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Abstract

We describe an approximation to backpropagation algorithm for training deep

neural networks, which is designed to work with synapses implemented with

memristors. The key idea is to represent the values of both the input signal

and the backpropagated delta value with a series of pulses that trigger multiple

positive or negative updates of the synaptic weight, and to use the min operation

instead of the product of the two signals. In computational simulations, we show

that the proposed approximation to backpropagation is well converged and may

be suitable for memristor implementations of multilayer neural networks.

Keywords: deep learning, memristor, neural networks, hardware design,

backpropagation algorithm

1. Introduction

Recent advances in machine learning have provided the solutions to many

problems, which seemed insurmountable in the past. New approaches based

on deep and recurrent artificial neural networks (ANN) are very efficient in

dealing with pattern recognition, visual objects detection, speech recognition,
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signal restoration and prediction, etc. [1]. Deep feed forward networks excel at

these tasks because their design can be general enough to solve many natural

classification tasks, but their main feature is a funnel-like error landscape, which

opens a possibility to apply computationally efficient learning methods, such as

stochastic gradient descent.

Nowadays, the computations with ANNs are performed mostly using conven-

tional computation architectures by simulation on general purpose processors

or graphics cards which are quite efficient at matrix algebra being the core of

feed forward deep networks. However, due to the limited level of parallelism

this approach is quite inefficient in terms of the ratio between the computational

speed and the power consumption. Consequently, it hinders the application of

these methods in areas, where the available power is limited, such as mobile

devices or autonomous robotic platforms. A further step in applying deep learn-

ing neural networks to real-life problems would depend on their implementation

in hardware which would use accelerators specifically built to perform neural

computations and employ the most possible parallelism. The optional solution

here is to create a system which mimics the structure of the network under

consideration by implementing neurons and their interconnections directly in

hardware. In this case, the computational fabric of the device can be made

of blocks representing neurons, which are interconnected with synapses with

weights implemented as distributed memory, similar to the biological neural

tissue.

One of the major problems hindering the design of artificial neural network

hardware is the storage of synaptic weights. The distributed approach to the

storage makes use of dynamic RAM (DRAM) very inconvenient due to the

requirement of constant refresh operations arising from the leakage of charge [2].

Among the approaches existing today, the one coming close to take full

advantage of huge parallelism of ANNs is an FPGA-based implementation,

such as described in [3]. Such implementations rely on the array of specialized

processing units, tailored to compute outputs of neural network layer. Being

quite efficient, this approach, however, suffers from two drawbacks. Firstly, the

2



distributed RAM on modern FPGA is implemented using static RAM arrays,

which have low density, making the available memory limited. Hence, in this

case, the implementation of large-scale deep network might require constant

exchange with the external DRAM, which is inconvenient. Secondly, despite

being quite universal, FPGAs suffer from low connectivity and limited availability

of multiply-and-accumulate modules, and therefore they must be shared among

different neurons. Moreover, the incorporation of on-line learning in such devices

generally requires supervision from the external CPU.

Over the last several years, a variety of memristive devices has been discovered.

These devices are the resistors with the conductance controlled by the current

or voltage previously applied to them. In this way, they represent the class of

non-volatile memory devices with effective continuum of memory states, which

can be scaled down to a ten nanometers. These properties of memristors have

opened an opportunity to implement a hardware neural network as an array of

cores, which consist of a bank of presynaptic and postsynaptic neurons, made

with the use of conventional CMOS technology, and interconnected with an array

of memristive devices. Such arrays can be arranged as cross-bar arrays, thus

providing an efficient storage medium [4], [5], [6], [7], [8], useful for the effective

modeling of physiological processes [9] and the implementation of wide-spread

types of neural networks, such as cellular neural networks (CNN) [10]. The

comprehensive survey of memristors and memristor-based techniques with the

necessary references to previous works are given in the seminal paper of the

field’s pioneer L. Chua [11].

For the hardware implementation of hybrid CMOS/memristor neural net-

works, one of the biggest challenges is training [12]. Even simplest training

algorithms, such as error backpropagation [13], are difficult to implement at

the circuit level. It is much easier to implement these algorithms off the chip

and then transfer the training results [14]. Another approach is to train only

the output layer of the network, which can be accomplished using a simple

least-mean-squares learning algorithm [15], [12], [16], [17].

In [2], an alternative Random Weight Change learning algorithm is used.
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Although its convergence is theoretically proven, it appears to be very slow.

For each synaptic weight it uses four memristors in a bridge configuration.

Besides, there is an independent random number generator in each model neuron.

The scheme in [18] uses standard backpropagation scheme and two memristors

for each synapse. Unfortunately, the learning is implemented there using an

external training unit, and this part of the network learning essentially uses

MATLAB, because it apparently does not have a simple implementation in

circuitry, while the other part of the modeling is performed via SPICE simulator.

A significant advantage of the work [19] is the clearly formulated problem of

non-local calculation of the signal and error product at the opposite contacts of a

memristor. However, the particular solution proposed by the authors critically

depends on the linearity of the memristor resistance as a function of both the

amplitude and the duration of the passed current. This condition does not yet

hold for the majority of the current memristor implementations.

Meanwhile, there has been a large number of works emulating a so-called

synaptic plasticity in memristor devices (e.g., [20], [8]). They are aimed at

demonstrating effects similar to the plasticity of biological synapses, such as

short and long term potentiation/depression and spike-timing-dependent synaptic

plasticity. Despite the fact that these models are biologicaly inspired, there is

no clear idea of how to use them for the implementation of a learning procedure

which would be adequate for solving machine learning problems.

In this paper, we aim to bridge this gap and propose a modification of

backpropagation algorithm which allows to circumvent the described difficulties

using the learning rule similar to spike-timing-dependent plasticity in synapses.

Strictly speaking, we do not give a hardware neural network implementation

scheme with a memristor crossbar, but we thoroughly describe the method of

pulse representation of signals and the absmin operation used instead of standard

product, and also perform the modeling experiments in MATLAB environment.

The remainder of the paper is organized as follows: in Section 2.1, we give

the problem statement. In Section 2.2 the backpropagation algorithm is briefly

described. In Section 2.3 we propose our method of signal representation and the
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operation used instead of standard product. Section 3 describes the test problem

of handwritten digits recognition and parameters of modeling experiments. In

Section 4 the results are given. Finally, the discussion of the proposed methods

and the obtained results is given in Section 5.

2. Material and methods

2.1. Problem statement

In this work, we do not consider any specific scheme of multilayer neural

network implementation on a memristor crossbar. However, we assume that

a neuron is a device which sums the currents incoming from other neurons.

These currents are defined by the conductance of memristors connecting the

neurons, i.e. the synapse weight between the two neurons is the conductance of

the interconnecting memristor. Thus, in order to set one weight, one memristor

is enough, and the memristor crossbar forms the matrix of connections among

all neurons.

The problem of neural networks implementation, irrespective of whether

it is implemented in software or on the chip, can be divided into two parts:

the inference problem and the learning of the network. In this paper, we do

not consider the problem of inference, because the forward signal propagation

through the multilayer network is reduced to currents passing through memristors

crossbar, which is the direct consequence of the Ohms law.

The issue considered in this work concerns the learning of the network,

where the weight (connection) of synapses between neurons is represented by

the memristor conductance. According to the backpropagation algorithm (see

Section 2.3), the weight update should be proportional to the product of two

variables: the forward signal xi and backward error signal δj . The values xi and

δj are calculated in different neurons (Figure 1), located in different layers of

the neural network. It is desirable for them to interact only via the synaptic

connection, and this interaction constitutes the main difficulty for hardware

implementation of backpropagation learning rule in multilayer neural networks.
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In Section 2.3, we will show how in this case the signals xi and δj should be

represented in neurons in order to learn the network.

2.2. Backpropagation

In this section, we give a short sketch of the backpropagation technique

(the readers familiar with the backpropagation learning rule can skip it and

immediately move to the next section).

The task of a multilayer perceptron is to get the desired output to the inputs

of certain types. With this goal in mind, the learning of perceptron is performed.

The pairs of inputs and the desired outputs are loaded to the scheme and the

error of the response is determined. The parameters of the scheme (the weights

of inter-neuronal connections) are changed with each load, so as to diminish the

difference between the desired and the real output (Figure 1).

Figure 1. The scheme of a multi-layer perceptron

Let us denote the desired output of the neurons as tj , and its actual output as

yj . We will further use two measures of network error — the mean–square–error

εMSE and the cross–entropy εCE :

εMSE =
∑
j

(yj − tj)2 (1)

εCE = −
∑
j

tj ln yj + (1− tj) ln(1− yj) (2)
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Let wij be the weight of the connection between j-th neuron of the last layer

and i-th neuron of the previous layer (Figure 1). The derivative of error with

respect to this variable can be written as:

∂ε

∂wij
=

∂ε

∂yj

∂yj
∂zj

∂zj
∂wij

= ε̇(yj)ḟ(zj)xi = δjxi (3)

where

zj =
∑
i

wijxi,

yj = f(zj),

δj = Ė(yj)ḟ(zj)

Let the output neurons have a sigmoidal activation function f(z) = 1
1+exp(−z) ,

and we use equation (1) for the error calculation. Then, for the equation (3) we

get:

∂ε

∂wij
= (yj − tj)xi. (4)

Let us assume that the layers of neurons are numbered from 0 to L, and the

weights of connections from the layer i− 1 to the layer i have the upper index i.

Then, for all intermediate layers we can obtain expressions similar to (4).

∂ε

∂w
(k)
ij

= x
(k−1)
i δ

(k)
j , (5)

where δ
(L)
j ≡ δj = (yj − tj), x0i are input signals and

δ
(k−1)
j =

∑
i

w
(k)
ji δ

(k)
i ḟ(z

(k−1)
j ), (6)

so that error terms δ
(k)
j are propagated backwards using transposes of weight

matrices and the derivative of the activation function. Thus, the back-propagation

algorithm is the pair of equations (5) and (6) with an additional rule for the

weight update. Figure 2 shows how signal propagates forward and backward in

the network.
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Figure 2. Error back-propagation: a) forward propagation of signals; b) error

propagation in the backward direction using the same bonds as in a, but in the

opposite the direction; c) ....

Alternatively, the error can backpropagate using another weight matrix B(k),

which is different from W (k) and is kept constant during the learning process.

Such method was devised in the work [21], where elements of matrix B were

chosen randomly. Formula (6) in this case can be rewritten as:

δ
(k−1)
j =

∑
i

b
(k)
ji δ

(k)
i ḟ(z

(k−1)
j ), (7)

2.3. Signal representation and multiplication using memristors

Despite the fact that the following procedure is quite general, we are aiming

to use it for the implementation of neuromorphic systems employing metal oxide

based memristors. This class of memristors has a very non-linear behavior, and

their characteristic feature is the presence of a voltage ”dead zone”, i.e. up

to the certain voltage levels, the memristor resistance state is kept unchanged.

Moreover, the gradual change of the state in such device can be achieved by

applying a voltage pulse train — the property which has been demonstrated in

the works reporting on synaptic plasticity effects [20], [8]. This property paves

the way for the implementation of a learning procedure in memristor matrices

using only local operations as follows.

In order to use the formula (5) in optimization algorithms using gradient

descent, the weight update should be proportional to the product of two variables:
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∆wij ∝ xiδj . (8)

The values xi and δj are obtained in different neurons (Figure 1), located in

different layers of the neural network. It is desirable for them to interact only

via the synaptic memristor. To deal with this problem, we use the following

approach: taking high non-linearity of metal oxide memristors as an advantage,

we choose such a voltage u+ > Von, which results in the change of the memristor

state (resistance) (Figure 3), while half of that value does not lead to any changes

(u+/2 < Von). By applying voltage pulses with amplitudes u+, one can change

the synapse resistivity in small steps. Similarly, we choose voltage pulses of

amplitude u− < Voff to change conductivity in the opposite direction.

Figure 3. a) The experimental I-V curves corresponding to the resistive

switching cycles of a Pt/HfxAl1−xO1−y/TiN memristor [22]; b) the schematic

drawing of the memristor switching cycles.

Let us assume firstly that both of xi and δj are positive. Their values can be

represented by two series of pulses, both with the amplitude u+/2, so that pulses

for xi an δj have opposite polarities and their number is proportional to the

absolute values of the signals (Figure 4). With such representation, the voltage

drop across the memristor exceeds the threshold Von only for those pulses, which

simultaneously arrive to the opposite electrodes of the device.
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Figure 4. Signal waveforms on memristor electrodes: the upper panel illustrates

the pulse representation of the signal xi at one electrode of a memristor, the

middle panel illustrates the pulse representation of the signal δj at the opposite

electrode of a memristor, and the bottom panel illustrates the potential difference

uij across the memristor; a) the waveform during the first phase resulting in

the postive change of synaptic weight; b) the waveform during the second phase

resulting in the negative change of synaptic weight (time units, frequency and

pulse width are arbitrary).

According to this procedure, the weight change ∆wij is proportional to the

minimum between xi and δj

∆wij ∝ min(xi, δj). (9)

In case xi and δj have opposite signs, ∆wij should decrease. This can be

achieved by changing the pulse polarity. In the general case, when xi and δj can

be either positive or negative, (9) should be modified to:

∆wij ∝ sign(xiδj) ·min(|xi| , |δj |)). (10)

In fact, the expression (10) approximates (8) quite satisfactory for the network

learning purposes (see Section 3 below), as it yields correct direction for a gradient

descent process. The reason for this can be seen in Figure 5. Therefore, this

update rule will be used below in computational experiments.

In principle, the learning cycle should be divided into four subcycles for
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Figure 5. The similarity between landscapes of values for a product function

xy and sign(xy) ·min(|x| , |y|) function; function value color notation increases

from violet to blue and from yellow to red.

each combination of signs of xi and δj . However, in this work we consider

only non-negatively valued activation functions, and thus xi ≥ 0. In this case,

sign(xi · δj) depends only on δj and only two subcycles are required for the

system to function.

The first subcycle for the positive value of sign(xi · δj) has been already

described above. We further consider u− to be the voltage below the lower

writing threshold Voff , i.e. by applying it on the memristor one decreases its

conductivity, and Voff < u−/2. In order to implement the second phase of the

learning cycle (when ∆wij < 0), let us express the signals xi and δj in the form

of pulses with an amplitude |u−|/2, as shown in Figure 4(b). As a result, the

overall bias on the memristor is negative when pulses coincide, and the weight

of memristor will decrease.

In summary, the learning procedure consists of two phases, which go suc-

cessively one after another and are illustrated in Figure 4 (a) and (b). During

the first phase, the i-th neuron sends a pulse train of positive polarity and

amplitudes |u+|/2 to the first electrode of the memristor, with the number of

pulses proportional to the value of xi. Simultaneously, in case of δj > 0 the j-th
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neuron sends a pulse train of negative polarity and amplitudes of |u+|/2 to the

second electrode of the memristor, with the number of pulses proportional to

the value of deltaj , and the j-th neuron is inactive in case of δj < 0.

In the second phase, the i-th neuron sends a pulse train of negative polarity

and amplitudes |u−|/2 to the first electrode of the memristor, with the number of

pulses proportional to the value of xi. Simultaneously, in case of δj < 0 the j-th

neuron sends to the second electrode of the memristor a pulse train of positive

polarity and amplitudes of |u−|/2, with the number of pulses proportional to

the value of δj , and the j-th neuron is inactive in case of δj > 0.

These two phases go sequentially one by one and form one full cycle of learning.

It should be emphasized that both phases are always performed, irrespective of

whether they have an effect or not. It is necessary that the neurons, located at

the opposite ends of the memristor, work independently and rely only on the

common schedule.

3. Experiments

All modelling experiments were performed in MATLAB. In experiments, a

standard two-layer network with [784-110-10] architecture was trained on the

MNIST data set [23]. The MNIST dataset consists of 70,000 handwritten digits

out of which 60,000 are used for the training process and 10,000 for the testing

process.

During the learning phase, we used minibatches of size 100 to speed up

calculations. The initial weights were selected randomly from the uniform

distribution, so that w
(k)
ij ∈ [−ak, ak], where ak = 1/

√
(nk−1), nk−1 is the

number of neurons in the (k − 1)-th layer.

At the beginning, we used the neuron sigmoidal activation function of the

following type:

xi = f(zi) = 1/(1 + e−zi) (11)

In the further experiments, we used another neuron activation function called
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relu (rectified linear unit):

f(x) = max{0, x} (12)

The reason for the use of such activation function lies in the simplicity of its

implementation in hardware. Despite the simplicity and the discontinuity of the

derivative of (12) at x=0, this function is widely used in machine learning and

yields excellent results. For the weights update we used the equation (6).

Three parameters, such as the method of multiplication, the matrix of

error propagation, and the “continuality” or “discreteness” of variables in the

implementation of equation (8), were varied. Each of three described parameters

has two possible options. In particular:

1. As described in Section 2.3, two options of the multiplication method

were examined. First of all, we used a regular mathematical multiplication

procedure in accordance with (8). We refer to this procedure as the method

times. The second option was to use the approximation (9), the method

called absmin.

2. As described in Section 2.2, two options for the error propagation to

the connection matrices were considered: (a) when the error is ”back-

propagated” across the same neuron connection weights, which works

for the forward signal propagation (we called such standard method as

transposed), and (b) when the error is conferred to the connection weights

via the randomly chosen constant connection matrix, as has been specified

in the equation (7) and in [21], which we called as const method.

3. Also, two cases in the implementation of (9) were considered: in the first

one the values of xi and δj are continuous, while in the second one these

variables are made discrete before multiplication, as in the case illustrated

in Figure 4.

We assume that, when implemented in chip, the learning rate might depend

on the frequency of pulses (see Figure 4) and therefore it can be easily varied by

changing the pulse generator frequency in the whole network. Subsequently, the
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operation of changing the learning rate can be easily achieved. In the modelling

experiments, starting from the value of 10−4, we dynamically change the learning

rate depending on the training set error: if the error decreases, the epoch learning

rate increases by 10%; if the error increases, the learning rate decreases by 30%.

It is known that such dynamic change of the learning rate can speed up the

learning process. We have found that in the experiment the learning rate almost

always stays in the range from 10−4 to 10−3.

Figure 6. Test set error for [[784-110-10]] network with relu-neurons and

dynamically changing learning rate. The results for continuous values xi and δj

aswell as for the discreteness of 100 and 20 pulses are shown with black solid

lines, red dashed-lines and the blue triangles, respectively: a) method times,

b) method absmin, c) method times with constant matrix, d) method absmin

with constant matrix.

As was described above, the values of xi and δj are represented in the form

of pulses, as shown in Figure 4. However, in the modelling experiments, we have
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Table 1: Test set errors for various methods, after 50 epochs of learning

transposed const

times absmin times absmin

continuous 1.8%± 0.1% 2.4%± 0.1% 2.9%± 0.1% 16.0%± 2.7%

100 pulses 2.3%± 0.3% 2.7%± 0.1% 23.3%± 7.8% 11.5%± 0.8%

20 pulses 8.6%± 0.4% 11.4%± 2.0% 16.7%± 0.9% 36.0%± 3.7%

just discretized their values in the range from the experimentally found minimal

to maximal values: xi ∈ [0, 5] and δj ∈ [−1, 2]. The number of gradations can

vary and in this paper we considered three cases: 20 and 100 gradations as well

as a continuous one.

All the results were averaged by 10 trials.

4. Results

The results are shown in Figure 6 and summarized in Table 4. In the

simulation experiments, we used relu (12) activation function and dynamical

adjustment of the learning rate.

In the experiment, the test error smoothly decreases to about 1.8% for

standard backpropagation and to 2.4% following the replacement of the times

with absmin (black solid lines in Figure 6).

In fact, the results obtained with the method times can be considered

as standard and comparable with the state-of-the-art methods for this task.

Significant improvements can be achieved only by increasing the number of

hidden layer neurons and by increasing the training data set size with the use of

elastic deformations of training examples ([24]).

The results obtained for xi and δj discrete values are shown by dashed and

dotted lines representing ≤ 100 and ≤ 20 pulses, respectively. One can see

that given enough discrete levels (100 discrete values in our case) the perfor-

mance is statistically close to that in a continuous case. However, the aggresive

discretization leads to the rapid drop in the performance.
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5. Discussion

The key issue addressed in our work is how to use the plasticity effects

in synapses represented by memristors with multiple resistive states to locally

implement the learning rule. The main distinction between our results and

the related studies [25] is that we have implemented the mechanism, which is

able to propagate error backwards and is needed for multi-layered networks.

This is important for the deep learning schemes. Note that in [25] the single

layer perceptron is considered, and the method proposed in that work cannot

be used to propagate the error between the layers. The implementation of the

learning rule requires the conversion of signals xi and δj at opposite electrodes

of a memristor in a crossbar to the voltage drop across the crossbar that would

change the memristor conductivity proportional to the product xi × δj . We

propose the mechanism based on the pulsed representation of signals xi and δj

and implement the absmin operation instead of the product. The use of relu

for the neuron transfer function also simplifies the implementation of neural

networks as compared to the traditional sigmoidal transfer functions. Our results

demonstrate that the memristor based implementation of error-based learning,

including deep learning, is possible and can be efficient.

The issues arising due to the thermal noise and the variability in memristors

are still not resolved, however, the proposed scheme appears to be quite robust

with respect to the introduction of switching errors below certain threshold,

because the learning procedure does not require setting exact values on each

iteration of the process — the main requirement here is to move in the general

direction of the error gradient. Hence, the reduction of the learning rate during

such procedure should enable the system to eventually settle down in the desired

minimum. The verification of this behavior can be performed using Monte-

Carlo simulations, but they require at least sufficient statistical data on element

performance or a good physical model, which is not available at the present

moment. At the same time, the initial studies of the effect of noise as well as

parameter variability on the operation of memristor-based schemes demonstrate
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their significant tolerance to these factors [25]. This fact speaks in support of

our arguments presented above.

The important issue arising during the implementation of the backpropa-

gation learning rule is the routing of the error signal δ in backward direction.

In this paper, we have considered two possible approaches: the propagation

via the same connections (same memristors), which are used in the forward

direction, or, alternatively, the propagation via a bypass connection matrix which

adopts random values and remains constant during the learning (method const).

Despite the simplicity of the implementation on chip of the latter approach, our

experiments have shown unsatisfactory results using such method. Nevertheless,

due to the symmetry of the memristor crossbar, the error backpropagation can

be done in the same way as a forward propagation during the inference step by

using current summation.

The proposed replacement of the times operation with absmin turns out

to give good results. The modified learning rule generally does point into

the similar direction (preserving the sign) as the original gradient and yields

relatively smooth performance curves (Figure 6b). However, it also have some

shortcomings. Firstly, the gradient calculation becomes inexact, which results in

slightly larger error (2.4% instead of 1.8%, see. Table 4). Secondly, the large

price to pay is the necessity of conversion of xi and δj into discrete pulses which

seems laborious and decreases the accuracy for the small number of gradations.

On the other hand, in such pulse representation, the memristor conductance

changes by small steps proportionally to the number of pulses. Our approach is

very close to that proposed by [19], however, in our work we do not assume the

linear dependence of the memristor conductance on the amplitude of the applied

voltage. All pulses are assumed to be of the same amplitude, irrespective of the

values of xi and δj .

Finally, it should be emphasized that in this study we only demonstrate the

operability of the proposed mechanisms at the proof of concept level. That is why

we have restricted our work to the most commonly used benchmark— the MNIST

database, and have applied the number of hidden units, which is sufficient to

17



show that the proposed simplifications still provide learning operation quality,

surpassing that of ”shallow” perceptron. The detailed studies of models of

memristor-based deep learning systems and their physical implementation will

follow. We believe that the approaches proposed in our work can expand the

capabilities of memristor technologies in the application for self-trained multilayer

neural networks realization and decrease their power consumption by reducing

the required number of memristors down to one-on-one connection weight. It is

also worth noting that the techniques described in this paper are highly scalable.
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