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Abstract- This paper discusses the use of machine learning techniques for the 

classification of medical data, specifically for guiding disease modifying therapies 

for Sickle Cell. Extensive research has indicated that machine learning 

approaches generate significant improvements when used for the pre-processing 

of medical time-series data signals and have assisted in obtaining high accuracy 

in the classification of medical data. The aim of this paper is to present findings 

for several classes of learning algorithm for medically related problems. The 

initial case study addressed in this paper involves classifying the dosage of 

medication required for the treatment of patients with Sickle Cell Disease. We 

use different machine learning architectures in order to investigate the accuracy 

and performance within the case study. The main purpose of applying 

classification approach is to enable healthcare organisations to provide accurate 

amount of medication. The results obtained from a range of models during our 

experiments have shown that of the proposed models, recurrent networks 

produced inferior results in comparison  to conventional feedforward neural 

networks and the Random Forest model. Results have also indicated that for the 

recurrent network models tested, the Jordan architecture was found to yield 

significantly better outcomes over the range of performance measures 



considered. For our dataset, it was found that the Random Forest Classifier 

produced the highest levels of performance overall.  
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1. Introduction  

Sickle cell disease (SCD) is a common serious genetic disease, which has a 

severe impact on the patient’s quality of life and life expectancy due to red blood 

cell (RBCs) abnormality. SCD is phenotypically complex, with various medical 

outcomes ranging from early childhood mortality to a nearly unrecognised 

condition [1]. The main reason for the disease within affected populations lies 

with a group of ancestral disorders that have resulted in a  protein mutation 

inside the RBC called haemoglobin. According to the World health Organisation 

(WHO), 7 million new born babies each year suffer either from the congenital anomaly or 

from an inherited disease [2]. Furthermore, 5% of the population around the globe 

carries trait genes for the haemoglobin disorder, primarily, thalassemia and sickle cell 

disease [3]. in S-beta thalassemia, the patient inherits one gene of sickle cell and beta 

thalassemia can be inherited from anaemia.  

SCD affects more than 1 million individuals in USA and there are over 75,000 

hospitalisations costing approximately £300 million per year for treatment of SCD 

complications [4]. According to a National Health Services (NHS) investigation 

report, there are 250,000 people with sickle cell disease in the United Kingdom 

alone [5]. Moreover, the estimated cost in 2013 to admit patients to hospital 

reached more than £ 23.8 million per annum [6].  

Thalassaemia is considered to be one of the most common of the inherited blood 

disorders [7]. This kind of disease affects the vast majority of patients suffering 

from genetic blood disorders, where the haemoglobin is measured as abnormal 

behaviour in the blood. The abnormality in this case refers to red blood cells, 

which are unable to function correctly, a condition that leads to anaemia. In this 

context, significantly abnormal haemoglobin production will lead to a decrease in 

the total amount of oxygen-carrying capacity in the blood [7]. Moreover, the 

disease can cause a number of complications, including heart failure, restricted 

growth, liver disease, organ damage and death. 

In addition to SCD, further examples of inherited diseases can potentially benefit 

from this research direction. For example, Tay-Sachs disease is another disease 

that belongs to the class of autosomal recessive genetic disorders, which in this 

http://www.nhs.uk/conditions/Thalassaemia/Pages/Introduction.aspx
http://www.nhs.uk/conditions/Anaemia-iron-deficiency-/Pages/Introduction.aspx
https://en.wikipedia.org/wiki/Autosomal_recessive
https://en.wikipedia.org/wiki/Genetic_disorder


case is known to cause progressive deterioration of the nervous system [8]. It is 

usually caused by the absence of an important enzyme, which is called 

hexosaminidase-A (Hex-A). Tay-Sachs disease can be easily inherited by 

children with a parent who carriers a HEXA mutation. In this case, the child will 

have a 25% chance of possessing the condition when both parents are carriers 

[9]. This disease is considered very rare in the general population around the 

world. Early symptoms often begin to appear when a baby is six months old. The 

most noticeable symptoms are red dots appearing close to the baby’s eyes. The 

vast majority of children with the Tay-Sachs disease condition die in the first 

decade of their life. This type of disease occurs due to the accumulation of a 

harmful a fatty substance called GM2 ganglioside within the brain’s nerve cells, 

progressively impairing their function and eventually causing them to die 

completely. 

In the case of SCD, recent research has shown the beneficial effects of a drug 

called hydroxyurea/hydroxycarbamide in modifying the disease phenotype [10]. 

The clinical management of this disease modifying therapy is difficult and time 

consuming for clinical staff. In order to address the significant medical variability 

presented by such a crisis, healthcare professionals must improve adherence to 

therapy, which is frequently poor and subsequently results in elevated risks and 

less benefits to patients.  

The development of medical information systems has played an important role in 

medical societies. The aim of these developments is to improve the utilisation of 

technology in medical applications [11]. Expert systems and various Artificial 

Intelligence methods and techniques have been used and developed to improve 

decision support tools for medical purposes. Machine Learning models (ML) is 

considered to be a powerful technique in the field of scientific research that 

enables computers to learn from data [12]. There are a number of machine 

learning technique for classification include the Artificial Neural Network, the 

Random Forest model, and the Support Vector Machine. In this paper, the 

application of machine learning approaches for the problem of SCD medication 

dose management is considered. 



The reminder of this paper is organized as follows. Section 2 will illustrate the 

related work, while section 3 will discuss the classification of medical data, 

including recurrent neural network architectures used for classification. The 

methodology will then be introduced in Section 4, followed by the presentation of 

our results in section 5. Finally, in Section 6 we discuss our conclusions and 

future works.  

2. Related Work 

In recent years, healthcare organisations worldwide have faced many problems 

in meeting the demands of enhanced medical sectors [13]. The main motivation 

for researchers is to produce a new system for that could provide assistance for 

health organisation to deal with their patients.  There are a number of research 

projects developed for healthcare environments based on machine learning 

approach  [14]. Several solutions have been proposed to provide support to 

physicians and medical professionals. Allayous et. al. [15] demonstrated a new 

technique based on machine learning algorithms for quantifying the high risk of 

an acute splenic sequestration crisis, which is considered a serious symptom of 

(SCD). In their research, the main aim is to learn how to predict the level of 

severity depending on the training dataset. 

The dataset was gathered from “Centre Caribéen de ladrépanocytose” during 10 

years for 42 children defined by 15 features. There are a numbers of machine 

learning methods used in their research that have the ability to evaluate the risk 

of acute splenic sequestration crisis in terms of classifying patient between sever 

and mild symptoms. The Area under Curve (AUC) and the Characteristics 

Receiver Operating Curve (ROC) were used to measure the accuracy of 

datasets. The highest numbers of accuracy were achieved through the use of 

Adaboost algorithm with 92%, while the Ranktree algorithm achieved 90%, thus 

offering a better models of diagnostic method. In [16], data mining methods 

utilising WEKA tools for SCD are proposed. The research has used two 

classification methods comprising decision trees (J48) and Random forest in 

order to make a comparison between them for classifying specific blood groups. 

The outcome of the study indicated that the Random forest algorithm achieved 

better accuracy in comparison to J48, in terms of classifying specific blood 

groups for individuals affected by SCD. Our extensive researches indicated that 



there are no studies that have been applied for classifying SCD datasets for the 

provision of accurate medication dosage predictions. Currently, all hospitals and 

healthcare sectors are using manual approaches that depend completely on 

medical consultants, which can be slow to analyse, time consuming and 

stressful. However, this study provides a system that shifts from manual input to 

automated input approaches that can offer better outcomes with reduced error 

rates. 

3. Classification 

The importance of classification techniques in the medical community, especially 

for diagnosis purposes, has gradually increased [17, 18]. The key reason for 

improving medical diagnosis is to enhance the humans ability to find better 

treatments, and to help with the prognoses of diseases to make the diagnoses 

more efficient [19], even with rare conditions [20]. The aim of the classifier is to 

learn how to extract useful information from the labelled data in order to classify 

unlabelled data. Various methods have been employed for the classification task 

[21]. They are categorised into two groups: linear and nonlinear classifiers. 

Linear classifiers are represented as a linear function (g) of input features x as 

illustrated in Equation (1) [22].  

g(x) = 𝑤Tx + 𝑏                               (1) 

Where w is a set of weighted values, b is a bias, and T refer to matrices 

transpose. For two classes, problem c1 and c2, the input vector x is assigned to 

class c1 if g(x)>=0 and to class c2, otherwise. The decision boundary between 

class c1 and c2 is simply linear. In the previous studies, several traditional linear 

classifiers were designed and applied to perform classification in different areas 

such as Linear Discriminant Analysis. 

Nonlinear classifiers involve finding the class of a feature vector x using a 

nonlinear mapping function (f), where f is learnt from a training set T, from which 

the model builds the mapping in order to predict the correct class of the new 

data. Popular nonlinear classifier is the Artificial Neural Network (ANN) model. As 

a classifier, ANN has a number of output units, one for each class [23]. Nonlinear 

neural networks are able to create nonlinear decision boundaries between 



dissimilar classes using non-parametric approach [24]. Zhang [25] asserted that 

neural networks have the power to determine the posterior probabilities, which 

can be used as the basis for establishing the classification rule. 

In this study, we consider the use of several classes of model for data 

classification, Random Forest, Support Vector Machines, and comprising ANN. 

Additionally, we trial a subclass of ANNs known as Recurrent Neural Networks, 

which offer greater representational capacity (and conversely increased 

complexity) in comparison to feedforward ANNs.  

The knowledge representation encoded within ANN models is manifested in the 

form of directed connection weights, which collectively form the network’s 

“program”. In order to perform useful tasks, an appropriate configuration of 

weights must first be found through the use of a learning algorithm. Typically, 

during this learning procedure, the space of network weights is searched using 

an optimisation algorithm in search of solution that minimises an error defined 

according to an objective function of interest. Such an objective function is 

carefully chosen to facilitate generalisation. The dimensions of variation that 

contribute to the success of a neural network include the network connectivity 

pattern (architecture), the activation functions, determination of appropriate 

weights, and the training data presented to the network during learning. The 

computation at a single node of an ANN comprises a weighted sum of its inputs, 

in turn processed according to an activation function. Such a computation is 

demonstrated in Equation 2, where yj is the output from the jth unit in layer y, wji 

represents the weight of the ith input, xi represents the value of the ith input, and 

𝜎 represents the activation function. 

𝑦𝑗 =  𝜎 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑚

𝑖=0

) 

ANN achievements have covered different types of medical applications [26]. 

The growth of medical information has played a significant role in healthcare 

organisations [27]. The target of these improvements is to develop the usage of 

technology in medical applications [28]. Various types of Artificial Intelligence (AI) 

techniques and expert systems have been applied in order to improve decision 

( 2 ) 



support tools for health purposes. In this research, we propose to use an 

advanced neural network algorithm for medical data classification based on 

machine learning for the purpose of utilising intelligent techniques for analysing 

the huge amount of SCD datasets. The proposed research aims to use machine 

learning to compare various algorithms and ensemble models within the medical 

data context. The main reason for using machine learning algorithms (neural 

networks) is to extract the information from medical datasets automatically, 

through the use of computational and statistical techniques. There are a number 

of machine learning methods that attempt to reduce the requirement for 

humankind intuition in terms of analysing of health datasets, whereas others 

attempt to construct a collaborative approach between machine and human. 

3.1. Random Forest and Support vector Machines 

Random Forest model is an approach to machine learning that comprises 

principally the ensembling of weaker decision tree learners to constitute a strong 

overall classifier. The technique can therefore be identified as a meta-learning 

approach to problem solving. The Random Forest model is widely used in the 

medical domain for the development of classifiers [27]. The notion of random 

forest was first introduced by Tin Kam Ho in [29, 30] and subsequently 

developed into the popular form known today by Brieman in [31]. The procedure 

used in the origination of Random Forest classifiers principally comprises 

decision tree and feature bagging, resulting in a population of individual decision 

trees that are trained independently to one another and therefore remain 

uncorrelated [32]. Classification results are subsequently obtained through 

averaging the results produced by all members of the forest, allowing the 

collective knowledge of the tree learners to be operationalised to form a single 

final decision. 

Support Vector Machines (SVM) are a class of model that minimise the structural 

risk of misclassification during training, otherwise known as maximum margin 

classification, in contrast to empirical risk minimisation as is typical in models 

such as ANNs. The general idea of SVM was developed into the most widely 

used form (soft margin classification) by Vapnik and Cortes in [33], the technique 

itself originating from the ideas inherent of Statistical Learning Theory [34]. SVM 



has become an important classification approach within the medical domain in a 

broad range of applications and research [35]. The principle mechanism of SVM 

model is the use of a hyperplane, which acts as a discriminative boundary 

between classes of data points, where such a hyperplane is found through 

maximum margin optimisation during the training procedure. The addition of a 

kernel to the SVM allows such a separation to be optimised within a feature 

space of higher dimension than that of the original problem representation, 

thereby allowing non-linear boundaries to be addressed. 

3.2. Recurrent Neural Networks for Classification 

In the last couple of years, various medical applications based on RNN have 

been developed [36-38]. One of the most prominent applications of RNN is 

pattern recognition, such as automated diagnostic systems [39]. RNN can utilize 

nonlinear decision boundaries and process memory of the state, which is crucial 

for the classification tasks [26, 40, 41].  A number of studies have confirmed that 

RNN has the ability to discover linear and nonlinear relations in the medical data 

[42]. However, previous studies have undertaken the classification of sequence 

oriented data, for which the dependencies between elements of data are 

exploited for learning. In this work, we intend to explore the use of RNNs for 

pattern recognition tasks, where data elements are assumed to be independently 

drawn.  

In addition, it has been shown that RNNs have the ability to provide an insight 

into the features used to represent biological signals [43]. Therefore, the 

employment of a dynamic tool to deal with time-series data classification is highly 

recommended [44]. This type of neural network has a memory that is capable of 

storing information from past behaviours [45]. One of the most important 

applications of RNN is to model or identify temporal patterns. Chung et al. [46] 

provide a relevant commentary of this aspect, explaining that "recurrent (artificial) 

neural network models are able to exhibit rich temporal dynamics, thus time 

becomes an essential factor in their operation". Different studies have indicated 

that RNN can be applied to non-linear decision boundaries [26]. In addition, the 

main advantages of recurrent neural networks is their ability to deal with static 

and dynamical behaviours [47, 48].  One of their powerful capabilities is finite 



state machine approximation, which makes recurrent neural networks suitable for 

learning both temporal and spatial patterns [49]. This kind of network is very 

useful for real-time applications such as biomedical signal recording and 

analysis.  

 

 

3.3. Elman and Jordan Neural Networks 

Both the Elman and Jordan neural networks represent special cases of the 

general class of RNN architecture, comprising input, hidden, and output layers of 

units, with the addition of weighted delay lines, known as context units, 

connected to either the hidden or output layer. The context units are a key 

feature of these networks, copying previous outputs back to the layer units for 

use with current processing. The architectures for the Elman and Jordan 

networks are illustrated in Figures 1 and 2, respectively, with equations listed in 

Tables 1 and 2. As can be seen, both networks are equipped with context units, 

with the sole difference that the Jordan network has connections at the output 

layer as opposed to the hidden layer. In addition to these network types, we also 

introduce for experimentation a hybrid network, where the context units from both 

the Elman and Jordan network are simultaneously incorporated into a single 

model, using the connections of both. The hybrid architecture is demonstrated in 

Figure 3, with equations for the network computation listed in Table 3. 

Similarly to other types of neural network, for the architectures considered in this 

study, the units at the input do not perform computation and serve only to 

distribute the input values to subsequent layers. Additionally, Elman and Jordan 

networks represent universal approximators, capable of estimating any numerical 

function within an arbitrary degree of accuracy, given a sufficient number of units 

within the hidden layer. In accord with the class of RNN models, Elman and 

Jordan networks are also theoretically capable of universal computation (Turing 

completeness) [50-52], since the current links provide additional operational 

capabilities beyond the reach of feedforward neural networks, for example 



looping provision. Consequently, the hybrid Elman-Jordan network is also a 

universal approximator, due to spanning the set of Turing primitive operations. 

 

 

 

 

Table 1. Elman Network computations 

Entity Equation 

tansign activation function 𝜎(𝑛) = 2/(1 + 𝑒−2𝑛) − 1 

current input vector 𝒙𝑡 

hidden state at previous time 𝒉𝑡−1 

hidden state at current time 𝒉𝑡  =  𝜎(𝒚𝑡−1 + 𝑾ℎ𝑥𝒙𝑡 + 𝒃ℎ) 

output vector 𝒚𝑡  =  𝜎(𝑾𝑦ℎ𝒉𝑡) 

 

 

Figure 1. Elman Neural Network 

Table 2.  Jordan Network computations 



Entity Equation 

tansign activation function 𝜎(𝑛) = 2/(1 + 𝑒−2𝑛) − 1 

current input vector 𝒙𝑡 

output state at previous time 𝒚𝑡−1 

hidden state at current time 𝒉𝑡  =  𝜎(𝑾ℎ𝑥𝒙𝑡 + 𝒃ℎ) 

output vector 𝒚𝑡  =  𝜎(𝒚𝑡−1 +  𝑾𝑦ℎ𝒉𝑡) 

The Jordan network can be principally defined in terms of the five equations 

formally described in Table 2. The network is composed of computational units, 

each of which transforms presented inputs according to an activation function, in 

this case the tansig function. Data flows into the network in the form of the 

current input vector, where it is mapped to an output vector according to both the 

connection weights between computational units and the dynamical influence of 

previous inputs.   

 

Figure 2. Jordan Neural Network 

Table 3. Hybrid Network computations 

Entity Equation 

tansign activation function 𝜎(𝑛) = 2/(1 + 𝑒−2𝑛) − 1 



current input vector 𝒙𝑡  

hidden state at previous time 𝒉𝑡−1 

output state at previous time 𝒚𝑡−1 

hidden state at current time 𝒉𝑡  =  𝜎(𝒉𝑡−1 + 𝒚𝑡−1 + 𝑾ℎ𝑥𝒙𝑡 + 𝒃ℎ) 

output vector 𝒚𝑡  =  𝜎( 𝑾𝑦ℎ𝒉𝑡) 

The Elman network can be principally defined in terms of the six equations 

formally described in Table 3. The network is composed of computational units, 

each of which maps presented inputs according to an activation function, in this 

case the tansig function. Data flows into the network in the form of the current 

input vector, where it is mapped to an output vector according to both the 

connection weights between computational units and the dynamical influence of 

previous inputs and outputs.    

 

Figure 3. Hybrid Neural Network 

4.  Methodology 

Most studies in the field of machine learning algorithms have been constructed to 

predict the severe crises of sickle cell disease, in contrast to using advanced 

predication to determine accurate amounts of a drug called 



hydroxyurea/hydroxycarbamide, which is used to modify the disease phenotype 

[15, 53, 54]. Currently there is no standardisation for disease modifying therapy 

management. Using the proposed computerised comprehensive management 

system, the aim is to produce an optimised and reproducible standard of care in 

different clinical settings across the UK, and indeed internationally. The main 

backbone of this research is to use recent advances in neural network models, in 

order to assist healthcare professionals in offering accurate amounts of 

medication for each individual patient according to their condition. In this case, 

and due to the pattern of the SCD dataset, we attempt to propose classification 

of the patient’s data set records at an earlier stage, according to how much of a 

dose the patient will need to take. This can potentially lower costs, avoiding 

unnecessary admission to hospitals or special institutions, improving patient 

welfare and mitigate patient illness before it gets worse over time, particularly 

with elderly people, and unnecessary interventions. 

In this research, we attempt to tackle the problem of a certain symptom that 

affects SCD patients depending on medical measurements with a predictive 

classification perspective. Machine learning approaches can be used to build 

strong classifiers to utilise training and testing datasets, involving past observed 

cases that have been collected from Liverpool Centre for Sickle Cell Disease in 

the UK over the last five years. In this case, we examine the performance of 

current machine learning algorithms such as neural networks for constructing 

predictive models. 

4.1. Data Collection 

The dataset utilised in our experiments for SCD patients was commissioned 

specifically for the purposes of this study and was collected within a five-year 

period from the Alder Hey Children’s hospital based in Liverpool, UK. Each 

sample comprises 13 attributes deemed vital factors for predicting the SCD trait 

as illustrated in Table 4. Furthermore, there are two features that should be 

considered when analysing blood test, which are gender and age [55]. These 

features have significant effects on the blood test. In order to work with a large 

amount of data, a local hospital has supported this research with a number of 

patient records. The resulting dataset comprises 1168 sample points, with a 



single target variable describing the hydroxyurea/hydroxycarbamide medication 

dosage in milligrams. To facilitate our classification study, the target dosage was 

discretised into 3 bins, denoted classes 1 through 3, formed through dividing the 

output range (in Milligrams)  into membership intervals of equal size: Class 1: 

[300 ≤ Y < 533mg], Class 2: [533 ≤ Y < 766mg], Class 3: [766 ≤ Y ≤ 1000mg]. 

Such a division was conducted in order to provide adequate class representation 

over the data sample, while preserving some level of precision for the dosage 

outcome. The decision represents a trade-off, since our data sample was limited 

to one hundred examples, thereby excluding the possibility of a reasonable 

division for more than three classes.   

Table 4.  Characteristics of SCD Datasets 

No Types of Attributes 

1 Weight 

2 Haemoglobin(Hb) 

3 Mean Corpuscular Volume (MCV) 

4 Platelets(PLTS) 

5 Neutrophils (white blood cell NEUT) 

6 Reticulocyte Count (RETIC A) 

7 Reticulocyte Count (RETIC %) 

8 Alanine aminotransferase (ALT) 

9 Body Bio Blood (BIO) 

10 Hb F 

11 Bilirubin (BILI) 

12 Lactate dehydrogenase (LDH) 

13 Aspartate Aminotransferase (AST) 

 

4.2. Experimental Setup 

In this section, we cover the design of the test environment used in our 

experiments and the models tested, the configuration of each model, and finally 

the performance evaluation metrics used to measure the outcomes of the 

machine learning models for SCD data set.  

In order to comprehensively test the capability of the models in our study, we 

applied several competing models to the same classification task, contrasted 

with a random oracle model (ROM) [56] to serve as a baseline indicator. 

Moreover, we introduced a linear model to examine the differential in 

performance present between this weak classifier and the non-linear classifiers, 

such as neural networks. The combination of strong, weak, and random control 

baselines provides an empirical frame of reference through which to gauge the 



relative performance of the RNNs. We note also that such a set of reference 

controls is useful to justify the integrity of the results obtained, since it can be 

shown that such performance cannot be reached through either the linear model 

or by random guessing. 

Holdout method is used in these experiments for assessing how the outcomes of 

a statistical analysis could generalise to an independent datasets. The proportion 

of the dataset is divided into three parts training, validation, and testing phases. 

This study used the holdout method of data partitioning to find an average 

percentage of the correct classifications. The training set receives 70 % of the 

available data, the validation set 10%, while the testing set is allocated the 

remaining 20%. The division of data between separate training and testing sets 

ensures that the generalisation error of the models can be assessed, 

demonstrating the ability of classifiers to operate on unseen data.  

The models under study are composed of three types of RNNs: the Elman 

Neural Network Classifier (ENNC), the Jordan Neural Network Classifier (JNNC), 

and hybrid RNN, where both the Elman and Jordan connections are combined 

within a single model (EJNNC). Other model set is composed of a multi-layer 

perceptron, trained using the Levenberg-Marquardt learning algorithm (LEVNN), 

random forest classifier (RFC), and support vector machine classifier (SVM). 

These models are considered strong non-linear classifiers and are suitable to act 

as comparators of high performance. The linear model we used comprises a 

single layer neural network with a linear transformation function at each class 

output unit. Finally, we used random oracle model (ROM) to establish random 

case performance through the assignment of random responses for each class. 

To obtain performance estimates for the respective models, we ran each 

simulation 50 times and calculates the mean of the responses. The full set of 

models used in the experiments are described in Table 5. 

 

 

 

 



 

 

 

 

 

 

 

Table 5. Classification Models 

Model 

Designation 
Description Architecture Training Algorithm 

Parameters 
Role 

ENN 
Elman Neural 

Network 

Units: 13-30-3, 
tansig activations. 

Context Units: One 

context unit for each 
hidden unit. 

Gradient descent with 

momentum and 
adaptive learning rate 

backpropagation 

Initial Learning Rate: 0.01 

LR Increase Coefficient: 

1.05 
LR Decrease Coefficient: 

0.7 

Momentum Constant: 0.9 

Test model 

JNN 
Jordan Neural 

Network 

Units: 13-30-3, 
tansig activations. 

Context Units: One 

context unit for each 
output unit. 

Gradient descent with 

momentum and 
adaptive learning rate 

backpropagation 

Initial Learning Rate: 0.01 

LR Increase Coefficient: 

1.05 
LR Decrease Coefficient: 

0.7 

Momentum Constant: 0.9 

Test model 

EJNN 

Elman-Jordan 

Hybrid Neural 

Network 

Units: 13-30-3, 
tansig activations 

Gradient descent with 

momentum and 
adaptive learning rate 

backpropagation 

Initial Learning Rate: 0.01 

LR Increase Coefficient: 

1.05 
LR Decrease Coefficient: 

0.7 

Momentum Constant: 0.9 

Test model 

LEVNN 

Multilayer 

Perceptron, 
Trained using 

the Levenberg-

Marquardt 
algorithm 

Units: 13-2-3, tansig 

activations 
Levenberg-Marquardt 

Initialisation: 
Nguyen Widrow Adaptive 

learning rate settings: 

initial value: 0.001 
coefficient for increasing 

LR: 10 

coefficient for decreasing 
LR: 0.1 

maximum learning rate: 

1e10 

Non-linear 

Comparison 
Model 

RFC 

Random 

Forest, 

Decision Tree 
Ensemble 

Classifier 

13 inputs, 200 

Trees, 3 outputs 

Random feature 

bagging 

Number of decision trees to 

be generated 200; 

Size of feature subsets: 1 

Non-linear 

Comparison 
Model 

SVM 
Support Vector 

Machine 
13 inputs, 3 outputs 

Quadratic 

Optimisation 

Kernel: Distance matrix 
Optimisation: regularised 

Non-linear 
Comparison 

Model 

LNN 

Linear 

Combiner 
Network 

Units: 13-3, linear 

activations 
Widrow-Hoff 

Learning rate: 0.01 Linear 

Comparison 
Model 

ROM 
Random Oracle 

Model 

Pseudorandom 

number generator 
N/A 

N/A Random 

Guessing 
Baseline 

 

Table 6. Performance Metric Calculations 



Metric Name Calculation 

Sensitivity TP/(TP+FN) 

Specificity TN/(TN+FP) 

Precision TP/(TP+FP) 

F1 Score 2 * (Precision*Recall)/(Precision+Recall) 

Youden's J statistic (J Score) Sensitivity + Specificity − 1 

Accuracy (TP+TN)/(TP+FN+TN+FP) 

Area Under ROC Curve 

(AUC) 
0 <= Area under the ROC Curve <= 1 

 

Our model evaluation framework consists of both in-sample (training) and out-of-

sample (testing) diagnostics, comprising sensitivity, specificity, precision, the F1 

score, Youden’s J statistic, and overall classification accuracy calculated as 

shown in Table 6.  Additionally, the classifiers are characterised using ROC plots 

and the area under the curve (AUC), where the classification ability across all 

operating points is ascertained. 

5. Results Evaluation 

The results from our experiments are listed in Tables 7 and 8, showing outcomes 

for training and testing of the classifiers, respectively. We also provide further 

performance visualisations through the use of ROC plots (Figures 4 and 5) and 

the use of AUC plots as illustrated in Figures 6 and 7. The AUC bar graphs 

provide a visual comparison of the area under the ROC curve across the models 

tested.  

The results obtained from the experiments show that the LEVNN and RFC 

classifiers outperformed all other classifiers, including the RNNs, by a significant 

margin. Both classifiers achieve an ideal fit over the trainings set for all operating 

points, as can be illustrated in Table 7 and the ROC and AUC plots shown in 

Figures 4 and 6, respectively. Moreover, the performance obtained during the 

training of these two classifiers is shown to provide excellent generalisation to 

the test set, with AUCs ranging between 0.986 to 0.996. The strong 

generalisation of these two classifiers indicates that there exists rich information 



content embedded within our selected data source, showing a high upper bound 

on classification performance. We conducted further experiments using SVM 

classifier, showing that this class of model is significantly less capable for 

classifying our dataset.  

Further experiments show that the chosen dataset exhibits significant non-linear 

relationships, presenting a challenge for RNN test models. Of the RNN classifiers 

under study, the Jordan network outperformed the Elman and Elman-Jordan 

hybrid, demonstrating capability both for fitting the training data and also in 

generalising to unseen examples. The AUCs obtained for the Jordan model 

during training are 0.982, 0.93, and 0.97 for classes 1 to 3 respectively, in 

comparison to 0.969, 0.913, and 0.962 over the test sample. Subsequently, a 

single operating point was selected to illustrate a final classification decision; it 

was found that the performance at the chosen rejection threshold varied between 

the training and testing sets for Class 2, as reflected earlier in the AUC values. 

Classes 1 and 3 were found to show reasonably consistent performance 

representation between the train and test sets for this model. It is possible that 

the reasonable performance obtained for the JNN architecture, in contrast with 

the poor performance of the other RNN types, could point to a detrimental effect 

caused by presence of feedbacks from the hidden layer outputs in the 

classification setting. The final layer output feedbacks present in the JNN model, 

appear not to negatively impact learning. 

The Elman and Elman-Jordan RNNs are found to perform similarly to one 

another, with both ranking below the JNN for both the training and testing sets. 

The AUC values for both models ranged between 0.738, and 1 in respect to the 

training set, and 0.685 to 0.906 for the testing procedure. Consistent with the 

results obtained from the JNN, it was found that the outcomes for Class 2 show 

the largest differential between the training and testing sets. On further 

examination of the results from the ENN and EJNN, it was found that despite the 

appearance of reasonable AUC values during training, the networks had 

converged to a particularly narrow output range, suggesting that the training 

process is unable to achieve clear correspondence with the classification targets, 

arriving instead at marginal responses. Further confirmation is reflected in the 

sensitivities and specificities obtained for these two models, with values seen to 



fluctuate between opposite extremes. Such a situation stands in contrasted with 

the JNN model, for which a reasonable range of output values is achieved during 

both train and test phases. It is noted that for both the ENN and EJNN, the 

operation of the hidden layer is altered using recurrent links, whereas the JNN 

hidden layer is altered via feedback from the output layer. 

It is shown that the model does not generalise well from training to testing, 

producing reasonable AUCs for in-sample fitting, while yielding test set AUCs 

little better than the LNN baseline. The test AUCs for this model ranged between 

0.49 and 0.46. As expected, the LNN was unable to learn the non-linear 

components in the data and so produces weak classification results against 

which the other classifiers can be contrasted. The ROM is seen to follow the 

diagonal of the ROC plots for all classes (see Figure 4 and 5), illustrating by 

contrast the significance of the results from the other trained classifiers. 

Table 7. Comparison Table for Classifiers (Training) 

Models Class Sensitivity Specificity Precision F1 J Accuracy AUC 

ROM 

Class 1 0.202 0.816 0.516 0.291 0.0183 0.514 0.519 

Class 2 0.227 0.79 0.399 0.289 0.017 0.576 0.5 

Class 3 0.181 0.784 0.109 0.136 -0.0349 0.707 0.478 

ENNC 

Class 1 0.998 0.012 0.494 0.661 0.00949 0.497 0.95 

Class 2 0.617 0.796 0.65 0.633 0.413 0.728 0.815 

Class 3 0 1 0 0 0 0.872 0.738 

JNNC 

Class 1 0.983 0.797 0.824 0.896 0.779 0.888 0.982 

Class 2 0.971 0.731 0.689 0.806 0.703 0.823 0.93 

Class 3 0.695 0.994 0.948 0.802 0.69 0.956 0.97 

EJNNC 

Class 1 0.998 0.00478 0.493 0.66 0.00232 0.493 0.956 

Class 2 0.92 0.669 0.63 0.748 0.589 0.764 0.823 

Class 3 0 1 0 0 0 0.872 0.938 

LEVNN 

Class 1 1 1 1 1 1 1 1 

Class 2 1 1 1 1 1 1 1 

Class 3 0.99 1 1 0.995 0.99 0.999 1 

RFC 

Class 1 1 1 1 1 1 1 1 

Class 2 1 1 1 1 1 1 1 

Class 3 1 1 1 1 1 1 1 

SVM 

Class 1 0.284 0.993 0.975 0.44 0.277 0.644 0.976 

Class 2 0.00319 1 1 0.00637 0.00319 0.621 0.729 

Class 3 0 1 0 0 0 0.872 0.969 

LNN 

Class 1 0.783 0.627 0.67 0.722 0.41 0.704 0.77 

Class 2 0.0575 0.929 0.333 0.0981 -0.0131 0.598 0.635 

Class 3 0.214 0.962 0.6 0.316 0.177 0.806 0.792 

 

Table 8. Comparison Table for Classifiers (Testing) 



MODELS CLASS SENSITIVITY SPECIFICITY PRECISION F1 J ACCURACY AUC 

ROM 

Class 1 0.191 0.833 0.524 0.28 0.0246 0.519 0.49 

Class 2 0.185 0.741 0.315 0.233 -0.074 0.523 0.464 

Class 3 0.321 0.768 0.158 0.212 0.0895 0.715 0.46 

ENNC 

Class 1 1 0 0.489 0.657 0 0.489 0.906 

Class 2 0.543 0.769 0.602 0.571 0.313 0.681 0.778 

Class 3 0 1 0 0 0 0.881 0.685 

JNNC 

Class 1 0.983 0.758 0.796 0.879 0.741 0.868 0.969 

Class 2 0.913 0.706 0.667 0.771 0.619 0.787 0.913 

Class 3 0.893 0.99 0.926 0.909 0.883 0.979 0.962 

EJNNC 

Class 1 1 0 0.489 0.657 0 0.489 0.917 

Class 2 0.826 0.643 0.598 0.694 0.469 0.715 0.777 

Class 3 0 1 0 0 0 0.881 0.868 

LEVNN 

Class 1 1 0.983 0.983 0.991 0.983 0.991 0.989 

Class 2 0.978 1 1 0.989 0.978 0.991 0.991 

Class 3 0.964 0.995 0.964 0.964 0.959 0.991 0.996 

RFC 

Class 1 0.991 0.958 0.958 0.974 0.95 0.974 0.996 

Class 2 0.815 0.993 0.987 0.893 0.808 0.923 0.992 

Class 3 0.786 0.99 0.917 0.846 0.776 0.966 0.986 

SVM 

Class 1 0.217 0.992 0.962 0.355 0.209 0.613 0.97 

Class 2 0 1 0 0 0 0.609 0.739 

Class 3 0 1 0 0 0 0.881 0.964 

LNN 

Class 1 0.687 0.658 0.658 0.672 0.345 0.672 0.742 

Class 2 0.0543 0.944 0.385 0.0952 -0.0016 0.596 0.654 

Class 3 0.0357 0.894 0.0435 0.0392 -0.0706 0.791 0.641 

 

 

Figure 4.  ROC curve (Train) For classifiers 



 

Figure 5. ROC curve (Testing) For classifiers 

 

Figure 6. Train AUC per model 



The plots show in Figures 6 and 7 show the area under the ROC curve (AUC) for 

each class over each model within our experiment. Figure 6 shows the results 

obtained for the training set and Figure 7 the test set, respectively. The AUC 

value is a scalar summary used to characterise the global capability of a given 

classifier under study. In our plots, the X axis shows the models and classes, 

while the Y axis shows the AUC that corresponds to each of the model entries 

listed over the X axis. An AUC of 1 represents an ideal classifier, while an AUC 

of 0.5 represents random performance. Each of the bars plotted is associated 

with a corresponding curve in either of Figures 4 and 5, which represent the 

accompanying ROC curves for the training and testing sets. The purpose of the 

plot is to emphasise the AUC values in graphical form, such that a visual 

comparison can be drawn. 

 

Figure 7.  Test AUC per model 



Overall, the body of results that we obtained highlight the potential of medical 

data for the classification of SCD dosage ranges. It is clear that the choice of 

model is crucial in obtaining a satisfactory result, as is evident in the variation of 

the performance between the models used in our experiment. The LEVNN and 

RFC classifiers responded successfully to the SCD data and are therefore of 

potential use in the medical field. 

6. Conclusion and Future works  

In this study, we have conducted an empirical investigation into the use of 

various types of machine learning models for the classification of SCD effective 

dosage levels. This paper has introduced various types of recurrent neural 

network for the purpose of analysing medical time series obtained from SCD 

patients in contrast with traditional medical solutions. Previous studies have 

demonstrated that Machine learning models exhibit considerable effectiveness 

for the pre-processing of medical time-series data signals as a precursor to the 

classification of medical data. Our study sought to investigate the effectiveness 

of machine learning approach including ANNs when posed in the direct 

classification setting for classification of SCD effective dosage levels. It was 

found through empirical investigation, involving the use of patient sample data 

and comparator models such as SVM and RFC, that RNNs, although capable of 

providing some degree of fitting and generalisation, are suboptimal in the 

classification setting within our experiment. We consider for future work the use 

of global optimisation algorithms such as genetic optimisation to explore more 

comprehensively the space of possible recurrent network architectures. We note 

that the current study has addressed only a limited set of architectures, which 

may not expose the full potential of the RNNs within the classification setting; we 

suggest therefore that an algorithmic model search may be used to expand the 

scope and scale of this study. 
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