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Abstract

Nowadays, human-based video analysis becomes increasingly exhausting due
to the ubiquitous use of surveillance cameras and explosive growth of video data.
This paper proposes a novel approach to detect and localize video anomalies au-
tomatically. For video feature extraction, video volumes are jointly represented
by two novel local motion based video descriptors, SL-HOF and ULGP-OF. SL-
HOF descriptor captures the spatial distribution information of 3D local regions’
motion in the spatio-temporal cuboid extracted from video, which can implic-
itly reflect the structural information of foreground and depict foreground motion
more precisely than the normal HOF descriptor. To locate the video foreground
more accurately, we propose a new Robust PCA based foreground localization
scheme. ULGP-OF descriptor, which seamlessly combines the classic 2D texture
descriptor LGP and optical flow, is proposed to describe the motion statistics of lo-
cal region texture in the areas located by the foreground localization scheme. Both
SL-HOF and ULGP-OF are shown to be more discriminative than existing video
descriptors in anomaly detection. To model features of normal video events, we
introduce the newly-emergent one-class Extreme Learning Machine (OCELM)
as the data description algorithm. With a tremendous reduction in training time,
OCELM can yield comparable or better performance than existing algorithms like
the classic OCSVM, which makes our approach easier for model updating and
more applicable to fast learning from the rapidly generated surveillance data. The
proposed approach is tested on UCSD ped1, ped2 and UMN datasets, and exper-
imental results show that our approach can achieve state-of-the-art results in both
video anomaly detection and localization task.

Keywords: video anomaly detection and localization, local motion based
descriptors, extreme learning machine
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1. Introduction

Surveillance cameras are gradually penetrating almost every corner of con-
temporary society. They play a center role in numerous realms such as munic-
ipal administration, traffic management and public security. The surging num-
ber of surveillance cameras naturally gives rise to a huge amount of surveillance
video data, which are extremely tedious and time-consuming for manual analy-
sis. Consequently, automatic video anomaly detection and localization are gaining
increasing interest from both academia and industry.

Unlike classic object detection tasks like face detection or pedestrian detec-
tion, ”anomaly” is a more abstract concept and its definition is not straightforward.
Early research tends to concentrate on specific tasks in video anomaly detection.
For example, Chung et al. [1] propose a behavior understanding system to detect
abnormal behaviors of patients in a nursing center, while Foroughi et al. [2] adopt
Support Vector Machine (SVM) for human fall detection. However, methods de-
signed specifically for a certain task will obviously meet problems when dealing
with unknown anomalies. Therefore, recent works in anomaly detection tend to
consider video anomaly detection as an ”outlier detection” problem [3], namely,
only normal video events are modeled in the training phase and those events that
divert significantly from normal events are viewed as anomalies. ”Modeling nor-
malcy” lays the foundation of most works in recent video anomaly detection re-
search, including this paper. In addition to the anomaly definition, another key
factor that has a significant impact on anomaly detection performance is whether
the video scene is crowded. In uncrowded scenes where classic object tracking can
be well performed, it is easy to extract high-level features with rich semantics, like
object trajectory, for anomaly detection. A number of works like [4, 5, 6, 7] ad-
dressed such scenes soundly by object tracking and trajectory analysis. However,
such methods perform poorly in crowded scenes with severe occlusion (See Fig.
1). Thus, robust low-level feature based approaches are proposed to address video
anomaly detection in crowded scenes, which will be reviewed in Section 2.

In this paper, we aim to address anomaly detection and localization in videos
with crowded or uncrowded scenes. Our approach can be roughly divided into
two phases: Joint video representation and normalcy modeling. A flow chart of
the proposed approach is shown in Fig. 2: First of all, training video volumes
are jointly represented by two novel low-level descriptors, Spatially Localized
Histogram of Optical Flow (SL-HOF) and Uniform Local Gradient Pattern based
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Figure 1: Examples of crowded scenes from UCSD datasets.

Optical Flow (ULGP-OF), which are both based on local motion description in
videos. To be more specific, after partitioning each spatio-temporal cuboid from
videos spatially into numerous 3D local regions, SL-HOF is used to describe the
motion of those local 3D regions and summarize their motion’s spatial distri-
bution. With the proposed Robust PCA based foreground localization scheme,
ULGP-OF, which is a combination of the classic 2D texture descriptor Local Gra-
dient Pattern (LGP) [8] and optical flow, is used to describe the motion of local
region texture in video foreground. By virtue of SL-HOF and ULGP-OF, both
motion statistics of local spatial region and local foreground texture are embodied
by the proposed joint video representation. Subsequently, SL-HOF and ULGP-
OF features are modeled respectively by OCELMs, which is an emerging data
description algorithm that requires minimal training time to achieve a comparable
or better data description performance. Finally, outlying video cuboids or patches
are detected by the obtained OCELMs as video anomalies. Our contributions are
three-fold:

• We propose a new SL-HOF descriptor to capture motion information of 3D
local regions in the spatio-temporal video cuboid. Unlike HOF and MHOF
descriptor in literature that describe the spatio-temporal cuboid as a whole,
SL-HOF partitions the cuboids spatially into numerous 3D local regions and
captures the spatial distribution information of those local regions’ motion
in a straightforward way, which can implicitly embed the structural infor-
mation of foreground into the extracted features and characterize the motion
of different foreground objects more precisely.

• We propose a novel ULGP-OF descriptor to describe the motion of local
region texture in video foreground. In contrast to existing video descriptors
that merely describe either motion or appearance of video, ULGP-OF not

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

TTraining
videos

Spatio-temporal 
cuboids

Foreground 
localization

SL-HOF

ULGP-OF

Normal 
event 

models

Joint video 
representation

Normalcy 
modeling

Motion of Local 
Spatial regions

Motion of Local 
Texture

Testing
videos

Video 
Anomaly

Anomaly 
detection 

and 
localization

OCELM

OCELM

Figure 2: Flow chart of our approach.

only incorporates the local texture information but also the motion charac-
teristics of local texture into the video representation, which enables ULGP-
OF features to encode the interaction between texture and motion in video
events. Therefore, ULGP-OF seamlessly combines texture and motion into
the video representation. Meanwhile, a new foreground localization scheme
is proposed to facilitate a more accurate localization of the video foreground
texture for subsequent ULGP-OF feature extraction.

• We are the first to introduce the emerging OCELM into video anomaly de-
tection as the data description algorithm for normalcy modeling. With a
significant leap in learning speed, OCELM can achieve comparable or bet-
ter performance than existing data description algorithms like OCSVM in
literature. Furthermore, OCELM enables us to update model more easily
and learn more rapidly from fast-growing surveillance data without loss of
performance, which can be a promising solution to future video analysis.

The rest of papers are organized as follows: Section 2 reviews existing ap-
proaches of anomaly detection in crowded scenes, as well as other works related
to the proposed approach. Section 3 presents the proposed video representation
and analyzes the underlying reasons why SL-HOF and ULGP-OF can obtain a
favorable video representation. Section 4 introduces the adopted OCELM for
normalcy modeling. Section 5 reports the experimental results on commonly-
used benchmark datasets of video anomaly detection, including comparing the
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proposed video descriptors, data description algorithm as well as the detection
and localization performance with those of the literature. Section 6 concludes this
paper.

2. Related Work

In this section, we first introduce existing approaches in video anomaly detec-
tion and localization in terms of two aspects: Video representation and normalcy
modeling. Then, relevant works on the low-level LGP descriptor and the emerging
ELM are reviewed.

As to video representation, numerous low-level video descriptors are proposed
for robust video anomaly detection in crowded scenes. One of the pioneering
work of using low-level descriptors is Mahadevan et al. [9], who represent the
appearance and dynamics of video frame patches by Mixture of Dynamic Texture
(MDT). Mahadevan et al. also establish the most widely used video anomaly de-
tection and localization datasets of crowded scenes, UCSD ped1 and ped2. Kratz
et al. [10] apply spatio-temporal gradient (3D gradient) to characterizing video
events in extremely crowded scenes, and Lu et al. [11] adopt this descriptor as
well. Zhang et al. [12] use spatio-temporal gradients as the appearance cue of
video event. In [13], Roshtkhari et al. represent the densely sampled spatio-
temporal cuboids from videos by Histogram of Gradient (HOG). Similarly, Zhao
et al. [14] combine HOG and Histogram of Optical Flow (HOF) to provide infor-
mation of action and appearance in videos. Cong et al. [15] propose a Multi-scale
HOF (MHOF) descriptor with different feature bases to preserve spatio-temporal
contextual information. Cheng et al. [16] apply 3D HOG, HOF, and 3D SIFT to
represent spatio-temporal interest points (STIPs) in video volumes.

When it comes to normalcy modeling, a variety of methods are proposed in the
literature. one category of prevailing normal data description approaches is sparse
coding. For example, Cong et al. [15] propose to select a limited number of
normal training features to form a dictionary by solving a l2,1-norm optimization
problem, so that each normal feature can be reconstructed linearly by the dictio-
nary with low reconstruction error. Zhu et al. [17] adopt a similar sparse coding
based approach except that the Euclidean distance in optimization objective is re-
placed by Earth Mover’s Distance (EMD). Zhao et al. [14] utilize the Laplacian
Sparse Representation (LSR) to encode spatio-temporal feature vectors. To over-
come the high computational cost in testing process, Lu et al. [11] propose to learn
a series of smaller ”sparse combinations” rather than a dictionary in [15], which
enables a high testing speed by avoiding solving l1-norm optimization problem.
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Despite that sparse coding can yield relatively good performance, inducing spar-
sity by l1 or l2,1-norm optimization is usually time-consuming in both training
and testing phase, and it often involves tuning parameters like Lipschitz Constant
and reconstruction error bound, which are not straightforward to tune. In addition
to sparse coding, other works also rely on OCSVM [18, 19, 20] or Support Vec-
tor Data Description (SVDD) [12] to model normal video features. OCSVM and
SVDD can be implemented at a satisfactory speed during testing since they do
not involve solving any difficult optimization problems. However, they still suffer
from slow learning speed, especially when dealing with a large amount of video
data. Other representative approaches include: Adam et al. [21] place several
monitor points uniformly on video frames and represent normal event by optical
flow histogram statistics. Mehran et al. [22] propose a social force (SF) model for
anomaly detection. Li et al. [23] propose a joint detector to produce spatial and
temporal saliency score based on hierarchical MDT (H-MDT), and Conditional
Random Field (CRF) is used to guarantee consistency of anomaly judgement.
Chen et al. [16] detect video anomaly by hierarchical feature representation and
Gaussian Process Regression (GPR).

In this paper, we propose ULGP-OF descriptor to characterize the motion of
local foreground texture, which is motivated by the low level descriptor LGP [8].
LGP is an improved version of the classic 2D texture descriptor Local Binary Pat-
tern (LBP) [24]. LBP and LGP are popular in 2D static image texture description
due to their sound properties such as invariance to monotonic gray-level change
and robustness to local deformation. Another key component of our approach is
OCELM. Proposed by Huang et al. [25], ELM has become a hot research topic
due to its ultra-fast learning speed and favorable generalization performance when
compared with classic learning algorithms like SVM. The efficacy of ELM has
been demonstrated by a variety of machine learning tasks, including regression
and multi-class classification [26], semi-supervised learning and clustering [27],
online sequential learning [28]. Recently, deep architecture of ELM is also intro-
duced into ELM for deep feature learning [29, 30]. For instance, Yang et al. [31]
study the general architecture of multilayer ELM (ML-ELM) with subnetwork
nodes for efficient feature dimension reduction. Cao et al. [32] combine ELM
and sparse representation classifier (SRC) to enable a fast and accurate landmark
recognition. ELM has also been applied successfully to various practical applica-
tions, e.g., object detection [33], image quality assessment [34], face recognition
[35], 3D graphics shape learning [36], etc. OCELM is proposed by Leng et al.
[37], however, only small UCI datasets and synthetic datasets are tested. We are
the first to introduce OCELM into computer vision, and we also show OCELM
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is able to yield state-of-the-art performance in video anomaly detection and lo-
calization tasks on benchmark datasets when combined with the proposed video
representation.

3. Video Representation

In this section we show how to represent spatio-temporal video cuboids by SL-
HOF and represent frame patches obtained by the foreground localization scheme
by ULGP-OF, to obtain a joint video representation. Reasons of the proposed
descriptors’ effectiveness are also discussed.

3.1. Optical Flow and HOF
Before we present SL-HOF and ULGP-OF descriptor, we would briefly re-

view the concept of optical flow and the classic HOF descriptor. As a powerful
tool to describe motion in videos, optical flow [38] [39] estimates the magnitude
and direction of each individual pixel in video frames by two neighboring frames.
Based on optical flow, HOF descriptor is proposed. To be more specific, the cal-
culation procedure of HOF is shown in Fig. 3: Suppose an optical flow vector vi

is calculated for each pixel i in a video unit (a frame patch or a spatio-temporal
cuboid). The optical flow magnitude |vi| is voted into D directions by the direc-
tion of optical flow to obtain a D-bin histogram as a HOF feature. HOF is one
of the most widely used video descriptor that can robustly summarize the statis-
tics of motion magnitude and direction in videos. In video anomaly detection,
spatio-temporal cuboids from video are usually described by HOF to produce a
video representation. However, the main drawback of such representation is that
the spatial location information of each pixel’s optical flow is entirely erased by
calculating a histogram.

Figure 3: HOF feature extraction (D = 4).
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3.2. SL-HOF Descriptor

Partition video frames into 
patches (red lines)

Stack patches into a spatio-
temporal cuboid

Calculate HOF in each local region

Partition cuboid spatially into 
local regions (blue lines)

Concatenate all histograms

SL-HOF features

Figure 4: SL-HOF feature extraction (m = 3, n = 4).

We substitute the widely-used HOF descriptor by the proposed SL-HOF de-
scriptor to enable the descriptor to not only depict the motion magnitude and di-
rection, but also capture the spatial distribution of optical flow in spatio-temporal
cuboids. We obtain a SL-HOF based video representation by the following steps
(See Fig. 4): Firstly, video frames from normal training volumes are split into
M × N non-overlapping patches with equal size, and d temporally consecutive
patches at the same spatial location of video frames are stacked into a spatio-
temporal cuboid. In our approach, we adopt a short temporal window (a small
d like d = 5) to avoid the foreground changes drastically within the cuboid. A
cuboid can be viewed as a local ”video event” that contains one or several fore-
ground objects. Secondly, the spatio-temporal cuboid is further partitioned spa-
tially into m × n non-overlapping 3D local regions by different spatial (x − y)
locations (Uniform partition is adopted in our approach, but other partitions are
also feasible). By the term ”spatially localized”, we mean that the cuboid is not
further partitioned into smaller regions by temporal (t) location because it damp-
ens the motion statistics of local regions (please note ”spatially localized” does
not mean that SL-HOF only extracts feature from spatial space like 2D texture
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descriptor do). This differentiates SL-HOF from cell-based descriptors like 3D
HOG [40], which partitions the cuboid not only by spatial location but also by
temporal location (See Fig. 5). Next, a sub-histogram of optical flow hi is ex-
tracted from 3D local region i, which differentiates SL-HOF from classic HOF
that extracts histogram from the entire spatio-temporal cuboid. Finally, all his-
tograms h1,h2, ...,hm×n are concatenated to obtain a SL-HOF feature fSLHOF =
[h1;h2; ...;hm×n]. m and n can be adjusted according to different foreground ob-
ject scales.

Figure 5: Different partition ways of spatio-temporal cuboids by 3D HOG (top) and SL-HOF
(bottom).

The operations of SL-HOF descriptor are pretty straightforward and under-
standable. However, our experiment in Section 5 will show SL-HOF can work
significantly better than other frequently-used video descriptors. The main ad-
vantage of SL-HOF over HOF is that SL-HOF aims to characterize the motion of
3D local regions rather than the entire spatio-temporal cuboid. This scheme can
benefit video representation in two aspects:

First of all, it preserves the spatial distribution information of optical flows
in the spatio-temporal cuboid by calculating a sub-histogram for each spatial lo-
cation, which actually preserves pixels’ spatial location information erased by
histogramization to a certain extent, and such information is able to reflect the
structural information of foreground objects. We illustrate this point by a example
of a walking pedestrian (normal event) and a man in the wheelchair (abnormal
event) moving at a close speed to the same direction. As can be seen in Fig. 6,
HOF descriptor can be easily fooled since two objects share close speed and mov-
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ing direction. By contrast, SL-HOF is able to get very different representation
for two objects due to their different structures: Strong optical flow histograms
(”strong” means bins of the histogram has large vote values) can be observed in
region 2, 6 and 10 for the walking man, while region 3, 6, 7, 8, 10, 11 and 12
obtain strong histograms for man in the wheelchair, thus leading to quite different
SL-HOF features. Such information clearly contributes to discriminating abnor-
mal foreground objects with abnormal structures, but no existing work explores
this to our knowledge.

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

1  2  3  4  5  6  7  8 ...

1  2  3  4  5  6  7  8 ...

Figure 6: Foreground structural information embedded in SL-HOF features.

Secondly, SL-HOF can characterize the motion of foreground object more
accurately, which is explained by Fig. 7: A walking man (normal event) and a
skater (abnormal event) both moving towards right. Like the example above, their
difference of HOF representation is minor when their speed is close. However, we
can discover their difference easily by SL-HOF representation: The skater on the
skateboard are moving as a whole. Therefore, region 2, 3, 6, 7, 10 and 11 can all
observe a strong optical flow histogram. However, the local motion of a walking
man’s body parts is not consistent like a skater since human’s two legs advance
alternatively while walking. In the example of Fig. 7, the man’s supporting leg in
region 7 and 11 remain static while the other leg in region 6 and 10 steps forward
rapidly, which leads to weaker histograms in region 6 and 10. Thus, the yielded
SL-HOF features of walking man and skater evidently differ from each other.
Consequently, SL-HOF can yield more discriminative video representation than
HOF, and a quantitive comparison between SL-HOF and other descriptors will be
given in Section 5.
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Figure 7: Foreground motion description using SL-HOF features.

3.3. Foreground Localization

By representing spatio-temporal video cuboids with SL-HOF descriptor, we
can efficiently capture the local motion statistics in 3D local regions, including
motion magnitude, direction and spatial distribution. In addition to motion statis-
tics of local regions, we also attempt to incorporate texture (appearance) infor-
mation of video foreground into our video representation. Instead of describing
texture of video frames directly as [9] and [12] do, we characterize the motion
of texture in video foreground, because only texture of active foreground con-
tributes to anomaly detection. However, one problem is that partitioning videos
into spatio-temporal cuboids is unable to locate foreground objects accurately with
many foreground objects being ”torn apart” by the partition. To alleviate this prob-
lem for ULGP-OF based texture motion description, we therefore propose a new
foreground localization scheme to extract patches of foreground.

The procedure of the proposed foreground localization scheme is shown in
Fig. 8: Firstly, since the surveillance videos are usually shot by static cameras,
Robust Principle Component Analysis (RPCA) [41] can model the scene back-
ground B by considering it as a low-rank matrix recovery problem in Eq. 1:
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min
A,E

= ||A||∗ + λ||E||1 s.t. D = A+ E (1)

Where D = [d1,d2, ...,dN ], and di is obtained by squeezing the ith video
frame into a column vector. | · |∗ is the nucleus norm. N denotes the number of
training video frames. A = [a1, a2, ..., aN ] is supposed to be a low-rank matrix
formed by ai, which is the column vector squeezed from the background of ith
training video frame. E = [e1, e2, ..., eN ] is the sparse matrix formed by the fore-
ground of each video frame. Having obtained A from Eq. 1, the procedure of
foreground localization is shown in Fig. 8: First, we obtain the background image
by averaging the background of each frame: B = reshape( 1

N

∑N
i=1 ai), where

the function reshape(·) reshapes the vector into a matrix with the same size as
the original video frame. Then we subtract B from an input video frame I to ex-
tract the foreground F = |I−B|, where | · | denotes getting element-wise absolute
value of the matrix. With foreground F, each pixel’s probability of being fore-
ground is estimated by a sigmoid transformation pi,j = 2/exp(−λ ·F2

i,j)− 1. The
sigmoid transformation can map Fi,j , the absolute value of difference between
background B and a frame I at pixel (i, j), into [0,1] to facilitate the later bina-
rization. In our experiments, we simply estimate λ = 1/

√
Nframe, where Nframe

is the number of pixels on a video frame. The third step is to obtain a binariza-
tion map F′ of foreground using the estimated probability pi,j by binarizing pixels
with pi,j > 0.5 into 1, while others into 0. Finally, Algorithm 1 is used to generate
a series of bounding boxes with equal size to locate the foreground objects and
cover the majority of foreground pixels. Four input parameters are needed for Al-
gorithm 1: Binarization map F′, bounding box height H and width W , minimum
number of foreground pixels Tfore that should be covered by bounding boxes and
minimum number of remaining foreground pixels that should be covered by a new
bounding box Tgain, while the output is the centers of bounding boxes Cbox. Tfore
is used to ensure that most foreground pixels are covered. Tgain is set to avoid gen-
erating redundant boxes that overlap too much with previous bounding boxes. If
the number of remaining foreground pixels covered by a new bounding box is less
than Tgain, this box will not be added to Cbox, because it does not bring enough
”gain” to covering the foreground pixels and is considered redundant. Candidate
centers are sorted by number of covered foreground pixels in descending order
to encourage generating boxes at the approximated center of foreground objects.
Suppose the total number of foreground pixels are Nfore and the total number
of pixels in a bounding box is Nbox, we simply use Tfore = 0.975 · Nfore and
Tgain = 0.05 · Nbox. As shown in Fig. 8, the proposed scheme can locate video
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foreground fast and accurately in a simple way, and each video patch inside a
bounding box is then represented by ULGP-OF descriptor.

Algorithm 1 Foreground Localization.

Input:
F′, H , W , Tfore, Tgain

Output:
Cbox

1: Initialize current number of covered foreground pixels Ncover = 0, bound-
ing boxes center Cbox = ∅, candidate centers Ccandi are initialized to be all
foreground pixels.

2: Sort Ccandi by the number of foreground pixels that can be covered by the
bounding box centered at one candidate center in descending order.

3: while Ncover < Tfore do
4: Select the first center Ccur from Ccandi, calculate the number of remaining

foreground pixels in F′ covered by the bounding box at Ccur, Ncur.
5: if Ncur > Tgain then do
6: Ncover = Ncover +Ncur,
7: Cbox = Cbox

⋃
Ccur,

8: For F′i,j covered by current bounding box, set F′i,j = 0.
9: end if

10: Remove Ccur from Ccandi.
11: end while

3.4. ULGP-OF Descriptor

Having located the video foreground, we propose to represent the foreground
texture (appearance) inside each bounding box by ULGP-OF descriptor. The pro-
posed ULGP-OF is based on 2D texture descriptor Uniform LGP (ULGP), which
will be reviewed in the first place. A LGP code can be calculated by the procedure
shown in Fig. 9: For a 3 × 3 pixel local image area, the intensity of center pixel
and its 8 surrounding sampling points are denoted by xc and xi, i = 1, 2, ...8,
respectively. The local gradient at each sampling points xi is approximated by
gi = |xi − xc|, and a binarization threshold T is calculated by averaging 8 local
gradients: T = 1

8

∑8
i=1 gi, where gi is the local gradients of the ith neighbor point,

i = 1, 2, ...8. Then gi is binarized into 0 and 1 by T to obtain an 8-bit binary code
ranging from 0 to 255, which encodes local texture pattern in this local image
area. A LGP feature vector is obtained by calculating a 256-bin histogram of all
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Figure 9: The encoding process of LGP.
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LGP codes in an image. Each LGP code (or bin index) represents one type of
local region texture. However, not each LGP pattern from 0 to 255 is informative
for texture description, and different LGP codes do not emerge at a equal proba-
bility, thus often leading to a high-dimension sparse feature vector. Hence, Topi
et al. [42] proposed the concept of ”uniform pattern”. ”Uniform pattern” is based
on the discovery that the majority of information is carried by edges in real-world
images, and the LGP codes of object edges are highly likely to be ”uniform”,
which means at most two 0-1 or 1-0 jumps should be observed in one circular
LGP binary code. For instance, 00011100 and 00000000 are uniform codes while
01010011 is not. The constraint of uniformity excludes most uninformative codes,
and it also reduces the dimension of a LGP feature vector from 256 to 58.

On the ground of ULGP, the core idea of ULGP-OF is to describe the motion
of local texture, which is represented by different ULGP codes. We take ULGP
code 11110000 (240) as an example to illustrate the calculation of ULGP-OF (See
Fig. 10): For each pixel in a video frame, a LGP code is calculated to represent
its local image texture. The optical flow at this pixel is considered as the mo-
tion of this local texture. Subsequently, if the LGP code is uniform, optical flows
of all pixels with this LGP code are collected to calculate a D-bin optical flow
sub-histogram in the same way of HOF (In Fig. 10, LGP=240, D = 4, the cor-
responding sub-histogram is Hist240), which summarizes the motion statistics of
the local texture represented by this LGP code. By concatenating sub-histograms
of all ULGP codes, we obtain a 4 × 58 = 232-dimension ULGP-OF feature in
Fig. 10. In essence, ULGP-OF replaces the original vote weight, the number of
ULGP code, by optical flow magnitude. It is interesting to note that ULGP-OF
can implicitly filter out the texture of background: since the video background is
static, the optical flow magnitude of background pixel is 0 (or very close to 0), so
the voting weight of the background pixel is 0. Adding a 0 weight will not change
the calculated ULGP-OF feature. In other words, only foreground pixels with
motion can have a significant influence on calculating the histogram of ULGP-
OF, and what we care in the video is exactly the active foreground rather than the
static background. Besides, ULGP-OF inherits the sound properties of LGP and
HOF by seamlessly combining the two descriptors: For one thing, ULGP-OF can
indicate the composition of video foreground texture like LGP, because the magni-
tude of each sub-histogram reflects the amount of each texture component in video
foreground. For another, a ULGP-OF feature also contains motion and direction
information like HOF. By ULGP-OF, we incorporate both local foreground tex-
ture and its motion into our video representation. A quantitive experiment is also
given in Section 5 to demonstrate its efficacy.
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Figure 10: The encoding process of ULGP-OF (LGP=240).

4. Normalcy Modeling

In this Section, we present the adopted one-class data description algorithm
OCELM for normalcy modeling. We model the extracted SL-HOF and ULGP-
OF features from normal video events by OCELM, which is a simple variant
of the emerging ELM. The usage of ELM is motivated by the characteristics of
video data. As a stream of 2D images, the data size of video can be far greater
than 2D static images. For example, a five-minute 160 × 240 video can generate
7200 images and more than 106 patches or spatio-temporal cuboids for process-
ing with a local patch size 10 × 10, which makes the training time required by
traditional methods like sparse dictionary learning and OCSVM hardly bearable.
Meanwhile, video data are generated rapidly at a real-time speed. Since all nor-
mal video events cannot be enumerated at one time and newly-incoming normal
events are supposed to be included every now and then, the normal event models
should be easy for re-training and updating, which can be pretty hard for OCSVM
or sparse dictionary learning. As a result, ELM, which can achieve comparable
or higher data description performance with much less training time required, be-
comes a promising solution to video anomaly detection. In addition, we would
like to clarify why OCELM rather than the original basic ELM is adopted here:
In video anomaly detection, usually there are only data of normal video events for
training, because abnormal events are unpredictable and rarely seen when com-
pared to normal events, which makes collecting training data of abnormal events
particularly difficult. Besides, abnormal events are almost impossible to be com-
pletely enumerated for building a complete classification model. Therefore, due
to the absence of training data of abnormal events, we formulate this problem as
an one-class learning/outlier detection problem rather than a classic classification
problem. We will review basic ELM first before we present OCELM.
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Basic ELM is a three-layer feedforward neural network. The essence of ELM
is to randomly generate the weights between the input layer and hidden layer,
which are not tuned in subsequent training, and the weights between hidden layer
and output layer are determined analytically by solving a least square optimiza-
tion problem rather than classic error back-propagation. In other words, ELM’s
fast learning speed can be ascribed to not involving iterative weight tuning, and
Huang et al. [25] prove the universal approximation capability of ELM. To be
more specific, with the input training set Xn×d and L hidden nodes (n and d are
the number of training features and the number of feature dimension), the input
features are randomly mapped to a new feature space as the output of hidden layer
Hn×L. Then the output weights β between hidden layer and output layer are
determined by Moore-Penrose persudo inverse:

β = HT (
I
C

+ HHT )−1T (2)

where C, T and I denote the regularization coefficient, target output and iden-
tity matrix, respectively. With the obtained neural network, the prediction of a
new sample x is given by:

f(x) = h(x)β = h(x)HT (
I
C

+ HHT )−1T (3)

where h(x) is the random mapping of x. If the random mapping is unknown,
the prediction of x can be determined by using kernel tricks:

f(x) = KT
test(

I
C

+ KT
train)

−1T (4)

where Ktrain and Ktest are kernel matrices. Modifying an ELM into OCELM
is straightforward: Since all training samples in one-class learning problems have
the same label value y, the target output T is given by T = 1·y, which corresponds
to a single output node (See Fig. 11). Assuming the actual outputs of OCELM
for training samples are yi, i = 1, 2, ...n, the mapping error of training sample xi
to the target value y is di = |yi − y|. A threshold dT is chosen to exclude a small
fraction (p) of farthest training points (di > dT ), which can prevent the outliers in
training set from degrading data description performance of OCELM. In practice,
y is set to be 1 and p usually takes small value like 0.05 or 0.01. According to [37],
we adopt Gaussian kernel based OCELM in our approach to obtain the best data
description performance. As shown above, the training and testing of OCELM
do not involve any iterative optimization procedure, resulting in a much faster
learning speed.
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Figure 11: Network structure of OCELM.

5. Experiments

In this section, we report the experimental results regarding the proposed ap-
proach. First of all, we present the experimental setup and commonly-used evalua-
tion criteria for video anomaly detection and localization in Section 5.1. Secondly,
we demonstrate the effectiveness of the proposed descriptors, data description al-
gorithm and joint video representation in Section 5.2, Section 5.3 and Section
5.4, respectively. In Section 5.5, the proposed approach is tested on three pub-
licly available datasets and its performance is compared with other state-of-the-
art approaches in literature. Finally, the computational efficiency of the proposed
approach is discussed in Section 5.6.

5.1. Experimental Setup and Evaluation Criteria

The experiments are carried out on three datasets: UCSD ped1, UCSD ped2
and UMN datasets. UCSD ped1 and ped2 pedestrian datasets [9] are the most
frequently-used datasets in video anomaly detection and localization. UCSD ped1
dataset contains 34 training video volumes and 36 testing video volumes, each vol-
ume consists of 200 frames with a resolution of 158 × 238. UCSD ped2 dataset
contains 16 training volumes and 12 testing video volumes with 240× 360 video
frames, and the number of video frames in each volume varies from 120 to 180.
Both UCSD ped1 and ped2 datasets contain challenging crowded and uncrowded
scenes with different sorts of anomalies on campus pavement, such as skaters,
bikers and vehicles. UMN dataset [22] is another widely-used dataset that con-
tains normal crowd activities (walking) and abnormal crowd activities (escaping)
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in different scenes, and it has 7740 240 × 320 frames in total (1450, 4415 and
2145 frames for scene 1-3 respectively). The first 400 frames in each scene are
used for training and the rest are left for testing.

For detection and localization on UCSD ped1 and UCSD ped2 dataset, we
partition the video volumes into 10 × 10 × 5 spatio-temporal cuboids, and the
cuboids with only minimal temporal gradient accumulation value are filtered out.
The rest of cuboids are represented by SL-HOF with m = 7, n = 8 to yield the
best performance, while we set the bins of optical flow direction D = 4. Spatio-
temporal base in [15] is used to organize SL-HOF features and PCA is performed
to reduce the SL-HOF feature dimension to 950. To detect anomalies with differ-
ent sizes, SL-HOF features are extracted on multiple scales: 120×180, 100×150
and 80 × 100 for UCSD ped1 dataset and 180 × 270, 120 × 180 and 100 × 150
for UCSD ped2 dataset. Only SL-HOF features extracted from the same spatial
location of video frames with the same scale are used to train and test. Foreground
localization is performed on the original scale of video frames with 21 × 12 and
34×17 bounding box for UCSD ped1 and ped2 respectively, and the video frames
are divided uniformly into 7 × 11 spatial regions. Likewise, only ULGP-OF fea-
tures extracted from those bounding boxes, whose centers lies in the same local
spatial region, are used to train and test. Anomalies detected by SL-HOF and
ULGP-OF are combined as the final detection result. For UMN dataset, the detec-
tion is performed on one scale 80× 100 since the foreground objects share a close
size. The size of spatio-temporal cuboid is 20× 20× 5 and m = 2, n = 3 for SL-
HOF feature extraction, while spatial base [15] is adopted. The bounding box is
set to be 40×20 for foreground localization on the original scale. To parameterize
OCSVM and OCELM in the experiments, we select the regularization coefficient
ν and C from [2−20, 2−11, ..., 20] and [2−10, 2−11, ...211, 210] respectively. Gaussian
kernel width σ is selected from [2−10, 2−11, ...211, 210]. Parameters are determined
by 10-fold cross-validation. The rejected ratio is set to be p = 0.01 for OCELM.

As for evaluation criteria, we adopt frame-level criteria for anomaly detec-
tion and pixel-level criteria for anomaly localization [23]: Frame-level criteria.
A video frame that contains any detected abnormal pixel is considered as an ab-
normal frame. The abnormal frames detected by a method is compared with the
ground truth frames on a per-frame basis. Pixel-level criteria. The pixel-level cri-
teria are more precise and challenging than the frame-level one. Only when 40%
pixels of the ground truth abnormal event are detected by the method, a frame can
be viewed as a successfully detected abnormal frame. That is to say, the method
is required to not only determine the frame index of abnormal events, but also
localize the abnormal events roughly. In fact, anomaly localization can be viewed
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Table 1: Comparison of video descriptors.

Descriptor EER AUC

MHOF 29% 76.45%

3D HOG 31% 73.98%

HOF 32% 75.56%

HOG+HOF 29% 76.28%

3D Gradient 33% 70.87%

ULGP-OF 23% 82.29%

SL-HOF 21% 85.73%

as a ”refined” anomaly detection process. For frame-level and pixel-level evalu-
ation, Equal Error Rate (EER), ROC Curves and Area Under the Curve (AUC)
are calculated for a quantitive comparison. All experiments are carried out under
MATLAB 2015b environment on a PC with 32 GB RAM and 3.90 Ghz Intel i7
4790 processor.

5.2. Descriptor Comparison

In this section, we design an experiment to compare the proposed SL-HOF and
ULGP-OF descriptor with the following classic video descriptors: 3D Gradient
[10], HOF, MHOF [15], 3D HOG [43], HOG+HOF [14]. Spatio-temporal cuboids
are extracted from the training video volumes of UCSD ped1 dataset on a single
scale (100 × 150) and represented by the above descriptors respectively. The
extracted features are all modeled by the same Gaussian kernel based OCSVM
for subsequent anomaly detection. ROC Curves, EERs and AUCs yielded by
different descriptors under frame-level criteria clearly show the improvement of
discriminative power by the proposed descriptors (See Fig. 12 and Table 1):

As can be seen from Fig. 12 and Table 1, both SL-HOF and ULGP-OF sig-
nificantly outperform other descriptors in the experiment by a 6% to 12% EER
improvement and a 6% to 15% AUC improvement. The results justify the pro-
posed descriptors for video representation in video anomaly detection. Besides,
it should also be noted that SL-HOF and ULGP-OF perform much better than
two existing optical flow based descriptors, MHOF and HOF, which describe mo-
tion from the entire spatio-temporal cuboid rather than local motion. It verifies
our claim that local motion based descriptors can lead to a more effective video
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Figure 12: Descriptor comparison.

representation for anomaly detection.

5.3. Data Description Algorithm Comparison

In this section, we follow the experimental setup in Section 5.1 and use classic
OCSVM [44] and the adopted OCELM as the data description algorithm respec-
tively to compare their performance on UCSD ped1 and UCSD ped2 dataset under
the more precise pixel-level evaluation criteria. The results are displayed in Fig.
13 and Table 2. To show the learning speed, the average training time required
to train one OCELM or OCSVM with the SL-HOF features extracted from one
spatial location of video frames is also listed in Table 2. We also show the learning
time needed by Sparse Reconstruction Cost (SRC) [15], which is a representative
sparse coding based method used in video anomaly detection, as a reference (The
performance of SRC is omitted since the optimal parameterization of SRC cannot
be determined by crossvalidation like OCELM and OCSVM, and we will report
the performance of SRC in Section 5.5 directly from [15]).

As can be seen from Fig. 13 and Table 2, the adopted OCELM can achieve
comparable or superior EERs and AUCs to the classic OCSVM with a 50 times
faster learning speed. Actually, the advantage of OCELM should be even larger
since OCSVM takes a faster C implementation while OCELM is implemented
by Matlab. We also note that the learning speed of sparse coding based SRC is
much slower than both OCSVM and OCELM, even though we only implement
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Figure 13: Comparsion of OCSVM and OCELM.
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Table 2: Comparison of data description algorithms.

Algorithm EER (ped1) AUC EER (ped2) AUC Training time

OCSVM 35% 64.79% 19% 81.27% 4.0008s

OCELM 33% 68.88% 17% 80.12% 0.7915s

SRC - - - - 25.7508s

Table 3: Anomaly localization performance by SL-HOF, ULGP-OF and joint video representation.

Video Descriptor EER(ped1) AUC EER(ped2) AUC

SL-HOF 36% 65.67% 19% 77.77%

ULGP-OF 43% 60.81% 26% 70.47%

Joint 33% 68.88% 17% 80.12%

the optimization by merely 50 iterations, which is not enough for the objective to
converge in most cases. Besides, there are more parameters for SRC to tune (e.g.,
Lipschitz constant, reconstruction error bound). They are not straightforward to
tune and cannot be determined conveniently by cross-validation like OCSVM and
OCELM. Consequently, we adopt OCELM as our data description algorithm to
model video normal events.

5.4. Joint Video Representation

In this section, we show that the proposed joint video representation can yield
better localization performance than single descriptor based video representation.
We represent the training video volumes by SL-HOF and ULGP-OF alone, and
compare their anomaly localization performance with the proposed joint video
representation under the pixel-level criteria. The comparison is made on UCSD
ped1 and UCSD ped2 dataset. The results are shown in Fig. 14 and Table 3: Com-
pared to single descriptor based video representation, the proposed joint video
representation enhances the performance on both datasets. There are two rea-
sons for the improvement: Firstly, the joint video representation combines the 3D
local region motion information carried by SL-HOF and local texture motion in-
formation carried by ULGP-OF. Secondly, the proposed foreground localization
scheme enables the proposed method to localize the abnormal video foreground
more accurately than single spatio-temporal cuboid based video representation.
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Figure 14: Joint video representation.
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5.5. Method Comparison

5.5.1. UCSD ped1 and ped2 Datasets
In this section, we test the proposed anomaly detection and localization ap-

proach on UCSD ped1 and UCSD ped2 datasets. For UCSD ped1 dataset, the
following state-of-the-art methods in literature are used for comparison: Sparse
Reconstruction Cost (SRC) [15], Sparse Combination Learning (SCL) [11], Mo-
tion and appearance cues (MAC) [12], Gaussian Process Regression (GPR) [16],
HMDT+CRF [23], Spatio-temporal Context (STC) [45], MDT [9], Social Force
(SF) [22], Social Force+MPPCA (SF+MPPCA), Adam et al. [21], Dense STC
[13]. The detection and localization ROC curves are plotted in Fig. 15 and Fig.
16, and the EERs and AUCs under the frame-level evaluation and pixel-level eval-
uation are listed in Table 5.5 (”-” means the result is not given in the literature).
As it is seen from Table 5.5, the proposed approach achieves comparable anomaly
detection performance to state-of-the-art results under frame-level evaluation cri-
teria (EER 18% and AUC 88.5%), while it yields the best EER (33%) and AUC
(68.9%) under the more precise pixel-level evaluation.
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Figure 15: Frame-level anomaly detection on UCSD ped1 dataset.

For UCSD ped2 dataset, the following approaches are compared with our ap-
proach: Motion and appearance cues (MAC) [12], HMDT+CRF [23], Spatio-
temporal Context (STC) [45], Spatio-temporal Composition (SC) [46], MDT [9],
MPPCA [47], Social Force and MPPCA (SF+MPPCA), Bertini et al. [48] and
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Figure 16: Pixel-level anomaly localization on UCSD ped1 dataset.

Table 4: Method comparison on UCSD ped1 dataset.

Method EER (frame) AUC EER (pixel) AUC

Proposed 18% 88.5% 33% 68.9%

GPR 24% 83.8% 37% 63.3%

MDT 25% 81.8% 56% 44.1%

HMDT+CRF 18% - 35% 66.2%

STC 21% 87.2% 37% -

MAC - 85% - 65%

SRC 19% 86% 54% 46%

SCL 15% 92% 41% 63.8%

Dense STC 16% 89% 58% 41.7%

SF 31% 67.5% 79% 19.7%

SF+MPPCA 32% 67% 71% 21.3%

Adam et al. 38% 65% 76% 13.3%

Adam et al. [21]. While the AUC of [46] under frame-level evaluation is slightly
better, the proposed approach achieves the best EER under both frame-level (12%)
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and pixel-level criteria (17%) as well as the best AUC under pixel-level criteria
(80.1%) among all of the methods, while the AUC under frame-level evaluation
(91.3%) is the second best. As a consequence, the proposed approach reports sat-
isfactory results for anomaly detection and localization tasks on both UCSD ped1
and UCSD ped2 datasets, especially in anomaly localization task.

Examples of detected anomalies on UCSD ped1 and UCSD ped2 datasets are
presented in Fig. 20 and Fig. 21, and it can be easily discovered that our ap-
proach can detect and localize multiple different anomalies in both crowded and
uncrowded scenes. We also spot one interesting result in the last image of Fig.
21: Despite that the man with a bike is walking at a normal speed rather than
riding fast, our approach still detects the bike as an anomaly since the structure
and texture of a bike is different from that of the foreground in training videos
(pedestrians), which actually reflects the proposed video descriptors’ capability in
incorporating structural and texture information into our video representation.
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Figure 17: Frame-level anomaly detection on UCSD ped2 dataset.

5.5.2. UMN Dataset
We additionally test the proposed approach on UMN dataset, which is another

widely used benchmark dataset for video anomaly detection. Since no pixel-level
ground truth is provided like UCSD ped1 and ped2 dataset, we evaluate the perfor-
mance of our approach only by the frame-level criteria. The EER, AUC and ROC
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Figure 18: Pixel-level anomaly localization on UCSD ped2 dataset.

Table 5: Method comparison on UCSD ped2 dataset.

Method EER (frame) AUC EER (pixel) AUC

Proposed 12% 91.3% 17% 80.1%

SC 13% 92% 26% -

STC 21% 89.1% - 67.4%

MAC - 90% - 73.7%

MDT 25% 85% - -

HMDT+CRF 19% - 30% -

MPPCA 30% 77% - -

Bertini et al. 30% - 68% -

SF+MPPCA 36% 71% - -

Adam et al. 42% 63% - -

yielded by the proposed approach are compared with following state-of-the-art ap-
proaches: SRC [15], HMDT+CRF [23], Chaotic invariants [49], Local Statistics
Aggregates (LSA) [50], SF [22]. The results are summarized in Fig. 19 and Table
6. As shown in Table 6, since the abnormal events in UMN are staged and the
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Table 6: Detection results on UMN dataset.

Method EER AUC

Proposed 3.1% 99.0%

Chaotic invariants 5.3% 99.4%

HMDT+CRF 3.7% 99.5%

SRC 2.8% 99.6%

SF 12.6% 94.9%

LSA 3.4% 99.5%

Nearest neighbor - 93%

type of its anomalies is much less than UCSD ped1 and ped2, the detection per-
formance on UMN dataset is generally better than UCSD ped1 and ped2 datasets.
Our approach achieved fairly comparable EER (3.1%) and AUC (99.0%) among
the compared approaches. Examples of normal events and the detected abnormal
events are shown in Fig. 22.
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Figure 19: ROC curves of different methods on UMN datasets.
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5.6. Computational Efficiency

We implement our algorithm under Matlab 2015b environment on a PC with
32 GB RAM and 3.90 Ghz Intel i7 4790 processor. It takes 1186.2s, 455.5s and
392.6s respectively to train normal event models for UCSD ped1, ped2 and UMN
dataset. As for testing, the average processing time is 0.84s/frame for UCSD ped1
dataset, 1.66s/frame for UCSD ped2 dataset and 0.91s/frame for UMN dataset. To
further accelerate the training and testing of the proposed approach, we can ex-
ploit the potential of parallel processing in terms of three aspects: First of all, the
SL-HOF based video representation and ULGP-OF based video representation are
independent, so they can be computed in parallel with each other instead of being
computed sequentially. Secondly, multi-scale analysis is another major compu-
tational burden. The computation conducted on different video frame scales can
be implemented in a parallel way. Thirdly, since only features that are extracted
from the same spatial location on the video frame are used for training and testing,
the training and testing of OCELM at different spatial locations can be paralleled
rather than the time-consuming sequential processing in current implementation.
Last but not least, a faster implementation like C++ will also boost the training
and testing speed.

6. Conclusion

In this paper, we have proposed a novel video anomaly detection and local-
ization approach by local motion based joint video representation and OCELM.
We represent the motion of 3D local regions in spatio-temporal video cuboids by
SL-HOF, which can implicitly capture the structural information of foreground
object and depict foreground motion in a more accurate way. Combined with the
new foreground localization scheme, the proposed ULGP-OF descriptor is used
to characterize the motion of local texture within the video foreground. SL-HOF
and ULGP-OF features extracted from training video volumes are modeled by
OCELM, which enables us to learn a good data description in a much faster way
than other data description algorithms like OCSVM and sparse coding. Exper-
iments on public datasets show our approach can achieve state-of-the-art results
on both anomaly detection and localization task. In our future work, we will ex-
plore applying hierarchical ELM-autoencoder to video analysis for a high speed
automatic video representation learning. Ensemble OCELM will also be studied
to describe data with several subclasses or clusters, which may further enhance
OCELM’s performance in data description.
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(a) Skater1 (b) Skater2

(c) Two bikers (d) Biker in crowd

(e) Vehicle (f) Man in wheelchair

(g) Vehicle and biker (h) Vehicle and slow skater

Figure 20: Different anomalies detected on UCSD ped1 dataset.
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(a) Biker (b) Biker 2

(c) Two bikers (d) Two bikers in crowd

(e) Vehicle (f) Skater and biker

(g) Skater in crowd (h) Biker, man with a bike, skater

Figure 21: Different anomalies detected on UCSD ped2 dataset.
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Figure 22: Normal events and detected abnormal events on UMN dataset.
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