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Abstract

An interval type-2 fuzzy support vector machine (IT2FSVM) has been proposed to deal with a classification

problem which aims to classify between three epileptic seizure phases (seizure-free, pre-seizure and seizure).

The input data is from the electroencephalogram (EEG) signal obtained from 10 patients at Peking University

Peoples Hospital. Three sets of EEG signals from the different seizure phases were collected where 112 2-

second 19-channel EEG epochs for each patient were extracted for each dataset. Feature extraction is then

carried out to reduce this to a feature vector of 45 elements which is then used as the input of classifier. The

performance of the IT2FSVM classifier is measured based on its recognition accuracy for each of the epileptic

seizure phases. Three traditional classifiers (Support Vector Machine, k-Nearest Neighbour and naive Bayes) are

used for comparison purposes. The IT2FSVM classifier is able to show superior learning capabilities with the

original data when compared to other classifiers. In order to gain an appreciation of the level of robustness of

the classifiers, the original EEG dataset is contaminated with Gaussian white noise at levels of 0.05, 0.1, 0.2 and

0.5. The results obtained from simulations show that the IT2FSVM classifier outperforms the other classifiers

under the original dataset and also shows a high level of robustness when compared to other classifiers with

white gaussian noise applied to it.
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I. INTRODUCTION

A classification problem can be best illustrated when an object or group of objects have to be

assigned into a pre-defined group or class where the assignment is made based on a number of

observed features/attributes pertaining to that particular object. Classification is a very important field

of research due to the advantageous nature that a classifier of high generalization ability would have

in the economical, industrial and medical field [1] just to name a few. As a result of this, extensive

research has been carried out over the years and this has resulted in a large number of applications e.g.,

classification of different investment or lending opportunities as acceptable or unacceptable risk [2],

hand-writing recognition [3], image classification [4], medical engineering [5] and speech recognition

[6].

Generally speaking, the existing traditional methods for classification can be categorized into logic

based (e.g decision trees) [2], statistical approach (e.g bayesian classification) [7], instance-based (e.g.

nearest neighbor algorithm [8]), perceptron based (e.g single layer perceptrons and neural networks

[9], [10]), and support vector machine (SVM) classification [11].

The decision tree method is a prime example of the logic based classification method. Classification

is carried out by categorizing the inputs based on the feature values in the input [8]. A drawback of

this method is that once the splitting rule makes a wrong decision, it is impossible to return to the

correct path and this would therefore result in an accumulation of errors. Bayesian classifier is based

on the assumption that equal prior probabilities exists for all classes [7]. The main limitation of the

Bayesian classifier is that the posterior probabilities cannot be determined directly [9]. An example

of the instance-based method is the k-Nearest Neighbour (kNN) [8] technique which is based on the

principle that objects in a data set will generally exist in the neighbourhood of other objects with

similar properties. The technique finds the k nearest objects to the particular input and determines its

class by looking for the most frequent class label.

The single layer perceptron can be simply described as a component that computes the sum of

weighted inputs and then feeds this to the output of the system. A major limitation of the single

layer perceptron is that it can only learn linearly separable problems and is therefore incompatible

when considering non-linear problems [10]. This problem is solved by the introduction of the Neural
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Network (NN). The Neural Network can be divided into 3 distinct segments. The input units which

have the primary responsibility of receiving information, the hidden units which contain neurons carry

out the input-output mapping and the output units which store the processed results [8]. By determining

properly the connection weights and transfer functions, NN can be regarded as a universal approximator

[12] which is able to approximate any continuous functions (e.g., hyperplanes) to any arbitrary precision

in a compact domain.

The Support Vector Machine (SVM) was first proposed by Vapnik in 1995 [8] as a machine learning

model that went on to be applied to various supervised and unsupervised learning applications [13]–

[15]. The SVM approach can be split into Support Vector Classification (SVC) which are used for

task such as pattern recognition and Support Vector Regression (SVR) which is mainly applicable to

time-series applications [13]. The main concept of the SVMs is that of the hyperplane which is used

to separate two data classes. The aim of the SVM is to maximize the margin between the hyperplane

and the input samples which is being separated by it thereby reducing the generalization error. Data

that is difficult to separate on the input space is mapped into a higher dimensional feature space for

ease of separation. Computations on the higher dimensional feature space are possible with the use of

a kernel function [8]. This feature illustrates a very important trait of the SVM which is its ability to

perform well in a high dimensional feature space [16], [17].

The SVM performs structural risk minimization (SRM) which aims to balance the complexity of

the model with its ability to accurately fit the input data [8]. This therefore gives the SVM good

generalization ability for classification problems as it can simultaneously minimize the empirical risk

[11]. The SRM principle is grounded on the fact that the generalization error of the model is bounded

by the sum of the empirical error and a confidence interval which is based on the Vapnik-Chervonenkis

(VC) dimension [8], a higher classification performance is achieved by minimizing this bound. The

SVM also provides a global optimization solution to the problem at hand and therefore provides a more

credible output when compared to the neural network which provides a local optimization solution

[11]. One of the drawbacks of the SVM method is its sensitivity to outliers that may exist in the

input data, this stems from the fact that the same penalty weight is assigned to each data point and an

outlier would therefore significantly distort the representation of the input signal and therefore affect

the classification performance. Another drawback is seen in the instance when the SVM is applied to

a classification problem with an imbalanced data set (where negative data significantly outweighs the
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positive data) the optimum separating hyperplane in this case can be skewed towards the positive with

the consequence being that the SVM could be very ineffective in identifying targets that should be

mapped to the positive class [13], [16].

A relatively recent classification method is based on fuzzy logic [18] which is the theory of fuzzy

sets used to handle fuzziness/imprecision in datasets. This is done by assigning each variable with

membership functions with respect to its relative distance to the class [4], [18]. There are two main

types namely type-1 and type-2 fuzzy sets [5], [19], [20]. In type-1 fuzzy sets, the membership values

are precise numbers in the range of 0 and 1 whilst the membership grades of a type-2 fuzzy set is a

type-1 fuzzy set due to the imprecision in assigning a membership grade. As a result, type-2 fuzzy

sets are useful as they offer an opportunity for the modeling of higher level uncertainty in the human

decision making process when compared to the type-1 fuzzy set where the membership grade is distinct.

In fuzzy logic, classification rules are specified by the user instead of being inherently decided upon

by the machine learning method like in the SVM or NN, this means that it is not a black-box method

and the decision rules are clearly visible. Fuzzy logic has been combined with the NN and SVM

and this gave birth to the Neural Fuzzy Network (NFN) and Fuzzy Support Vector Machine (FSVM)

[14]. The NFN works well when the sample data provided is sufficient but suffers from a significantly

reduced generalization performance when the sample data is limited, the FSVM however works well

even when the sample data is limited and is proven to provide higher generalization performance [14].

When considering a real world application of the SVM, it is important to account for the difficulty

in obtaining a precise measurement of the input data. One of the major disadvantages of the SVM

technique was its sensitivity to outliers and noise in the input data, this is due to the fact that the SVM

assigns the same penalty cost to each data point, the FSVM is able to solve this problem by assigning

membership functions to each data point which vary according to the relative importance of this data

point, this therefore helps in reducing the impact of outliers in the input dataset [21].

The application being considered in this paper is the recognition of the phases involved in the onset

of an epileptic seizure, the epilepsy signals obtained from the Electroencephalograph (EEG) using

real clinical data is subjected to the novel classification technique [22], [23]. The fact that there are

multiple features and also the susceptibility of the EEG data to noise results in a very challenging

classification problem [24], [25]. The classification technique is designed to differentiate between the

3 seizure phases (seizure-free, pre-seizure and seizure). The early detection of seizure phases is a
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potentially life-saving application/research field and this is a major motivation for the research being

carried out in this paper. The accurate classification/differentiation between the 3 seizure phases would

give doctors and other healthcare professionals ample time to be able to prepare for the oncoming

seizure. An interval type-2 fuzzy support vector machine (IT2FSVM) is being proposed to deal with

this problem. The IT2FSVM will be utilized to differentiate between the 3 seizure phases. The FSVM

is proposed due to its superior ability at dealing with uncertainties and unbalanced data [21], this would

therefore prove to provide a higher level of recognition accuracy than the traditional SVM and forms

the basis for the implementation of this classifier. The classification performance of the IT2FSVM

technique will be compared to some traditional classifiers like the kNN technique, SVM and naive

Bayes classifier.

This paper is organized as follows. Section II reviews the SVM theory. Section III reviews the

interval type-2 fuzzy inference system (IT2FIS). Section IV proposes the IT2FSVM structure with

a detailed schematic to illustrate how it functions. Section V introduces epilepsy, data collection and

feature extraction. Section VI presents the classification method to deal with the epilepsy seizure phase

classification problem. Section VII contains the experimental results obtained from the application of

the IT2FSVM method to the epilepsy seizure phase classification problem with a comparison to other

existing methods followed by a discussion of the results obtained. Section VIII draws a conclusion.

II. SUPPORT VECTOR MACHINES

The SVM theory is reviewed in this section, which provides the theoretical background to the

development of IT2FSVM. The main objective of the SVM is to create a separating hyperplane such

that the distance between the hyperplane and the nearest data point in each class is maximized.

Given a dataset S containing labelled training points

(y1, x1), (y2, x2), . . . , (yN , xN) i = 1, 2, . . . , N (1)

where vector xi represents the training point, yi represents the label and N represents the total number

of samples. xi is assigned to either of two classes and is represented by the class label yi ∈ {−1, 1}.

The hyperplane is ideally placed in the middle of the margin between the two classes being separated.

The data points that are in close proximity to the margin are the basis of its definition and are known as

support vectors (SVs) [8]. In the case of a non-linear function, searching for the optimum hyperplane
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in the input space proves to be difficult, as a result of this, the input space is mapped onto a higher

dimensional feature space. Let z = ϕ(x) represent the feature vector where x is an input vector and

ϕ(x) is a transformation function. The hyperplane can then be defined as

ω · z + b = 0 (2)

where z is the feature space vector, ω is the weight vector and b is the scalar threshold (bias). The

set S can be said to be linearly separable if there exists a combination of ω and b that satisfy the

following inequalities for all elements of the set S.
ω · zi + b ≥ 1, if yi = 1

ω · zi + b ≤ −1, if yi = −1, i = 1, 2, . . . , N

(3)

where zi = ϕ(xi).

In the case where the set S is not linearly separable for all of its elements, a leeway for some

classification violations must be allowed in order to accommodate the elements of the set that are not

linearly separable. This problem is dealt with by introducing non-negative slack variables ξi ≥ 0 for

the points xi which do not satisfy (3). (3) is then modified to


ω · zi + b ≥ 1− ξi, if yi = 1

ω · zi + b ≤ −1− ξi, if yi = −1, i = 1, 2, . . . , N

(4)

The optimal hyperplane can be obtained as a solution to the constrained optimization problem

min
1

2
‖ω‖

2

+ C

N∑
i=1

ξi (5)

subject to

yi(ω · zi + b) ≥ 1− ξi, i = 1, 2, . . . , N (6)

ξi ≥ 0 i = 1, 2, . . . , N (7)

where (5) is the convex cost function, (6) and (7) are the constraints, ‖ · ‖ denotes the l2 norm (i.e.
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Euclidean norm) and C is known as the regularization constant. It is the only free parameter in the

SVM formulation and can be tuned to find a balance between margin maximization and classification

violation. The optimal hyperplane can be found by constructing a Lagrangian multiplier and obtaining

the dual formation:

min Q(α) =
1

2

N∑
i=1

N∑
j=1

yiyjαiαjzi · zj −
N∑
i=1

αi (8)

subject to

N∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . , N (9)

where α = (α1, α2, . . . , αN) represents the vector of the nonnegative langrange multipliers which

satisfy the constraints in (5).

A very important theorem for the SVM theory is the Karush-Kuhn-Tucker theorem [26] which states

that the solution αi to (9) satisfies the following conditions:

αi(yi(ω · zi + b)− 1 + ξi) = 0, i = 1, 2, . . . , N (10)

(C − αi)ξi = 0, i = 1, 2, . . . , N (11)

The equalities (10) and (11) suggest that it is only the nonzero values αi in (8) that satisfy the

constraints in (6). The values of xi that corresponds with the solution αi are known as support vectors.

The instances where xi corresponds with αi = 0 is correctly classified and is of a significant distance

away from the decision margin.

For the construction of the optimal hyperplane ω · z + b, we would require that

ω =
N∑
i=1

αiyizi (12)

and the scalar bias b should be determined via the Karush-Kuhn-Tucker conditions in (10).

The decision function can then be derived from (3) and (12) to give

f(x) = sgn(ω · z + b) = sgn
( N∑

i=1

αiyizi · z + b
)

(13)

where sgn(·) represents the sign function which extracts the sign (positive or negative) of a real number.
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As we have no knowledge of the higher dimensional feature space ϕ(·), carrying out the computation in

(8) and (13) would be rendered impossible due to its complicated nature. An advantageous characteristic

of the SVM is that it is not necessary to know about the ϕ(·). The problem is alleviated with the aid

of a kernel function which has the ability to compute the dot product of the data points in the feature

space of z, it is however obligatory for these functions to satisfy Mercer’s theorem [27] before they

can be used for computing the dot product [21].

zi · zj = ϕ(xi) · ϕ(xj) = K(xi, xj) (14)

where K(xi, xj) = ϕ(xi) · ϕ(xj) is the kernel function which is used for the mapping onto a higher

dimensional feature space. The kernel functions may be linear or nonlinear. The nonlinear separating

hyperplane can then be found by solving the following equation

min Q(α) =
1

2

N∑
i=1

N∑
j=1

yiyjαiαjK(xi, xj)−
N∑
i=1

αi (15)

subject to
N∑
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, 2, . . . , N. (16)

The decision function can then be described as follows:

f(x) = sgn(ω · z + b) = sgn
( N∑

i=1

αiyiK(x, xi) + b
)

(17)

III. INTERVAL TYPE-2 FUZZY INFERENCE SYSTEM (IT2FIS)

Fuzzy inference systems are mainly used to represent the relationship between the input and output

variables in systems which are governed by a selection of IF-THEN rules which utilize linguistic labels

for the expression of rules and facts. An IT2FIS is a fuzzy logic system where the uncertainty of the

membership functions are incorporated into fuzzy set theory, in the circumstance where no uncertainty

exists, a type-2 fuzzy set would reduce to a type-1 fuzzy set, and this is identical to the concept

of probability reducing to the determinism when the unpredictability is eradicated [28]. In order to

distinguish between a type-1 and type-2 fuzzy set, a tilde symbol is placed above the symbol for the

fuzzy set, in this case, A would represent a type-1 fuzzy set and Ã would represent a type-2 fuzzy set

[29].
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Fig. 1. An example of IT2 membership functions. Dashed line: lower membership function. Dotted line: Upper membership function.
Gray area: footprint of uncertainty.

An example triangular IT2FIS membership function is shown in Fig. 1. The shape of the membership

function is a triangle, with the dashed lines representing the lower membership function LMF and the

dotted line representing the upper membership function UMF. The membership function can either be

chosen by the users or it can be designed with the aid of optimization methods such as the genetic

algorithm (GA). The shape of the membership function for each input is represented by seven points

(p1 to p7) which are optimised with the aid of GA. Unlike in the type-1 case where the membership

grade is a crisp value, the membership grade in an IT2FIS is an interval. The IT2FIS is then bounded

at the two extremes of this interval to give us the LMF and UMF which are both type-1 fuzzy sets.

The area between the UMF and LMF is known as the footprint of uncertainty (FOU) which is shown

as the gray area in Fig. 1.

Fuzzifier

Rules

Inference

Inputs
(Crisp) Type Reducer Type Reduction Set

(Type-1)

Defuzzifier
Outputs
(Crisp)

Output Processing

Fuzzy
Inputs

Fuzzy
Outputs

Fig. 2. Block diagram showing the IT2FIS.

Type-2 fuzzy sets are seen to be more prevalent than type-1 fuzzy sets in rule-based fuzzy logic

systems as they have a higher level of non-linearity and therefore have the ability to model uncertainties
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better than the type-1 fuzzy sets with less number of rules. The structure of the IT2FIS detailing the

input-output relationship is shown in Fig. 2. The IT2FIS consists of 5 major components [30]: fuzzifier,

fuzzy rules, inference engine, type-reducer and defuzzifier. The crisp input is first transformed into

fuzzy sets in the fuzzifier block as the rule base is activated by fuzzy sets and not numbers. In the

fuzzification stage, when the measurements are perfect the input is modelled as a crisp data set, when

the measurements are noisy but stationary it is modelled as an interval type-2 fuzzy set. After the input

is fuzzified, the fuzzy input set is then mapped onto the fuzzy output set with the aid of the inference

block. This is achieved by quantifying each rule using fuzzy set theory and then using the mathematics

behind fuzzy set theory to obtain an output for each rule. The output of the fuzzy inference block

would then contain one or more fuzzy output sets. The fuzzy output sets are then converted into a crisp

output with the aid of the output processing unit. In an IT2FIS the output processing unit consists of

two blocks: the type-reducer and the defuzzifier blocks. In the first step, the IT2 fuzzy output set is

reduced to an interval-valued type-1 fuzzy set in a process known as type-reduction.

The most prevalent of these is an algorithm developed by Karnik and Mendel [30] known as the

Karnik-Mendel (KM) algorithm which is iterative and very fast in achieving a state of convergence.

The second step of ouput processing occurs after type-reduction. In the case of the KM algorithm

being used as a type-reducer, the type-reduced set is always confined to a finite interval of numbers,

the deffuzifier then obtains the defuzzified value (which is a crisp output) by calculating the average

of the upper and lower bounds of this interval.

Given an IT2FIS with n inputs x1 ∈ X1, x2 ∈ X2, . . . , xn ∈ Xn to give a singular output y ∈ Y .

The rule base for this IT2FIS consists of K IT2 fuzzy rules expressed in the following form [20]:

Rk : If x1 is F̃ k
1 and · · · and xn is F̃ k

n THEN y is G̃k (18)

where k = 1, 2, . . . , K, F̃ k
n and G̃k represent type-2 fuzzy sets.

The rules are responsible for the mapping of an input space X to an output space Y . Experimentation

has shown that the general T2FIS model has high complexity and large computational costs. This has

resulted in the development of the IT2FIS which makes the computation simplified. The membership

grades for interval fuzzy sets can be portrayed by their lower and upper membership grades of the

FOU. The output of the firing strength for an IT2FIS ωi is represented by a lower and upper bound
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i.e., ωi = [ωi, ωi]. The defuzzified output is obtained by type reduction which is implemented using

the KM algorithm which is shown below [30]:

A. KM Algorithm (Lower Bound)

1) Arrange the lower bound of the output xi(i = 1, 2, . . . , n) in ascending order and then assign

the same labels to them such that x1 ≤ x2 ≤ · · · ≤ xn.

2) Match the weights ωi with the corresponding xi and reassign the labels to match with the new

xi which are now in ascending order.

3) Initialize ωi, i.e.,

ωi =
ωi + ωi

2
where i = 1, 2, . . . , n (19)

then calculate

y =

∑n
i=1 xiωi∑n
i=1 ωi

(20)

4) Find the pivot point p where (1 ≤ p ≤ N − 1) such that

xp ≤ y ≤ xp+1 (21)

5) Assign the firing strength as


ωi, i ≤ p

ωi, i > p

(22)

then calculate

y′ =

∑n
i=1 xiωi∑n
i=1 ωi

(23)

6) Check if y′ = y. If yes, stop and set y = y, if no, go to step 7

7) Set y = y′ and go to step 3
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B. KM Algorithm (Upper Bound)

1) Arrange the upper bound of the output xi(i = 1, 2, . . . , n) in ascending order and then assign

the same labels to them such that x1 ≤ x2 ≤ . . . ≤ xn.

2) Match the weights ωi with the corresponding xi and reassign the labels to match with the new

xi which are now in ascending order.

3) Initialise ωi i.e

ωi =
ωi + ωi

2
where i = 1, 2, . . . , n (24)

then calculate

y =

∑n
i=1 xiωi∑n
i=1 ωi

(25)

4) Find the pivot point p where (1 ≤ p ≤ N − 1) such that

xp ≤ y ≤ xp+1 (26)

5) Assign the firing strength as


ωi, i ≤ p

ωi, i > p

(27)

then calculate

y′ =

∑n
i=1 xiωi∑n
i=1 ωi

(28)

6) Check if y′ = y. If yes, stop and set y = y, if no, go to step 7

7) Set y = y′ and go to step 3

The defuzzified output of the IT2FIS is

y =
y + y

2
(29)
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IV. INTERVAL TYPE-2 FUZZY SUPPORT VECTOR MACHINES (IT2FSVMS)

In this section, the IT2FSVM classifier is introduced. The standard SVM classifier is used for this

hybrid classification mechanism which involves the merging of an IT2FIS with an SVM to form the

IT2FSVM. The IT2FSVM can be characterized as a multiple-input-single-output classifier. The ability

of the IT2FIS to handling non-linear data makes it very complementary to the SVM in solving difficult

problems.

IT2 SVM1

IT2 SVM2

IT2 SVM3

Rule-Based
Class Determiner

Feature
Vectour
Input

Output

Output1

Output2

Output3

Fig. 3. Block diagram of IT2FSVM.

The overall IT2FSVM architecture is shown in Fig. 3. As the hyperplane can only separate between 2

classes, multiple SVMs will be necessary in a case where there are more than 2 classes in a classification

problem. For the application in this paper which is to differentiate between the epileptic seizure stages,

multiple SVMs will be needed as there are three classes (seizure-free, pre-seizure and seizure). There

are three IT2 SVM blocks in the diagram which are used to individually separate between the seizure

phases. IT2 SVM 1 separates between the seizure-free and pre-seizure phases with the label “−1”

indicating the input data belongs to the seizure-free class and label “1” indicating the input data

belongs to the pre-seizure class. IT2 SVM 2 separates between the seizure-free and seizure phase with

the label “−1” indicating the input data belongs to the seizure-free class and label “1” indicating the

input data belongs to the seizure class. IT2 SVM 3 separates between the pre-seizure and seizure phase

with the label “−1” indicating the input data belongs to the pre-seizure class and label “1” indicating

the input data belongs to the seizure class. The output labels of the three IT2 SVM blocks are presented

in Output1 to Output3 which are then subjected to a rule-based class determiner in order to determine

what the final classification would be.

The rule based class determiner system for selecting the final classification output for the IT2FSVM
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Case Output1 Output2 Output3 Final Class (Output)
1 −1 −1 −1 or 1 1
2 1 −1 or 1 −1 2
3 −1 or 1 1 1 3
4 1 −1 1 3
5 −1 1 −1 3

TABLE I
TABLE SHOWING THE IF-THEN RULES USED BY THE RULE BASED CLASS DETERMINER SYSTEM. TABLE SHOWING THE IF-THEN

RULES. CLASS 1: SEIZURE-FREE, CLASS 2: PRE-SEIZURE, CLASS 3: SEIZURE

is shown in Table. I. The final class is a whole number between 1 and 3 where “1” representing the

seizure-free phase, “2” representing the pre-seizure phase and “3” representing the seizure phase.

The IT2FSVM block consists of a feature vector input, 3 fuzzy rules each consisting of two SVMs

associated with the lower and upper membership functions and a defuzzification block which is used

to produce the final crisp output. The original EEG input data had a 19 × 100 vector input and feature

extraction is used to reduce it to a 45-input feature vector which is used as the input of the IT2SVM.

More details about feature extraction and feature will be provided later on.

The final output is obtained by combining a number of SVMs with the aid of fuzzy rules (which

determine the number of SVMs) and membership grades or weights (which depict the impact that a

particular fuzzy rule would have on the final output). There is no limit to the number of fuzzy rules

that can be applied in this instance but an increase in the number of fuzzy rules would lead to a

slower convergence of training and also a higher computational cost of the system. In this paper, there

are 3 fuzzy rules employed to implement the IT2FSVM. The membership grade is obtained from the

membership function which is defined by the user and the shape of the membership function is a

triangle as shown in Fig. 1. The shape of the membership function is represented by the points p1 to

p7 which are then optimized with the aid of GA.

Referring to Fig. 3, we have three IT2 SVMs. Each IT2 SVM is governed by the following rules:

Rj : If ‖x‖ is F̃ j THEN y is G̃j, j = 1, 2, 3 (30)

where F̃ j is defined as an IT2 triangular membership function as shown in Fig. 1 and G̃j is a singleton

with SVMjk as LMF and SVMjk as UMF, k = 1, 2, 3, denoting the number of IT2FSVMs in Fig.
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2. SVMjk and SVMjk are two SVMs with the output Outjk and Outjk defined by the following

hyperplanes:

Outjk = ωjk · z + bjk =
N∑
i=1

αijkyiK(xi, x) + bjk (31)

Outjk = ωjk · z + bjk =
N∑
i=1

αijkyiK(xi, x) + bjk (32)

where j = 1, 2, 3 denotes the j-th (lower or upper) SVM in Fig. 2 and k = 1, 2, 3 denotes the k-th IT2

SVM in Fig. 2. The Outputk of the IT2 SVM k can then be obtained by the KM algorithm introduced

in Section III. The rule-base class determine will round it off to “1” or “−1” before making the final

class decision.

V. ABSENCE EPILEPSY

Epilepsy, which is characterized with its ability to instantiate recurrent seizures (an interruption of

normal brain functions) which are unforeseen in nature is a very common and significant neurological

disorder caused by a sudden discharge of cortical neurons [22], [23]. Epileptic seizures are classified

as either partial (involving focal brain regions) or generalized (where it involves a widespread region

of the brain across both hemispheres) [31]. The length of time for the seizure occurrence varies from a

few seconds up to a minute with some of the effects including momentary lapse of consciousness for

the sufferer of the seizure [31]. A complete loss of consciousness occurs when the epileptic activity

involves both the cortical and subcortical structures of the brain and this occurrence is known as an

absence seizure.

The unexpected nature of these seizures has proven to have an adverse effect on the quality of life

for those who are suffering from them. The impact is most prevalent in the formative stages of a

childs life as we see an increase in the requirements for special education and also a higher incidence

of below-average school performance [23], [32]. It also proves life-threatening in situations where

the sufferer is isolated at the time of its occurrence and there is no experienced or medical help on

hand to alleviate the situation. Therefore having an accurate understanding or predictive model for the

pre-seizure phase (the transition towards an absence seizure occurrence) is a very vital task as it would

provide the sufferers and their carers enough notice of the upcoming seizure so they could prepare

themselves and dampen the impact of the seizure occurrence.
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Absence seizures can be best characterized by the spike-and-wave discharges (SWDs) which are

as a result of synchronized oscillations in the thalamocortical networks of the brain [33], [34]. The

classification process of EEG signals consists of two main parts which are feature extraction and

classification. In the literature, there are a wide range of available feature extraction methods which

range from the traditional methods to the non-linear methods. Traditional methods include the fourier

transform and also spectral analysis whilst the non-linear methods include Lyapunov exponents [23],

[35], correlation dimension [23] and similarity [36]. After feature extraction has been implemented

to the raw data, the extracted features are then used and applied to the pre-determined classification

technique. There are a wide range of classification techniques for EEG classification in the literature,

examples of these include the artificial neural network [37], [38] and also the neuro-fuzzy systems

[39]–[41].

For this particular problem of accurately classifying and thereby predicting the onset of an epileptic

seizure, the extracted features are applied to various classifiers (kNN, naive Bayes, SVM and FSVM)

with the main aim of being able to recognize and distinguish between the 3 seizure phases (seizure-

free, pre-seizure and seizure phase). The raw data obtained for the simulations being carried out were

obtained from the Peking University by the aid of 10 patients who were suffering from absence epilepsy,

their ages ranging from 6 to 21 years old. The study has been approved by the ethics committee of

Peking University Peoples Hospital and the patients all signed documents in consent of their clinical

data being used for research purposes. The EEG data (which was sampled at a frequency of 256 Hz

with the aid of a 16-bit analogue-to-digital converter and then filtered within a frequency band of 0.5

to 35 Hz) was recorded by the Neurofile NT digital video EEG system using a standard international

10-20 electrode placement (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz,

Cz and Pz).

There are 3 sets of EEG signals which are extracted from the 3 seizure phases (seizure-free, pre-

seizure and seizure) to obtain 112 2-second 19-channel EEG epochs from 10 patients for each dataset.

The timing of the onset and offset in the SWDs were identified by a neurologist and these SWDs

were identified to be large amplitude 3-4Hz discharges with a spike-wave morphology typically lasting

above a second in duration. The criteria for determining the different seizure phases are that there is

an interval between the seizure-free phase and beginning of the seizure phase which is greater than

15 seconds, the interval is between 0 to 2 seconds before the occurrence of the seizure and that the
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interval occurs during the first 2 seconds of the absence seizure. A more detailed description of the

procedure for data collection can be found in [42], [43].

A. Feature extraction

The feature extraction procedure is very vital in the classification process as it obtains the relevant

characteristics and information from a large dataset (EEG signals in this instance), this has the knock-

on effect of simplifying the dataset and also reducing the effect of redundant data points that have

little or no effect in the classification of the dataset. This is a very important step in improving the

performance of the classifier as classification is easier when the classifier is subject to fewer data

points.

For the EEG case being undertaken, there are 19 columns (19 channels) of signal output. The 19

columns represent signals that were drawn from 19 EEG sensors with each column containing 100

sample points. The purpose of the feature extraction being carried out here is to extract the relevant

feature points from the 19 × 100 dataset and thereby reducing the dimensionality.

Research into the existing literature provides evidence to suggest that the 19 channels of the EEG

data vary in importance with regards to classification. It was observed that some of the channels have a

lesser impact on the classification of the EEG and the exclusion of these channels has been investigated

in [24], [25]. Both studies have discovered that some of the electrodes (F3, Fz, F4, C3 and Cz) are

the most significant ones for the classification between the seizure-free and seizure patients and the

remaining electrodes are found to have relevant information for the classification between the different

seizure phases.

We utilize the relevant channels for classification (i.e channel 1, 2, 3, 4, 5, 6, 11, 12, 13, 14) for the

simulations carried out in this paper. For each of the channels, a feature vector containing the time-

domain and frequency-domain components of the dataset is created [38]. The first part of the feature

vector comprises of computations in the time-domain such as the standard deviation, second order

norm, third order norm, fourth order norm, absolute sum, maximum value and minimum value of the

100 sample points from each channel. The second part is comprised of computations in the frequency

domain such as the mean frequency, maximum frequency, minimum frequency, standard deviation of

frequency, windowing filtered mean frequency and windowing filtered maximum frequency of each

chosen channel will form the second part of the feature vector.
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A problem that arises from these computations would result in a large vector which would be difficult

to classify. This is solved by implementing principal component analysis (PCA) to reduce the number

of dimensions in the feature vector. After this dimensionality reduction method has been implemented,

we finally have 45 points which form the feature vector. This feature vector is then applied to the

pre-determined classifiers.

VI. METHOD

A classifier based on the proposed IT2FSVM structure has been implemented for the classification

of the 3 seizure phases with the aid of the feature vectors obtained from the feature extraction method

applied in the preceding section. The structure of the IT2FSVM consists of 3 IT2 SVM blocks that

are used to distinguish between the 3 seizure phases. Fig. 3 shows the overall structure of the FSVM

classifier which consists of 18 45-input-single-output SVMs (6 for each of the IT2 SVM blocks). The

need for 3 sets of SVM machines to distinguish between 3 classes of data stems from the fact that the

SVM can only separate between 2 classes at any given time.

There are 3 fuzzy rules for each of the IT2 SVM blocks. The parameters of the triangular membership

functions, i.e., p1 to p7, as shown in Fig. 1 are optimized with the aid of GA which has the ability to

influence the shape of the membership functions. The GA optimization is performed to maximize the

recognition accuracy using 70% of dataset as the training samples. The rest 30% of dataset are used as

the test samples. The lower and upper membership functions for SVM Block 1 to 3 after training are

shown in Figs. 4 to 6. The membership grade is represented on the y-axis and the normalized inputs

are represented on the x-axis. The normalized input denoted as xnorm is calculated as follows:

xnorm = x1
2 + x2

2 + . . .+ xN
2 (33)

where

xi =
xi

max(x)−min(x)
, i = 1, 2, . . . , N, (34)

xi is the i-th element of x, min(x) and max(x) denote the minimum and maximum value of the

elements in x, respectively.

The simulations that have been conducted with the aid of the MATLAB software. The control

parameters of the GA are shown in Table II. Different combinations of kernel functions we utilized
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Fig. 4. Membership functions for SVM Block 1. Dotted line: Membership function for rule 1, Straight Line: Membership function for
rule 2, Dashed Line: Membership function for rule 3.
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Fig. 5. Membership functions for SVM Block 2. Dotted line: Membership function for rule 1, Straight Line: Membership function for
rule 2, Dashed Line: Membership function for rule 3.

in the SVMs. The optimal combination was chosen based on its ability to maximize the recognition

accuracy of the classifier. The parameters used for the SVM are as follows. In the IT2 SVM1, there

are 6 SVMs used, with all utilizing the RBF kernel function with the width of the RBFs for all 6 of

them set to
√

1/200, and the regularization constant C = 500. In IT2 SVM2 there are 6 SVMs used,

with the polynomial kernel function applied in all cases and the degree of polynomial set to 2, and

C = 5000. In IT2 SVM3 the kernel function utilised for all SVMs is the quadratic kernel function

with C = 500.

In order to gain an appreciation of the robustness of the proposed classifier, white Gaussian noise of

levels 0.05, 0.1, 0.2 and 0.5 have been added to the original test dataset. Under these noisy conditions,

the simulations were carried out 10 times for each of the noise levels and the worst, average, best and
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Fig. 6. Membership functions for SVM Block 3. Dotted line: Membership function for rule 1, Straight Line: Membership function for
rule 2, Dashed Line: Membership function for rule 3.

Parameter Value
Number of Iterations 10
Population Size 20
Selection Stochastic uniform selection function
Elitism Yes (Best two chromosomes are passed onto the next generation)
Crossover Scattered Crossover
Crossover Fraction 0.8
Mutation Gaussian Mutation
Stopping Criterion It stops when the weighted average relative change in the best fitness function

value over 100 generations is less than or equal to 10−6
TABLE II

GA PARAMETERS

standard deviation of recognition accuracy were calculated. This was done to aid fair comparison due

to the fact that the noisy data is random in nature and drawing conclusions from a single simulation

would not accurately represent the robustness of the classifier to noise.

Recognition Accuracy (%)
Classifier Average Class 1 Class 2 Class 3

1 99.0510 100.000 97.1400 100.0000
2 86.6667 100.0000 90.0000 70.0000
3 100.0000 100.0000 100.0000 100.0000
4 77.1400 90.0000 41.4333 100.0000

TABLE III
SUMMARY OF TRAINING SAMPLES RECOGNITION PERFORMANCE FOR EEG SIGNAL WITH ORIGINAL DATASET. CLASSIFIER 1:

FSVM CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR CLASSIFIER, 4: NAIVE
BAYES CLASSIFIER.
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Recognition Accuracy (%)
Classifier Average Class 1 Class 2 Class 3

1 87.7800 100.000 70.0000 93.3300
2 71.1100 90.0000 70.0000 53.333
3 56.6667 96.6700 23.3333 50.0000
4 77.7778 100.0000 33.3333 100.0000

TABLE IV
SUMMARY OF TESTING SAMPLES RECOGNITION PERFORMANCE FOR EEG SIGNAL WITH ORIGINAL DATASET. CLASSIFIER 1: FSVM
CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR CLASSIFIER, 4: NAIVE BAYES

CLASSIFIER.

Recognition Accuracy (%)
Classifier Worst Mean Best Std Class 1 Class 2 Class 3

1 62.2200 66.1100 68.8900 0.0211 8.3000 93.0000 97.0000
2 61.1100 66.2200 68.8900 0.0235 11.1333 96.0000 97.3333
3 56.6700 57.8900 58.8900 0.0176 96.0000 25.0000 52.6700
4 77.7778 78.3333 80.0000 0.7857 99.0000 37.8900 100.0000

TABLE V
SUMMARY OF TESTING RECOGNITION PERFORMANCE FOR EEG SIGNAL UNDER DATASET SUBJECT TO NOISE LEVEL OF 0.05.

CLASSIFIER 1: FSVM CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR
CLASSIFIER, 4: NAIVE BAYES CLASSIFIER.

Recognition Accuracy (%)
Classifier Worst Mean Best Std Class 1 Class 2 Class 3

1 74.4400 79.4400 85.5600 0.0034 55.3333 66.3333 99.0000
2 66.6700 68.6700 70.0000 0.0126 15.0000 89.0000 98.3333
3 54.4400 56.2200 57.8800 0.0228 92.6700 22.0000 54.0000
4 76.6667 78.8889 82.2222 1.8251 100.0000 33.6667 100.0000

TABLE VI
SUMMARY OF TESTING RECOGNITION PERFORMANCE FOR EEG SIGNAL UNDER DATASET SUBJECT TO NOISE LEVEL OF 0.1.
CLASSIFIER 1: FSVM CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR

CLASSIFIER, 4: NAIVE BAYES CLASSIFIER.

Recognition Accuracy (%)
Classifier Worst Mean Best Std Class 1 Class 2 Class 3

1 73.3300 78.0000 83.3300 0.0384 94.0000 40.6667 99.3300
2 72.2200 74.6700 80.0000 0.0250 27.6667 79.3333 99.3333
3 50.0000 53.3333 55.7800 0.0207 91.6667 21.6667 54.0000
4 76.6667 79.0000 82.2222 1.8898 99.3333 34.3333 100.0000

TABLE VII
SUMMARY OF TESTING SAMPLES RECOGNITION PERFORMANCE FOR EEG SIGNAL UNDER DATASET SUBJECT TO NOISE LEVEL OF
0.2. CLASSIFIER 1: FSVM CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR

CLASSIFIER, 4: NAIVE BAYES CLASSIFIER.
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Recognition Accuracy (%)
Classifier Worst Mean Best Std Class 1 Class 2 Class 3

1 73.3300 78.0000 82.2200 0.0295 86.0000 48.0000 100.0000
2 67.7800 68.6700 70.0000 0.0126 36.3333 76.3333 98.3333
3 54.4444 56.6700 58.8900 0.0236 92.6700 23.0000 54.3333
4 75.5556 78.2222 80.0000 1.5585 99.6667 33.6667 100.0000

TABLE VIII
SUMMARY OF TESTING RECOGNITION PERFORMANCE FOR EEG SIGNAL UNDER DATASET SUBJECT TO NOISE LEVEL OF 0.5.
CLASSIFIER 1: FSVM CLASSIFIER, CLASSIFIER 2: TRADITIONAL SVM CLASSIFIER, CLASSIFIER 3: K-NEAREST NEIGHBOR

CLASSIFIER, 4: NAIVE BAYES CLASSIFIER.

VII. EXPERIMENTAL RESULTS/DISCUSSION

The proposed IT2FSVM classifier is used to classify between the 3 epilepsy seizure phases using the

feature vector that has been obtained by the method detailed in Section V-A. For comparison purposes,

3 traditional classifiers (kNN, naive Bayes and SVM classifiers) are considered. When traditional SVM

classifier is considered, they are connected in the classifier structure as shown in Fig. 2, i.e., replacing

the IT2SVM with the traditional SVM. For the design of the hyperplane, all three traditional SVMs

take the RBF kernel with the width of
√
1/1400 and regularization constant C = 500.

The recognition accuracy with respect to the training dataset for all classifiers is given in Tables

III and IV. The tables show the training and testing recognition accuracy from the best performed

classifiers during the design. It tabulates the worst (among the three classes), best (among the three

classes), average (over the three classes) and individual class recognition accuracy for both training

and testing dataset.

It can be seen from Tables III that the kNN classifier performs the best in terms of average recognition

accuracy of 100%. The IT2FSVM classifier comes in second place with 99.0510% (less than 1%

compared with the kNN classifier). This however is not an indication of the kNN being a superior

classifier as we see that it suffers from a significant reduction in its average recognition performance

when exposed to unseen test data with and without noise as seen in column 3 of Table. IV and column

2 of Tables V-VIII. The 100% average training accuracy seen in Table. III is reduced to 56.6667%

in Table.IV when the classifier is subjected to the test data. Another significant impact of this is that

the kNN now has an individual testing recognition accuracy of 23.3333% as seen in column 5 of

Table.IV when classifying the pre-seizure phase (class 2), this is of significance because the accurate

classification of the pre-seizure phase is a core objective in addressing the problem of epilepsy seizure
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phase classification as this would give the patients the advance warning and therefore sufficient time

to prepare for the onset of the seizure. The SVM and naive Bayes come in the third and fourth places.

Referring to Table IV, it can be seen that the IT2FSVM classifier outperforms other classifiers in terms

of average recognition accuracy for testing dataset, which shows that the IT2FSVM demonstrates an

outstanding generalization ability dealing with unseen data. Compared with other classifiers, the average

testing recognition accuracy is 10% to 21% higher. It is interestingly observed that the naive Bayes

classifier performs the worst to the testing data, which shows that it is very sensitive to unseen dataset.

Referring to the worst individual class testing recognition accuracy, IT2FSVM can maintain 70% while

other drops to around 23% to 50%.

Tables V to VIII show the testing recognition accuracy for the testing data subject to Gaussian noise

levels of 0.05, 0.1, 0.2 and 0.5. The experiments were repeated 10 times for each classifiers. The “Worst”

and the “Best” column show the worst and best testing individual class recognition accuracy among

the 10 times of experiments. The “Mean” and “Std” column show the mean and standard deviation of

the average testing accuracy of the three classes of the 10 experiments. The “Class 1”, “Class 2” and

“Class 3” columns show average testing recognition accuracy for classes 1 to 3, respectively, of the

10 experiments.

In general, the recognition accuracy drops for all classifiers when the noise level increases. In most

of the cases, the average testing recognition of IT2FSVM and naive Bayes classifiers offer the best

result. However, when it is down to the individual class recognition accuracy, especially for higher

noise levels (0.1, 0.2 and 0.5), the IT2FSVM performs more stable giving the lowest class recognition

accuracy of 40% while other classifiers give the lowest class recognition accuracy ranging from 15% to

36%. Similar to the comment concerning the kNN and its poor performance in accurately classifying

the pre-seizure phase (Class 2), it is important to also note that the nave Bayes classifier exhibits

a relatively poor ability to classify the pre-seziure phase as we see that the SVM and IT2FSVM

provides superior class recognition for the pre-seizure phase in the training, noise-free testing and

noise testing of both classifiers. This is a critical difference between these classifiers. The IT2FSVM

however shows a superior overall/average recognition accuracy when compared to the SVM and this

shows the superiority and suitability of the IT2FSVM for classifying between the three epilepsy seizure

phases.
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VIII. CONCLUSION

In the research conducted in this paper, an IT2FSVM is introduced which has been able to show

a high level of proficiency in dealing with complicated classification and recognition problems. The

IT2FSVM merges the SVM and IT2FIS to create a hybrid classifier with improved performance when

compared to the some traditional classifiers. The IT2FSVM classifier has been applied to the epilepsy

phase classification problem. The results obtained from the simulations that were carried out show

that the IT2FSVM has a better performance than the traditional kNN and naive Bayes and SVM

method when the classifier is subjected to the original and uncontaminated input data. The input data

was then contaminated with noise in order to test the robustness of the classification methods. The

IT2FSVM proved to have a significant level of robustness to noise in the data as there was a relatively

smaller impact on the recognition accuracy of the IT2FSVM under noisy data when compared to other

classification methods. Further work on this research direction will involve investigating better ways to

optimise the membership function, also trying out other IT2FSVM architectures in an effort to improve

the overall recognition accuracy.
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[39] I. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients,”

Journal of neuroscience methods, vol. 148, no. 2, pp. 113–121, 2005.

[40] N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, “Entropies for detection of epilepsy in EEG,” Computer methods

and programs in biomedicine, vol. 80, no. 3, pp. 187–194, 2005.

[41] E. D. Ubeyli., “Automatic detection of electroencephalographic changes using adaptive neuro-fuzzy inference system employing

lyapunov exponents,” Expert Systems with Applications, vol. 36, pp. 9031–9038, Jul. 2009.

[42] M. Thulasidas, C. Guan, and J. Wu, “Robust classification of eeg signal for brain-computer interface,” Neural Systems and

Rehabilitation Engineering, IEEE Transactions on, vol. 14, no. 1, pp. 24–29, 2006.

[43] J. O’Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus,

vol. 3, no. 3, pp. 317–330, 1993.


