
A Temporal Difference Method for Multi-Objective

Reinforcement Learning

Manuela Ruiz-Montiel1, Lawrence Mandow, José-Luis Pérez-de-la-Cruz

Andalućıa Tech, Departamento de Lenguajes y Ciencias de la Computación, Universidad
de Málaga, Málaga, España.

Abstract

This work describes MPQ-learning, an temporal-difference method that ap-
proximates the set of all non-dominated policies in multi-objective Markov
decision problems, where rewards are vectors and each component stands for
an objective to maximize. Unlike other approximations to Multi-objective
Reinforcement Learning, MPQ-learning does not require additional param-
eters or preference information, and can be applied to non-convex Pareto
frontiers. We also present the results of the application of MPQ-learning to
some benchmark problems and compare it to a linearization procedure.

Keywords: Reinforcement Learning, Multi-Objective Optimization,
MOMDPs, Q-learning

1. Introduction

Markov decision processes (MDPs) are sequential decision problems ap-
pearing in many real-world situations. Solving an MDP involves defining a
policy, i.e. deciding which action to take in every situation. Each action
has a probabilistc outcome and may result in a certain reward. Therefore,
an optimal solution is to find a policy that maximizes expected accumulated
reward. Most work in this area is aimed to solve MDPs with scalar rewards.
However, many problems are best formulated as multicriteria MDPs where

∗Corresponding author.
Email addresses: mruiz@lcc.uma.es (Manuela Ruiz-Montiel),

lawrence@lcc.uma.es (Lawrence Mandow), perez@lcc.uma.es (José-Luis
Pérez-de-la-Cruz)

Preprint submitted to Neurocomputing September 7, 2017

rewards are vectors, and components stand for different, possibly conflicting
scalar objectives. These are usually referred to as Multiobjective Markov
Decision Processes (MOMDPs). Dynamic programming can be used under
certain assumptions to optimally solve MOMDPs when a complete proba-
bilistic model of actions is available[16] [17] [2]. Alternatively, reinforcement
learning techniques can be applied when such knowledge is not available, so
yielding the field of multiobjective reinforcement learning (MORL) [13] [10].

In MORL it is now usual to distinguish between single policy and multiple
policy approaches [13]. In the former we are interested in learning just one
policy —the one that best satisfies a certain preference structure. On the
contrary, in the multiple policy approach we are interested in learning (an
approximation of) the Pareto front, that is, in learning a set of different
policies. The algorithm presented in this paper is designed to learn all the
Pareto front, so it can be seen as following the multiple policy approach. It
should be noticed that even in the case of the single-policy approach it can be
conceptually necessary or computationally useful to approximate the Pareto
front as a first step [10], as the scalarization function can be non-linear or
preferences can be hard to define a priori

Many proposals for approximating the Pareto front in fact approximate
the subset given by its supported points. Supported points are solutions
to a single objective MDP where the objective is a linear combination of
the original ones. This approach has been adopted when a complete model
is available [17] [2] and also when it is necessary to apply RL techniques
[3], [9]. Since for single objective infinite horizon MDPs there always exists
an optimal policy that is deterministic and stationary [5], these proposals
just find deterministic and stationary policies. That result does not hold
for MOMDPs [16] and, in general, non deterministic and/or non stationary
policies can yield new points in the Pareto front. However, ([10], Corollary 1)
these points will never lie outside the convex hull determined by deterministic
stationary policies.

If we allow mixtures of deterministic policies, then we can consider just
the convex hull [12]. But there are situations where such mixtures would
not be acceptable for ethical reasons [6] or would be unfeasible, as in the
case of problems where we are not only interested in the expected value
of the learned policies, but also in their particular sequence of states and
actions. Allowing stochastic policies in these cases can result in missing
some interesting deterministic, not supported solutions. It can be the case
of domains like computational design [11]. For these considerations, the

2

algorithm here presented learns just deterministic policies. But it learns all
Pareto optimal deterministic policies, supported or not supported.

A final consideration should be made in order to characterize our contri-
bution. Many proposals for multiple policy MORL follow a sequential scheme
and compute only a policy at once. On the contrary, few algorithms aim to
learn the set of policies in a simultaneous manner. That means, for the lin-
earizing approach, that weights are considered simultaneously and implicitly
[4], [8]. A recent proposal computes the Pareto set simultaneously without
assuming a linearizing procedure or any other combination function [7].

The algorithm here presented also searches simultaneously for all the
Pareto optimal deterministic solutions. Following the philosophy of Q-learning
[15], the algorithm does not try to learn the model but just stores the Q-
values.

To sum up, the main contribution of this paper is the presentation of
a novel algorithm, MPQ-learning, (Multi-Pareto Q-learning) that approxi-
mates the set of all Pareto-optimal deterministic policies by directly gener-
alizing Q-learning to the multiobjective setting.

This paper is structured as follows. Section 2 describes the necessary
preliminaries, introduces the new algorithm and illustrates its behaviour with
a simple example. Section 3 presents the results of the application of MPQ-
learning to some benchmark problems, and compares its performance with
that of a linearization procedure. Finally, some conclusions are drawn from
the presented results.

2. MPQ-learning

MPQ-learning aims to simultaneously find all Pareto-optimal determinis-
tic non-dominated policies for a MOMDP. In the following we describe some
necessary concepts.

A MOMDP is defined by a set S of states, a set A of actions, a transition
function P : S × A× S → [0, 1], where P (s, a, s′) is the probability of going
from s to s′ when executing a, and a reward function R : S × A× S → Rn,
where vector ~r = R(s, a, s′) is the expected immediate reward obtained is
such case.

A deterministic policy is a function that, conditioning on the current
state s (and possibly on the time step t if it is non-stationary), selects an
action a. The execution of a deterministic policy from a given state s0 (and
possibly a time step t0) leads to a sequence s0, ~r1, s1, ~r2, . . . , si, ~ri+1 . . . Given

3

a policy π, the discounted accumulated return is given by an expected vector
return Eπ{~Rt} ∈ Rn, Eπ{~Rt} = Eπ{Σ∞k=0γ

k−→r t+k+1}, where Eπ{} denotes
the expected value given that the agent follows policy π.

Here we consider the dominance relation � or Pareto order in Rn. For
every pair of vectors ~v, ~w ∈ Rn, ~v � ~w iff there exists a dimension i such that
vi > wi and there is no dimension j such that vj < wj. We write ~v � ~w when
~v � ~w or ~v = ~w. Given a setX ⊂ Rn, the Pareto front ofX, ND(X), is the set
of non-dominated vectors in X, that is, ND(X) = {~x ∈ X | @~y ∈ X ~y � ~x}.

As stated by [2], as we aim to learn the set of all non-dominated policies
at once, we need an off-line algorithm like Q-learning, since the policy used to
interact with the environment will not be the same that is learned. Indeed,
we only can follow one policy per episode, and still need to improve several
policies simultaneously. MPQ-learning is hence a direct extension of the
scalar reinforcement learning technique Q-learning, that we cover in detail in
the next section.

2.1. Q-learning

Q-learning [15] is a RL algorithm that learns a unique policy when rewards
are scalar values. It learns scalar action-values Q(s, a) : S × A → R, that
represent the expected accumulated reward when following a given policy
after taking a in s. The action a selected by the policy in each state is given
by the expression argmaxaQ(s, a). The policy learned by Q-learning is thus
stationary, since it only conditions on the current state s. In single-objective
MDPs, there always exists a deterministic stationary optimal policy [5].

In Q-learning, a decision-making agent interacts with the environment
through a sequence of steps. In the nth step, the agent observes its current
state sn, selects and performs an action an, observes the following state s′,
receives an immediate reward rn and adjusts the valueQ(sn, an) using a learn-
ing factor αn. The updating expression of the scalar Q-learning algorithm is
the following:

Qn(s, a) =

{
(1− αn)Qn−1(s, a) + αn[rn + γVn−1(s

′)] if s = sn ∧ a = an
Qn−1(s, a) otherwise

(1)
where

Vn−1(s) = max
a∈A

Qn−1(s, a) (2)

4

2.2. Updating expression of MPQ-learning

In this Section we provide the updating expression of MPQ-learning.
Prior to defining this expression, we need to set some definitions.

The vector value of a state s under a policy π, denoted ~v π(s), is the
expected vector return when starting from s and following π. We call ~v π(s)
the state-vector function for policy π. The vector value of taking action a
in state s under a policy π, denoted ~q π(s, a) is the expected vector return
when starting from s, taking action a, and thereafter following π. We call
~q π(s, a) the action-vector function for policy π.

We will say that a policy π dominates or equals a policy π′ iff ∀s ∈ S,
~v π(s) � ~v π′

(s). A policy is non-dominated iff it is not dominated by any
other possible policy. We denote a non-dominated policy as π∗, and its non-
dominated action-vector function as ~v π∗(s).

We denote the set of all action-vectors of taking action a in state s under
any non-dominated stationary policy π∗ as Q∗(s, a).

Just like Q-learning, MPQ-learning learns action-vector values through
repeated interaction with the environment. However, there are important
differences that arise from the fact that the obtained rewards are vectors,
and that the algorithm does not learn a single policy, but a set of policies at
the same time.

The values learned in MPQ-learning are now sets Q(s, a) of vectors, which
are used to estimate the optimal Q∗(s, a) sets. The essence of MPQ-learning
is described by an updating expression, in many senses analogous to that de-
scribed in Equation 1. Indeed, a direct approach would be to use Expression
1 as is, substituting the scalar operators with set operators when necessary:

Qnaive
n (s, a) =

{
(1− αn)Qnaive

n−1 (s, a)⊕ αn[~rn + γVnaive
n−1 (s′)] if s = sn ∧ a = an

Qnaive
n−1 (s, a) otherwise

(3)
Where the definition of Vnaive(s) is analogous to the one used by [16] and

[17]:

Vnaive(s) = ND
⋃
a∈A

Q(s, a) (4)

The operator ⊕ in Equation 3 performs a pairwise summation of the set
corresponding to the old estimation set Qnaive

n−1 (s, a) and the set corresponding
to the new one (~rn + γVnaive

n−1 (s′)). This leads to an uncontrolled growth of

5

the sets: if we have two vectors in the old estimation set and two on the new
one, we come up with four vectors in the updated set Qnaive

n (s, a), and after
a few updating steps we would have an intractable number of vectors.

Instead, we want to establish a correspondence between the vectors of the
old estimation set and the vectors of the new one, so if we have two vectors
in the old set and two on the new one, then we will have at most two vectors
inside the updated set. For this, we need to store some extra information
along with the action-vectors inside the sets.

Formally, each vector estimate in Q(s, a) will consist of a pair (~q, P),where
~q is the current value of the vector estimate, and P is a set of indices. The
set P allows to control the learning process and also to exploit the learned
policies once the learning process is completed. Each index p ∈ P is a pair
(s′, i) where s′ is an identifier of the accessed state and i stands for the i-th
vector in V(s′), precisely the one that is used to update ~q. Notice that the
dimension of ~q, given by the number of objectives, is fixed and the same for
every state. However, the size of P can be different for different states and
grows during the execution of the algorithm from 0 to the number of states
reachable from s after performing action a.

We will say that a pair (s′, i) is new for a set Q(s, a) when there is no pair
(~q, P) ∈ Q(s, a) such that (s′, i) ∈ P , and write (s′, i) 6@ Q(s, a). Otherwise
we will say that (s′, i) is not new in Q(s, a) and write (s′, i) @ Q(s, a). We
will say that a state s′ is new for a set Q(s, a) when there is no index i such
that (s′, i) @ Q(s, a). We will write s′ 6@ Q(s, a). Otherwise we will say that
s′ is not new in Q(s, a) and write s′ @ Q(s, a). We also define the set P \s′ as
the result of removing the pair (s′, i) from P , that is, P \ {(s′, i)} (whatever
i is).

We will formally define the sets V(s) in function of the vector estimates:

V(s) = ND
⋃
a∈A

{~q | (~q, P) ∈ Q(s, a)} (5)

We can identify two different kinds of operations in the updating process
of Q(s, a),

1. Creating new vector estimates every time a state s′ is reached for the
first time after performing action a in state s.

2. Updating Q(s, a) after an already traversed transition leads to some
node s′. This includes updating, creating, and deleting particular vec-
tor estimates.

6

We assume that for all s ∈ S and for all a ∈ A, Q0(s, a) = {(~0,∅)}. The
updating expression for MPQ-learning is,

Qn(s, a) =

{
Nn−1(s, a) ∪ Un−1(s, a) ∪ En−1(s, a) if s = sn ∧ a = an
Qn−1(s, a) otherwise

(6)

The updated Q-set comes from the union of three sets: N, U and E. The
contents of these sets will be determined by the nature of the involved tran-
sition (s, a, s′) in the current time step. Particularly, if the transition is new
to the agent, i.e., it is the first time that s′ is reached from s through action
a, only the set N (standing for new) will contain vector estimates. However,
if the transition has already been executed by the learning agent, then N
will be empty and only the sets U and E can contain vector estimates. The
set U (standing for updated) will contain vector estimates of Qn−1(s, a) that
had previously been linked to a vector estimate inside Vn−1(s

′), conveniently
updated with this vector in Vn−1(s

′) and the obtained reward. The set E
(standing for extra) will contain vector estimates if some extra vector esti-
mate has appeared in Vn−1(s

′) since the last time the transition was visited
by the agent. In the following we provide formalizations and more detailed
explanations for these three sets.

When a state s′ is reached for the first time from state s through action a,
every vector estimate in Qn−1(s, a) is going to be also inside Qn(s, a), updated
accordingly with the vector estimates inside Vn−1(s

′). If Vn−1(s
′) only has

one vector estimate, then |Qn(s, a)| = |Qn−1(s, a)|. In general, when s′ is
reached for the first time, |Qn(s, a)| = m|Qn−1(s, a)|, where m is the number
of vector estimates inside Vn−1(s

′). These vector estimates are stored inside
the set N, which is defined as follows:

Nn−1(s, a) = {((1− αn)~q + αn[~rn + γ~vj], P ∪ {(s′, j)} |
(~q, P) ∈ Qn−1(s, a) ∧ ~vj ∈ Vn−1(s

′) ∧ s′ 6@ Qn−1(s, a)} (7)

When the reached state s′ was already previously reached from state s
through action a we can have two different situations. Set U deals with the
vector estimates in Q(s, a) that had previously been updated with a vector
in V(s′). Set E deals with the extra vector estimates that have to appear
inside Q(s, a) when a previously unknown vector appears in V(s′).

The definition for the set U is somewhat analogous to the one in the single
objective case:

7

Un−1(s, a) = {((1− αn)~q + αn[~rn + γ ~vj], P) |
(~q, P) ∈ Qn−1(s, a) ∧ (s′, j) ∈ P ∧ ~vj ∈ Vn−1(s

′)} (8)

As we explained before, the set E will contain vector estimates when
an extra vector ~vj appears in Vn−1(s

′). The expression s′ @ Qn−1(s, a) ∧
(s′, j) 6@ Qn−1(s, a) characterizes this situation: as this is not the first time
s′ is reached, s′ @ Qn−1(s, a), but as ~vj is new, (s′, j) 6@ Qn−1(s, a). In this
case, we cannot make use of vectors estimates inside Qn−1(s, a) to determine
the value of the new vector, because all of them have already been supported
by some vector estimate inside previous instances of V(s′), different from the
extra vector ~vj. Hence, in this situation we have to start from the initial

value ~(0) to determine the value of the vector in the new pair that is being
inserted into Qn(s, a). However, we can establish the new set of indices with
the available information of the pairs inside Qn−1(s, a). Given an extra vector
~vj, we will insert a new vector estimate in Qn(s, a) for each vector estimate
inside Qn−1(s, a), with the set of indices that arises of removing the pair of
the form (s′, k) (whatever k is) from the set of indices of the vector estimate,
and then adding the pair (s′, j):

En−1(s, a) = {(αn[~rn + γ ~vj], (P \ s′) ∪ {(s′, j)}) |
~vj ∈ Vn−1(s

′) ∧ s′ @ Qn−1(s, a) ∧ (s′, j) 6@ Qn−1(s, a)

∧ ∃~q (~q, P) ∈ Qn−1(s, a)} (9)

When a vector estimate that was present in previous instances of V(s′)
(and thus there is an associated vector estimate inside Qn−1(s, a)) has been
removed, it is because now it represents a dominated policy. In that situa-
tion, the vector estimate inside Qn−1(s, a) supported by the vector estimate
removed from Vn−1(s

′) is not inside Qn(s, a).
Notice that MPQ-learning keeps a vector in Q(s, a) for each possible

combination of non-dominated vectors from the state-vector sets of reachable
states. However, by application of Bellman’s optimality principle, only the
subset of non-dominated state vectors of s, V(s), can be used to support
action vectors in other Q sets. This helps to keep the number of policies
tracked by the algorithm under control.

8

2.3. Action Selection Mechanism

Like Q-learning, MPQ-learning is an off-policy technique, meaning that
the policy that is followed during learning is not the same as the one learned.
Indeed, this fact is even more evident in the multi-objective setting, as we
are learning several policies at once, but the agent is only following one path.

This off-policy essence allows the agent to follow any policy during the
learning process, as long as every state-action pair (s, a) is visited a po-
tentially infinite number of times. Nevertheless, devising a proper action-
selection strategy can lead to a better online performance.

The intuition behind our action-selection strategy is that, when exploiting
the already acquired knowledge, the chances of choosing an action a, being
in state s, are proportional to the number of vector estimates of Q(s, a) that
are also inside V(s).

Pr{an = a|sn = s} =
|{~q : ~q ∈ Vn−1(s) ∧ ∃P : (~q, P) ∈ Qn−1(s, a)}|

|Vn−1(s)|
(10)

In our experiments we have used a ε-greedy mechanism, that is, with
probability ε a random action is chosen, and with (1− ε) an action is chosen
according to Expression 10.

2.4. Using the Learned Policies

In scalar Q-learning, once the values have been learned, we can derive the
optimal (or near-optimal) policy by choosing the action that yields the maxi-
mum value. That is, if we are in state s, the chosen action is argmaxaQ(s, a).
However, in MPQ-learning we cannot use this operator, since we do not have
scalar values Q(s, a) anymore, but sets Q(s, a).

Once the learning process is complete, we can resort to a weight combi-
nation or just to a user selection process in which a single solution is directly
chosen from the set of learned policies. Regardless of the selection method,
the decision has to be made in the time step t0, that is, at the beginning of
the process.

The process for deriving a concrete learned policy in our case starts by
computing the V-set of the initial state (see Expression 5). Once we have
this V-set, we have to select a vector estimate out of it:

~qt0 = Θ(V(s0)) (11)

9

Where Θ() is a selection operator. The action to be taken in state s0
and time step t0 is the one whose associated Q-set contains the chosen vector
estimate:

π(s0, t0) = a : (∃Pt0 : (~qt0 , Pt0) ∈ Q(s0, a)) (12)

In the following time steps the selection operator is no longer needed,
because the decision has been already done. We must resort to the set of
indices P associated to the last chosen action, that is, Pt0 . In time step t1,
we need to look for the vector estimate inside V(s1) indexed in Pt0 :

~qt1 = ~vi : ~vi ∈ V(s1) ∧ (s1, i) ∈ Pt0 (13)

And the chosen action in state s1 and time step t1 is:

π(s1, t1) = a : (∃Pt1 : (~qt1 , Pt1) ∈ Q(s1, a)) (14)

It could happen that, when n > 0, we cannot find the suitable vector
estimate ~qtn inside V(sn). This is a symptom that the learning process is not
completed, and we still have a vector estimate inside V(s0) whose supporting
values are no longer non-dominated. In that case we can use the selection
operator again in order to choose a vector estimate inside V(sn).

Thus, in general, if we are in state sn at time step tn, the action to take
is given by the expression:

π(sn, tn) = a : (∃Ptn : (~qtn , Ptn) ∈ Q(sn, a)) (15)

Where

~qtn =


Θ(V(s0)) if n = 0
~vi : ~vi ∈ V(sn) ∧ (s, i) ∈ Pt−1 if n > 0 ∧ ∃~vi
Θ(V(sn)) otherwise

(16)

10

2.5. Example

Let us assume a state transition diagram for a multi-objective Markov
decision process as depicted in figure 1. Episodes always start at state s1,
and states s3, s4, s5 are terminal. Action a1 has a probabilistic outcome and
may lead to states s2 or s3. Let us assume that for all terminal states s′ we
have V(s′) = {[~v1 = (0, 0), ∅]}, i.e. each state has a single zero vector that is
not supported by any index. Additionally, values for Q are not defined, since
there are no available actions at terminal states.

We will apply MPQ-learning to this example assuming α = 0.1, and
γ = 1. The evolution of Q and V are displayed in table 1 for all state-action
pairs and non-terminal states, and for each time step. The initial conditions
are given for time step t = 0. What follows is a description of a possible
sequence of transitions that illustrates the application of the MPQ-learning
rule.

1. A first episode starts at s1, where a1 is the only action available. Let
us assume the transition leads to s2 with reward ~r = (0, 0). Since V(s2)
has two vectors, the application of the MPQ-learning rule results in the
following,

N1(s1, a1) = {[(0.9× (0, 0) + 0.1× ((0, 0) + (0, 0)), {(s2, 1)}]
[(0.9× (0, 0) + 0.1× ((0, 0) + (0, 0)), {(s2, 2)}]}

U1(s1, a1) = ∅
E1(s1, a1) = ∅
Q1(s1, a1) = {[~v1 = (0, 0), {(s2, 1)}]

[~v2 = (0, 0), {(s2, 2)}]}

2. Assume that at t = 2 action a2 is chosen, leading to state s4 with
reward ~r = (1000, 2000). Notice that after this step, V(s2) has only
one non-dominated vector.

N2(s2, a2) = {[(0.9× (0, 0) + 0.1× ((1000, 2000) + (0, 0)), {(s4, 1)}]}
U2(s2, a2) = ∅
E2(s2, a2) = ∅
Q2(s2, a2) = {[~v1 = (100, 200), {(s4, 1)}]}

11

3. At t = 3 a new episode starts, transitioning again from s1 to s2. Now,
V(s2) = {[~v1 = (100, 200)(s4, 1)]}, therefore,

N3(s1, a1) = ∅
U3(s1, a1) = {[(0.9× (0, 0) + 0.1× ((0, 0) + (100, 200)), {(s2, 1)}]}
E3(s1, a1) = ∅
Q3(s1, a1) = {[~v1 = (10, 20), {(s2, 1)}]}

4. Assume now that at t = 4 action a3 is chosen, due to an exploration
step. This leads to state s5 with reward (2000, 1000). Since this state
is reached for the first time from state-action pair (s2, a3), the rule is
applied as follows,

N4(s2, a3) = {[(0.9× (0, 0) + 0.1× ((2000, 1000) + (0, 0)), {(s5, 1)}]}
U4(s2, a3) = ∅
E4(s2, a3) = ∅
Q4(s2, a3) = {[~v2 = (200, 100), {(s5, 1)}]}

5. At t = 5 a third episode starts, transitioning once again stochastically
from s1 to s2. However, now V(s2) presents an extra vector. Therefore,

N5(s1, a1) = ∅
U5(s1, a1) = {[(0.9× (10, 20) + 0.1× ((0, 0) + (100, 200)), {(s2, 1)}]}
E5(s1, a1) = {[(0.1× ((0, 0) + (200, 100)), {(s2, 2)}]}
Q5(s1, a1) = {[~v1 = (19, 38), {(s5, 1)}]

[~v3 = (20, 10), {(s2, 2)}]}

6. Assume the episode terminates with a new transition from s2 to s4.
The update rule is applied as follows,

N6(s2, a2) = ∅
U6(s2, a2) = {[(0.9× (100, 200) + 0.1× ((1000, 2000) + (0, 0)), {(s4, 1)}]}
E6(s2, a2) = ∅
Q6(s2, a2) = {[~v1 = (190, 380), {(s4, 1)}]}

12

Figure 1: Sample state transition diagram.

7. Finally, let us assume the last episode leads from s1 to s3. This il-
lustrates the case where each vector in Q(s1, a1) is supported by two
vectors, one from s2, and other from s3,

N7(s1, a1) = {[(0.9× (19, 38) + 0.1× ((1000, 1000) + (0, 0)), {(s2, 1)(s3, 1)}]
[(0.9× (20, 10) + 0.1× ((1000, 1000) + (0, 0)), {(s2, 2)(s3, 1)}]}

U7(s1, a1) = ∅
E7(s1, a1) = ∅
Q7(s1, a1) = {[~v1 = (117.1, 134.2), {(s2, 1)(s3, 1)}]

[~v3 = (118, 109), {(s2, 2)(s3, 1)}]}

3. Algorithm Comparison

In this section we perform an empirical comparison of MPQ-learning
with the linear scalarization multi-policy approach, consisting in running
Q-learning with several combinations of weights.

We use a dichotomic scalarizing procedure analogous to the one described
in [1] to solve a test set of biobjective problems. We optimize a linear scalar
function with a weights w1 and w2 associated to the first and second ob-
jectives respectively. First, we solve two instances of the problem using Q-
learning, the first one with w1 >> w2, and the second one with w2 >> w1.

13

t s (s, a) Qt(s, a) Vt(s)

0 s1 (s1, a1) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅
s2 (s2, a2) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅

(s2, a3) ~v2 = (0, 0) ∅ ~v2 = (0, 0) ∅
1 s1 (s1, a1) ~v1 = (0, 0) (s2, 1) ~v1 = (0, 0) (s2, 1)

~v2 = (0, 0) (s2, 2) ~v2 = (0, 0) (s2, 2)
s2 (s2, a2) ~v1 = (0, 0) ∅ ~v1 = (0, 0) ∅

(s2, a3) ~v2 = (0, 0) ∅ ~v2 = (0, 0) ∅
2 s1 (s1, a1) ~v1 = (0, 0) (s2, 1) ~v1 = (0, 0) (s2, 1)

~v2 = (0, 0) (s2, 2) ~v2 = (0, 0) (s2, 2)
s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)

(s2, a3) ~v2 = (0, 0) ∅
3 s1 (s1, a1) ~v1 = (10, 20) (s2, 1) ~v1 = (10, 20) (s2, 1)

s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)
(s2, a3) ~v2 = (0, 0) ∅

4 s1 (s1, a1) ~v1 = (10, 20) (s2, 1) ~v1 = (10, 20) (s2, 1)
s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)

(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

5 s1 (s1, a1) ~v1 = (19, 38) (s2, 1) ~v1 = (19, 38) (s2, 1)
~v3 = (20, 10) (s2, 2) ~v3 = (20, 10) (s2, 2)

s2 (s2, a2) ~v1 = (100, 200) (s4, 1) ~v1 = (100, 200) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

6 s1 (s1, a1) ~v1 = (19, 38) (s2, 1) ~v1 = (19, 38) (s2, 1)
~v3 = (20, 10) (s2, 2) ~v3 = (20, 10) (s2, 2)

s2 (s2, a2) ~v1 = (190, 380) (s4, 1) ~v1 = (190, 380) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

7 s1 (s1, a1) ~v1 = (117.1, 134.2) (s2, 1)(s3, 1) ~v1 = (117.1, 134.2) (s2, 1)(s3, 1)
~v3 = (118, 109) (s2, 2)(s3, 1) ~v3 = (118, 109) (s2, 2)(s3, 1)

s2 (s2, a2) ~v1 = (190, 380) (s4, 1) ~v1 = (190, 380) (s4, 1)
(s2, a3) ~v2 = (200, 100) (s5, 1) ~v2 = (200, 100) (s5, 1)

Table 1: Evolution of estimated values over time with MPQ-learning. Thicker horizontal
lines indicate division between training episodes.

14

Once the vector values associated to these two extreme supported solutions
have been found, the procedure proceeds recursively. Given two different
supported solution vectors ~vA and ~vB, a new problem is defined assigning
weights that match the slope defined by them. Solving the problem with
Q-learning either results in one of the previous solutions, in which case we
are done, or finds a new supported solution ~vC . In the latter case, two new
problems need to be solved, considering the pairs of solutions (~vA, ~vC), and
(~vC , ~vB) respectively. For a biobjective problem with n > 1 supported solu-
tions, this procedure guarantees that all of them are found in 2n − 1 scalar
applications of Q-learning.

Performance has been measured according to the number of learning steps
needed to reach the whole set of solutions inside V∗(s0), where s0 is the initial
state of the environment. In the case of the scalarized procedure, this number
is the sum of every individual search that has been performed.

Notice that the number of reachable solutions varies according to the
method that is being used, as linear scalarization techniques can only find
supported solutions.

3.1. Deep Sea Treasure

We consider the Deep Sea Treasure(DST) environment in four different
flavours. The original problem can be used to test if a MORL algorithm
is able to find all the state vectors for a problem where these define a non-
convex frontier in reward space [14]. DST has two objectives, and its true
front for the selected initial state V∗(s0), which is the top-left corner of the
grid, contains ten state vectors.

The environment is a grid of 10 rows and 11 columns, as we can see
in Figure 2(a). The agent controls a submarine that searches for undersea
treasures. There are ten treasure locations with different values; the first
objective is to minimize the time that the submarine takes to reach the
treasure, and the second one is to maximize the value of the achieved treasure.
The task is episodic, with each episode starting in the top-left position of
the grid and ending when a treasure is reached, or after 1000 actions have
been taken by the agent. At each step, four actions are available: moving
one square to the top, right, bottom, or left. If an action would move the
submarine outside of the grid, then the position of the submarine remains
unchanged.

The reward received at each step is a vector of 2 elements; the first one
is a punishment of −1 for the time consumed, and the second one is the

15

(a) DST Environment (reproduced
from [14])

(b) DST Frontier (reproduced from
[14])

Figure 2: Deep Sea Treasure problem: Environment (a) and Frontier (b)

value of the achieved treasure, that will be 0 in all steps except when the
agent reaches a treasure location (the values are indicated in Figure 2(a)).
In Figure 2(b) we can see the ten non-dominated vectors in V∗(si) associated
to the non-dominated policies of this problem.

The original DST frontier only has two supported solutions out of the
ten Pareto-optimal ones, and all the treasures are Pareto-optimal. In order
to perform a more complete comparison, we have compared MPQ-learning
and the scalarized version for three additional variants with different frontier
configurations. In the following we explain the considered variants, and in
Table 2 we gather the different features of their respective frontiers.

3.1.1. DST-2

In this second variant of DST we aim to test the algorithms behaviour
when there are some non-optimal undersea treasures. Particularly, we have
changed the value of the seventh treasure from 24 to 100, so treasures 50 and
74 are not Pareto-optimal any more.

3.1.2. DST-3

In the third variant of DST we want to test the algorithms behaviour when
the number of non-supported solutions is closer to the number of Pareto-
optimal solutions. Particularly, in this setting there are five supported solu-
tions (as opposed to the two solutions in the original DST environment) out
of ten Pareto-optimal solutions.

16

DST setting Supported solutions Pareto solutions
Original 2 10
DST-2 3 8
DST-3 5 10
DST-4 10 10

Table 2: Frontier features for the considered variants of the Deep Sea Treasure environment

3.1.3. DST-4

In this fourth setting of DST we want to test the algorithms behaviour
when the number of non-supported solutions equals the number of Pareto-
optimal solutions, that is, when the frontier is fully convex. In this variant
there are ten supported solutions and ten Pareto-optimal solutions.

3.2. Results

For each setting we have executed 100 agents of the scalarized algorithm
and 100 agents of MPQ-learning. The parameter setting for every execution
has been the following:

• Discount rate γ = 1

• Learning rate α = 0.1

• Exploration rate ε = 0.4

In Table 3 we gather the average and maximum number of training steps
that each method needs to converge to the whole set of reachable solutions in
V∗(s0). Recall that the scalarized scheme only reaches supported solutions.

3.3. Discussion

As we have already mentioned, it is well known that scalarizing methods,
particularly those based on linear functions, can only obtain the convex hull,
that is, the set of supported solutions of a MOMDP. On the contrary, MPQ-
learning can yield the whole Pareto front.

It can be argued that in some cases it suffices to learn the set of sup-
ported solutions. However, in the light of the obtained results, even when
only supported solutions are sought, in some cases MPQ-learning can out-
perform the linear scalarizing method in terms of training steps, as we can

17

Problem Avg. steps Max steps
Original (SCAL) 1074645.3 1494433
Original (MPQ) 1260451.1 3478320

DST-2 (SCAL) 14786851.0 23931695
DST-2 (MPQ) 23905464.7 39318415

DST-3 (SCAL) 5862617.5 10698936
DST-3 (MPQ) 4602536.4 6229090

DST-4 (SCAL) 15618235.0 19845973
DST-4 (MPQ) 6294062.1 10193190

Table 3: Scalarized algorithm vs. MPQ-learning: training steps until convergence of
V (0, 0), over 100 agents

see in Table 3. Particularly, it has been the case of the problems DST-3 and
DST-4. It seems reasonable to speculate that when the ratio of supported
solutions/Pareto solutions grows, MPQ-learning tends to need less training
steps than the linear scalarized method.

Notice that MPQ-learning computes in principle non stationary optimal
policies. However, in the studied cases there are no such policies, so they do
not appear in the final results. Moreover, the trace of the execution shows
that they do not appear at any point of the execution.

4. Conclusions and Future Work

This work describes MPQ-learning, a temporal-difference method aimed
at solving Multi-objective MDPs. MPQ-learning is based on Q-learning and
differs from this scalar method in two main factors: the use of vector rewards,
and the ability to learn the set of all non-dominated deterministic policies si-
multaneously. To our knowledge, this is the first temporal-difference method
that tries to learn the whole set of non-dominated policies at the same time
by means of a simultaneous updating of different value functions.

This approach can help to overcome some difficulties of other approaches
that try to approximate the set of non-dominated policies with scalarizing
functions. These resort in general to repeated calls to scalar reinforcement
learning techniques with different preference configurations. MPQ-learning
does not require these additional parameter adjustments, nor an explicit

18

scalarizing function, and is able to approximate convex as well as non-convex
Pareto fronts.

We have compared MPQ-learning to a linear scalarizing algorithm based
on running Q-learning several times with different preference configurations.
In the light of the obtained results, in certain cases MPQ-learning can out-
perform the linear scalarizing method in terms of training steps. Hence, even
when only supported solutions are sought, MPQ-learning can be a sensible
option to solve a MOMDP.

The work described here can be refined in several ways. One of them
is trying to avoid non-stationary policies in problems where they form part
of the set of solutions, as well as testing the algorithm in stochastic envi-
ronments. Evaluating this and other improvements, as well as completing a
formal analysis of MPQ-learning, are important continuations of this work.

5. Acknowledgements

This work is partially funded by grants TIN2009-14179 (Spanish Gov-
ernment, Plan Nacional de I+D+i) and TIN2016-80774-R (AEI/FEDER,
UE) (Spanish Government, Agencia Estatal de Investigación; and European
Union, Fondo Europeo de Desarrollo Regional). Manuela Ruiz-Montiel is
funded by the Spanish Ministry of Education through the National F.P.U.
Program.

[1] Balachandran, M., Gero, J.S., 1984. A comparison of three methods for
generating the pareto optimal set. Engineering Optimization 7, 319–336.

[2] Barrett, L., Narayanan, S., 2008. Learning all optimal policies with
multiple criteria, ACM. pp. 41–47.

[3] Castelletti, A., Corani, G., Rizzolli, A., Soncini-Sessa, R., Weber, E.,
2007. Reinforcement learning in the operational management of a water
system, in: IFAC Workshop on Modeling and Control in Environmental
Issues, pp. 325–330.

[4] Hiraoka, K., Yoshida, M., Mishima, T., 2008. Parallel reinforcement
learning for weighted multi-criteria model with adaptive margin, in:
Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (Eds.), Neural
Information Processing. volume 4984 of Lecture Notes in Computer Sci-
ence, pp. 487–496.

19

[5] Howard, R.A., 1960. Dinamic programming and Markov Decision Pro-
cesses. MIT Press.

[6] Lizotte, D.J., Bowling, M., Murphy, S.A., 2010. Efficient reinforcement
learning with multiple reward functions for randomized controlled trial
analysis, in: Proceedings of the 27th International Conference on Ma-
chine Learning, pp. 695–702.

[7] Moffaert, K.V., Nowé, A., 2014. Multi-objective reinforcement learning
using sets of pareto dominating policies. Journal of Machine Learning
Research 15, 3663–3692.

[8] Mukai, Y., Kuroe, Y., Iima, H., 2012. Multi-objective reinforcement
learning method for acquiring all pareto optimal policies simultaneously,
in: Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, pp. 1917–1923.

[9] Natarajan, S., Tadepalli, P., 2005. Dynamic preferences in multi-criteria
reinforcement learning, ACM. pp. 601–608.

[10] Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R., 2013. A sur-
vey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research (JAIR) 48, 67–113.

[11] Ruiz-Montiel, M., Boned, J., Gavilanes, J., Jiménez, E., Mandow, L.,
de-la Cruz, J.L.P., 2013. Design with shape grammars and reinforce-
ment learning. Advanced Engineering Informatics 27, 230 – 245. URL:
http://www.sciencedirect.com/science/article/pii/S1474034612001139,
doi:10.1016/j.aei.2012.12.004.

[12] Vamplew, P., Dazeley, R., Barker, E., Kelarev, A., 2009. Construct-
ing stochastic mixture policies for episodic multiobjective reinforcement
learning tasks, in: AI’09: The 22nd Autralasian Conference on Artificial
Intelligence, pp. 340–349.

[13] Vamplew, P., Dazeley, R., Berry, A., Issabekov, R., Dekker, E., 2011.
Empirical evaluation methods for multiobjective reinforcement learning
algorithms. Mach. Learn. 84, 51–80.

[14] Vamplew, P., Yearwood, J., Dazeley, R., Berry, A., 2008. On the limita-
tions of scalarisation for multi-objective reinforcement learning of pareto

20

fronts, in: AI 2008: Advances in Artificial Intelligence. Springer. chap-
ter 37, pp. 372–378.

[15] Watkins, C.J., 1989. Learning from delayed rewards. Ph.D. thesis.
University of Cambridge.

[16] White, D.J., 1982. Multi-objective infinite-horizon discounted markov
decision processes. Journal of Mathematical Analysis and Applications
89.

[17] Wiering, M.A., de Jong, E.D., 2007. Computing optimal stationary
policies for Multi-Objective markov decision processes.

21

