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1. Introduction 

The latest HEVC video coding standard [1] has 

improved the coding performance by applying a number of 

innovative tools compared to its predecessor H.264/AVC 

[2][3] including a wider range of variable block size motion 

estimation (ME), motion compensation (MC), prediction, 

and transformation units. The use of multiple reference 

frames (MRFs) with variable block sizes typically provides 

better coding performance than the single reference frame 

approach [1]-[4]  for video with repetitive motion, 

uncovered background, non-integer pixel displacement, 

lighting change, etc. However, MRFs-based schemes 

require index codes to identify a particular reference frame 

and the computational time increases almost linearly with 

each additional reference frames due to ME and MC. The 

decision on appropriate number of reference frames is 

dependent on the video content and the computational time 

constraint which may not always allow large number of 

reference frames[5][6].  

Some fast coding techniques [7]-[10] have achieved 

significant time saving compared to H264 but failed to 

outperform it in coding performance for challenging video 

sequences [5]. Dual reference frames based schemes 

[11][12] try to solve the challenges in MRFs by using only 

two reference frames where the immediate previous frame 

is used as the short term reference (STR) frame and a frame 

from previously coded frames is used as long term 

reference (LTR). The rationality of dual reference frames is 

to use STR frame for local motion and LTR frame for 

background or global motion.  Video segmentation based 

coding techniques exploit the stable parts in a frame by 

treating them as background [13]-[15]; however they are 
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highly computationally intensive. Object segmentation 

based sprite coding techniques [16][17] were also 

introduced but they suffer from high computation burden 

and their performance degrades at high bit rates [18]. 

A video coding scheme named McFIS (most common 

frame in a scene) [5][6][19][20] was introduced to utilize 

the highly accepted Mixture of Gaussian (MoG) dynamic 

background modelling (DBM) technique. The McFIS 

scheme further instilled the fact that using a good quality 

background frame as a reference frame improves coding 

performance and efficiency compared to the MRFs using a 

number of previously decoded frames. It also established 

the need for using a good DBM technique for practical 

usage. A number of studies have highlighted the improved 

performance and efficiency of the DBM based McFIS 

scheme [5][6][19]-[21].  DBM is also applied in recent 

studies in the area of transcoding technique for video 

surveillance [22].  

MoG based DBM works at the pixel level where each 

pixel of a scene is modeled independently using a mixture 

of Gaussian distributions (generally 3 to 5) [21]-

[23][25][26]. Although the MoG based DBM has proved 

successful and is widely used by researchers and 

practitioners, it requires the user to assume the data 

distribution in advance and relevant parameters must be set 

based on this underlying assumption. It also performs 

poorly for fast changing background environments [25][27]. 

A relatively new non-parametric (NP) technique 

[25][27][28] has gained the attention of many researchers 

due to its ability to perform well in highly dynamic 

scenarios and provides a set of stable parameters with no 

requirement for an initial assumption about the underlying 

data distribution [25][27][29]. 

Although the high sensitivity to dynamic background 

makes the NP technique very attractive for applications 

such as object detection and tracking, this poses a serious 

challenge for video coding. If the background is updated 

frequently then the insertion of more reference frames 

would be necessary, leading to a higher bit rate 

requirement. Also, in the existing NP technique [25][27] the 

background is generated using the pixel intensity values of 

the last frame only and the historical pixel intensity values 

are only used for the purpose of probability estimation. 

Hence, the background is heavily biased towards the last 

frame and loses the historical trend value. To resolve these 

issues we propose a new weighted non-parametric (WNP) 

technique where we generate more stable background using 

historical pixel values and pixel values from the latest 

frame. The new technique uses the weighted average of (i) a 

probabilistic pixel intensity value (calculated based on the 

median of historical values and randomly scaled standard 

deviation) and (ii) the latest pixel intensity value. The 

weight ratio between the historical and the recent pixel 

values is decided in an adaptive manner considering 

specific video contents. An intuitive weight ratio ( ) 

selection procedure is presented which selects the most 

appropriate   based on the quality of backgrounds 

produced by a set of potential weight ratios. The proposed 

WNP technique inherits the advantages of the NP technique 

such as the capacity to better detect dynamic backgrounds 

and the ability to perform probability estimation with 

dynamic data distribution. The additional ability of WNP to 

provide a more stable background makes it more suitable 

for video purposes as it reduces the computational time 

significantly and provides better video coding performance. 

The WNP technique is further modified to develop the 

scene adaptive non-parametric (SANP) technique which 

eliminates the need for coding of the background reference 

frame by utilizing the coded frames to generate the 

background reference frame. The key advantage of SANP is 

the ability to adapt quickly to subtle background changes 

which are not generally considered as scene changes. This 

adaptability increases the usability and improves the coding 

performance for videos with high dynamic backgrounds. 

Note that the main objective of video coding applications 

using background modelling is to reduce the residual error 

for improving compression performance, while the main 

objective of object detection applications is to find the 

object in its original shape. In this study we developed 

novel schemes to exploit the parameter stability and 

superior change adaptation capabilities of the NP technique 

and make it applicable for video coding applications.  

We present the motivations and contributions of this 

study in section II, followed by the proposed WNP 

background modelling technique and the adaptive 

selection procedure along with the SANP technique in 

Section III. Extensive experimental results are presented in 

Section IV followed by conclusive remarks in Section V. 

 

2. Motivations and Contributions 

Traditional DBM is performed at pixel level, where each 

pixel of a frame is modeled independently by a mixture of L 

(normally 3 to 5 models are used) Gaussian distributions 

[23][24][26]. Each Gaussian model represents the intensity 

distribution of one of the different environment components 

e.g., moving objects, static background, shadow, 

illumination, cloud changes, etc. observed by the pixel in 

frames. We assume that the l-th Gaussian at time t 

representing a pixel intensity is tl ,   with mean tl , , 

variance
2
,tl , and weight tlw ,  such that  1,  tlw  for all l. 

A learning parameter 1.0 [30] is used to balance the 

contribution of the current and past values of parameters 

such as weight, variance, mean, etc. Then /1  defines the 

time constant which determines the speed at which the 

distribution’s parameters change. The system starts with an 

empty set of models and then for every new observation tZ

at the current time t, it is first matched against the existing 

models in order to find one (say the l-th) such that

tltltZ ,, 5.2   . If such a model exists, its associated 

parameters are updated. Otherwise, a new Gaussian is 

introduced with ttl Z, , arbitrarily high =30, and 

arbitrarily low w =0.001 by evicting tl ,  if it exists [30]. 

Although the MoG based DBM such as the McFIS-DBM 

showed better performance compared to H.264, the key 

challenges with the MoG based DBM is the appropriate 

parameter value selection. The number of distribution 

model L if selected high may improve the background 



stability with more computation as a drawback. On the 

other hand using small number of L will lead to background 

being changed frequently thus loosing stability from the 

coding perspective. Similarly the learning parameter   has 

proportional impact on convergence. A value of 1.0

will need 10 frames to update a background. Higher 
value will provide less stable background as it uses less 

number of frames while smaller   value will provide more 

stable background by using large number of frames. It is 

very difficult to accurately identify the appropriate 

parameter values as they are highly dependent on the video 

sequence and require precise setting to get the best results. 

These challenges led us to our first contribution 

"Contribution 1: Integrating traditional NP technique into 

the HEVC video coding scheme". The NP technique 

[25][27] is able to work well without the explicit parameter 

settings required by MoG. It is also found to be performing 

better than MoG in object detection applications. We 

develop a DBM based coding scheme where the NP 

technique is used for generating the background frame to be 

used as an LTR frame during coding. 

Although the NP technique performs well for object 

detection applications, the NP based coding scheme is not 

the best for video coding applications. We have found that 

the NP based scheme performs better than HEVC (with 2 

reference frames) and almost as good as the MoG based 

scheme. Through further investigation we have identified 

that the background frame development process of the NP 

scheme is responsible for its ordinary coding performance. 

In the traditional NP technique parameter estimation is 

conducted based on the historical pixel values, however the 

background is generated based on a pixel's recent value 

only. Using the recent values of the pixels may be fine for 

object detection but it is not appropriate for coding purpose. 

For improving the coding performance we require a stable 

background frame comprising static and uncovered 

background areas so that the motion estimation can be 

reduced. The traditional NP technique is unable to provide a 

stable background frame as the previously uncovered 

background area is lost from the frame due to the recent 

pixel value usage. 

The quest for a more stable background using the NP 

technique led us to our second contribution "Contribution 

2: Developing the weighted non-parametric (WNP) 

technique". We have developed the novel WNP technique 

where the background is generated by incorporating both 

the historical and the recent values of the pixels. This 

process helps retaining the previously uncovered 

background areas and also incorporating newly found 

background areas. The generated background is much more 

stable and suitable for coding applications. 

WNP showed much improved coding performances in 

terms of rate-distortion performance; however, the key 

challenge with WNP is to determine the appropriate ratio 

between the historical values and the recent value of a pixel 

while generating the pixel value for the background frame. 

The ratio is found to be dependent on the video sequences. 

The challenge to selecting the appropriate ratio for every 

video sequence leads us to devise an adaptive background 

pixel value selection process. We develop an adaptive 

process which has the capability to test various ratios 

(define as α) for best suitability for any particular video 

sequence. The process selects the best ratio based on the 

amount of background detection.  

The WNP technique shows superior results, however, it 

requires better adaptation to highly dynamic scenarios. This 

leads us to our 3rd contribution "Contribution 3: 

Developing the scene adaptive non-parametric (SANP) 

technique". Unlike the WNP where original frame is used, 

the SANP technique uses coded frames to generate the 

background reference frames and has the capabilities to 

update the background frame with each newly coded frame. 

This recursive updating process makes SANP more 

adaptable to subtle changes in the background.  In section 

III we describe the contributions in detail followed by 

extensive experimental results in section IV. 

 

3. Proposed Techniques 

First we incorporated the NP technique (traditionally 

used for object detection) [25][27]  for video coding 

purpose. We applied the NP used for object detection to 

identify foreground and background pixels and retain the 

background pixel values in the background frame.  

We then develop WNP and SANP techniques based on 

the NP coding in this study which use a dual reference 

frames technique where the LTR is a high quality 

background frame (generated by the proposed WNP 

background modelling) and the STR is the immediate 

previous frame of the current frame. The background frame 

is modeled with a small number of original frames of a 

scene and all frames in the scene are encoded using the 

LTR and STR frames. The Lagrangian multiplier [31] is 

finally used to select the reference frame for a block. 

In the proposed techniques we also incorporate a scene 

change detection (SCD) strategy to trigger the background 

frame reset. The SCD is determined applying a simple 

metric computed utilising the McFIS and the current frame. 

The sum of absolute difference (SAD) between the McFIS 

and the current frame is computed. If the SAD for the 

current frame is 70% greater than that of the previous frame 

of a scene, we consider the SCD occurred [6]. When a 

scene change occurs we reset the background modelling and 

generate a new background frame for the new scene. To 

reduce the computational time, we only use a small search 

range for ME and MC when the LTR frame is used as a 

reference. As the LTR frame is referenced mainly for static 

and uncovered areas, we do not need to use a large search 

range. Thus, we can reduce the computational time 

significantly with respect to HEVC. 

The proposed WNP technique is primarily based on the 

well-known NP technique [25][27][28]. The WNP aims to 

generate a stable background frame from a set of initial 

training (input) frames. The generated background frame 

integrates both historical pixel intensity value and recent 

pixel intensity value from the last training frame for each 

pixel. This retains the past pixel intensity trend as well as 

the recent pixel value which in turn will provide a more 

stable background for video coding purposes. The use of 

historical pixel values also eliminates a sudden pixel 

intensity change (i.e., noise or dynamic background 



impulse) of the latest frame compared to the historical 

trend. For object detection applications, considering the 

pixel intensity of the latest frame to generate a background 

frame as done in the NP technique provides a better object 

in dynamic background situations. However, considering a 

combination of the pixel intensity of the latest frame and the 

historical pixel value provides better rate distortion 

performance in video coding applications.  

The NP, WNP and SANP techniques uses background 

modelling and background generation method as described 

by following steps: 

 

3.1. Step 1: Background probability estimation 

The background probability estimation is based on the 

traditional NP [25][27][28] used for object detection. The same 

process is used for NP, WNP an SANP coding techniques. 

Given Nxxx ,...,, 21 is a set of recent intensity values for a 

pixel in consecutive N  frames in temporal order, we can 

estimate the probability density function with pixel intensity 

tx at time t by using kernel estimator  .K  as: 
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 where  .K  is a kernel estimation function.  

If we consider the kernel estimator function  .K  to be a 

Normal function ),0( SN where S is the kernel function 

bandwidth, then the density estimation can be determined 

as: 
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With the assumption of independence between the 

different color channels d and with different kernel 

bandwidths 
2
j  for the jth color channel we can write: 
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The density estimation equation then can be reduced to:  
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In order to estimate the kernel bandwidth 
2
j  for jth 

color channel for any given pixel we need to compute the 

median absolute deviation over the sample for consecutive 

intensity values of the pixel. The median difference m can 

be calculated as 

 

| )(|  1 ii xxmedianm   where 1,...,2,1  Ni . 

 
We can consider that the intensity pair being consecutive 

comes from local-in-time distribution. Assuming that the 

local-in-time distribution is Normal ),( 2N , then the 

deviation )( 1 ii xx is also Normal )2,0( 2N . The 

standard deviation of the first distribution can be computed 

as:  
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3.2. Background generation 

With the NP technique, the calculated probability is 

compared against a threshold to determine if the current 

pixel belongs to the background or foreground. If the pixel 

is considered as background then its value is retained in the 

background frame. In the proposed WNP technique we also 

determine the background using a threshold recommended 

in [27]. Once the current pixel value is detected as 

background, the value is combined with the synthesized 

historical pixel intensity of the given sample for that 

particular pixel. The synthesized historical pixel value M 

for the sample pixel values can be calculated as 

 

YxxxmedianM N *),...,,(  21                 (4) 

 
The synthesized value M is a mimic of the actual pixel 

intensity generated using the standard deviation   and a 

very small normally distributed random multiplier Y where 

the component wise median of the pixel intensities is used 

instead of the mean. M is actually a generated value from a 

normal distribution with the median as the mean and   as 

the standard deviation.  

  The value X of the background pixel can be calculated 

using weighted average of the recent value tx  and the 

sample synthesized value M : 

 

)1(   MxX t                            (5) 

 

In this way, a background frame is generated for the 

entire frame and then encoded with high quality. The 

corresponding quantization set up is similar to [6].  

The value of  can be adjusted to provide more importance 

to either the recent value or the historical value trend for a 

given pixel. We have conducted simulation studies which show 

that the impact of  is dependent on the video dataset. Please 

note that when we use 1  in the proposed method, the 

proposed method is equivalent to the traditional NP technique 



as the background is developed solely based on the most recent 

pixel value. Our studies with other video data sets suggest that 

finding the right balance between historical and recent pixel 

value is the key to selecting an appropriate  value. In order to 

select the   value we have developed an adaptive  selection 

procedure described in 6 stages: 

 

1) Decide the potential  values 

At this stage we decide a set of potential 

  ofnumber   theis ...1  Ppwherep  values we are 

interested in for a given video data. The   values are 

between 0 and 1 and may be selected at regular intervals.  

 

2) Generate background for each   

A background frame for each   is generated by 

applying the background generation method using a number 

of frames (described earlier). We can denote the 

backgrounds as  ....1  where PpBp   

 
3) Calculate pixel intensity variation 

With the assumption of  ...1   where, QqFq  being the 

training frames with width W and height H, we find the 

intensity difference I for each pixel of each frame with the 

corresponding pixel for each background can be calculated 

as: 

 

|),(),(|),( hwFhwBhwI qppq                      (6) 
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4) Count background pixel detection 

The background detection percentage represents the area 

of a frame detected as background by the new WNP method 

using a particular  value. The total number of pixels in a 

frame is HW * . The number of pixels detected as 

background in a frame using a particular  value can be 

calculated applying (6) as 

 

)),((  hwICountC pqpq                        (7) 

 
The small value   is the threshold for a pixel to be 

considered as background. Ideally, the value of    should 

be “0”. However, the WNP develops a synthesized 

background using historical and actual pixel values which 

leads to deviation from the actual pixel value and thus a 

nonzero   value for some cases. With a significant amount 

of experimental studies using test videos we have identified 

that generally a large change in pixel value classifies it as 

foreground, while only a small change classifies it as 

background. Experimental results indicate that up to 2% 

deviation from the highest possible pixel value (i.e. 255) 

may be used as the   value. 

 

5) Calculate background detection percentage  

By applying (7) we can calculate the percentage of total 

pixels detected as background for a particular frame by: 

 

)*/()100*( HWCU pqpq                           (8) 

 

The overall background detection percentage for a test 

video is calculated based on the number of training frames

qF . The overall background detection percentage for the 

set p can be calculated as: 
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6) Select   for a video   
The   value for a given video is the p  value for the 

maximum pU value. 

 

PpU pp ,...2,1  where)max(for               (10) 

 

Our experimental results show that the  value that helps 

detecting the maximum percentage of frames as background 

provides a better background reference frame for that video 

leading to better coding performance. The   values were 

found to be positively correlated with the coding performance 

(PSNR) of any test video. This objective and adaptive selection 

procedure for the   value provides the decoder with the 

ability to generate the best background to achieve the best 

possible coding quality. 

 

3.3. Step 3: Integrate into the HEVC coding scheme 

The background generation process described in Step 2 

can be incorporated into the coding process using the 

following coding scheme.  

 
Fig. 1: WNP integrated coding scheme using original frame 



As shown in Fig. 1, the initial training frames are stored 

in a frame buffer while HEVC is used to code these frames. 

Once the buffer is full, the WNP background generator 

develops the background frame using the frames in the 

buffer. This background frame is then used by the McFIS 

based video coder as a reference frame. The coding 

continues until a scene change is detected. On detection of a 

scene change, a new background frame is generated by 

populating the frame buffer. In this scheme a HEVC coder 

is used during the background generation process. 

The SANP technique mimics the WNP in generating the 

background and selecting the  value. However in SANP 

coded frames are used to generate the background frame 

instead of the original frames as proposed in WNP. The 

initial background is generated using HEVC coded initial 

frames and continuously updated with each subsequent 

coded frame. The fundamental difference is that the WNP 

technique uses original frames to generate the background 

frames while the SANP technique uses coded frames. 

The SANP background generation process defines a size 

for a frame set required for generating the background. This 

set is iteratively updated with each coded frame as shown in 

Fig. 2 Let us assume that the set size is determined to be 25 

frames. At the beginning, HEVC coder is used to code the 

first 25 frames which are then sent to the frame buffer (size 

25). When the buffer is full, the WNP based background 

generator is used to generate the background frame which is 

then used by the McFIS coder to encode frame no. 26. The 

coded 26th frame is then sent to the frame buffer and the 1st 

frame is discarded from the buffer. A new background is 

then generated from the frames in the buffer. The new 

background reference frame is generated by taking the 

average of the current reference frame and the newly 

created background frame. This process is repeated for each 

new coded frame where the oldest frame in the buffer is 

replaced with the newest coded frame in a first-in-first-out 

sequence. 

Let us consider that the background frame generated by 

the SANP background generator is denoted as G with width 

y and height z . Each pixel X in frame G can be calculated 

using the WNP background generation process. Each pixel 

in the background frame can be referred as zyGX ,, . Initially 

this background frame G is the reference frame R . Each 

pixel of the reference frame can be obtained as: 

 

zyGzyR XX ,,,,      (11) 

 

With each newly coded frame a new background frame 

G is generated by SANP background generator. The 

reference frame R is updated with each new coded frame by 

updating the pixels of the reference frame as: 

 

zyGzyRzyR XXX ,,,,1,, )1(      (12) 

 

Where   is the integration ratio between current 

background and newly generated background which 

reduces the impacts of past values of any pixel at a rate of 

/1 with each iteration. The SANP scheme maintains the 

stability of the background reference frame by 

incorporating the pixel values of all the past background 

frames in the new reference frame. In general 5.0

provides a good integration ratio for most applications; 

however   value can be adjusted to suit specific 

application requirements. With higher   value, the recent 

changes are given more importance while generating the 

background. 

When a scene change is detected the background 

reference frame is reset to initial state. HEVC coder is used 

until another background reference frame is generated. The 

SANP scheme eliminates the need for coding the McFIS 

(i.e. the background frame) as the scheme can be used 

simultaneously at both the coding and decoding end of the 

coder. The continuous updating of the background reference 

frame makes it adaptive to changes in the input frames thus 

improving the coding performance. 

The SANP integration into a coding scheme is shown in 

Fig. 2. In this scheme the initial training fames are coded 

using the standard HEVC coder. The coded frames are then 

used by the SANP background generator to generate a 

background frame to be used as a reference frame by the 

McFIS based coder for coding the next new frame. Each 

coded frame is then used by the SANP background 

generator to develop a new background frame to be used as 

reference while coding the next new frame. The key 

difference between the WNP and SANP schemes is that, in 

WNP the background is updated only when there is a scene 

change while in SANP the background is updated with each 

new coded frame. Due to the continuing background 

updating in SANP it obtains better RD performance where 

the background is dynamic however it requires more time 

for the updating process. 

 
Fig. 2: SANP integrated coding scheme using coded frame 

 



4. Experimental Results & Discussions 

4.1. Experiment setup 

The experiments were conducted on a dedicated desktop 

machine running 64 bit Windows operating system. The 

program codes for the NP technique were available from 

the author [25] by personal communication. Each test video 

has been decoded using the HEVC, NP, MoG and WNP 

based coder-decoder. For HEVC we used GOP of size 32. 

For Inter coding we used 2 reference frames. Motion search 

was performed within a window of ±31. For NP, MoG and 

WNP, the generated background frame by each technique 

was used as a reference frame along with the immediate 

previous frame for coding-decoding purpose. The standard 

definition (SD) test video sequences Sales, News, Grandma 

and Table Tennis are of resolution of 176 × 144, while the 

Silent, Paris and Container test video sequences are of 

resolution of 352 × 288. We have also used two high 

definition (HD) videos Blue sky and Pedestrian with 

resolution of 1088 × 1092. First 25 frames were used as 

training frames of a scene to generate the background frame 

for the MoG, NP and WNP techniques.  

For the original frame based WNP coding scheme the 

initial total training frames were chosen to be 25 because it 

provided a buffering time of < 1 second at standard 30fps. 

This is acceptable for most of the applications. A set of 25 

frames was also large enough to provide a good quality 

background for all our test video sequences. However, the 

size of the training frame set can be adjusted according to 

available buffering time and required background quality. 

We have used similar coding scheme for MoG and NP 

where the background frame was generated using 25 frames 

and then coded as an I-frame. 

For the SANP based scheme, we have coded first 25 

frames using the HEVC technique. These coded frames are 

then used to generate the reference background frame. For 

the NP and MoG technique similar coding schemes were 

applied where the backgrounds were generated and 

continuously updated using the coded frames. 

We have used 5 different quantization values (QP = 28, 

24, 20, 16, and 12) for each sequence to obtain different bit 

rates and the corresponding PSNR values. Then each of the 

four coding techniques for each scheme was used to code 

the video sequences.  

We have applied the   selection procedure described 

earlier to select appropriate  for each video sequence. We 

have set the  selection parameters P = 9 (i.e. 9   values 

between 0 and 1 were tested to find the best one) and Q = 

25 (i.e. 25 trainings frames were used). Table 2 shows the 

amount of background detection (in %) we achieved under 

various  values for our test videos. Our   selection 

process successfully detects the most suitable  value for 

each video thus ensuring that the coding performance is 

maximized. 

 

 

Table 1. Test video characteristics 

Video 

sequences 

Resolution Camera 

motion 

Content 

Sales 176x144 Static  Slow hand movement and lips movement with static background. 

News 176x144 Static  Two news readers in the foreground with light lip and head movement. The background 

contains heavy movements with two ballet dancers dancing. 

Silent 352x288 Static  A lady frequently moving one hand in front of a static background uncovering previously 

occluded background areas. 

Paris 352x288 Static  Static background with two people talking in the foreground with lot of complex motions 

including one person juggling with a ball.  

Grandma 176x144 Static  Static background with almost static foreground where an elderly lady is very slowly 

moving her lips and head. 

Table 

Tennis 

176x144 Zoom, 

Scene 

change 

Very fast moving foreground with mostly static background where a player repeatedly 

striking a table tennis ball. There are two zoom operations and scene changes in this video. 

Container 352x288 Static  Slow moving large container ship in the foreground with highly complex and dynamic 

background including smaller fast moving boats and water with waves. 

Blue sky 1920x1088 

 

Camera 

motion 

Very slow camera motion. Static sky background but very complex foreground where 

there are complex changes including moving tree leaves and sunlight. The amount of 

background is comparatively small. 

Pedestrian 1920x1088 Static Highly dynamic foreground where large number of pedestrians are crossing a street 

section. Static background is formed by building walls where occluded areas are 

uncovered. Frames consists of larger amount of foreground compared to the background.  

Exit 640x480 Static  People moving through an exit door. Large static background where occluded area is 

uncovered. 
  

 

 

 

 

 



Table 2. Background detection percentage for test videos at various α 

α 
Test videos 

Sales Paris Silent News Grandma Table Blue sky Pedestrian Exit 

0 82.03 76.62 81.56 89.38 96.01 80.61 70.51 68.71 75.87 

0.15 82.12 76.73 81.67 89.39 96.28 80.73 70.73 69.12 76.35 

0.25 82.17 76.68 81.65 89.33 96.46 80.48 70.64 68.82 75.93 

0.4 82.01 76.26 81.26 89.12 96.06 79.08 69.22 67.37 75.16 

0.5 81.88 75.72 80.78 88.84 95.06 77.19 66.79 66.93 74.38 

0.65 81.78 74.85 80.09 88.24 92.82 73.41 65.61 66.18 73.64 

0.75 81.68 74.11 79.64 87.81 91.20 70.43 62.83 65.63 72.81 

0.9 81.66 73.52 79.19 87.42 89.10 66.88 60.19 64.79 71.63 

1 82.04 73.96 79.46 88.57 92.52 72.89 68.75 68.55 75.62 
 

 

4.2. Results and discussions 

Our proposed WNP and SANP techniques have shown 

much better coding performance in terms of PSNR at the 

same bit rates. Fig. 3 and Fig. 4 highlights the performance 

gains of both the WNP and SANP techniques against 

comparable schemes of the NP and MoG techniques and the 

standard HEVC technique for the Grandma, Silent and 

Sales videos. For our set of test videos WNP and SANP 

achieved between 0.5dB to 1dB PSNR gains over HEVC 

and comparable MoG and NP schemes. The performance of 

the proposed techniques were much better in high bit rate 

scenarios which makes them more suitable for 

contemporary applications due to their high bit rate 

requirements. 

Detail comparative PSNR performances of all the 

techniques for the set of test videos are provided in Table 3. 

We observe that the WNP technique performs best for the 

Sales, Silent, Grandma and Container videos compared to 

MoG, NP, and HEVC techniques. These four videos have 

some common features including very stable background 

and less exposer of occuluded areas. The WNP technique 

was able to generate a background reference frame which 

did not change much throughout the coding process thus 

providing better coding performance. The WNP technique 

was also the best performer for the HD videos Bluesky and 

Pedestrian and Exit. The SANP performed very close to the 

WNP in these videos but showed much superior 

performances compared to HEVC and coded frame scheme 

based NP and MoG techniques. In the Bluesky and 

Pedestrian videos the performances of WNP and SANP is 

very close to HEVC, MoG and NP methods. The reason for 

such close RD performance is due to the content of these 

videos. In Bluesky there is complex camera rotating motion 

and the foreground consists of more than 60% of the frame 

which gradually keeps increasing over the time. The 

foreground also has significant motion including moving 

leaves and changing sunlight comming through leaves. In 

the Pedestrian video the foreground consists of more than 

80% of frame area and involves lot of frequent movements 

where large number of pedestrians and cyclists move 

around. Due to a smaller background frame area and highly 

comples foreground movements on these two videos, our 

proposed methods does not gain significant performance 

gain over other methods as they utilise background 

detection efficiently for performance enhancement. 

However they perform as good as other methods and save 

computational time over HEVC. For the Exit video where 

there is about 70% background frame area, proposed SANP 

and WNP outperforms other techniques with significant 

margin as shown in Fig. 3(c) and Fig. 4(c). 

The SANP performed the best for the News, Table and 

Paris videos. These videos are challenging due to their 

dynamic characterstics. The News video contains dynamic 

background (ballet dancers performing at the back), the 

Table video contains multiple scene changes, and the Paris 

video have several exposers of previously occuluded 

regions at different stages of the video. The inherent scheme 

of the SANP technique have the capacity to update the 

background reference frame quickly thus incorporating the 

challenging dynamic characterstics of the video 

background. We observe that WNP performs slightly better 

than SANP in Silent and Grandma videos. These two 

videos have static background with small amout of exposer 

to previously occluded areas. This characteristic of these 

two videos does not utilise the strengths of SANP rather 

performance is suffered slightly by the use of coded frames. 

WNP works by using original frames and distortion occurs 

when we encode the McFIS, whereas SANP works by using 

coded frame and distortion occurs in the coded frames. 

Thus, for the static background and lengthy scene, WNP 

should outperform the SANP and for the dynamic 

background and shorter scene change SANP should 

outperform WNP. 

In order to better understand the effectiveness of the SANP 

and WNP techniques we present frame by frame performance 

analysis in Fig. 5. In Fig. 5(a) for the Silent video we observe 

that the WNP shows superior performance trend compared to 

SANP. Fig. 5(b) shows that WNP has a higher background 

frame usage as a reference frame during coding leading to 

better performance of WNP for this video. We observe a 

contrasting results for the Table video. Fig. 5(c) shows that 

SANP has a better performance trend than WNP which is 

further proved by the better background usage by SANP as 

shown in Fig. 5(d). In the Table video 3 key changes happens - 

a) around frame 50 there is a zoom-in, b) around frame 100 

there is zoom-in and then zoom-out, and c) around frame 150 

there is a scene change. In Fig. 5c we have now highlighted 

these changes and we can observe spikes in RD performances 



at those frames. After frame 150 there are no more scene 

change in this test video, and the most significant observation 

from Fig. 5c is that the performance of SANP increases 

continuously whereas the WNP performance remains flat. 

This result is due to the fact that SANP kept updating the 

background frame with each new frame but WNP used the last 

updated background frame as no scene change was detected. 

Fig. 5d complements this finding where we can observe that 

after frame 150 higher amount of background frame was used 

by SANP for coding resulting in better coding performance. 

 

 

   

(a) Result for  Grandma  Video (b) Result for Silent Video (c) Result for Exit Video 

Fig. 3: Coding performance comparison between the WNP and other original frame based techniques 

 

   

(a) Result for  Grandma  Video (b) Result for Silent Video (c) Result for Exit Video 

Fig. 4: Coding performance comparison between the SANP and other coded frame based technique 

 

 

Table 3. Coding performance of tested techniques at different bit rates for the set of test videos 

Test videos 

Bit rate 

(kbps) HEVC 

Coded frame based schemes Original frame based schemes 

Proposed 

NP (coded) MoG (coded) 

Proposed 

SANP 

Proposed NP 

(original) 

MoG 

(original) 
Proposed WNP 

Sales 
150 40.00 41.90 40.70 42.70 42.00 42.10 42.70 

300 44.90 45.60 45.70 46.80 45.90 46.00 46.80 

News 
100 40.20 39.40 38.80 39.50 39.30 39.40 39.50 

250 45.90 45.80 45.00 45.90 45.60 45.60 45.60 

Silent 
1000 42.00 43.80 43.00 44.50 43.70 43.80 44.70 

1600 44.60 45.70 45.70 46.80 45.80 45.80 46.90 

Paris 
1400 40.50 41.90 40.80 42.40 41.50 41.60 42.00 

2400 44.40 45.10 44.40 45.50 44.90 44.80 45.30 

Grandma 
150 41.20 42.40 41.40 42.60 42.80 42.80 43.80 

350 46.10 46.20 46.10 46.80 46.55 46.50 47.70 

Table Tennis 
500 43.90 44.00 44.80 44.90 43.90 43.95 44.00 

800 47.70 47.80 48.00 48.40 47.70 47.00 47.90 

Container 
1500 43.20 42.90 43.20 43.30 43.30 43.30 43.80 

2500 46.30 45.90 46.20 46.30 46.30 46.30 46.80 

Blue sky 
2100 41.20 41.20 41.20 41.20 41.30 41.30 41.40 

4500 47.75 47.85 47.70 47.85 48.15 48.10 48.20 

Pedestrian 
1000 40.50 40.50 40.50 40.55 40.70 40.60 40.80 

3500 49.15 49.10 49.15 49.10 49.40 49.30 49.50 

Exit 
1000 39.20 39.30 39.25 39.80 39.25 39.30 39.80 

4000 42.80 42.81 42.78 43.00 42.82 42.80 43.20 
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The SANP technique updates the background with every 

newly coded frame while the WNP only provides the 

background reference frame based on the initial set of 

original frames. The recursive updating process of SANP 

provides a background reference more consistent with the 

background changes leading to better coding performance. 

SANP thus works better for video sequences with high 

dynamic content such as moving background, unocculusion 

and scene changes. Similar result trends were observed for 

the high dynamic News and Paris videos. On the contrary 

WNP performed well for videos with stable background 

such as Silent, Grandma, Sales and Container. These results 

highlight the appropriateness of the two schemes for videos 

with different characterstics although both of them 

significantly outperforms HEVC, NP  and MOG for 

different video types. 

 

 
Fig. 6: Mean processing time saving (%) for the different video coding 

techniques compared to HEVC 

 

Another strength of the proposed WNP technique lies in 

its ability to perform significantly faster than the other 

major techniques discussed in this study. We observe that 

throughout our experiment with different test videos and at 

different quantization values, the WNP method is the fastest 

among all. Fig. 6 shows the time saving (%) for the MoG, 

NP and WNP technique relative to the HEVC for different 

test videos. These results were obtained by applying various 

quantization values (40 to 8) to the Sales, News, Silent, 

Paris, Grandma, Table Tennis, Bluesky and Pedestrian 

videos, and the results for quantization 24 is presented here. 

We can observe that the proposed WNP saves about 45% to 

65% of time compared to HEVC. It is also more efficient 

compared to MoG and NP. Our proposed SANP achieves 

roughly 20% computational time saving compared to 

HEVC. 

The time saving of WNP is largely due to the more stable 

background it generates for the reference frame. Generally 

the encoder-decoder requires less time if it chooses a pixel 

value from the background reference frame rather than the 

last frame considered for foreground becuase no/little 

motion estimation is required for the background pixel 

encoding-decoding [3][7]. 

 

Inorder to understand the efficiency and performance of 

the WNP technique, we discuss the results for the Silent 

video in more detail. The first 25 frames were used as 

training frames for generating the background frame. The 

75th, which represents a distant enough frame from the last 

background-generating frame (25th), was used in our 

investigation to introduce enough variations between 

frames. Quantization values were adjusted (around 20) to 

bring the bit rates for NP, MoG an WNP comparably closer. 

As shown in Table 4, with similar bit rate the WNP quality 

(in terms of PSNR) was much higher. The mean error is the 

mean absolute difference between the 75th original input 

frame and the decoded frame. The lower error for WNP, 

shown in Table 4, indicates that the decoded frame 

produced by the proposed WNP technique is more similar 

to the original frame than those produced by the MoG and 

NP techniques. 

The 75th input frame is shown in Fig. 7. The relevant 

histogram in Fig. 8 shows the absolute pixel value 

differences between the original and decoded frame for 

each technique. From the histogram we can observe that the 

percentage of pixels with “0” and “1” pixel value difference 

is higher for WNP than NP and MoG while lower for higher 

pixel value differences. This indicates that the decoded 

output frame produced by WNP is much similar to the 

actual input frame. It is clearly evident that the WNP 

performes more efficiently than MoG and NP.  This 

confirms the lower mean error for WNP shown in Table 4.
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(a) Silent video frame by frame PSNR 

comparisons using two different 
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(b) Percentages of background frame 

usage as a reference frame for 
Silent video using two schemes 

(c) Table video frame by frame PSNR 
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Fig. 5: Frame by frame performance and background usage for SANP and WNP 

 

Table 4. 75th Frame rate distortion performance for Silent video 

Technique Bit rate PSNR Mean Error 

NP 1259.4 44.71 1.1304 

Proposed WNP 1113.7 45.12 1.0724 

MoG 1242.3 44.72 1.1311 
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Fig. 7: Input frame (75th) of the Silent video 

 

 
Fig. 8: Input-Output pixel  intensity difference (%) for the 75th frame 

 

  
(a) Background frame (b) Reference map 

 

Fig. 9: Background and reference map of 75th frame for NP 

 

  
(a) Background frame (b) Reference map 

 

Fig. 10: Background and reference map of 75th frame for WNP 

 

Fig. 9, Fig. 10 and Fig. 11 show the background frames 

generated by the NP, MoG and WNP techniques along with 

the relevant background reference maps showing the 

sections of the image considered as background. The black 

regions in the reference maps are foreground. If we inspect 

the background frames closely with respect to the original 

75th frame shown in Fig. 7, we can observe that NP and 

WNP have been able to better detect the background behind 

the moving hand compared to MoG. These background 

frames generated by NP, MoG and WNP were used as 

reference frames for coding-decoding by the respective 

coding-decoding technique. 

 

  
(a) Background frame (b) Reference map 

 

Fig. 11: Background and reference map of 75th frame for MoG 

 

 
Fig. 12: Background usage (%) as the 2nd  reference (LTR) over various 

quantization for the Silent video using Scheme 1 

 

The reference maps in Fig. 9, Fig. 10 and Fig. 11 show 

the areas considered as foreground (in black) and 

background during coding-decoding process. By comparing 

the reference maps we can observe that during coding-

decoding of the 75th frame, more background area has been 

used from the background frame generated by WNP. The 

additional areas used from the foreground by NP in Fig. 

9(b) and MoG in Fig. 11(b) compared to WNP in Fig. 10(b)  

are highlighted using red circles. This higher usage of the 

background reference frame has contributed to the better 

performance and faster processing capacity of the proposed 

WNP based technique due to no motion search 

requirements in the background region. Fig. 12 shows the 

general background frame usage trends for each technique 

when coding-decoding the frames of the Silent video under 

various quantization values. 

From the experimental results it is evident that the WNP 

and the SANP techniques inherit the non-parametric 

advantages of the NP and provide much superior 

performances under various testing scenarios. The WNP is 

more appropriate for coding videos with more stable 

background by taking the advantages of a background 

frame generated using original frames. The SANP uses 

WNP background generation process and works better for 

coding video sequences with highly dynamic backgrounds 

by a recursive updating scheme using coded frames. 

 

5. Conclusion 

   We have developed a new coding technique using the 

tradiational non-parametric (NP) background modelling 

technique. A novel weighted non-parametric (WNP) 

background model is then developed to suit the video 

coding applications. Two separate coding schemes based on 

the original frames and the coded frames are developed to 

handle video sequences with stable and highly dynamic 

backgrounds. The proposed WNP based technique adopts 
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the strengths of the well-known NP background modelling 

technique including automated parameter estimation and 

better dynamic background detection. The WNP technique 

generates more stable background by incorporating historic 

pixel values in the background frame. The balance between 

historic and recent pixel values is maintained adaptively 

through dynamic ratio selection. The stability of the 

reference background frame in turn provides more efficient 

performance for the WNP based coding-decoding 

technique. The balance between the historic and current 

pixel value can be obtained using the novel adaptive weight 

selection procedure presented in this paper. Extensive 

experimental results presented in this study establish the 

performance validity of the proposed technique. The SANP 

scheme showed better performances where the background 

is dynamic or there is scene changes or there is high 

exposer of occuleded areas at different stages in the video 

sequences. The experimental results showed that WNP and 

SANP provide superior performances for quality (PSNR) 

compared to similar schemes of NP and  MoG, and against 

the HEVC by up to 1.0 dB. WNP is much faster than these 

techniques (45% to 65% faster than HEVC). The study will 

provide researchers and practitioners with new insights in to 

improving the performance of the coding-decoding process.  
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