transferred from the star towards the black hole

through the Roche lobe. While falling into the gravita-
tional potential of the black hole, energy is released by ra-
diating X-ray and radio (jet) emission which is typical for
the class of microquasars. A thorough investigation car-
ried out in [I], detected the presence of classes of distinct
dynamical patterns. Due to the lack of multiple time se-
quences per state, we split the observations into equal-length
parts, resulting in 161 sequences. Here we visualise classes
delta, kappa, phi, rho and chi.

Wind We visualise wind data] taken from the vicinity of
Hamburg, Frankfurt and Munich. Around each city, we
select the 10 closest stations with a completeness of more
than 99% of hourly measured wind speed data between
13/01/2014 - 31/12/2014 (8,471 measurements per station).
Missing data are interpolated using a spline function of the
3rd degree. In order to increase the number of visualised
entities, the time series of each station are cut into two non-
overlapping parts of 4,000 data points each. In these data
there is a strong a priori expectation that time series asso-
ciated with the coastal city of Hamburg are different to the
other data.

Textual data (symbolic) We visualise the first chap-
ter of J. K. Rowling’s “Harry Potter and the Philosopher’s
Stone” in three languages German, English and Spanish. A
full symbolic representation of the alphabet makes the opti-
misation of the ESN difficult and it would be a trivial task to
separate the languages as they could be identified by single
words. Here, we choose a binary representation where the
states 0 and 1 represent vowels and consonants. Punctua-
tion and whitespaces are ignored. E.g. a German sentence
is converted as follows:

>Die Potters, das stimmt, das hab ich gehort -«
011.0100100.010_001000_.010.010_.100_010100___

Discarded symbols are marked by an underscore. This
representation returns sequences of different length for each
language, but all with at least 24,000 symbols. To increase
the number of sequences per language, we split the binary
vectors into sequences of length 2, 000 with neighbouring se-
quences overlapping by 50%. It is interesting to see whether
texts originating from different languages still retain their
distinguishing dynamics after subjected to this drastic “bi-
narisation”.

"Kindly provided by
ftp://ftp-cdc.dwd.de/ .

the Deutscher Wetterdienst,

ftp://ftp-cdc.dwd.de/

Order 10
Order 20
Order 30

<
ADe

)

¢ Order 10 ¢ Order 10
O Order 20 O Order 20
< Order 30 <] Order 30

L

(a) PCA on NARMA.

(c) Standard-AE on NARMA.

a=0.65, b=0.10
a=1.95, b=0.10
a=0.65, b=0.95
a=1.95, b=0.95

a=0.65, b=0.10
a=1.95, b=0.10
a=0.65, b=0.95
a=1.95, b=0.95

OATe

a=0.65, b=0.10
a=1.95, b=0.10
a=0.65, b=0.95
a=1.95, b=0.95

(e) PCA on Cauchy.

(f) t-SNE on Cauchy, perpl.=30.

Delta
Kappa
Phi
Rho
Chi

>0ADe

Delta
Kappa
Phi
Rho
Chi

>0ADe

(i) PCA on X-ray.

(j) t-SNE on X-ray, perpl.=10. (k) Standard-AE on X-ray.

¢ Order 10
O Order 20
<] Order 30

(d) ESN-AE on NARMA.

OATe

a=0.65, b=0.10
a=1.95, b=0.10
a=0.65, b=0.95
a=1.95, b=0.95

(h) ESN-AE on Cauchy.

(1) ESN-AE on X-ray.

Fig. 4: Visualisations on NARMA (top), Cauchy (middle) and X-ray (bottom) data. High/low magnifications correspond
to bright/dark regions. Legends specify which markers correspond to which classes.

6.2 Dimensionality Reduction Algorithms

The following dimensionality reduction algorithms are com-

on the readout weights w. Sequences are represented as

readout weights using a deterministic cyclic ESN whose pa-

pared in the numerical experiments. All algorithms operate

rameters are selected using the validation procedure in Sec-

tion B0l Additionally, in this validation scheme we include
the regularisation parameter y € {1072,1073,104}. In all
experiments the size of the reservoir is fixed to D = 50 and
we set a washout period of 50 time steps. We set @@ = 2 for
constructing 2D visualisations.

PCA Weinclude PCA as it helps us gauge how difficult it
is to project a dataset to low dimensions: if PCA delivers a
good result, this hints that a complex, non-linear projection
is superfluous.

t-SNE We include t-SNE [I8] as one of the most popular
and well performing algorithms designed for vectorial data.
We train t-SNE with perplexities in [5, 10, 20, 30, 40, 50], and
display the visualisation that shows the best class separa-
tion. The chosen perplexity is quoted in the figures.

Standard autoencoder (standard-AE) We employ the
standard autoencoder operating directly on the readout
weights. The hidden layers of the encoding and decoding
part have the same number H of neurons. We also add a
regulariser on the weights of the autoencoder 2||0||? to con-
trol complexity. In all experiments, we set H = 10, v = 1.

Proposed approach (ESN-AE) The proposed ESN-AE
has the same hyperparameters as the standard-AE. We
again fix the hyperparameters to H = 10, v = 1.

6.3 Results

We present the visualisations in Figs. @land[Bl Each column
of plots corresponds to one of the aforementioned dimen-
sionality reduction algorithms, and each row to a dataset.
The projections in the plots appear as coloured markers of
different shapes indicating class origin. The legend in each
plot shows which marker corresponds to which class. Fol-
lowing Section [l we display local magnification factors, for
the autoencoders, as the maximum eigenvalue A* of ma-
trix F'(z) on a regular grid of points z on the visualisation
space. Dark and bright values signify low and high eigenval-
ues/magnification factors respectively. There are no mag-
nification factors for PCA, as the linear mapping connect-
ing the visualisation space to the high-dimensional space is
length/distance preserving. Also, we do not present magni-
fication factors for t-SNE, as it does not define an explicit
mapping between the visualisation and high-dimensional
space. It thus requires a different framework than the one
used here in order to study magnifications.

Table 1: Mean squared errors between NARMA classes, the
smaller the more similar.

Order 10 Order 20 Order 30
Order 10 5.331 2185.935 37.161
Order 20 2213.019 0.052 2030.409
Order 30 30.478 1983.585 6.031

NARMA, top row in Fig. [d We note that all visuali-
sations separate the three classes, and show that the three
classes are equidistant. The magnifications in dd show that
the standard-AE views the three classes indeed as distinctly
separable clusters. However, in the case of the ESN-AE in
[4d the magnification factors suggest the presence of distor-
tions in distances close to class “Order 20”. This means
that in actual fact class “Order 20” is separated by signif-
icant distance from the other two classes, and that classes
“Order 10”7 and “Order 30” are closer and more similar to
each other. We investigate this hypothesis with a simple
experiment. We generate from each class additional 200
sequences. For each pair of classes (classes also pair with
themselves), we train on sequences from one class and mea-
sure the mean squared error on the unseen sequences of the
other classes. These errors are reported in Table I and
support this hypothesis put forward by the magnification
factors in the ESN-AE visualisation.

Cauchy, middle row in Fig.[d PCA in[dand t-SNE in
[manage to organise the classes coherently to some degree,
while the standard-AE in fails to produce a convincing
result. ESN-AE in (I displays a clear separation between
all four classes. In particular the presence of magnification
factors close to the two classes located in the upper right cor-
ner, shows that these two classes are potentially separated
by a larger distance to the other two.

X-ray, bottom row in Fig.[d All visualisations clearly
separate the rho and chi classes. For standard-AE in BEK|
the strong magnification suggest that the chi class is quite
different to the others. t-SNE in[dj]and ESN-AE distinguish
in @ the classes in a clearer fashion. ESN-AE exhibits less
overlapping projections, but does not put enough distance
between classes delta and phi. The presence of magnifica-
tions close to the chi class is a hint that this class is quite
different to the other ones. Still even in the absence of la-
bels (i.e. colour markers), the classes are identifiable in the
visualisation produced by ESN-AE.

o < ¢ Hamburg a
< =N a O Frankfurt <
D .
] <I' Munich ¢ O
<1<]D6]_"I [m] o ” ”:’
<
3 %Q ’z <]<] <9 DD oé ¢ N
¢ Hamburg| < 0é <= ¢
O Frankfurt B 0 ¢ <]<] < g 0 ”Q ¢
< Munich o 4 d“ ’ a4 <m0 oe ¢
g ® s EA
B 5 Og
< [}
< & o 4 B o
<
< <
(a) PCA on Wind. (b) t-SNE on Wind, perpl.=5.
4 ¢ German oD
O Spanish
0 < English E Q’
L T T
X ¢ X
= R 4 ¢
[} - 4]
< =3 ‘9 =
<1<]0 <3
< & . . < <]D by ©
R SR g
%ﬁ ¢
< ¢ g ¢ German
% o = O Spanish
D“ DDD <1 English

(e) PCA on Textual.

(f) t-SNE on Textual, perpl.=10.

¢ Hamburg
O Frankfurt
<l Munich

¢ Hamburg g
O Frankfurt

(d) ESN-AE on Wind.

¢ German German
[Spanish Spanish
<1 English English
|

(g) Standard-AE on Textual. (h) ESN-AE on Textual.

Fig. 5: Visualisations on Wind (top), and Textual (bottom) data. High/low magnifications correspond to bright/dark
regions. Legends specify which markers correspond to which classes.

Table 2: Mean reconstruction and standard deviation, aver-
aged over 10 runs.

PCA standard AE ESN-AE

NARMA 151451.130 + 14984.801 116.041 £+ 46.606 44.126 + 11.962

Cauchy 121.110 £ 4.022 102.115 £ 2.522 95.176 £ 2.675
Xray 25.376 + 2.274 42.727 + 17.423 21.798 £+ 1.617
Wind 5.0498 + 0.253 5.192 + 0.260 5.079 £ 0.231
Textual 0.691 £+ 0.007 0.700 + 0.010 0.694 + 0.017

Wind, top row in Fig. None of the visualisations sep-
arates the Munich from the Frankfurt stations. Matching
our prior expectation, ESN-AE in [5dl organises the stations
around Hamburg in a single region, in contrast to the other
visualisations which show overlap. Standard-AE fails to pro-
duce a clear result and its magnifications do not help in its
interpretation any further.

Textual data (symbolic), bottom row in Fig. The
binary representation of the text data in three different lan-
guages shows the true power behind the ESN-AE equipped
here with the logistic function. While other visualisations
do not exhibit adequate separation, ESN-AE in [Bh] exhibits
some clear organisation. Additionally, magnifications sug-
gest some separation between the German and English se-
quences. The bright magnifications that appear in the un-
populated corners are simply artefacts as the model has not
seen any data in these areas.

Reconstruction In order to give a quantitative impres-
sion of the quality of the visualisations, we report recon-
struction errors in Table[2l Each dataset is randomly parti-
tioned 10 times into equally sized training and test sets. For
each partitioning, we train the dimensionality algorithms
and measure the error on the test data using Eq. @)). For

the binary textual data, the error is measured as the fraction
of predictions coinciding with the binary test sequences. We
exclude t-SNE as it does not offer a way of reconstructing
weights from the projections.

7 Discussion

Though the conversion of time-series into fixed-length rep-
resentations is not new (e.g. [9]), we believe that converting
the time series via a non-parametric state space model with
fixed dynamic part (i.e ESN) in conjunction with an appro-
priately defined reconstruction function, does provide a new
way of performing dimensionality reduction on time series.
The results show that the proposed visualisation is better at
understanding what makes sequences (dis)similar as it man-
ages to separate classes that are governed by qualitatively
distinct dynamical regimes. Indeed, the produced visuali-
sations reflect our prior expectations as to which sequences
should be similar.

Of course, combining the ESN with the autoencoder is
just one possible scheme, and certainly other dimensionality
reduction schemes can be devised along this line. One can
exchange the ESN with other models such as autoregressive-
moving-average models (ARMA), and use them to cast the
time-series to fixed parameter vectors. E.g. for slow chang-
ing signals, models based on Fourier series might be more
suitable than the ESN. Choosing the ESN to model the tem-
poral features of the sequences, is indeed a subjective choice.
However, this does not mean that it is a bad choice: in
the relevant literature, a wealth of applications demonstrate
that ESNs are good models for a large variety of real-world
time series.

Besides the autoencoder, other dimensionality reduction
methods that rely on optimising reconstruction error (e.g.
GPLVM [14]) can be adapted to the visualisation of time-
series; one has to modify their objective to measure recon-
struction in the sequence space, just as the loss function of
ESN-AE does.

8 Conclusion

We have presented a method for the visualisation of time
series that couples an ESN to an autoencoder. Time series
are represented as readout weights of an ESN and are subse-
quently compressed to a low dimensional representation by
an autoencoder. The autoencoder attempts reconstruction
of the readout weights in the context of the state space per-
taining to the sequences thanks to the modified loss function.
In future research, we plan to work on irregularly sampled

10

time series that originate from eclipsing binary stars. The
ESN will be replaced by a physical model that will cast the
time series to vectors of physical parameters.

Acknowledgement

The authors from HITS gratefully acknowledge the support
of the Klaus Tschira Foundation. We thank Ranjeev Misra
for providing the X-ray dataset. We would also like to thank
the anonymous reviewers for helping us improve the pre-
sented work.

References

[1] T. Belloni, M. Klein-Wolt, M. Méndez, M. van der Klis,
and J. van Paradijs. A model-independent analysis of
the variability of GRS 1915+105. Astronomy & Astro-
physics, 355:271-290, 2000.

Christopher Bishop. Pattern Recognition and Machine
Learning. Springer, 2006.

Christopher Bishop, Markus Svensen, and Christopher
K. I. Williams. Magnification factors for the GTM al-
gorithm. In ICANN, pages 6469, 1997.

S.P. Chatzis and Y. Demiris. FEcho state gaussian
process. Neural Networks, IEEE Transactions on,
22(9):1435-1445, 2011.

H. Chen, F. Tang, P. Tino, and X. Yao. Model-based
kernel for efficient time series analysis. In KDD, pages
392-400, 2013.

H. Chen, P. Tino, A. Rodan, and X. Yao. Learning
in the model space for cognitive fault diagnosis. IEEE
TNNLS, 25(1):124-136, 2014.

N. Gianniotis, S.D. Kuegler, and R. Misra P. Tino,
K. Polsterer. Autoencoding time series for visualisa-
tion. In ESANN, 2015.

T. Gneiting and M. Schlather. Stochastic models that
separate fractal dimension and the hurst effect. SIAM
Review, 46(2):269-282, 2004.

J. Grabocka, M. Wistuba, and L. Schmidt-Thieme.
Scalable classification of repetitive time series through
frequencies of local polynomials. IEEE TKDE,
27(6):1683-1695, 2015.

[10]

[18]

[19]

T. Jaakkola and D. Haussler. Exploiting generative
models in discriminative classifiers. In NIPS, pages
487-493, 1998.

T. Jebara, R. Kondor, and A. Howard. Probability
product kernels. Journal of Machine Learning Re-
search, 5:819-844, 2004.

M. A. Kramer. Nonlinear principal component analysis
using autoassociative neural networks. AICHE Journal,
37:233-243, 1991.

Solomon Kullback. Information theory and statistics.
Wiley, New York, 1959.

Neil D. Lawrence. Probabilistic non-linear principal
component analysis with gaussian process latent vari-
able models. JMLR, 6:1783-1816, 2005.

Mantas Lukosevicius and Herbert Jaeger. Reser-
voir computing approaches to recurrent neural net-
work training. Computer Science Review, 3(3):127-149,
20009.

A. Rodan and P. Tino. Minimum complexity echo
state network. IEEE Transactions on Neural Networks,
22(1):131-144, 2011.

Alessandro Sperduti. Linear autoencoder networks for
structured data. In International Workshop on Neural-
Symbolic Learning and Reasoning, 2013.

Laurens van der Maaten and Geoffrey Hinton. Visual-
izing data using t-SNE. JMLR, 9:2579-2605, 2008.

Tzai-Der Wang, Xiaochuan Wu, and Colin Fyfe. Com-
parative study of visualisation methods for temporal
data. In IEEE CEC, pages 1052-1056, 2012.

11

	1 Introduction
	2 Preliminary
	2.1 Echo State Networks
	2.2 Deterministically Constructed Echo State Networks
	2.3 Autoencoder

	3 Model Formulation
	3.1 Embedding time series in the space of readout weights
	3.2 ESN-coupled Autoencoder
	3.3 Data Projection

	4 Binary Sequences
	5 Magnification Factors
	6 Numerical Experiments
	6.1 Datasets
	6.2 Dimensionality Reduction Algorithms
	6.3 Results

	7 Discussion
	8 Conclusion

