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Abstract

Finding object instances from within in large image collections is a challenging

problem with many practical applications. Recent methods inspired by text re-

trieval have achieved good results, however a re-ranking stage based on spatial10

verification may still be required to boost performance. To improve the ef-

fectiveness of such instance retrieval systems while avoiding the computational

complexity of a re-ranking stage, we explore the geometric correlations among

local features, and we incorporate these correlations with each individual match

to form a transformation consistency in rotation and scale space. This weak ge-15

ometric correlation consistency can be used to effectively eliminate inconsistent

feature matches in instance retrieval and can be applied to all candidate images

at a low computational cost.

Experimental results on three standard evaluation benchmarks show that the

proposed approach results in a substantial performance improvement when com-

pared with other state-of-the-art methods. In addition, the evaluation results

from participating in the Instance Search Task in the TRECVid evaluation cam-

paign also suggest that our proposed approach enhances retrieval performance

for large scale video collections.
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1. Introduction

Given a query image of an object, the objective of this work is to find images

that contain recognisable instances of the object from a large image collection,

henceforth referred to as “instance search”. A successful application of instance25

search requires efficient retrieval of instance images with high accuracy, possi-

bly under varying imaging conditions such as rotation, viewpoint, zoom level,

occlusion, and so on.

Instance search is an interesting, yet challenging, problem and has attracted

significant research attention in recent years. Most of the state-of-the-art ap-30

proaches [11], [16], [19] have been developed based on the Bag-of-Visual-Words

(BoVW) representation first introduced by J. Sivic et al. [3]. This representa-

tion framework successfully made use of the discriminative power of local feature

descriptors, for example SIFT [1] and SURF [2] which are generally robust to

multiple changes in imaging conditions, and are applied to build a statistical35

representations for each image in the database. At query time, the BoVW rep-

resentation may take advantage of indexing techniques such as inverted files [4]

to provide fast retrieval over large collections.

However this representation leads to a loss of the ability to encode spatial

information between local features, so spatial verification [16] was subsequently40

introduced to improve retrieval accuracy. Based on the observation that the

layout of local features from the query object and its instances should share

the same or similar geometric structure, there could be only one feature corre-

spondence for any given feature in the query object. So the geometric layout

of query objects was adopted to verify the spatial consistency between initial45

matched local features. Generally, such spatial verification algorithms [11] [16]

were applied to train models to capture the transformation in spatial space

(normally 3-D transformation including position, rotation, scale changes) be-

tween feature correspondences and to fit them to the initial correspondences

to eliminate inconsistent matches in order to refine the results. However these50

techniques such as RANSAC [25] are normally computationally expensive, and
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so in practice they are only be applied as a post-processing step to the a limited

set of top-ranked images in the initial results.

In our work, we address the challenges of improving the efficiency and ro-

bustness of examining the consistency between local feature matches to enhance55

the retrieval performance of instance search systems. However, in contrast to

previous spatial verification technologies, we followed the work proposed by H.

Jégou et al. [5] to efficiently apply spatial verification. Instead of estimating

full spatial transformation models, which is what H. Jégou et al. [5] propose,

we focused on building weak geometric constraints in 2-D space, specifically in60

the rotation and scale parameters, to examine each individual feature corre-

spondences. This leads to a much reduced computational expense and although

having only two spatial parameters are not sufficient to map objects from one

image to another, the weak geometric constraints could help us to filter out

inconsistent feature correspondences at a very low computational cost. The real65

consequence of this is that reduced cost makes this suitable for very large data

collections and this is an enhancement on the original work by H. Jégou et al. [5].

In the work from H. Jégou et al. [5], we observe that their approach considered

feature matches independently and ignored the geometric correlation between

local features, and thus it performed less effectively when performing search in70

more challenging datasets like FlickrLogos-27 [18]. In our work, we believe that

the geometric correlation between reliable feature matches should also be consis-

tent to the weak geometric constraints, just like each individual feature match.

Based on that, we propose a scheme to incorporate the geometric correlations

between matched feature correspondences to form a weak geometric correlation75

consistency to improve the effectiveness of spatial verification. Thus the main

contribution of the paper is the construction of weak geometric constraints in

2-D space allowing this to be done with low computational cost while still sup-

porting geometric correlations but in a much more efficient way when scaled to

large datasets and we demonstrate this on some large data collection80

This paper is organised as follows. In the next section we present some of the

most relevant work in the area and following that, in Section 3 we introduce the
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idea of weak geometric correlation consistency. In Section 4 we present a brief

motivation for the need for improvement in instance search matching, and our

experiments are introduced and presented in Section 5. Our experimental results85

on the TRECVid INS task are presented in Section 5. In summary, the paper

illustrates that our proposed method is more reliable, and also more tractable

for large image collections, and leads to an overall significant improvement of

instance search performance compared to state-of-the-art methods.

2. Related work90

In this section, we briefly review the development of visual instance retrieval

systems and discuss existing approaches to improving retrieval performance by

using the geometric information.

The idea of re-ranking a visual search and carrying out some form of di-

mensionality reduction in the process, is now receiving some attention in the95

research community. One approach [29] is based on exploiting the overall man-

ifold structure of the whole of the dataset and preserving relationships between

example images which have been labelled, effectively mapping a data set to a

lower dimensionality under constraints of preservation.

[3] were the first to address instance search using a BoVW representation100

combined with scalable textual retrieval techniques. Subsequently, a number

of techniques have been proposed to improve performance. The work reported

in [11] suggested using a very high dimensional vocabulary (1 million visual

words) during the quantization process. This method improved the retrieval

precision with more discriminative visual words, and also increased retrieval105

efficiency with more sparse image representations, especially for large scale

database. [13] brought query expansion techniques to the visual search domain

and improved instance recall by expanding the query information. For further

improvement on the retrieval performance, both approaches added the spatial

verification stage to re-rank their results in order to remove noisy or ambiguous110

visual words.
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While geometric-based constraints are of ultra-importance for some image-

matching applications like fingerprint matching, as described in [28], recent

work reported in [7], [10], [9] and [8] extended the BoVW approach by encoding

the geometric information around the local features into the representation and115

refine the matching based on visual words. Those methods were very sensitive

to the change in imaging condition and made them only suitable for partial-

duplicate image search.

For many high-dimensional data processing applications which involve im-

age data like search, clustering, dulicate detection, etc., we often have too many120

features in the image representation, many of which are often redundant and

noisy. Feature selection is one technique for dimensionality reduction that in-

volves identifying a subset of the most useful features. In [30], a novel unsu-

pervised feature selection algorithm, named clustering-guided sparse structural

learning (CGSSL), is proposed that, like our work, helps to discriminate among125

features, in our case using geometric constraints.

One of the other ways to reduce the feature space is to learn a subspace,

at retrieval time, and to perform the matching within that subspace. In [], the

authors proposed exactluy that, and to guarantee their subspace to be compact

and discriminative, the intrinsic geometric structure of data, and the local and130

global structural consistencies over labels were exploited simultaneously in a

similar way to the way we exploit geometric constraints.

Even more recently, alternative approaches have been developed to implic-

itly verify the feature matches with respect to the consistency of their geometric

relations, i.e., scaling, orientation, and location, in the Hough transformation135

space. [12] developed a linear algorithm to effectively compute pairwise affinities

of correspondences in a 4-dimensional transformation space by applying a pyra-

mid matching model constructed from each single feature correspondence. [5],

increased the reliability of feature matches against imagining condition changes

by applying weak constraints to verify the scaling and orientation relations con-140

sistency according to the dominant transformation found in the transformation

space. Similarly, [15] proposed to represent the feature points’ geometric in-
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formation using topology-base graphs and verified the spatial consistency by

performing a graph matching.

Finally, if we broaden out the function from just instance search to other145

content-based operations we find that there are other examples of work which

uses some form of spatial coding, to encode the spatial relationships among local

features in an image. Work described in [10] shows significant improvement in

performance, but accuracy and computational cost, for the task of detecting

near-duplicate images in web search.150

Our proposed method follows the direction of implicitly verifying feature

matches do exist in an instance search in order to reduce the computational

cost. However compared to existing work, which focused on individual corre-

spondences, our proposed method also considers the spatial consistency for the

geometric correlations between matched feature correspondences, while main-155

taining the efficiency and increasing the effectiveness of the instance search

systems.

3. Weak Geometric Correlation Consistency

In the BoVW representation for images, local features are first extracted

from each image to encode invariant visual information into feature vectors.160

Generally, a feature vector is defined as ~v(x, y, θ, σ, q), where variables {x, y, θ, σ}

stand for the local salient point’s 2-D spatial location, dominant orientation,

and most stable scale, respectively while q represents a 128-D feature vector to

describe the local region. For a query image Iq and candidate image Ic, a set of

initial matching features Cinitial could be established by examining the feature165

vector q. The task of spatial verification is to eliminate the unreliable feature

matches and only retain the matches set Cstable that link the patches of the

same object. The following equation formulates this process:

Cstable = {mi ∈ Cinitial and fsp(mi) = 1} (1)

where mi stands for the ith feature match in the initial match set and fsp stands

for the spatial verification function for assessing a geometric consistency. Take170
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the weak geometric consistency of [5] for example, the verification function in

their work could be expressed as follows:

fsp =

1 if ∆θ ∈ Dθ and ∆σ ∈ Dσ

0 if otherwise

(2)

where ∆θ and ∆σ is the geometric transformation for an individual feature

match and Dθ and Dσ is the weak transformation constraints in rotation and

scale space, which were the approximation of the full spatial transformation.175

Experimentally, the value of these constraints was calculated from the initial

local feature correspondences.

3.1. Motivation

We take the geometric correlation among local features into consideration

and hypothesize that the pairwise geometric correlation between consistent180

matches should also be consistent and should follow the same spatial trans-

formation between objects. So instead of verifying the geometric consistency

for each match individually, we propose a novel approach to verify the consis-

tency between pairwise geometric correlations along with their corresponding

feature points. So for a given pair of feature matches ml and mn, we define the185

proposed spatial verification function as following:

fsp =

1 if ∆θ,∆θl→n ∈ Dθ and ∆σ,∆σl→n ∈ Dσ

0 if otherwise

(3)

where ∆θl→n and ∆σl→n represents spatial transformation of the geometric

correlation from feature match ml to mn.

We call our proposed approach Weak Geometric Correlation Consistency

(WGCC), and Figure 1 demonstrates our idea of using geometric correlations190

to assess the reliability of feature matches. The object of interest (the front

cover of a box) is highlighted with a dark yellow box. To begin with, we have

three initial feature matches for spatial validation. Matches (A,A′), (B,B′) are

considered to be consistent because the spatial transformation (i.e. translation,

7



Figure 1: An illustration of verifying consistency of feature matches using geometric correla-

tions. The green(red) line indicates the consistent(inconsistent) feature matches.

rotation and scale change) is consistent between (A,A′), (B,B′) and their cor-195

relation (AB,A′B′). On the other hand, match (C,C ′) is filtered out due to the

fact that geometric correlation between (AC,A′C ′) is not consistent with the

spatial transformation. Hence, we can successfully eliminate the inconsistent

feature matches despite the fact that they may obey weak spatial constraints

individually.200

3.2. Implementation

The explicit examination of all correlations between initial feature matches

is a non-trivial task. If we take a total number of N initial matches as an

example, the potential pairwise correlation could be modeled as O(C2
N ). The

initial feature matching number N is usually large in practical systems, and this205

will result in a high computational cost to verify all the correlations, and thus

will make the solution less attractive for large-scale image collections.
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(a) The initial set of matches (b) After weak geometric constraints

(c) The reference feature match (d) Verified match set after WGCC

Figure 2: An illustration of applying WGCC on the initial set of feature matches to obtain

the consistent feature matches.

In this work, we propose a three-step process to reduce the complexity of

verifying the geometric correlation consistency, and to make it applicable at

low-cost for large-scale instance search systems, which is our key goal. The key210

idea is to obtain a feature match as a reference point between the initial set

of feature matches and then examine only the O(N) correlations between each

match and the reference match. These three steps are described in the following

paragraphs and an example output for each step is shown in Figure 2.

Estimating weak geometric constraints. To begin with, we establish a215

weak geometric transformation, specifically rotation and scaling, in the spatial

space from the initial set of feature matches. The transformation parameters,

rotation angle ∆θ and scaling factor ∆σ for each feature match were denoted

as:

∆θ = θm − θi, ∆σ = σm/σi (4)

In order to reduce the sensitivity to non-rigid deformation [27], we quantize the220

value of the parameters into bins to estimate an approximated transformation.

We use a factor of 30 degrees to divide the rotation range of 360 degrees into
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12 bins, and a factor of 0.5 to divide the scale range between 0 to 4 into 8 bins.

To avoid any possibl bin quantization error, each feature match votes to the

closest two bins in each parameter space. The Hough voting scheme [24] was225

applied in searching of the dominant value Dθ and Dσ to form weak geometric

constraints for two purposes. Firstly, we can reduce the computational com-

plexity of following process by eliminating the matches that do not obey the

constraints. Secondly, these weak constraints will be used to assess the trans-

formation consistency for geometric correlation to obtain the reliable matches.230

Identifying the reference matching correspondence. In this step,

we aim to determine the strongest feature matches which will be served as a

reference match in the verifying geometric correlations step. We follow the

approach of [15] and adopt a topology-based graph match for this purpose. To

represent the topology structure for objects, we create a delaunay triangulation235

mesh from the geometric layout among the feature points in object plane. We

then find the strongest feature matches which correspond to the the common

edges between topology graphs by performing a graph matching.

Verifying weak consistency for geometric correlations. The final

step is focused on identifying the most reliable feature matches by verifying240

the consistency of the geometric correlations from each feature match to the

reference match. Suppose we have a feature match ml and a reference match

mn between imageQ andD, the geometric correlation fromml tomn in imageQ

could be expressed as a vector vl−>n = (xl, yl)− (xn, yn) where x, y represent

the 2D location of corresponding feature points in image Q for match ml and mn245

respectively. Similarly we can express the geometric correlation between ml and

mn in image D as a vector v′l−>n = (x′l, y
′
l)− (x′n, y

′
n). Then the transformation

parameters in orientation ∆θi−>n and the scale ∆σl−>n between geometric

correlations can be defined as:

∆θi−>n = arccos
‖vl−>n‖‖v′l−>n‖
vl−>n · v′l−>n

, ∆σi−>n =
‖v′l−>n‖
‖vl−>n‖

(5)

It is now possible to assess spatial consistency by verifying the transformation250

parameters values with weak constraints according to equation 3 And as illus-

10



Figure 3: Overall framework of our WGCC approach in instance search system

trated in step (d) in figure 2, final set of reliable feature matches can be obtained

with further filter out inconsistent matches.

The high-level components of our instance search systems are outlined in

figure 3. This diagram illustrates an overview of instance search pipeline from255

which we obtain our initial results and apply our proposed approach for re-

ranking to obtain an improved search results.

3.3. Computational Complexity

The major computational cost in the proposed scheme is in the second step

where we build the triangulation mesh and discover the reference matches by260

identifying the common edges. These computations are closely related to the

total number of feature matches. Since we have already built weak geometric

constraints in the first step to verify the initial feature matches, only a subset of

smaller sets of feature matches (the cardinality of this set is denoted by n) needs

to be conducted in this step, which leads to a cost of O(n log n). In the end,265

O(n) operations are required to perform the geometric correlation verification

which is much less than O(C2
n) required for a full verification of all the possible

geometric correlations, and this is the basis for the saving in computational

cost which allows our proposed method to be scaled to large image and video

collections.270

4. Understanding Performance Improvement in Object Matching

In this section, we try to understand the performance improvement provided

by our proposed approach by locating a specific scene or object in a digital
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(a) Initial SIFT matches: 198 (b) Initial SIFT matches: 202

(c) RANSAC refined: 6/198 (d) RANSAC refined: 21/202

(e) WGCC refined: 46/198 (f) WGCC refined: 114/202

Figure 4: Comparing original object matching results (a) and (b) with the RANSAC algorithm

(c) and (d) and our proposed WGCC algorithm (e) and (f), in two object matching examples.

After applying our WGCC algorithm, many more consistent matches are found and the object

is better localized in the target image.

image. As discussed in section 3, this work aims to refine the initial match-

ing points between two images by verifying the spatial correlation to eliminate275

outliers. So, we compared the classic RANSAC based approach [25] with our

proposed WGCC approach in perform object matching tasks between a pair of

images. We expect that our approach will outperform the RANSAC algorithm

in terms of efficiency since the geometric correlation consistency provided by
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our algorithm could be used to quickly and robustly filter out any outliers.280

Figure 4 demonstrates two object matching examples with the RANSAC

algorithm and our proposed WGCC algorithm. In this figure, the query object

is shown on the left side of each matching pair, and the target image is shown

on the right. The first row presents the initial matching from calculating the

distance between the SIFT descriptors, the second row presents the refined285

matching after applying the RANSAC algorithm, and the last row presents the

consistent matching after applying our WGCC algorithm. A comparison of

the two object matching examples clearly shows that our proposed algorithm

increases the number of consistent matches and has successfully identified object

localization in the target images. To quantitatively measure the effectiveness290

of our WGCC approach, we selected 10 pairs of images to perform the object

matching task from the Oxford building test collection and calculated the correct

ratio of reliable matching from initial feature correspondences. Our WGCC

method performed about 5 times better than the standard RANSAC method in

average for preserving the consistent feature correspondences. After applying295

WGCC method into instance search tasks, we expected our approach could

help to reduce object matching confusion and boost the retrieval performance

by refining each image in the initial rank list.

5. Instance Search Experiments

The goal of our experiments is to assess the performance of the proposed300

weak geometric correlation consistency methods in instance search tasks. In

order to achieve this, a complete instance search system was developed and

comparative experiments were designed to evaluate the retrieval performance

against state-of-the-art approaches on three standard and publicly-available

benchmarks.305

In the rest of this section, we introduce the three chosen benchmark datasets,

describe the evaluation protocol and analyse the experimental results by com-

paring them to three state-of-the-art approaches described in [11], [5] and [15]
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respectively.

5.1. Datasets310

The datasets chosen were the Oxford, Pairs6K and FlickrLogis-32 datasets.

Each of these datasets includes a set of queries and relevance judgements.

The Oxford dataset. This dataset [11] contains 5,062 high resolution

images crawled from Flickr using texture queries for pictures of famous Oxford

landmarks. 11 building topics with 55 images as queries was provided with315

manually annotated ground truth for users to evaluate retrieval performance.

The images are considered to be positive if more than 25% of the instance is

clearly visible in the image frame.

Pairs6K This collection [16] consists of 6,412 images collected by searching

for particular Paris landmarks from Flickr. In total, 11 Landmarks with 55320

image queries was provided with manually annotated ground truth for users to

evaluate retrieval performance. The images are considered to be positive if more

than 25% of the instance is clearly visible in the image frame.

FlickrLogos-27 This dataset [18] consists of 5,107 images including 810

annotated positive images corresponding to 27 classes of commercial brand logos325

and 4,207 distraction images that depict its own logo class. This is a very

challenging dataset because the positive images share much more visually similar

regions with the distraction images and have more noisy background. For each

logo, 5 query example images are given for evaluation purposes.

5.2. Evaluation protocol330

A standard evaluation protocol based on the classic BoVW scheme was

adopted to assess the improvements of our proposed method for instance search.

The Hessian detector and SURF descriptor implemented in the OpenCV Li-

brary [20] were used to extract the local features from database images. Subse-

quently, a visual vocabulary was generated using the approximate K-means al-335

gorithm desribed by [11] to quantize each feature into visual words for indexing.

After that, the represented visual words (along with auxiliary information, e.g.
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the geometric information) are indexed in an inverted structure for the retrieval

process. When performing the search tasks, the candidate images sharing same

visual words are retrieved from the database collections. Auxiliary information340

is used to perform the spatial verification used to improve retrieval performance.

We measured the mean Average Precision (mAP) score of the top 1,000

results to evaluate retrieval accuracy. mAP is defined as the mean of the average

precision (AP) over all queries. To evaluate retrieval efficiency, we also record

the response time accurate to one hundredths of a second. Each approach was345

implemented and evaluated on the same computing hardware.

The experiments were carried out on a desktop computer with 4-core 2.3

GHz CPU and 8G RAM. Only one core was used when performing the task.

5.3. Approaches for Comparison

The Weak Geometric Correlation Consistency (WGCC) was compared against350

the standard BoVW approach as the baseline, but it is also compared against

two other advanced approaches; Weak Geometric Consistency (WGC) and De-

launay Triangulation(DT). We choose this two advanced methods and compare

their performance to demonstrate the effectiveness of our proposed approach

due to two main reasons. Firstly, these two approaches both employ the geo-355

metric information among local features to enhance the performance of baseline

method. Secondly, we aim to verify the effectiveness of every step in our pro-

posed three-step algorithm, where weak geometric consistency [5] and delaunay

triangulation algorithm [15] are chose to measure the effectiveness of step one

and two respectively.360

BoF [11]. The baseline approach was based on [11] with a vocabulary of

1M words which had been shown to give the best performance. The tf × idf

weighting scheme and hard assignment was used to keep a consistent setting for

all system implementations.

WGC [5]. We chose this approach for evaluation because this method365

assessed each feature match by verifying its transformation against a weak geo-

metric consistency to increase the robustness in changing of rotation and scale
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space. The constraints for geometric consistency was obtained by converting

the parameter values into a Hough transformation space.

DT [15]. This approach makes use of relations between matched points in370

a 2-dimensional translation space to improve the matching reliability between

two sets of features. It used the Delaunay Triangulation (DT) based graph

representation to model and match the layout topology of initial matched feature

points. A hamming embedding signature was used to enforce point-to-point

matches and to ensure the number of nodes in each graph is identical.375

WGCC. This is our proposed method and the contribution of this work,

as described in section 3. We follow the recent work in feature search in high-

dimensional spaces and use the product-quantization based algorithm [6] to

build up search components for initial feature matching. Then we applied the

proposed weak geometric correlation consistency (WGCC) for spatial verifica-380

tion, and reduction of computational cost.

5.4. Results and discussion

In this section, we present and discuss the quantitative results from our eval-

uation experiments and we demonstrate the performance improvement provided

by our proposed approach in cpmparison with other advanced approaches.385

5.4.1. Comparison Using mean Average Precision(mAP)

Table 1 presents the experimental results of comparing our proposed ap-

proach WGCC with the baseline and two enhanced approaches, on the three

benchmark datasets. We observe that the advanced approaches for spatial ver-

ification consistently improvs performance in terms of mAP compared to the390

baseline. Compared to the other two advanced systems, our proposed approach

achieves the best results. This is clearst on the FlickrLogos dataset, where our

approach has a 59% relative improvement in the mAP performance from the

baseline’s 0.145 to 0.231 in our method. This proves that our approach is strong

enough to reject inconsistent feature matches, while also being flexible enough395

to keep the evidence from locally consistent patches.
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Table 1: Comparison in mAP score and respinse time between our proposed WGCC and

the baseline and two other state-of-the-art advanced approaches, on Oxford, Pairs6K and

FlickrLogo-27 datasets.

Oxford Pairs6K FlickrLogos

Methods mAP Time1 mAP Time1 mAP Time1

BoF 0.489 0.46 0.526 0.62 0.145 0.26

WGC 0.530 1.06 0.576 1.12 0.193 0.41

DT 0.542 0.86 0.546 0.89 0.201 0.31

WGCC 0.693 1.07 0.607 1.23 0.231 1.06

Time1 measures the average response time per query in second, excluding fea-

ture extraction.

5.4.2. Comparison Using Precision-Recall Curves

Figure 5 shows some examples of the improvement in mAP obtained by the

proposed WGCC approach compared to the baseline system in terms of precision

recall curves. The object of interest is delimited in the yellow box from the query400

image on left side of each sub-figure. The Precision-Recall curve is displayed

on the right side with baseline results shown in a blue line and the WGCC

method shown in red. The gap area between two lines indicates the performance

improvement for our methods. We could understand that our proposed method

refined the initial results by successfully re-ranking the relevant images in high405

order.

5.4.3. Comparison Using Top-10 Results

In order to demonstrate the performance gained with our proposed approach,

we also compared the top-10 results for three query topics returned by the

baseline approach and our WGCC approach in Figure 6. The left column on the410

figure presents the three query objects from three test collections. On the right-

hand side, the top-10 results are displayed from left to right. For each query

topic, the upper rows are the results from the baseline system and the lower
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(a) Query example: All Souls (b) Query example: Fedex logo

Figure 5: Performance improvement in the precision-recall curve obtained by using proposed

approaches compared to the baseline system.

rows are the results from our WGCC method. The non-relevant result images

are outlined with red surrounding boxes and the remainder are relevant results.415

As illustrated in the figure, our WGCC method is especially good at returning

relevant results in the top-10 ranking. Since our WGCC approach preserved

the geometric layout of object instances with weak geometric constraints, so

our approach would rank the irrelevant images to a much lower place even if

they have many initial matching features with the query image.420

5.4.4. Comparison Using Efficiency

At run-time, our proposed method achieved comparable retrieval efficiency

with the two advanced approaches while providing better accuracy. Table 1

also illustrates the average response time over all the query topics for each test

collection. Although the retrieval efficiency of WGCC was slightly less than the425

other approaches, retrieval efficiency could be optimised by adopting parallel

computing approaches.

6. Large Scale Instance Search Experiments

To evaluate the performance of our proposed approach on large-scale in-

stance search, we participated the instance search task (INS) in the annual430

TRECVid Retrieval Evaluation workshop [21, 22].
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(a) Query example: ‘All Soul’ from the Oxford building dataset

(b) Query example: ‘Ferrari Logo’ from the Flickr Logos 27 dataset

(c) Query example: ‘Eiffel Tower’ from the Paris6K dataset

Figure 6: Comparison of Top-10 results in ranking lists. The image on the left column is the

query images, and on the right-hand side, the top-10results are displayed from left to right.

For each query, the upper rows are the results from baseline system and the lower rows are

the results from our WGCC method.The red box indicate the irrelevant result images.

6.1. INS in TRECVid 2014 and 2015

TRECVid is an international video search campaign where researchers eval-

uate and demonstrate the efficiency and effectiveness of their video retrieval

approaches on a shared test collection via an open, metrics-based evaluation.435

The instance search task specially focused on finding video segments which con-

tains a certain specific person, object, or landmark, given a visual query image.

During the event in 2015, 30 topics with ground-truth data were given for each

participant to find the top 1,000 shots which are most likely to contain a recog-
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nizable instance from a large collection of about 200 hours of video. To evaluate440

the retrieval performance for each submission, the standard evaluation metrics

such as mean Average Precision (mAP), Precision at K (P@5, P@10, ...) was

computed.

6.2. Our Participation and Results Discussion

Search Engine We built a search engine [26] which will take an image as445

a search query and then sort a keyframe taken from every video shot in the

search collection according to the likelihood that it may contain an instance of

the topic object. The Hessian detector and SIFT descriptor implemented in

the OpenCV Library [20] were used to extract the local features from database

images. Subsequently, a visual vocabulary with 1 million visual words was gen-450

erated using the approximate K-means algorithm [11] to quantize each feature

into a visual word to build the bag of feature representation. We adopted the

standard tf × idf weighting algorithm [23] to calculate the discriminative power

of each visual word, and then computed the relevance score for each image in

the collection.455

Our submissions and Results In order to reveal the efficiency of our

WGCC approach for large scale instance search tasks, we submitted two auto-

matic runs with different settings to the INS task in TRECVid in 2015. In the

first run, the initial result was refined using the classic RANSAC algorithm as

the spatial verification step, and the second run was conducted with our pro-460

posed WGCC algorithm. For each run, all the 30 search queries were performed

and the top-1000 results in the ranking list were submitted for evaluation.

Since all the instance search tasks were completed on the same dataset, we

can directly compare the results from the two runs to demonstrate the efficiency

of their retrieval performance. Figure 7 illustrates the sorted list of mAP scores465

for all the tasks from the two runs in our TRECVid 2015 experiment. The red

columns stands for the scores obtained with our WGCC approach in the second

run and the blue columns are the scores from the RANSAC algorithm in the

first run.
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Figure 7: Comparison in mAP scores between our submissions in INS tasks in TRECvid 2015.

The red columns are scores from our WGCC algorithm and blue columns are scores from the

RANSAC algorithm

The figure shows that our WGCC approach significantly outperformed the470

RANSAC algorithm in 5 search tasks. And the best mAP score for our WGCC

approach achieved 0.79, in contrast only 0.34 for the RANSAC algorithm. This

experiment strongly proves that our proposed WGCC algorithm successfully

improves the performance of instance search on very large data collections.

7. Conclusion475

This paper proposed a novel approach to improve retrieval performance of

instance search systems by combining pairwise geometric correlations with in-

dividual feature match transformation in order to form a weak geometric cor-

relation consistency. This model eliminates inconsistent feature matches while

keeping reliable matches using locally spatial correlations. Our experiments480

show that our approach consistently outperforms our baseline system in three

standard benchmark evaluations and achieves improved results when compared

with two advanced systems. This indicates the effectiveness of our method for

spatial verification. Another positive aspect of our experimental results is that

other advanced technologies, such as automatic query expansion [13], or re-485

ranking based on full spatial verification [11] are compatible with our proposed

method and could be used as complementary components to further improve

retrieval performance. In future work, we will investigate how to incorporate

WGCC methods in vary large data collections, e.g. collection with millions of

images.490

21



8. Acknowledgments

This publication has emanated from research conducted with the financial

support of Science Foundation Ireland under grant number SFI/12/RC/2289, as

well as the financial support of the Norwegian Research Council’s iAD project

under grant number 174867.495

[1] D. Lowe. Distinctive image features from scale-invariant key points. IJCV,

60(2): 91-110, 2004.

[2] H. Bay , A. Ess , T. Tuytelaars , L. Van Gool. Speeded-Up Robust Features

(SURF), Computer Vision and Image Understanding, v.110 n.3, p.346-359,

June, 2008.500

[3] J. Sivic, A. Zisserman. Video Google: Efficient Visual Search of Videos in

Toward Category-Level Object Recognition, Springer, Volume 4170, page

127–144, 2006

[4] J. Zobel, A. Moffat, K. Ramamohanarao, Inverted files versus signature

files for text indexing, ACM Trans. Database Systems 23, 453490, 1998.505

[5] H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geo-

metric consistency for large scale image search.In ECCV, October 2008.

[6] H. Jégou, M. Douze and C. Schmid. Product quantization for nearest neigh-

bor search in IEEE Transaction on Pattern Analysis and Machine Intelli-

gence, 2011510

[7] Z. Wu, Q. Ke, M. Isard, J. Sun. Bundling features for large scale partial-

duplicate web image search in Proceeding of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2009.

[8] R. Albatal, P. Mulhem, and Y. Chiaramella. Visual phrases for automatic

images annotation in Proceedings of CBMI, 2010.515

[9] S. Romberg, R. Lienhart, Bundle min-hashing for logo recognition, in Pro-

ceedings of International Conference of Multimedia Retrieval, 2013

22



[10] W. Zhou, Y. Lu, H. Li, Y. Song, Q. Tian. Spatial coding for large scale

partial-duplicate web image search. in Proceedings of the ACM conference

in Multimedia 2010.520

[11] J. Philbin , O. Chum, M. Isard, J. Sivic, and A. Zisserman, Object retrieval

with large vocabularies and fast spatial matching in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2007

[12] Y. Avrithis and G. Tolias. Hough pyramid matching: Speeded-up geometry

re-ranking for large scale image retrieval. IJCV, 107(1):119, 2014.525

[13] O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman. Total Recall: Auto-

matic Query Expansion with a Generative Feature Model for Object Re-

trieval in IEEE International Conference on Computer Vision, 2007

[14] Y. Zhang, Z.Jia, and T. Chen, Image retrieval with geometry-preserving

visual phrases in Proceedings of the IEEE Conference on Computer Vision530

and Pattern Recognition 2011.

[15] W. Zhang and C.-W. Ngo, Searching visual instances with topology check-

ing and context modeling, in Proceedings of ICMR, 2013.

[16] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in Quan-

tization: Improving Particular Object Retrieval in Large Scale Image535

Databases in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2008

[17] J. Revaud, M. Douze, C. Schmid. Correlation-Based Burstiness for Logo

Retrieval in Preceeding of the ACM International Conference on Multime-

dia, Oct 2012540

[18] S. Romberg, L. G. Pueyo, R. Lienhart, R. van Zwol, Scalable Logo Recogni-

tion in Real-World Images in ACM International Conference on Multimedia

Retrieval 2011 (ICMR11), Trento, April 2011.

23



[19] Y. Kalantidis, LG. Pueyo, M. Trevisiol, R. van Zwol, Y. Avrithis. Scalable

Triangulation-based Logo Recognition. In Proceedings of ACM Interna-545

tional Conference on Multimedia Retrieval (ICMR 2011), Trento, Italy,

April 2011.

[20] G. Bradski, The OpenCV Library in Dr. Dobbs Journal of Software Tools,

2000

[21] Over, P., Awad, G., Michel, M., Fiscus, J., Kraaij, W., Smeaton, A. F.,550

Quenot, G., and Ordelman, R. (2015). TRECVid 2015 an overview of the

goals, tasks, data, evaluation mechanisms and metrics. In Proceedings of

TRECVID 2015.

[22] Smeaton, A.F., Over, P. and Kraaij, W. (2006). Evaluation campaigns and

TRECVid. Proceedings of the 8th ACM International Workshop on Mul-555

timedia Information Retrieval, pages 321–330, Santa Barbara, California,

USA.

[23] Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to

Information Retrieval. Cambridge University Press, New York, NY, USA.

[24] Shapiro, L. G. and Stockman, G. C. (2001). Computer Vision. Prentice560

Hall, New Jersey, USA.

[25] Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and Au-

tomated Cartography. Commun. ACM, New York, NY, USA.

[26] K. McGuinness, Mohedano, E., Salvador, A., Zhang, Z. X., Marsden, M.,565

Wang, P., Jargalsaikhan, I., Antony, J., Gir-i-Nieto, X., Satoh, S. ’ichi,

O’Connor, N., and Smeaton, A. F., Insight DCU at TRECVID 2015, in

TRECVID 2015 Workshop, Gaithersburg, MD, USA, 2015.

[27] L. Zagorchev and A. Goshtasby, ”A comparative study of transformation

functions for nonrigid image registration”, IEEE Trans. Image Process.,570

vol. 15, no. 3, pp. 529-538, 2006

24



[28] Jayaraman, U., Gupta, A.K. and Gupta, P., 2014. An efficient minutiae

based geometric hashing for fingerprint database. Neurocomputing, 137,

pp.115-126.

[29] Jing, P., Ji, Z., Yu, Y. and Zhang, Z., 2016. Visual search reranking with575

RElevant Local Discriminant Analysis. Neurocomputing, 173, pp.172-180.

[30] Li, Z., Liu, J., Yang, Y., Zhou, X. and Lu, H., 2014. Clustering-guided

sparse structural learning for unsupervised feature selection. IEEE Trans-

actions on Knowledge and Data Engineering, 26(9), pp.2138-2150.

25


	Introduction
	Related work
	Weak Geometric Correlation Consistency
	Motivation
	Implementation
	Computational Complexity

	Understanding Performance Improvement in Object Matching
	Instance Search Experiments
	Datasets
	Evaluation protocol
	Approaches for Comparison
	Results and discussion
	Comparison Using mean Average Precision(mAP)
	Comparison Using Precision-Recall Curves
	Comparison Using Top-10 Results
	Comparison Using Efficiency


	Large Scale Instance Search Experiments
	INS in TRECVid 2014 and 2015
	Our Participation and Results Discussion

	Conclusion
	Acknowledgments

