
Video Interpolation using Optical Flow and Laplacian Smoothness

Wenbin Lia,b, Darren Coskerb

aDepartment of Computer Science, University College London, UK
bCentre for the Analysis of Motion, Entertainment Research and Applications (CAMERA), University of Bath, UK

Abstract

Non-rigid video interpolation is a common computer vision task. In this paper we present an optical flow approach which adopts a
Laplacian Cotangent Mesh constraint to enhance the local smoothness. Similar to Li et al., our approach adopts a mesh to the image
with a resolution up to one vertex per pixel and uses angle constraints to ensure sensible local deformations between image pairs.
The Laplacian Mesh constraints are expressed wholly inside the optical flow optimization, and can be applied in a straightforward
manner to a wide range of image tracking and registration problems. We evaluate our approach by testing on several benchmark
datasets, including the Middlebury and Garg et al. datasets. In addition, we show application of our method for constructing 3D
Morphable Facial Models from dynamic 3D data.

Keywords: Optical Flow, Computer Vision, Non-rigid Deformation, Video Interpolation, Laplacian Smoothness, Mesh
representation

1. Introduction

Non-rigid video interpolation is a computer vision related
problem that requires the tracking of non-rigid objects, calcula-
tion of dense image correspondences and the registration of im-
age sequences containing highly non-rigid deformation. Exist-
ing algorithms to achieve this include model based tracking [1],
dense patch identification and matching [2, 3], group-wise im-
age registration [4], space-time tracking [5, 6, 7, 8, 9] and opti-
cal flow [10, 11, 12, 13, 14, 15]. All such models and the gen-
eral dense tracking have been widely used in fields e.g. motion
tracking [16, 17], visualization [18, 19] and interaction [20].

Optical flow is an attractive formulation as it provides a dense
displacement field between image pairs. In most standard ap-
proaches, assumptions regarding gray value constancy between
images and smoothness in motion between neighboring pixels
are adopted [11, 10]. Sun et al. [21] propose a different ap-
proach which overcome these constraints by learning a proba-
bilistic model for flow estimation. However, their approach re-
quires training pre-calculated optical flow ground truths, which
are difficult to obtain. In the general optical flow model, it is
common to adopt a data term consisting of gray value and gra-
dient constraints (e.g. Brox and Malik [11]) and an additional
smoothness term. Nevertheless, most previous optical flow for-
mulations only consider global smoothness and ignore formu-
lations that preserve local image details.

Many optical flow techniques concentrate on problems where
the scene movement is largely rigid in nature. However, there
are many problem cases where we would like to calculate flow
given highly non-rigid global and local image displacements
over long image sequences. One recent problem highlighting
this particular case is the alignment of 3D dynamic facial se-
quences containing highly non-rigid deformations [22, 23]. The

problem requires non-rigidly aligning a set of images to a ref-
erence - e.g. a neutral facial expression. Each image referred
to as a UV map 1 is accompanied by a corresponding 3D mesh,
and each mesh has a difference vertex topology. Once the UV
maps are registered to a reference image (e.g. a neutral expres-
sion), vertex correspondence can be imposed. The technique is
popular in 3D Morphable Model construction [22, 24].

Beeler et al [25] and Bradley et al [23] adopt a slightly differ-
ent approach to mesh correspondence. In their solutions, image
displacement is calculated from camera views and then used to
deform a reference mesh from an initial frame through a 3D se-
quence. The optical flow provides guides for adjusting pixel po-
sitions, and the mesh reduces artefacts by imposing a constraint
to prevent faces on the mesh from becoming inverted or flipped.
Further, mesh and image deformation research in graphics is an
active area of research [26]. Such techniques provide flexible
methods to invoke deformation while preserving some desired
properties such as local geometric details. As such, it is also
of interests to apply such solutions as smoothness constraints
to optical flow calculation, which forms the central basis of our
presented work. Li et al. [27] introduce a hybrid optical flow
framework that takes into account a laplacian mesh data term
and a global smoothness term. However, their energy is highly
nonlinear and hard to minimize.

1.1. Contributions
In this paper we present an optical flow algorithm (LCM-

flow) which adopts a smoothness term based on Laplacian
Cotangent Mesh Deformation. Such deformation approaches

1UV refers to the XY location of a pixel in the image. UV map is the
graphical term for the texture for a 3D model. Each UV location maps to a 3D
vertex on a corresponding mesh
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has been widely used in graphics, particularly for preserving
small details on deformable surface [28, 29]. Such concept
shows advantage in the non-rigid optical flow estimation [27].
Those energy is able to penalizes local movements and pre-
serves smooth global details. In our method, the proposed con-
straint on the local deformations is expressed in Laplacian coor-
dinates encourage local regularity of the mesh whilst allowing
globally non-rigid preservation.

Similar to Li et al. [27], our proposed algorithm applies a
mesh to the image with a resolution up to one vertex per pixel.
The Laplacian constraint is described in terms of a smoothness
term, and can be applied in a straightforward manner to a num-
ber of optical flow approaches with the addition of our proposed
minimization strategy. We evaluate our approach on the pop-
ular Middlebury dataset [30] as well as the publicly available
non-rigid data set proposed by Garg et al. [12]. We show our
method to give high performance on Middlebury in terms of
interpolation, and either outperform or show comparable accu-
racy against the leading publicly available non-rigid approaches
when evaluated against Garg et al. In addition, we show an ap-
plication of our optical flow approach for building dynamic 3D
Morphable Models from dynamic 3D facial data, and outper-
form a current state of the art method.

The remainder of our paper is organized as follows: In sec-
tions 2 and 3 our strategy for calculating optical flow displace-
ments between image pairs is outlined. Section 4 shows an
evaluation of LCM-flow on the Middlebury data set and four
other publicly available sequences of non-rigidly deforming ob-
jects [12].

2. Energy Function Definition

In this section the core energy function of our Laplacian
Cotangent Mesh based Optical Flow approach is presented. In
the formulation the algorithm considers a pair of consecutive
frames in an image sequence. The current frame is denoted
by Ii(X) and its successor by Ii+1(X), where X = (x, y)T is a
pixel location in the image domain Ω. We define the optical
flow displacement between Ii(X) and Ii+1(X) as wi = (u, v)T . In
the proposed optical flow estimation approach, the core energy
function can be obtained from the following general formula-
tion:

E(w) = EData(w) + λ · EGlobal(w) + ξ · ELap(w)

where EData(w) denotes a data term that contains both Gray
Value and Gradient Constancy assumptions (Section 2.1) on
pixel values between Ii(X) and Ii+1(X).

Two smoothness terms are also introduced into the formu-
lation. Similar to [11, 10], the first term EGlobal(w) con-
trols global flow smoothness. The second term represents our
core contribution, i.e. a Laplacian Cotangent Mesh constraint
ELap(w). In the following sections we next describe each term
in detail, focusing on our Laplacian constraint in Section 2.3.

2.1. Data Term Definition

Following the standard optical flow assumption regarding
Gray Value Constancy, we assume that the gray value of a
pixel is not varied by its displacement through the entire im-
age sequence. In addition, we also make a Gradient Constancy
assumption which is engaged to provide additional stability in
case the first assumption (Gray Value Constancy) is violated by
changes in illumination. The data term of LCM-flow encoding
these assumptions is therefore formulated as:

EData(w) =
∑

Ω

Ψ(Ii+1(X + w) − Ii(X))2

+ θ ·
∑

Ω

Ψ(∇Ii+1(X + w) − ∇Ii(X))2

In order to deal with occlusions, we apply the increasing con-
cave function Ψ(s2) =

√
s2 + ε2 with ε = 0.001 [11] to solve

this formation which enables L1 minimization. The remaining
term ∇ = (∂xx, ∂yy)T is a spatial gradient and θ ∈ [0, 1] denotes
weight that can be manually assigned with different values. In
the experiments it is pre-defined as 0.5.

2.2. Global Smoothness Constraint

The first smoothness term of LCM-flow is a dense pixel based
regularizer that penalizes global variation. The objective is to
produce a globally smooth optical flow field ( as in the data
term, the robust function Ψ(s2) is again used):

EGlobal(w) =
∑

Ω

Ψ(| ∇u |2 + | ∇v |2)

2.3. Laplacian Cotangent Mesh Smoothness Constraint

Global smoothness terms are widely used in optical flow for-
mulation [30]. However, their definition means that local non-
linear variations between images - such as those in non-rigid
motion - can be over smoothed. In order to improve optical
flow estimation against the local complexity of non-rigid mo-
tion, a novel Laplacian Cotangent Mesh constraint is proposed
in this section. The aim of this constraint is to account for non-
rigid motion in scene deformation. This term is inspired by
Laplacian mesh deformation research in graphics which aims
to preserve local mesh smoothness under non-linear transfor-
mation [28]. It’s use in computer vision research for optical
flow estimation is introduced for the first time here. Although
non-rigid motion is highly nonlinear, the movement of pixels in
such deformations still often exhibit strong correlations in local
regions. In order to represent this, we propose a quantitative
Cotangent Weight based on a Laplacian framework and a dif-
ferential representation. The scheme was originally presented
by Meyer et al. [29] for mesh deformation.

We assume that the image is initially covered by a triangular
mesh denoted by M = (V, E, F), where n is the number of ver-
tices, V is the set of vertex coordinates, E is the set of edges,
and F is the set of faces. The location of each vertex is rep-
resented by absolute cartesian coordinates. The i-th vertex is
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Figure 1: Laplacian cotangent mesh constraint in optical flow vector space. (a): A mesh on a specific frame. (b): 1-ring neighborhood based on
vertices. (c): 1-ring neighborhood based on endpoints of optical flow vectors. (d): δ(wi) (the blue vector) calculated by endpoints of optical flow
vectors. (e): The modified optical flow vector w′i based on wi and δ(wi).

denoted by vi ∈ V . Considering a small mesh region, each ver-
tex vi has a 1-ring neighborhood denoted by Aring, as shown
in Figure 1. The motion relationship between vertex vi and its
adjacent neighbors inAring can be represented as follows:

δ(vi) =
∑
j∈N(i)

1
2

(cotαi j + cotβi j)(vi − v j) (1)

where N(i) = { j | (i, j) ∈ E}, αi j and βi j are the two angles op-
posite the edge ei j = vi−v j. In a planar region, every vertex vi in
a small region of an individual object is assumed to have its mo-
tion trend towards a new position. This trend can be quantified
by the vector δ(vi). This is a core concept for Laplacian based
mesh deformation. It is adopted widely in computer graphics
because it enables mesh deformations that preserve the local
surface shape whilst allowing significant global motion. [28].

We assume that this technique can be applied as constraints
in optical flow vector space. Figure 1(a-e) illustrates the core
steps of this assumption. However, the original equation (1)
omits the effect of the 1-ring neighborhood which in previous
work has been shown to give additional deformation robust-
ness [29]. Therefore, the Voronoi Region Area of vi denoted by
Ai

Voronoi is introduced to the formulation. This provides addi-
tional robustness given different dimensions ofAring. We have

δ(w) =
∑
i∈V

[
∑

j∈N(i)(cotαi j + cotβi j)(wi − w j)

2Ai
Voronoi

] (2)

Ai
Voronoi =

1
8

∑
jεN(i)

(cotαi j + cotβi j)|wi − w j|
2 (3)

The motion trend of the optical flow vector can be presented
by (2) and (3) and are introduced as the core contribution to our
energy formulation. Where δ(w) = (δu, δv)T , δu is motion trend
in the horizontal direction and δv motion trend in the vertical
direction. In addition, w∗ is the optical flow vector at the posi-
tion of vertex v∗. Based on these formulations, the high order
smoothness constraint based on Laplacian Cotangent Mesh is
defined as:

ELap(w) =
∑
n(V)

Ψ(|∇δu|
2 + |∇δv|

2) (4)

In this formulation, the Laplacian Cotangent Mesh constraint
helps greatly to preserve local details by minimizing the angle
differences – or preserving the geometric details as in Laplacian
mesh deformation [28] – of local neighborhoods. The main rea-
son for this is that by constraining local edge angles – embed-
ded in the Laplacian Cotangent Mesh constraint formulation –
the term penalizes local displacements which may cause over-
laps with other pixels. The experiments (Figure 5) in Section 4
demonstrate how the constraint achieves the better preservation
of image details given non-rigid motion changes.

3. Minimization

Due to the highly non-linear nature of the energy function
E(w), our minimization approach is an essential part in our
work. We apply multiple nested fixed point iterations to mini-
mize our energy function that includes our novel LCM smooth-
ness term. In this section, we introduce the numerical mini-
mization scheme for our LCM smoothness term. This includes
a discrete computation scheme for our Laplacian operator and
the gradient magnitude on δ∗ (see section 3.3). We initially
define mathematical abbreviations for our minimization as fol-
lows (using the same notation as in [11]):

Ix = ∂xI(X + w) Iyy = ∂yyI(X + w)
Iy = ∂yI(X + w) Ixx = ∂xxI(X + w)
Iz = Ii+1(X + w) − Ii(X) Ixz = ∂xIi+1(X + w) − ∂xIi(X)
Ixy = ∂xyI(X + w) Iyz = ∂yIi+1(X + w) − ∂yIi(X)

(5)

3.1. First Fixed Point Iterations
In order to minimize the energy function E(w), the Euler-

Lagrange equations can be employed. However, the Euler-
Lagrange equations obtained are still highly nonlinear with the
argument w = (u, v)T . In order to solve this system, we apply
two nested steps of Fixed Point Iterations on w. Before the first
fixed point iterations, a down sampling image pyramid is con-
structed. The algorithm goes through every level of the pyramid
and starts on the top/coarsest level. For each level of the pyra-
mid, we assume that w converges at the k-th iteration giving us
wk = (uk, vk)T , k = 0, 1, . . . with the initialization w0 = (0, 0)T

at the coarsest level of the pyramid. The flow field wk is then to
be propagated as the initial flow field for wk+1 on the next finer
level of the pyramid.
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Figure 2: Computing δ∗ within 1-ring neighborhood. (a): Weight t∗ in computation of δi
∗. (b): Our optimization traverses every pixel and compute

the δ∗ within their 1-ring neighborhood. Those neighborhoods are preset by the initial mesh structure.

3.1.1. δ∗ Vector Field Computation
The δ∗ vector field is updated during every step of the first

fixed point iteration. According to the formulation in sec-
tion 2.3, the δu(uk+1) can be calculated from:

δu(uk+1) =
∑
i∈V

[

∑
j∈N(i)(cotαi j + cotβi j)(uk+1

i − uk+1
j )

2Ai
Voronoi

] (6)

Ai
Voronoi =

1
8

∑
jεN(i)

(cotαi j + cotβi j)|wk+1
i − wk+1

j |
2 (7)

δv(vk+1) is computed in a similar formula, where wk+1
∗ =

(uk+1
∗ , vk+1

∗ )T is optical flow vector at vertex v∗. |wk+1
i − wk+1

j |

is Euclidean Distance between the endpoints of wk+1
i and wk+1

j .
From perspective of implementation, an individual loop is nec-
essary for calculating δ∗ from the information of every angle
within each iteration step. As shown in Figure 2, δ∗ is calcu-
lated on every pixel within the same neighborhood based on the
initial mesh structure.

3.2. Nested Second Fixed Point Iterations
After the first fixed point iterations, the new system of equa-

tions is still nonlinear and difficult to solve due to this contains
terms of Ik+1

∗ and the nonlinear functions Ψ′. First order Taylor
expansions is employed on the nonlinear terms Ik+1

z , Ik+1
xz and

Ik+1
yz to remove nonlinear terms of Ik+1

∗ . Also, we assume that
uk+1 = uk + duk and vk+1 = vk + dvk can obtain two unknown
increments duk, dvk and two known flow fields uk ,vk from the
previous iteration. Furthermore, in order to remove nonlinearity
existed in Ψ′∗ with unknown increments duk and dvk, we apply
a nested second fixed point iteration. In every iteration step of
second fixed point iterations, we assume that both duk,l and dvk,l

converges by l iteration steps with initialization of duk,0 = 0
and dvk,0 = 0. Therefore, the final linear system is obtained in
duk,l+1 and dvk,l+1 as follows:

(Ψ′)k,l
Data · (I

k
x(Ik

z + Ik
xduk,l + Ik

y dvk,l+1)

+θ [Ik
xx(Ik

xz + Ik
xxduk,l + Ik

xydvk,l+1)

+Ik
xy(Ik

yz + Ik
xyduk,l + Ik

yydvk,l+1)])

−λ Div(Ψ′)k,l
Global · ∇(uk + duk,l+1)

−ξ Div(Ψ′)k,l
Lap · ∇δu(uk + duk,l+1) = 0 (8)

(Ψ′)k,l
Data · (I

k
y (Ik

z + Ik
xduk,l + Ik

y dvk,l+1)

+θ [Ik
yy(Ik

yz + Ik
xyduk,l + Ik

yydvk,l+1)

+Ik
xy(Ik

xz + Ik
xxduk,l + Ik

xydvk,l+1)])

−λ Div(Ψ′)k,l
Global · ∇(vk + dvk,l+1)

−ξ Div(Ψ′)k,l
Lap · ∇δv(vk + dvk,l+1) = 0 (9)

Where (Ψ′)k
Data provides robustness against occlusion,

(Ψ′)k
Global and (Ψ′)k

Lap are defined as diffusivity in both smooth-
ness terms [31] as follows:

(Ψ′)k
Data = Ψ′((Ik

z + Ik
xduk + Ik

y dvk)2

+ θ[(Ik
xz + Ik

xxduk + Ik
xydvk)2

+ (Ik
yz + Ik

xyduk + Ik
yydvk)2])

(Ψ′)k
Global = Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2)

(Ψ′)k
Lap = Ψ′(|∇δu(uk + duk)|2 + |∇δv(vk + dvk)|2) (10)

3.3. Laplacian Operator and Gradient Magnitude

In order to compute Div term that refers to (Ψ′)k,l
Global, we have

to calculate Laplacian operator and the gradient magnitudes of
|∇u| and |∇v| in image space. Laplacian operator is practically
approximated numerically based on finite differences in dis-
crete cases. Hence we have ∇u = u− u and ∇v = v− v, where u
and v are weighted average of u or v and calculated by adjacent
neighborhood around a specific pixel. The methods to deter-
mine |∇u| and |∇v| have been discussed for many years, finite
differences in Faisal and Barron’s work [32] is applied in our
approach.

For the second Div term referred to (Ψ′)k,l
Lap, we also have

to calculate Laplacian operator and the gradient magnitudes in
mesh space. Note that the algorithm is proposed to adopt gen-
eral mesh, each vertex of which has 6 adjacent neighbors in its
1-ring surroundings. In the implementation, we adopt the mesh-
ing step from [27] to initialize the mesh from the input frame
with flexible vertex density control. In optical flow vector space
(Figure 1(c-d)), we have ∇δ∗ approximated from ∇δi

∗ = δi
∗ − δ

i
∗,

where δi
∗ are weighted average of δi

∗ and calculated by adjacent
neighborhood around a specific optical flow vector wi. Also,
the weight t∗ is linear and based on the absolute endpoint dis-
tance between wi and the adjacent neighbor (Figure 2(a)).
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After obtaining Laplacian operator and the gradient magni-
tudes, the linear system can be solved by using common numer-
ical methods such as Gauss-Seidel and Successive Over Relax-
ation (SOR). In the following section, more details about imple-
mentation will be presented.

4. Evaluation

In this section we evaluate the accuracy of our LCM-flow
method. We also explore the behavior of our Laplacian Cotan-
gent Mesh (LCM) constraint by considering examples of im-
age registration using estimated optical flow fields. Quanti-
tative and comparative results are shown on the Middlebury
dataset [30] and a synthetic benchmark dataset with ground
truth introduced by Garg et al. [12]. Additionally, the perfor-
mance of LCM-flow is analyzed by varying several parameters
such as the smoothness term weight and the vertex density of
the input mesh. As LCM-flow is proposed for non-rigid sce-
narios, it is natural to compare its result with non-rigid opti-
cal flow algorithms. The first non-rigid comparison is LCM-
flow against Garg et al.’s spatiotemporal optical flow approach
which exploits correlations of neighboring pixels movement to
constrain the flow computation. We also compare with the Im-
proved TV-L1 (ITV-L1) algorithm and Large Displacement Op-
tical Flow (LDOF). ITV-L1 preserves flow discontinuities by
using a total variation regularization; and it ranks midfield of
the Middlebury evaluation. LDOF [? ] is proposed to overcome
the large displacements issue by using region matching within
a variational framework. It is also supposed as a baseline in
relation to our LCM-flow as those methods share a similar nu-
merical minimization scheme (see Section 3). Our results show
that the simple addition of our LCM constraint greatly improves
accuracy and image interpolation. We also compare to the state
of the art keypoint-based non-rigid image registration method
proposed by Pizarro et al. [3].

In our experiments we adopt a coarse-to-fine framework. An
n-level image pyramid is constructed for both input images, and
each corresponding mesh. A down sampling factor of 0.75 is
used on each pyramid level using Bicubic Interpolation. The
global smoothness constraint EGlobal is applied to each level of
the pyramid with λ set to 0.85. For minimizing the energy func-
tion on each level of the pyramid, the first fixed point iteration is
set to 30 steps while the nested second fixed point iterations are
fixed to 5 steps. Additionally, the large linear systems (Equa-
tions (8) and (9)) are solved using Conjugate Gradients with 45
iterations.

To summarize, our algorithm performs in the top tier of the
Middlebury interpolation criteria, and strongly overall - espe-
cially compared to the aforementioned specialist non-rigid op-
tical flow techniques. In addition, we also demonstrate the
strength of our approach in an application, i.e. constructing 3D
Dynamic Morphable Models (3DDMMs) [33]. We show our
approach to outperform the proposed method of Cosker et al.
in terms of accurate 3D mesh tracking across captured dynamic
sequences.

4.1. Middlebury Dataset
We first performed an evaluation on the Middlebury bench-

mark dataset. Two test cases of LCM-flow are considered, each
with different vertex densities for the input mesh. In the first
test the proposed constraint weight is set as 0.6 and the vertex
density of the mesh is fixed to 25 pixels - this being the dis-
tance between a vertex and its horizontal and vertical adjacent
neighbors. The second test employs using a weight of 0.6 and
a 10-pixel mesh.

As shown in Figure 3(a), LCM-flow with a sparse (25-pix)
input mesh ranks among the top three algorithms and signif-
icantly outperforms the baseline methods LDOF and ITV-L1
in the Normalized Interpolation Error test. Our overall aver-
age rank is also 16.2 compared to 25.1 and 39.4 respectively.
Middlebury results against other non-rigid approaches – Garg et
al.’s method and Pizarro et al.’s – are not available. We there-
fore compare our approach against theirs using a different data
set (see Section 4.2). Our LCM-flow approach also ranks fifth
overall in the Interpolation Error test. Particularly strong per-
formance is observed on Middlebury sequences captured using
the high-speed camera – Backyard, Basketball, Dumptruck and
Evergreen.

In addition, LCM-flow ranks in the reasonable midfield in
both the Endpoint Error and Angular Error tests. This is again
using the regular sparse mesh (25 pixels). Note that LCM-
flow has a lower ranking in this test, we believe this is due
to the larger number of motion discontinuities which violate
the local smoothness assumption of LCM-flow – relative mo-
tion between foreground object and background often destroys
the structure of the 1-ring neighborhoods crossed the boundary.
The unrealistic deformation of 1-ring neighborhoods across the
boundary often leads to the unexpected δ∗ vector along the tan-
gential direction of the boundary. One possible solution to this
problem would be to use a denser input mesh. Figure 3(b-g)
shows the visual effect of increasing mesh density, which re-
sults in a far sharper optical flow field on the boundary. Another
possible solution would be to segment the scene and apply sep-
arate meshes for different objects, this is left for future work.

In the next section we compare against a recent popular opti-
cal flow data set specifically designed for non-rigid evaluation.
In these trails we also perform further exploration of the effect
of the various parameters in LCM-flow.
4.2. MOCAP Benchmark Dataset

To give a quantitative view on the non-rigid optical flow eval-
uation, Garg et al. introduces a benchmark sequence with dense
ground truth flow fields [12]. To generate such a benchmark,
they synthesise dense mesh by interpolating a sparse Vicon
point based data from real deformable waving flag [35]. Such
a dense mesh is then projected onto the image texture plane,
which gives a sequence (60 images, 500×500 pixel) along with
dense ground truth flow field. To give more divergence on our
evaluation, the experiments are performed on both this original
GT sequence and three other degraded sequences, by adding
three different noises:

• Occlusions. We give two black holes (20 pixels radius)
that orbit the deformable surface.

5



(a) Snapshot of Middlebury optical flow evaluation (Submitted on February 2nd, 2012). Our proposed method is LCM-flow with weight 0.6 and 25-pix mesh. In
addition, the baseline methods are LDOF and TV-L1-improved (Named ITV-L1 in context).

(b) (c) (d) (e) (f) (g)

Figure 3: Screenshot of Middlebury evaluation and visual comparison of optical flow fields calculated by LCM-flow with different vertex densities
for the input mesh on the Army and Schefflera sequences. (a) and (e): Ground truth optical flow field. (c) and (f): Weight 0.6 and 25-pix mesh.
(d) and (g): Weight 0.6 and 10-pix mesh.

• Gaussian noise. We add Gaussian noise having 0.2 stan-
dard deviation relative to the range of image intensity.

• Salt & pepper noise. We add the salt and pepper with a
10% density.

We evaluate the effect of varying both the weight of the LCM
smoothness term and the vertex density of the input mesh. The
weight is varied with values of 0.2, 0.4, 0.6 and 0.8. The vertex
density of the mesh is varied with values of 5 pixels, 10 pixels,
15 pixels and 25 pixels. As mentioned in the previous section,
the same grid based triangulation is applied in all tests. Note
that the weight 0 and no mesh tests are omitted because LCM-
flow degenerates to Brox et al. method [31] in this case, which
is outperformed by our approach in the Middlebury evaluation.
When comparing against other methods, we use the same pa-
rameters cited by other authors. That is for both Garg et al.
and ITV-L1 the weights α and β are set to 30 and 2, we use 5
warp iterations, and 20 alternation iterations [34]. According
to parameters setting in [12], the Principal Components Analy-
sis (PCA) and Discrete Cosine Transform (DCT) are concerned
for the 2D trajectory motion basis of Garg et al. method in the
context. In addition, the default parameters setting is used for

LDOF [11].
Figure 4(a) shows endpoint error (in pixel) comparisons on

the four benchmark sequences of Garg et al.. LCM-flow pa-
rameterized with a weight value of 0.8 and a 5 pixels mesh ob-
serves the best of Root Mean Square (RMS) endpoint error on
both noise sequences and outperforms Garg et al. (DCT basis),
ITV-L1 and LDOF algorithms on all four sequences. Garg et al.
(PCA basis) has comparable performance (slightly outperform-
ing us by 0.05 RMS) to our method on the original sequence,
while in the occlusion sequence, Pizarro et al. leads overall. We
also compute percentile-based accuracy measures [36]. LCM-
flow parameterized with a weight of 0.8 and a 5 pixels mesh
yields the best or second performance on all sequences except
in the occlusion case where Pizarro et al. shows a marginal
(0.12 RMS) improvement. As can be seen in Figure 6, increas-
ing the density of the input mesh results in significantly im-
proved RMS errors in all trails. In a similar fashion, increasing
the weight of LCM smoothness term also yields more accurate
optical flow estimation and reduced RMS error.

Figure 5(a-j) shows comparative Inverse Image Warping re-
sults between LCM-flow (with a non-uniform mesh and various
weights) and five other state of the art algorithms on the Garg et
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Average RMS Endpoint Error 99th percentile of Endpoint Error
Methods Original Occlusion Guass.N S&P.N Original Occlusion Guass.N S&P.N

Ours, 0.8, 5-pix Mesh 1.03 1.39 1.97 1.79 3.07 4.96 7.90 7.06
Ours, 0.8, 10-pix Mesh 1.16 1.51 2.07 1.86 3.33 5.28 7.99 7.28
Garg et al., PCA [12] 0.98 1.33 2.28 1.84 3.08 4.92 8.33 7.09
Garg et al., DCT [12] 1.06 1.72 2.78 2.29 6.70 5.18 7.92 8.53

Pizarro et al. [3] 1.24 1.27 1.94 1.79 4.88 5.05 8.67 8.54
ITV-L1 [34] 1.43 1.89 2.61 2.34 6.28 9.44 9.70 9.98
LDOF [11] 1.71 2.01 4.35 5.05 3.72 6.63 18.15 20.35

(a) Endpoint error comparison of different methods on Garg et al. benchmark dataset [12].
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Figure 4: Result of LCM-flow with different parameters on Garg et al. benchmark dataset. (a): Original. (b): Occlusion. (c): Gaussian noise. (d):
S&P noise.

al. Original benchmark sequence. Examination of the images
illustrates that increasing the LCM constraint weight results in
a sharper and less distorted image. This provides some insight
into the algorithms strong performance in the Middlebury in-
terpolation result, as images warped using our computed flow
appear to preserve local visual detail. In addition, Figure 5(a-e)
shows the mesh corresponding to the input mesh on the refer-
ence frame (Top-left box). We observe that even applying a
small weight to the LCM smoothness term results in a stronger
preservation of the triangular structure – and hence a better pre-
served image structure.

4.3. Application: 3D Dynamic Morphable Model (3DDMM)
Construction

In this part of the evaluation, we show the application of
our algorithm to the construction of 3D Dynamic Morphable
Models [33]. These models are constructed from video-rate 3D
facial scan data of different facial expressions. The essential
problem with such data is aligning the 3D meshes such that all
facial features are in correspondence. Solving this problem re-
sults in the same vertex topology deformed and tracked through
the facial expression sequence. This can be approached by non-
rigidly aligning the UV texture maps corresponding to the face
meshes to a reference texture (e.g. a neutral expression), and
then generating the 3D correspondences from these aligned im-
ages (see [33] for full details). We applied our LCM-flow algo-
rithm to the alignment of the UV texture maps for 6 dynamic
facial sequences and compared the results to those in Cosker et
al. using the same ground truth labeled points. Table 6(a) shows
how the resulting the RMS errors for our LCM-flow approach
outperform each of the other methods, including the AAM-TPS
approach proposed by Cosker et al. After aligning the UV se-
quences we constructed a 3D Morphable Model from the corre-
sponding meshes and rendered the output sequences. Figure 6
shows some example outputs, where a checkered pattern repre-
sents deformation in the underlying mesh.

5. Conclusion
In this paper we have presented a novel optical flow formula-

tion which proposes a Laplacian Cotangent Mesh constraint for
preserving local smoothness. Adapted from computer graph-
ics, our term achieves this property by minimizes differentials
in a Laplacian mesh. In our evaluation we have compared our
method to several state of the art optical flow approaches on two
well known evaluation sets. This has demonstrated our algo-
rithms ability to provide accurate flow estimation and preserve
local image detail – evident through high scores in Middlebury
evaluation, comparison to Garg et al., and experimentation on
our algorithms parameters. In addition, we have demonstrated
accurate results for in applying our algorithm for the construc-
tion of 3D Dynamic Morphable Models. For future work we are
interested in more intelligently creating the underlying mesh to
better approximate the image of interest. This should alleviate
potential problems where triangles overlap the edges of multi-
ple objects.
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