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Abstract

The first year of life is the most dynamic and perhaps the most critical phase of postnatal brain 

development. The ability to accurately measure structure changes is critical in early brain 

development study, which highly relies on the performances of image segmentation and 

registration techniques. However, either infant image segmentation or registration, if deployed 

independently, encounters much more challenges than segmentation/registration of adult brains 

due to dynamic appearance change with rapid brain development. In fact, image segmentation and 

registration of infant images can assists each other to overcome the above challenges by using the 

growth trajectories (i.e., temporal correspondences) learned from a large set of training subjects 

with complete longitudinal data. Specifically, a one-year-old image with ground-truth tissue 

segmentation can be first set as the reference domain. Then, to register the infant image of a new 

subject at earlier age, we can estimate its tissue probability maps, i.e., with sparse patch-based 

multi-atlas label fusion technique, where only the training images at the respective age are 

considered as atlases since they have similar image appearance. Next, these probability maps can 

be fused as a good initialization to guide the level set segmentation. Thus, image registration 

between the new infant image and the reference image is free of difficulty of appearance changes, 

by establishing correspondences upon the reasonably segmented images. Importantly, the 

segmentation of new infant image can be further enhanced by propagating the much more reliable 

label fusion heuristics at the reference domain to the corresponding location of the new infant 

image via the learned growth trajectories, which brings image segmentation and registration to 

assist each other. It is worth noting that our joint segmentation and registration framework is also 

flexible to handle the registration of any two infant images even with significant age gap in the 

first year of life, by linking their joint segmentation and registration through the reference domain. 

Thus, our proposed joint segmentation and registration method is scalable to various registration 

tasks in early brain development studies. Promising segmentation and registration results have 

been achieved for infant brain MR images aged from 2-week-old to 1-year-old, indicating the 

applicability of our method in early brain development study.

*Corresponding author (grwu@med.unc.edu, dgshen@med.unc.edu). 

HHS Public Access
Author manuscript
Neurocomputing. Author manuscript; available in PMC 2018 February 05.

Published in final edited form as:
Neurocomputing. 2017 March 15; 229: 54–62. doi:10.1016/j.neucom.2016.05.107.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Joint segmentation and registration; multi-atlas patch based label fusion; longitudinal growth 
trajectory; and infant brain MR images

1. Introduction

Human brain undergoes rapid physical growth and functional development from birth to 1 

year old [1–4]. The ability to accurately measure structural brain changes from MR 

(Magnetic Resonance) images at this period is indispensable for shedding new light on the 

exploration of brain development and also the early detection of neurodevelopmental 

disorder. For example, infants with autism were found to have 5%-10% abnormal 

enlargement in total brain volume at early development stage [5, 6].

However, the automatic image segmentation and registration tools for processing a large 

amount of infant brain MR images lag behind the demands from ongoing neuroscience and 

clinical studies. In particular, image segmentation [7–11] and registration [12, 13], which are 

the two most essential steps, are largely needed in many early brain development studies, 

such as longitudinal cortical analysis [14, 15] and infant atlas construction [16]. Recent 

patch based label fusion methods, such as local weighted label fusion method [17], non-local 

mean label fusion method [18], and sparse learning based label fusion methods [9–11, 19–

21], have been successfully applied to medical image segmentations. However, these 

methods fail to achieve their expected performance when applying to the infant brain 

segmentation. Both infant image segmentation and registration are challenged by:

1. The dynamic appearance changes of brain tissues from birth to 1 year old [1]. 

Due to myelination of WM (white matter), the intensity characteristics change 

dramatically in different development stages, as shown by the intensity 

histograms of WM, GM (gray matter), and CSF (cerebral-spinal fluid) in Fig. 1. 

Specially, at the age around 3–6 months, the contrast between WM and GM is 

very small. This poses challenges for both identifying tissues in segmentation 

and establishing correspondences in registration.

2. The fast and spatially-varied developments of brain anatomy and size. Brain 

development in the first year of life is extremely fast, with different structures 

having different growth patterns [22]. For example, the majority of hemispheric 

growth is accounted for by GM which increases 149% in the first year, while the 

hemispheric WM volume increases by only 11%. Consequently, either 

segmentation or registration, if deployed independently, is difficult to handle the 

above challenges.

Since the imaging-based study on early brain development becomes more and more popular, 

a sufficient number of longitudinal infant brain images have been collected in UNC at 

Chapel Hill in the past years. Many subjects with complete longitudinal images (at 2 weeks, 

3 months, 6 months, 9 months, and 1 year of age) have been well segmented by either 

human interactions or automatic methods with multi-modality information (T1, T2 and DTI) 

[23–25]. As demonstrated by many literatures, appropriate joint segmentation and 
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registration could significantly improve both of their performances [26–30]. To this end, we 

propose a novel joint segmentation and registration framework to simultaneously segment 

brain tissues and also estimate the deformation pathway between any pair of infant brain 

images from the same subject or different subjects. The leverage to achieve the success of 

this project is the large number of infant images already acquired. It is worth noting that 

these valuable results are often ignored when performing segmentation or registration for the 

infant subjects with incomplete or even no longitudinal follow-up data. Specifically, we first 

establish accurate temporal correspondences for any training subject with full longitudinal 

data in our database, to learn subject-specific growth trajectories [31–33]. Then, a 1-year-old 

image (with accurate tissue segmentation) is selected as the reference image. To deal with 

the potential large age gap between two infant images, we will first segment the new infant 

image with a sparse patch-based level-set technique [34] that allows each patch in the new 

infant image to look for similar patches in the respective training subjects with similar age 

and further combines the tissue labels of matched patches in the training subjects to provide 

good initialization for the level-set segmentation. Based on those matched patches in the 

training subjects as well as their existing longitudinal growth trajectories, we can also 

immediately predict the initial deformation pathway between these two new infant brain 

images. Afterwards, deformations between two new infant images can be refined by the 

conventional deformable registration upon their segmented images. The refined registration 

will allow the propagation of reliable label fusion heuristics from the reference image to 

refine the segmentation of new infant image, which brings the image segmentation and 

registration to assist each other. By repeating these steps, we can iteratively refine both 

segmentation and registration of the two new infant images. The advantages of our method 

includes: (1) avoiding direct correspondence detection between two infant images with 

dynamic appearance change and (2) improving the performance of image segmentation and 

registration simultaneously by fully utilizing existing knowledge.

Furthermore, our joint segmentation and registration framework is flexible to extend to the 

segmentation and registration of any pair of new infant images even with significant age gap 

in the first year of life. The leverage is registering the infant images at arbitrary time to the 

1-year-old reference image (with good image contrast) using our proposed joint 

segmentation and registration method. After that, we obtain the deformation pathway 

between two new infant images by concatenating two deformation pathways, each of which 

is from particular new infant image to the 1-year-old reference image. Thus, our method is 

very scalable to deal with various registration tasks in early brain development studies.

We have comprehensively evaluated the segmentation and registration performance for 

infant images at 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 1-year-old. 

Specifically, we evaluate the segmentation results with comparison to recently-proposed 

multi-atlas patch-based approach [34]. In evaluating the registration result, we compare our 

proposed method to the state-of-the-art deformable image registration methods, including 

demons registration method [35] (http://www.insight-journal.org/browse/publication/154), 

the SyN registration method in ANTs package (http://sourceforge.net/projects/advants/) 

using mutual information [36, 37] and cross correlation [38, 39] as similarity metric, 3D-

HAMMER [40] using the segmented images obtained with iBEAT software (http://
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www.nitrc.org/projects/ibeat/) [41], and our recently proposed learning-based infant image 

registration method [42]. Through quantitative measurements and visual inspection, our 

proposed joint segmentation and registration method achieves the highest accuracy in terms 

of tissue segmentation and registration.

The remaining parts of this paper are organized as follows. In Section 2, we present our joint 

segmentation and registration method. In Section 3, we outline the performed experiments 

and their results. Finally, we draw conclusion in Section 4.

2. Method

Our goal here is to align an individual infant brain image  with an infant template image 

, where t1 and t2 are two different ages, each of which could be as young as 2-week-old or 

as old as 1-year-old. Assume that we have N training subjects Is (s = 1,…,N) with 

longitudinal data across multiple time points . For each image sequence 

Is, we can apply state-of-the-art 4D segmentation method [23, 24] to segment 3D image at 

each time-point into WM (white matter), GM (gray matter), and CSF (cerebral-spinal fluid), 

which can be denoted as . With some human visual assessment, we 

can regard these segmentation results of longitudinal training images as the ground truth.

The overview of our proposed joint segmentation and registration method is provided in Fig. 

2, which includes both the training and testing stages. In the training stage, we estimate the 

growth trajectories (Section 2.1) to determine temporal correspondences for each point in 

the longitudinal data Is, as delineated by the red dash curves in Fig. 2. It is worth noting that 

here we use , an individual 1-year-old infant image, as a template image for two reasons: 

(1) it is much easier to segment infant images after one year old since their image 

appearance looks like adult brain. Thus, the segmentation results in the 1-year-old can be 

used to guide the segmentation of infant images  at earlier time points [25, 43, 44], by 

registering  to . (2) In most brain development studies, 1-year-old brain image is 

usually used as template. Thus, setting  at 1-year-old as the template image does not 

significantly compromise the applicability of our proposed joint segmentation and 

registration method. Actually, it is straightforward to apply our method to simultaneously 

segment and register any pair of new infant images at the first year of life even with possible 

large age gap. We will provide the respective solution in Section 2.5. Furthermore, it is 

reasonable to assume that the 1-year-old template has been accurately segmented into WM, 

GM, and CSF, denoted by .

To register new infant image to the pre-selected template image  in the testing stage, we 

can first use sparse patch-based label fusion method [34] to calculate the tissue probability 

maps for the new infant image  by using only the training images at the similar time-

point. Specifically, the label fusion on  selects only the image patches from training 

images  at time-point t1 (as shown in the dash purple box of Fig. 2) to form 

the patch dictionary. The obtained tissue probability maps can be used as a good 

initialization for level-set approach for tissue segmentation (Section 2.2). In this way, we can 

just register the two segmented images, thus avoiding the difficulty of directly registering the 
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original two images with different appearances (Section 2.3). Given the spatial 

correspondences between  and , we can further improve the segmentation accuracy of 

 by incorporating additional label fusion priors from the t2 time domain at each pair of 

corresponding locations (blue ‘×’ and ‘Δ’ in Fig. 2) which are established by image 

registration (Section 2.4). By alternating these segmentation and registration steps, we can 

iteratively refine both segmentation and registration results for .

2.1 Estimating Subject-Specific Growth Trajectories

For each training subject with complete longitudinal intensity images Is and segmentations 

Ls, a conventional way is to independently register all follow-up images to the baseline 

image (first time-point). However, such independent image registration may tear down the 

coherence of temporal correspondences in each longitudinal data. Hence, we go one step 

further to apply a 4D image registration method [45, 46] to simultaneously align images at 

all time points to its group-mean image Gs. In particular, our registration method has two 

steps. In Step (1), we hierarchically select a set of key points (red points in Fig. 3) to 

represent the shape of group-mean image Gs and then establish their correspondences w.r.t. 

the key points detected in each  (green points in the top of Fig. 3) by robust feature 

matching [47]. Meanwhile, by mapping the group-mean image onto the image domain of 

each time point, every key point in the group-mean shape has several warped points in 

different time-point images, which can be assembled into a time sequence to form a virtual 

temporal trajectory (blue dash curves in Fig. 3). Therefore, the temporal coherence in 

longitudinal infant brain image sequence can be assured by requiring the continuity along all 

these temporal trajectories. Then, given the correspondences on key points of group-mean 

image, we can use thin-plate spline (TPS) [48, 49] to interpolate the dense deformation 

fields , which will eventually bring each image  to the common 

space. In Step (2), we update group-mean image by warping all time-points images  to the 

common space and averaging them [50]. These two steps can be repeated until convergence. 

To obtain the temporal correspondences  from time points t to t′ in the image sequence 

Is, we can compose the reverse deformation field  (from  to group-mean image) and 

the forward deformation field  (from group-mean image to ) as , 

where ◦ denotes the composition of two deformation pathways [51]. Note,  is regarded 

as the growth trajectory of subject image sequence Is, which can be used to initialize the 

deformation pathway between the two images  and  (Section 2.3) and iteratively refine 

the previous segmentation results with the augmented patch dictionary derived from the 

latest established correspondences (Section 2.4).

2.2 Sparse Patch-based Level Set Segmentation

Estimation of Tissue Probability Maps by Sparse Patch-based Label Fusion—
The initial tissue probability maps for each new infant image are very important to initialize 

the level set approach for achieving accurate tissue segmentation. Here, we use a sparse 

patch-based label fusion method [21] to estimate the tissue probability maps for new infant 

image  by considering the training images with similar age as the atlases.
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Specifically, we consider all training images at t1 time-point, , as the 

atlases. We first linearly register all atlases to  and then apply deformable registration 

method to deform all atlases to  image space. To determine the tissue type (WM, GM, or 

CSF) for each image point x in , we extract a referent patch  centered 

at image point x. Next, we collect a number of atlas patches  across all 

training infant images  at the same time-point t1, with the center point v sitting within a 

search neighborhood n(x). Thus, all of these atlas patches form an over-complete dictionary 

. Since  and  are at the same time-point 

t1, the appearances of these image patches are similar. For clarity, we vectorize the reference 

patch  into a column vector . Also, we arrange each atlas patch  into a 

column vector  and then assemble them into a matrix , where p = (v, s) is a 

bivariate index for the particular atlas patch  and η = N · |n(x)| denotes the total 

number of atlas patches in dictionary D.

Inspired by the power of sparse representation, we further look for a sparse coefficient 

vector  to represent the reference patch  by the dictionary matrix A, i.e., 

, where each element in  indicates the contribution of a particular atlas patch 

in representing the reference patch . Thus, the estimation of  falls to the classic LASSO 

(Least Absolute Shrinkage and Selection Operator) problem [52]:

(1)

where λ controls the sparsity of the coefficient vector . Here, we specifically use 

to denote the set of selected image patches in D(x, t1) with the sparse coefficients wp > 0. 

Since the tissue type for each  is known, we can calculate the tissue probability w.r.t. 
WM, GM, and CSF, respectively. After repeating this procedure for every point in the 

subject image , we can obtain tissue probability maps (as shown by the solid-border 

purple box in Fig. 2) to initialize the level set algorithm for segmenting .

Level Set Segmentation—Since the sparse patch-based method does not guarantee 

smooth segmentation of the infant brain MRI, we use a coupled level set algorithm [34], 

integrated with the previous extracted tissue probability maps, to obtain more accurate 

segmentation. Specifically, we employ three level sets, with their zero-level surfaces, 

respectively, denoting for interfaces of WM/GM, GM/CSF, and CSF/background. The tissue 

probability maps can be treated as prior knowledge and used in the coupled level set 

segmentation algorithm for improving segmentation accuracy. The tentative segmentation 

results of  is shown in the dashed-border purple box in Fig. 2.
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2.3 Symmetric Feature-based Image Registration, based on Segmented Infant Images

Predict Initial Deformation Pathway—In the following, we follow the sparse patch-

based correspondence detection procedure in [42] to calculate the initial deformation 

pathway between the subject image and the template image.

After sparse patch matching for each point x as described in Section 2.2, we can also get a 

small set of its possible correspondences, denoted as P* = {p = (v, s)|wp > 0}, by excluding 

all  with wp = 0. Then, we will transfer each candidate p ∈ P* from the t1 time-point 

domain (belonging to the subject image) to the t2 time domain (belonging to the template 

image), by following the learned growth trajectory  (from Section 2.1). Thus, we can 

find the corresponding points of the reference point x in the t2 time-point domain, 

. Then, it is not difficult to find the corresponding point 

yp in the template image  for each candidate up ∈ U, since both yp and up sit in the t2 

time-point domain. After that, we can predict the correspondence for the reference point x 

by fusing all possible corresponding locations yp in the template image  w.r.t. the 

normalized sparse coefficients wp (p ∈ P*) estimated in the t1 time-point domain, i.e., x ↔ 
Σp∈P*(wp · yp). After we visit each point , we can obtain the initial deformation 

pathway from the template image to the subject image.

Hierarchical Symmetric Registration Approach—Given the segmentation image for 

the subject image (and also assuming the tissue segmentation of template image is already 

obtained), we can deploy the state-of-the-art registration method, i.e., symmetric HAMMER 

[53], to simultaneously estimate the deformation pathways ϕ1 (from subject image to the 

hidden common space) and ϕ2 (from template image to the hidden common space). Since 

geometric invariant moment (GMI) features are extracted from the segmented images, image 

registration is free of dynamic appearance changes in the original intensity images. It is 

worth noting that the deformed subject image w.r.t. ϕ1 and the deformed template image 

w.r.t. ϕ2 should be similar in the end of registration. Importantly, our symmetric image 

registration can be much more efficient and accurate with the reasonable initial deformation 

pathways estimated above.

Since ϕ1 and ϕ2 are iteratively refined during registration, we use k (k = 0,.., K) to denote the 

iteration. In the beginning of registration (k = 0),  and , 

along with the initial deformation pathways  and  estimated above. Also, only a small 

number of key points [53] with distinctive features are selected from M(0) and F(0) to 

establish anatomical correspondences by matching the GMI features. In the following, we 

adopt the hierarchical deformation mechanism for establishing the correspondence between 

the deformed subject image  and the deformed template image 

. For each iteration, the key points with distinctive features are selected from 

M(k) and F(k). The entire deformation pathways  and  are steered by the 

correspondences on these key points by requiring all other non-key points following the 

deformations on the nearby key points. With progress of registration, more and more key 
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points are selected to refine the deformation pathways  and  regarding to M(k) and 

F(k), which is repeated until M(k) and F(k) become very similar in the end of registration. 

Finally, the deformation pathway from template image to subject image can be calculated by 

, where ‘◦’ denotes the composition of deformation pathway  and the 

inverse deformation pathway . Vice versa, the reverse deformation pathway ϕ−1 can 

be obtained by .

2.4 Joint Segmentation and Registration for Infant Brain Images

It is straightforward that better segmentation result can improve the registration accuracy. On 

the other hand, we argue that refined image registration can further enhance the tissue 

segmentation result by propagating the reliable label fusion priors from template to subject 

image domain. Specifically, the key step in tissue segmentation (Section 2.2) is to find 

correct atlas patches to vote for the tissue type at each point , where the influence of 

each atlas patch is quantitatively measured by the sparse coefficient w (in Eq. 1). Due to 

huge variations across individual subjects and low image contrast in , however, it is still 

challenging to obtain optimal sparse coefficient for label fusion, if barely based on intensity 

image patches. In [54], more accurate label fusion results have been achieved by optimizing 

the sparse coefficients in the label image domain since the eventual goal of label fusion is to 

find optimal weights for voting the tissue type, not the representation of intensity image 

patch. It enlightens us to take advantage of accurate tissue segmentation on the template 

image by transferring more reliable label fusion priors obtained at each template image point 

to the corresponding subject image point x. As a result, the tissue segmentation result on 

subject image  can be gradually improved as the correspondences between  and 

become more and more accurate. The procedure of iteratively improving tissue segmentation 

on  is detailed as follows.

For each point x (red dot in Fig. 4) in the subject image , we can obtain the 

corresponding location  (blue dot in Fig. 4) in the template image 

domain, based on the tentatively estimated deformation pathway ϕ (estimated by symmetric 

image registration in section 2.3), delineated as a red curve in the bottom of Fig. 4. Then, we 

regard the label image patch  extracted at y as the reference patch and deploy the 

multi-atlas sparse patch representation where the dictionary 

, consists of the label image patches, falling in 

the search neighborhood n(y), from all training infant images at t2 (one year old) time point. 

After sparse patch representation, we can obtain a sparse coefficient vector with each 

element w(s, u) suggesting the influence of atlas patch  in label fusion. Since large 

value of the sparse coefficient w(s, u) indicates the point y has more likelihood bearing the 

same tissue type as the underlying atlas patch , we can pick up a set of atlas 

patches in the label dictionary D(y, t2) with sparse coefficient greater than zero. Intuitively, 

the local anatomy at point y can be represented by the linear combination of selected atlas 

patches, denoted as  (illustrated by blue triangles in Fig. 
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4). It is worth noting that selection of  is based on segmented images which is more 

reliable than estimating based on intensity images [54]. Since the subject point x is the 

corresponding point of the template point y, such useful information is a very valuable 

supplement to the initial dictionary D(x, t1) in label fusion. To transfer  to the t1 time 

domain, we allow each atlas patch  in  travel from t2 to t1 via the 

previously estimated growth trajectory  (blue dash curves in Fig. 4), and provide a set 

of additional atlas patches, denoted by 

, (red hollow 

triangles in Fig. 4), to take part in the tissue segmentation at x. It is worth noting that (1) u 
and v are a pair of temporal correspondence of subject s linked by the growth trajectory 

; (2) we extract the intensity image patch at v from the intensity image , instead of 

label image .

After that, we can construct the boosted dictionary D* (x) for point x, which now includes 

(1) : a set of selected image patches (solid red triangles in Fig. 4) from the initial 

dictionary by sparse representation; (2) : a set of additional image patches 

(hollow red triangles in Fig. 4) in the t1 time domain where their corresponding label image 

patches in the t2 time domain can well represent the label image patch at location y in the 

template image. Since the additional image patches are more specific to the point x than the 

training image patches from the atlases, the augmented dictionary can provide more useful 

information to guide the tissue segmentation. Using the booted dictionary D*(x), we can 

apply sparse patch-based label fusion method to achieve a better segmentation of the subject 

image . By alternating these segmentation and registration steps, we can iteratively refine 

both segmentation and registration results for .

2.5 Solution for Any Pair of New Infant Images in the First Year of Life

In this section, we provide the solution to extend our joint segmentation and registration 

framework to any pair of infant images in the first year of life with possible large age gap. 

Since the template image plays an important role to guide the tissue segmentation of new 

infant image earlier than one year old, we keep using the template image as the bridge to 

link the joint segmentation and registration for two new infant images. Specifically, our 

solution has two steps.

1. We first deploy our joint segmentation and registration framework between each 

new infant image and the template image separately. After converge, we can 

obtain the segmented image for both new infant images and the deformation 

pathway from each new infant image toward the template image.

2. Based on the segmented images and the initial deformation pathway, we can 

directly register the two new infant images by deploying the symmetric 

registration method. To improve the registration efficiency, we can further 

combine two deformation pathways obtained in Step 1 into a complete 

deformation pathway from one infant image to another and used it as the 

initialization to speed up the registration between two new infant images.
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3. Experiments

In total, we collect 10 infant subjects with complete longitudinal data as the training 

subjects, where each subject has T1- and T2-weighted images at 2 weeks, 3 months, 6 

months, 9 months, and 1 year of age. All images were acquired from a Siemens head-only 

3T MR scanner. T1-weighted images were acquired with 144 sagittal slices at resolution of 1 

× 1 × 1 mm3. T2-weighted images with 64 axial slices were obtained at resolution of 1.25 × 

1.25 × 1.95 mm3. For each subject, the T2-weighted image is aligned to the T1-weighted 

image at the same time-point and then further resampled to 1 × 1 × 1 mm3.

Firstly, we apply our joint segmentation and registration method to align subject of 2-week-

old, 3-month-old and 6-month-old to the 1-year-old infant template image (bottom right of 

Fig. 2). It is noted that the segmented results of 2-weeks-old and 3-month-old images are 

applied on T2-weighted images, whereas the segmentation of 6-month-old image are applied 

on T1-weighted images, by choosing the best image contrast of brain tissue at respective 

time points. To evaluate the segmentation and registration performance, we performed leave-

two-subjects-out strategy, where two subjects are randomly chosen from the ten subjects and 

used as template and subject images, and the other 8 subjects are used as the training 

images. For all the experiment, the patch size is fixed to 3×3×3 mm3. The search 

neighborhood in constructing the sparse representation dictionary is fixed to 5×5×5. 

Parameter λ in Eq.1 is empirically fixed to 5.

3.1 Evaluation of Segmentation Results

For each testing infant image, we have the manual segmentation results of WM, GM, and 

CSF. Here, we use Dice ratio to quantitatively measure the overlap degree between manual 

segmentations (used as ground truth) and our estimated tissue segmentations. The sparse 

patch-based level set segmentation algorithm (without improvement by registration) is used 

as the baseline method for comparison. The Dice ratios on each tissue type for 2-week-old, 

3-month-old and 6-month-old infant brain images are listed in Table 1, Table 2 and Table 3 

respectively. After joint segmentation and registration, our method achieves overall 3.0%, 

2.1% and 0.7% improvement in segmenting 2-week-old, 3-month-old and 6-month-old 

infant brain images, respectively. After paired t-test, the improvements in each tissue type 

are statistically significant. Some typical improvements on 2-week-old and 3-month-old 

infant brain images are displayed in Fig. 5. It is clear that the initial mis-segmentations (in 

the left column of Fig. 5) have been successfully corrected based on more and more accurate 

image registration (in the middle column of Fig. 5).

3.2 Evaluation on Registration Results

To quantitatively evaluate the registration accuracy of our proposed method to the state-of-

the-art deformable image registration methods, we calculated the tissue overlap ratio by 

deforming the segmented results from 2-weeks-old, 3-month-old, and 6-month-old to the 1-

year-old domain. Table 4 shows the mean and standard deviation of the combined GM and 

WM Dice ratio of the registered images using different registration methods, including 

demons registration method [35], mutual information method (MI-method) [36, 37], cross 

correlation method (CC-method) [38, 39], 3D-HAMMER method [40], and our recently 
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proposed learning-based infant image registration method (HSR method) [42]. In registering 

2-week-old, 3-month-old, and 6-month-old infant images to the 1-year-old template image, 

our proposed method achieves highest registration accuracy in terms of Dice ratio. 

Compared to the best counterpart method (HSR method), the improvements of combined 

GM and WM Dice ratio are 4.6% for 2-week-old images, 5.9% for 3-month-old images, and 

2.7% for 6-month-old images, respectively.

In addition, the mean and standard deviation of the combined GM and WM Dice ratio, by 

registering any two infant images randomly selected from the 2-week-old, 3-month-old, and 

6-month-old cohort are reported in Table 5. Compared to the demons registration method 

[35] that directly align the infant images based on their intensity images, our method 

significantly improves the accuracy of the registration in terms of the dice ratio, increasing 

on average about 6.8%, 25.8% and 28.5% in registering the 2-week-old images to 3-month-

old images, 2-week-old images to 6-month-old images, and 3-month-old images to 6-month-

old images respectively.

5. Conclusion and Future Work

In this paper, we propose a novel joint segmentation and registration method for infant brain 

images by using the growth trajectories learned from a large number of training subjects 

with complete longitudinal data. Specifically, image segmentation assists the registration by 

providing accurate tissue segmentations, which avoid the challenge of directly registering 

the two infant brain images with large appearance changes. In return, the refined image 

registration can bring more useful information to provide better tissue probability maps for 

guiding the level set based segmentation. Our reported results showed significant 

improvement in terms of segmentation and registration accuracy compared to the baseline 

method.

Currently, due to the lack of longitudinal infant imaging data and the manual segmentation, 

our method only use 10 longitudinal subjects to form the dictionary. To improve the 

robustness and accuracy of segmentation and registration, more atlas images with manual 

segmentation will be added to augment the power of sparse dictionary learning. Meanwhile, 

our current implementation is mixed with Matlab and C++, which does not fully utilize the 

multi-core parallel capacity in modern PC. Currently, the computation time for a typical 

infant image (256 × 256 × 256 with 1 × 1 × 1 mm3 image resolution) is a little over two 

hours. In our future work, we will optimize the code and reduce the computation time to 

within an hour using OpenMP. Also, we will package our infant joint segmentation and 

registration method and release to NITRIC (http://nitrc.org/).
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Highlights

1. We developed an efficient computational anatomy approach to deal with 

difficult problem of tissue segmentation and registration for the infant brain 

images in the first year of life.

2. Our joint segmentation and registration framework is scalable to various 

registration tasks in early brain development studies.

3. Promising segmentation and registration results have been achieved for infant 

brain MR images aged from 2-week-old to 1-year-old.

4. Considering the importance of image segmentation and registration in 

computational anatomy area, this cutting-edge technique will be also very 

useful for many ongoing early brain development studies.
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Fig. 1. 
Dynamic appearance and anatomical changes on a typical infant brain from 2-week to 1-

year old.
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Fig. 2. 
The overview of our proposed method.
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Fig. 3. 
Estimating the coherent temporal correspondences in an infant image sequence.
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Fig. 4. 
Construction of the augmented dictionary for joint segmentation and registration. The boost 

dictionary (bottom left) consist of image patches selected in multi-atlas patch based label 

fusion (solid lines and solid triangle in ) and additional image patches (dash lines and 

dash triangles in ) which are eventually travelled from the corresponding locations (blue 

hollow triangles) in template image. Please see the text above for detail.
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Fig. 5. 
Segmentation improvements on a 2-week-old infant image and on a 3-month-old infant 

brain images.
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Table 1

The mean and standard deviaton of Dice ratios of WM, GM, and CSF on ten subjects between the 1-year-old 

manual segmenation and the estimated segmentaion from 2-week-old infant brain image.

WM (%) GM (%) CSF (%) Overall (%)

Sparse-Level Set 84.5 ± 1.3 85.2 ± 0.9 76.9 ± 2.7 82.2 ± 0.9

Our method 87.0 ± 0.8* 86.5 ± 0.6* 82.0 ± 2.9* 85.2 ± 1.1*

*
p < 0.001
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Table 2

The mean and standard deviaton of Dice ratios of WM, GM, and CSF on ten subjects between the 1-year-old 

manual segmenation and the estimated segmentaion from 3-month-old infant brain image.

WM (%) GM (%) CSF (%) Overall (%)

Sparse-Level Set 73.5 ± 7.8 80.1 ± 3.8 79.3 ± 11.5 77.6 ± 7.7

Our method 77.2 ± 10.1* 82.0 ± 4.9* 79.8 ± 11.7* 79.7 ± 8.9*

*
p < 0.005
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Table 3

The mean and standard deviation of Dice ratios of WM, GM, and CSF on ten subjects between the 1-year-old 

manual segmentation and the estimated segmentation from 6-month-old infant brain image.

WM (%) GM (%) CSF (%) Overall (%)

Sparse-Level Set 78.6 ± 2.5 84.3 ± 1.2 75.1 ± 1.9 79.3 ± 1.3

Our method 81.0 ± 2.8* 84.6 ± 1.7 74.3 ± 1.9* 80.0 ± 1.7*

*
p < 0.05
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Table 4

Registration result comparison between our proposed method and the state of art methods. The mean and 

standard deviation of the combined GM and WM Dice ratio, acquired from registering 2-week-old, 3-month-

old, 6-month-old to the 1-year-old image, using five different methods.

2-week to 1-year (%) 3-month to 1-year (%) 6-month to 1-year (%)

MI-method 70.9 ± 2.8 69.4±3.0 79.9±2.9

CC-method 71.4 ± 2.5 68.7±3.1 79.7±2.8

3D-HAMMER 76.4 ± 2.7 75.6±2.8 80.6±2.4

HSR method 77.4 ±1.5 77.8±1.8 81.8±1.6

Our method 82.0 ± 1.9* 83.7±1.7* 84.5±2.3*

*
p < 0.001
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Table 5

Registration result comparison between our proposed method and demons registration on intensity images. 

The mean and standard deviation of the combined GM and WM Dice ratio, acquired from registering between 

any two time-point images of 2-week-old, 3-month-old and 6-month-old.

2-week to 3-month (%) 2-week to 6-month (%) 3-month to 6-month (%)

Demons 68.9 ± 9.6 52.7 ± 5.9 49.5 ± 8.3

Our method 75.7 ± 7.0* 78.5 ± 2.9* 78.0 ± 3.0*

*
p < 0.001
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