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a b s t r a c t 

Instance transfer aims at improving prediction models for a target domain by transferring data from re- 

lated source domains. The effectiveness of instance transfer depends on the relevance of source data to 

the target domain. When the relevance of source data is limited, the only option is to select a subset 

of source data of which the relevance is acceptable. In this paper, we introduce three algorithms that 

perform source-subset selection prior to model training. The algorithms employ a conformity-based test 

that estimates the source-subset relevance based on individual instances or on subsets as a whole. Ex- 

periments conducted on four real-world data sets demonstrated the effectiveness of the proposed algo- 

rithms. Especially, it was shown that pre-training subset-selection based on set relevance is capable of 

outperforming the existing instance-transfer techniques. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Instance-transfer learning has gained increasing attention over

he last decade [1] . It aims at improving prediction models for

 target domain by exploiting data from (closely) related source

omains. This implies that the effectiveness of instance-transfer

earning [2] depends on the relevance of the source data to the tar-

et data. Hence, estimating that relevance is essential for instance

ransfer [3] . However, when the relevance of the source data to the

arget domain is limited, the only possible solution is to select a

ubset from the source data which relevance to the target domain

s acceptable. Thus, source-subset selection is essential for instance

ransfer. 

Approaches to select source subsets can be described using

wo dimensions: (1) the order of the selection phase and model-

raining phase; (2) the source-relevance criterion used. For the

rst dimension there exist two options: pre-training selection

nd post-training selection. The pre-training selection first picks

elevant source instances and combines them with the target data,

nd then trains the final model on the combined data e.g., [4] .

he post-training selection however first trains a model or several

odels on the combination of target data and source data, and

hen uses these models for filtering out irrelevant source instances,

.g., [5,6] . We note that the post-training selection often requires
∗ Corresponding author. 
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terating over the model-training and selection phases [5] . In

his manner irrelevant source instances may introduce additional

rrors to the intermediate models, and eventually degrade the

erformance of the final ensemble. Therefore, the pre-training

election is safer than the post-training selection, especially

or the source data that contains a large number of irrelevant

nstances. 

As for the second dimension, source relevance can be deter-

ined by two criteria namely: individual relevance and set rele-

ance. The first criterion selects a subset of source instances based

n the individual relevance of each instance to the target domain

4,5] . The second criterion selects a subset of source instances

ased on the relevance of this subset as a whole to the target do-

ain [6] . Later in this work we will show that the set relevance is

ore precise than individual relevance (see Section 5.1 ). 

If we systematize the existing instance-transfer approaches ac-

ording to the dimensions introduced above we observe that there

xist: (a) algorithms with pre-training selection based on indi-

idual relevance [4] ; (b) algorithms with post-training selection

ased on individual relevance [5,7] ; and (c) algorithms with post-

raining selection based on set relevance [6] . However, there is

o algorithm performing pre-training selection based on set rele-

ance.Therefore, it is the aim of this paper to fill this gap. The need

or designing such algorithms can be motivated from two perspec-

ives. First, it is of interest to the systematic research in instance-

ransfer learning, since there is a clear methodological gap. Sec-

nd, these algorithms have a potential to be promising, since as it

s stated above usually the pre-training selection outperforms the

ost-training selection, and the set relevance is more precise than
he individual relevance. 

http://dx.doi.org/10.1016/j.neucom.2016.11.071
http://www.ScienceDirect.com
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In this paper, we propose a p re-training s election algorithm

based on s et r elevance (PSSR). This algorithm employs the confor-

mal test (CT) proposed in our previous work [3] to decide whether

a source subset is relevant to the target domain 

1 . PSSR selects the

largest source subset that passes the conformal test at a given sig-

nificance level prior to the model-training phase. In case the target

data is class-imbalanced, PSSR employs a class-conditional confor-

mal test (CCCT) that proposed later in this paper. CCCT is actu-

ally the CT test that applied on target and source instances with

the same class label. In consequence, the proposed PSSR algorithm

can even handle class-imbalanced data, and thus is superior to

the existing instance-transfer algorithms in the presence of class-

imbalanced target data. 

We show in this work that PSSR algorithm is effective but not

computationally efficient. To address this issue we first propose

a p re-training s election algorithm based on i ndividual r elevance

(PSIR). This algorithm employs CT for deciding on individual rel-

evance of any source instance prior to the model-training phase.

PSIR selects the largest subset consisting of source instances that

have individually passed the test. We show that identifying these

instances involves a small computational cost. Thus, PSIR is a com-

putationally efficient algorithm. 

Relating the set relevance to the individual relevance, we show

that CT for deciding on individual relevance can be also used for

approximating CT for deciding on set relevance at a significance

level of 0.5. This allows us to introduce a slight modification of

the PSIR algorithm that selects a very close approximation of the

largest source subset selected by PSSR at a significance level of 0.5.

We call this algorithm p re-training a pproximate s election for 0.5-

source s ubset (PASS). 

The experimental results on real-world data demonstrate that

PSSR and PASS outperform PSIR. Moreover, these two algorithms

also achieve better results than four existing instance transfer al-

gorithms that do not consider the pre-training selection and the

set relevance at the same time. Thus, our main conclusion is that

the combination of pre-training selection and set relevance can im-

prove source selection for transfer, and capable of outperforming

other combinations. 

The remainder of this article is as follows. Section 2 provides

an overview of related work. The instance-transfer task is formal-

ized in Section 3 . Section 4 describes our conformal test that de-

cides on the relevance of a source subset to the target domain.

Section 6 presents the proposed set-selection approaches. An ex-

perimental analysis is given in Section 7 . Section 8 concludes the

article. 

2. Related work 

There exist several instance-transfer algorithms that involves

source-subset selection. From a prediction model view, these al-

gorithms come from two family of ensembles: boosting ensembles

[8] and bagging ensembles [9] . Below we provide an overview of

these algorithms using the two dimensions for source-subset se-

lection introduced in the previous section. 

The combination of pre-training selection and individual rele-

vance results in one algorithm from the bagging family, namely

the double-bootstrapping instance-transfer algorithm [4] . This

algorithm first constructs an ensemble of prediction models

trained on bootstrap samples from the target data. Then the

ensemble classifies the source instances and those that are

correctly classified are selected. Since the selection is done
1 The test determine the relevance of a source subset to the target domain by 

testing the null hypothesis that the subset is generated from the same distribution 

as target data under the exchangeability assumption. 

t  

w  

t  

l  

i

hrough classification, the double-bootstrapping algorithm is sen-

itive to class-imbalanced target data. In this case the ensem-

le is likely to misclassify source instances of the minority

lass(es) even when they are in fact relevant to the target do-

ain. Thus, the source instances from the majority class(es) are

elected most of the time, and the instance transfer can become

uboptimal. 

The combination of post-training selection and individual rel-

vance results in several algorithms from the boosting family, e.g.,

ransfer Adaboost (TrAdaBoost) [5] and Dynamic Transfer AdaBoost

Dynamic-TrAdaBoost) [7] . These algorithms are similar to the

daBoost algorithm [8] but employ two opposite weight-update

chemes depending on the type of the instances: (1) the weights

f the target instances that are incorrectly classified are being

ncreased, and (2) the weights of the source instances that are

ncorrectly classified are being decreased. In theory the average

eighted training loss of boosting-based algorithms on the source

ata is guaranteed to converge to 0 as the number of iterations ap-

roaches infinity [5] . This implies that in this case relevant source

nstances will be classified correctly and irrelevant source instances

ill receive a weight of 0 (i.e., they will be totaly rejected). How-

ver, in practice, when most of the source instances are irrele-

ant and the size of the source data is big, these algorithms are

ikely to stop at very first iterations due to the fact that train-

ng error on target data in current iteration exceeds 0.5. In this

ase, irrelavant source instances can not be filtered out through

terations, and thus the final model is built on plenty of irrel-

vant source data. The latter can result in a negative transfer:

hen the models trained on the target and the selected source

ata perform worse than the models trained only on the target

ata. 

The sensitivity of TrAdaBoost and Dynamic-TrAdaBoost to class-

mbalanced target data is less obvious: it is hidden in the weight-

pdate scheme of the source instances. Since the source instances

f the minority classes have higher chance to be misclassified, they

eceive lower weights. Thus, they have less influence on models to

e built in later iterations within the final boosting ensemble. 

The combination of the post-training selection and set rele-

ance results in one algorithm from the bagging family, namely

ransfer Bagging (TrBagg) [6] . TraBagg includes two phases. In the

odel-training phase, first a set of bootstrap samples are randomly

enerated from the combined target and source data, and, then

everal base prediction models are trained on those samples. In

he selection phase, a subset of the base prediction models are se-

ected by minimizing the empirical error on the target data. This

eans that source subsets of the bootstrap samples are indirectly

elected through selecting the base models and this can be viewed

s hidden set relevance. Although TraBagg is simple, it requires a

arge number of iterations to identify all relevant source instances

hen the size of source data is big. 

Similar to the double-bootstrapping instance-transfer algorithm,

raBagg is vulnerable to class-imbalanced data. This happens be-

ause TraBagg always selects the best prediction models with small

raining errors, even when such models misclassify the target in-

tances belonging to the minority class(es). 

Analyzing the instance-transfer algorithms considered so far we

bserve that posting-training selection is vulnerable to large and

rrelevant source data, since the selection process employs infor-

ation from the source data. In this respect pre-selection selection

ecomes more appealing. However, it may also fail in the presence

f class-imbalanced target data. In addition, we note that the pre-

raining selection has never been combined with the set relevance

hich can be of interest for the systematic research in instance-

ransfer learning. Thus, we aim at developing a pre-training se-

ection algorithm based on set relevance which is robust to class-

mbalanced target data. 
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. Notations and task formalization 

Let X be a feature space and Y be a class set. A domain is de-

ned as a tuple consisting of a labeled space ( X × Y ) and a proba-

ility distribution P over ( X × Y ). We consider first a domain 〈 ( X ×
 ), P T 〉 that we call a target domain. The target data set T is a set

f m T instances ( x t , y t ) ∈ X × Y drawn from the target distribution

 T under the randomness assumption (the iid assumption). Given a

ew test instance x m T +1 ∈ X, the target classification task is to find

n estimate ˆ y ∈ Y of the true class of x m T +1 according to P T . 

Let us consider a second domain 〈 ( X × Y ), P S 〉 that we call

 source domain. The source data set S is a set of m S instances

 x s , y s ) ∈ X × Y drawn from the source distribution P S under the

andomness assumption. Knowing that the target domain and the

ource domain are related, we define the instance-transfer classifi-

ation task as a classification task with an auxiliary source data set

 in addition to the target data set T . We note that the class of a

ew test instance is estimated according to the target distribution

 T . This implies that the source data is used as auxiliary training

ata for the target classification task. 

Instance-transfer learning is sensitive to the relevance of the

ource data to the target domain. Hence, estimating that relevance

s essential for instance transfer. However, when the source data is

ot very relevant to the target domain, the only option is to select

ource instances which individual relevance or relevance as a set

or the target domain is acceptable. Thus, the problem of selecting

ource instances is important for the overall success of instance

ransfer. 

. Conformal test to decide on instance transfer from source 

ata 

We proposed a non-parametric conformal test (CT) to decide on

he relevance of source data to the target domain in [3] . The key

dea is as follows. In the instance-transfer classification task, the

arget data and source data are generated under the randomness

ssumption. To decide whether the source data is relevant to the

arget one, we need to test a null hypothesis that the joint data

et T ∪ S has been generated from the target distribution P T un-

er the randomness assumption. However, the randomness tests

10–12] are known to be incomputable [10] . Therefore, we em-

loyed the conformal prediction framework [13] to relax the ran-

omness assumption and proposed a test under the exchangeabil-

ty assumption of data generation [14] 2 . Due to that assumption

ur test on instance transfer treats target and source data sets T

nd S as sequences, and it tests the null hypothesis that the con-

atenated data sequence TS has been generated by the target dis-

ribution P T under the exchangeability assumption. 

Below we describe our conformal test. We first introduce the p -

alue function used in the test and then test itself. After that, we

escribe a class conditional version of the test. Finally, we provide

 computationally efficient approximation of the p -value function. 

.1. p -value function and test 

The null hypothesis that the combined data sequence TS has

een generated by the target distribution P T under the exchange-

bility assumption is equivalent to the hypothesis that the proba-

ility distribution of all the permutations of the data sequence TS

s uniform. Our test makes use of this equivalence and tests the

atter hypothesis. 
2 The exchangeability assumption is a weaker assumption than the randomness 

ssumption. It holds for a sequence of random variables iff the joint probability 

istributions of any two permutations of those variables coincide. 

p  

g  

m

 

t  
Vovk proposed a special case of our test for conformal predic-

ion when the size of the source data S equals one (i.e., m S = 1 )

n [13] . This test is based on the instance nonconformity scores as

tatistics for the null hypothesis. The nonconformity score α( x, y ) of

n instance ( x, y ) ∈ TS is defined as a score indicating how unusual

hat instance is in the data sequence TS �{( x, y )}. Let ( X × Y ) ( ∗) rep-

esents the set of all sequences defined over ( X × Y ), an instance

onconformity function A is formally a mapping from ( X × Y ) ( ∗) ×
 X × Y ) to R 

+ ∪ { + ∞} , indicating how unusual the instance ( x, y ) is

ith respect to the instances in the data sequence TS �{( x, y )}. We

ote that any instance nonconformity function has to produce the

ame result for an instance independently on the permutations of

S . Otherwise, the instance will have | TS |! number of possible non-

onformity scores. 

Since in the instance-transfer setting the source data S usu-

lly consists of more than one instance, we generalized the work

f Vovk in [3] and defined a nonconformity function for data se-

uences of any length. Given the combined sequence TS and any

equence U ⊆TS , the nonconformity function returns a value α ∈
 

+ ∪ { + ∞} indicating how unusual the data sequence U is with

espect to all the permutations with size | U | of the data sequence

S . 

efinition 1 (Sum sequence nonconformity function) . Given an in-

tance nonconformity function A , a data sequence TS and a data

equence U ⊆TS , the sum sequence nonconformity function A 

∗ :

(X × Y ) (∗) × (X × Y ) (∗) → R 

+ ∪ { + ∞} is defined as 

 

∗(T S, U) = 

∑ 

(x,y ) ∈ U 
α(x,y ) , 

here α(x,y ) = A (T \ { (x, y ) } , (x, y )) . 

The sum sequence nonconformity function A 

∗ returns the same

onconformity score for a data sequence U independently on the

ermutations of TS if this property holds for the instance noncon-

ormity function A . It is also independent from the permutations

f U which is important for computations. 

Given an instance nonconformity function that estimates the

nusualness of the instance w.r.t. the target data sequence T , we

an employ the sequence nonconformity scores αU = A 

∗(T S, U) to

est the null hypothesis that the distribution of all the permuta-

ions of the data sequence TS is uniform. To design the test, we

mploy the p -value function defined below. 

efinition 2 ( p -value function) . Given a data sequence U ∈ ( X ×
 ) ( ∗) and an integer n ≤ | U |, the p -value function t : (X × Y ) (∗) ×
 → [0 , 1] is equal to: 

(U, n ) = 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| 
|P(U, n ) | , 

here P(U, n ) is the set of all length n permutations of U and L ( U,

 ) is the sequence of the last n elements of U . 

The validity of the p -value function t has been proven in [3] .

iven the combined data sequence TS and n = m S , the function

utputs a p -value equal to the proportion of permutations with

ize m S of the sequence TS which nonconformity scores are greater

han or equal to that of the source sequence S . We note that by

efinition 1 the nonconformity scores employed by the t -function

re computed w.r.t the target data. Hence, if we employ the initial

ull hypothesis, the p -value of the function t indicates the likeli-

ood that the sequence TS has been generated by the target dis-

ribution P T under the exchangeability assumption. The higher the

 -value is, the more relevant the source sequence is to the tar-

et domain. Hence, this p-value can be viewed as a non-symmetrical

easure of relevance of the source data w.r.t. the target data. 

We employed the p -value function t in our conformal test (CT)

hat the combined data sequence TS has been generated by the
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3 The deviation of expectation and variance can be found in the Appendix of [16] . 
target distribution P T under the exchangeability assumption. If the

returned p -value is greater than or equal to a user defined signifi-

cance level ε ∈ [0, 1], the null hypothesis is accepted and the entire

source data S can be transferred. Otherwise, the null hypothesis is

rejected together with the source set S . This gives rise to the need

for source-subset selection. 

4.2. Class-conditional conformal test 

In the previous section, we have described our conformal test

for estimating the relevance of source data to the target distribu-

tion. However, we note that when the target distribution is mainly

represented by the majority class, source instances from minority

class(es) tend to have very small p -values and thus hardly be se-

lected. Therefore, in presence of class-imbalanced target data we

propose to test the source data per class to see whether they fol-

low the target distribution conditioned on that class. Since our

conformal test is general enough, it is applicable for conditional

distributions as well. Towards that end, we need a conditional p -

value function. Given a class, the conditional p -value function is

essentially our p -value function t (given in Definition 2 ) applied on

source data from that class. The validity of this function has been

proven in [15] . 

4.3. Approximation of the p -value function 

As is stated in the previous section, the p -value function t is de-

fined for data sequences. However, we note that the sum sequence

nonconformity function A 

∗ (as given in Definition 1 ) is indepen-

dent from the order of the sequence U , so that the nonconformity

score of a set can be defined equal to the nonconformity score of

any sequence of elements of that set. 

Given that the number of combinations is independent from

the order of the sequence i.e., |P(S, n ) | = |C(S, n ) | × n ! , we re-write

the p -value function definition for the case of data sets. 

(U, n ) = 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| 
|P(U, n ) | 

= 

|{ V ∈ P(U, n ) | αV ≥ αL (U,n ) }| / (n )! 

|P(U, n ) | / (n )! 

= 

|{ V ∈ C(U, n ) | αV ≥ αL (U,n ) }| 
|C(U, n ) | (1)

where C(U, n ) denotes the set of all combinations of n elements

out of sequence U . 

We note that the set p -value function exhibits an analogy to

the notion of Wilcoxon rank-sum test (see, e.g., [16] , Chapter 1).

Hence, for big data sets, in which enumerating all combinations in

C(T S, m S ) is intractable (e.g., C(100 , 50) ), we propose to approxi-

mate the set p -value through Wilcoxon rank-sum test. More specif-

ically, we assign ranks from 1 to m T + m S to all instances in TS ac-

cording to their nonconformity scores (in ascending order). In case

there is a tie (i.e., instances with equal nonconformity scores), each

instance in the tie is assigned a rank equal to the midpoint of un-

adjusted ranks in the tie span. In this setting, the nonconformity

score αV of any set V from TS with size m S is replaced by the rank

sum W that equals �( x, y ) ∈ V R ( x, y ) , where R ( x, y ) is the rank of non-

conformity score α( x, y ) associated with the instance ( x, y ) ∈ V . Ac-

cordingly, αS is replaced by the sum of ranks of all the instances in

S , denoted as W S . In doing so, calculating t ( TS, m S ) reduces to cal-

culating the probability that the rank sum of any m S instances is

bigger than that of the source instances, i.e., P ( W ≥ W S ). To calcu-

late P ( W ≥ W S ) we need to know the distribution of rank sum W .

Under the null hypothesis that TS is exchangeable, the sequence of

ranks is also exchangeable. When the size of TS is big (i.e., m T and

m are bigger than 10), the rank sum W is approximately normally
S 
istributed according to the law of large number. The expectation

f the rank sum is 

(W ) = 

1 

2 

m S (m T + m S + 1) 

nd variance is 

ar ( W ) = 

1 

12 

m T m S ( m T + m S + 1 ) −
∑ e 

i =1 

(
d 3 

i 
− d i 

)
( m T + m S ) ( m T + m S − 1 ) 

here e is the number of distinct nonconformity scores, and d i is

he number of instances at the i th tie 3 . Thus, the probability P ( W ≥
 S ) can be easily calculated from this normal distribution. In this

ay we approximate the p -value t ( TS, m S ) with the value of P ( W ≥
 S ). 

. Individual relevance v.s. set relevance 

The proposed p -value function t is a general function. When the

ize of the source data set S equals one ( m S = 1 ), function t es-

imates the individual relevance of the single source instance in

 with value t ( TS , 1) . When the size of the source data set S is

reater than one ( m S > 1), function t estimates the relevance of

he set S as a whole with value t ( TS, m S ). In this section we ana-

yze properties of individual relevance and set relevance estimated

sing our p -value function t . 

.1. Precision of individual relevance and set relevance 

As is stated above, when m S = 1 the value t ( TS , 1) estimates

he individual relevance of a single instance in S . According to

efinition 2 , the value of t ( TS , 1) only depends on the number of

arget instances that are equally or more non-conformal than this

ource instance. Therefore, source instances with different noncon-

ormity scores may result in the same p -value. To illustrate this

nding, let us consider the following example: assume that a set

S consists of target instances t 1 , t 2 , t 3 followed by source in-

tances s 1 , s 2 , s 3 . The associated nonconformity scores are 1, 2,

, 3, 4, 5, respectively. According to Definition 2 the individual

 -values t ( T ∪ { s 1 }, 1), t ( T ∪ { s 2 }, 1), and t ( T ∪ { s 3 }, 1) are equal to
1+1 
3+1 = 0 . 5 . Hence, there is no difference among source instances

 1 , s 2 and s 3 in terms of individual relevance that estimated by our

 -value function t . This can be a serious problem for selection in

nstance transfer, since it may not be possible to distinguish source

nstances with different relevance. 

When m S > 1, the value t ( TS, m S ) estimates the relevance of the

et S as a whole. According to Definition 2 , the value of t ( TS, m S )

epends on the number of permutations with size m S of the se-

uence TS that are equally or more non-conformal than the source

ata sequence S . Therefore, the set p -values are unique for sets

ith different nonconformity scores. Back to the example of the

revious paragraph, set p -value t ( T ∪ { s 1 , s 2 }, 2) is 0.5, set p -value

 ( T ∪ { s 1 , s 3 }, 2) is 0.4, and set p -value t ( T ∪ { s 2 , s 3 }, 2) is 0.3. This

llustrates that the set p -values are able to distinguish the sets

ith different nonconformity scores. Therefore, we regard the set

 -value as a more precise estimation of the relevance of source

ata w.r.t. the target domain which is of crucial importance for se-

ection in instance transfer. 

.2. Monotonicity of individual relevance and set relevance 

Assume that the instances in source data S are sorted in in-

reasing order of magnitude of the nonconformity scores. In this

ontext, we analyze the monotonicity of our p -value function t

.r.t the index s of the source instances in the sorted data S . This
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s done for the case of individual relevance estimation and for the

ase of set relevance estimation. 

For the individual relevance estimation, according to

efinition 2 we have that for any s : t(T ∪ { (x s , y s ) } , 1) ≤
(T ∪ { (x s −1 , y s −1 ) } , 1) . Thus, in this case our p -value function

 is a decreasing function of the index s , and through the index s

s also a decreasing function of the nonconformity score α(x s ,y s ) . 

For the set relevance estimation our analysis is more involved.

et S s be a subset consisting of first s instances of the sorted

ata S . For any s we can have either t(T S s , s ) ≤ t(T S s −1 , s − 1 ) or

(T S s , s ) ≥ t(T S s −1 , s − 1 ) . Thus, in this case our p -value function

 is not a monotonic function of the index s and is not a mono-

onic function of the nonconformity scores α(x s ,y s ) . This result is

ot so obvious and that is why we provide the following exam-

le to prove our claim. Assume that TS consists of 3 target in-

tances and 3 source instances, and corresponding nonconformity

cores are {1, 4, 5, 2, 3, 6}. In this case, we have t(T S 1 , 1) = 0 . 75 ,

(T S 2 , 2) = 0 . 8 and t(T S 3 , 3) = 0 . 5 , which confirms the t ( TS s , s ) is

ot a monotonic function of s . 

Although the p -value function t is not a monotonic function of s

n general, we can still identify an interval for s where the function

s indeed monotonic. Let αT max 
be the largest nonconformity score

n the target data. By Theorem 1 (shown below) for any noncon-

ormity score α(x s ,y s ) that is greater than or equal to αT max 
we have

hat the p -value t ( TS s , s ) is smaller than or equal to the p -value

(T S s −1 , s − 1) . So, if m is the index of the first source instance in

he sorted data S that has a nonconformity score greater than or

qual to αT max 
, then the p -value function t is a decreasing function

f the index s for the interval [ m, m S ]. 

heorem 1. For any instance ( x s , y s ) from the sorted source data S,

f α(x s ,y s ) ≥ αT max 
, then t (T S s , s ) ≤ t (T S s −1 , s − 1) . 

Below we provide the proof of Theorem 1 . Let αD = A 

∗(T , D ) de-

ote a nonconformity score for a set D w.r.t T, S s be defined as

bove, and D s be a set of subsets D of T ∪ S s whose size is s and

as a nonconformity score equal to or bigger than that of S s . For-

ally, D s = { D ⊂ T ∪ S s : | D | = s, αD ≥ αS s } . We start from the fol-

owing lemma that relates | D s −1 | to | D s | 

emma 2. If α(x s ,y s ) ≥ αT max 
, then | D s | ≤ (1 + 

m T 
s ) · | D s −1 | . 

roof. Let D be a subset of T ∪ S s −1 with | D | = s − 1 . Now we con-

ider the set T ∪ S s and we will add one element of ( T ∪ S s ) \ D to D

o create a set E of size s . We distinguish between two cases: 

1. D / ∈ D s −1 or αD < αS s −1 
. There are m T + 1 ways to create the set

E ⊂ T ∪ S s . For all of these sets we have 

αE ≤ αD + α(x s ,y s ) < αS s −1 
+ α(x s ,y s ) = αS s 

and hence E ∈ D s . 

2. D ∈ D s −1 or αD ≥ αS s −1 
. Again, there are m T + 1 ways to create

the set E ⊂ T ∪ S s . One way to create E is to add ( x s , y s ) to D . This

gives E = D ∪ { (x s , y s ) } , and in this case 

αE = αD + α(x s ,y s ) ≥ αS s −1 
+ α(x s ,y s ) = αS s 

and hence E ∈ D s . 

The other m T ways to create E are by adding one of the

m T elements of (T ∪ S s −1 ) \ D to D , thus there are in to-

tal m T · | D s −1 | number of E ’s. However, the resulting E will

be created as a superset of in total s sets of size s − 1 .

For example, a set E = { (x 1 , y 1 ) , (x 2 , y 2 ) , (x 3 , y 3 ) } is a super-

set of D = { (x 1 , y 1 ) , (x 2 , y 2 ) } , D = { (x 1 , y 1 ) , (x 3 , y 3 ) } , and D =
{ (x 2 , y 2 ) , (x 3 , y 3 ) } . In this case, E will be created three times

from different D s. So, assuming that the newly created set E

satisfies αE ≥ αS s , which is not necessarily the case, it will be

created s times and it should of course count only once towards

| D s |. In other words, there are at most 
m T 

s · | D s −1 | number of
distinct E such that αE ≥ αS s . o  
Combining the two results, we find: | D s | ≤ (1 + 

m T 
s ) · | D s −1 | ,

hich completes the proof. �

By using Lemma 2 , we prove Theorem 1 as follows: 

roof. Let D s be a set of subsets D of T ∪ S s which size is s and

as a nonconformity score equal to or bigger than that of S s , and

ssume that α(x s ,y s ) ≥ αT max 
. We have 

(T S s , s ) = 

|{ D ∈ C(T S s , s ) | αD ≥ αS s }| 
|C(T S s , s ) | by Eq. (1) 

= 

| D s | (
m T + s 

m T 

)

≤
(
1 + 

m T 

s 

)| D s −1 | (
m T + s 

m T 

) by Lemma 2 

= 

(
1 + 

m T 

s 

)
(

m T + s 
m T 

) ·
(

m T + s − 1 

m T 

)
· t(T S s −1 , s − 1) 

= 

(
1 + 

m T 

s 

)
s 

m T + s 
· t(T S s −1 , s − 1) 

= t(T S s −1 , s − 1) 

�

. Set selection 

In this section, we introduce two algorithms for source-subset

election: a p re-training s election algorithm based on s et r elevance

PSSR) and a p re-training s election algorithm based on i ndividual

 elevance (PSIR). We show that PSSR is more precise for selection

hile the PSIR is more computationally efficient . To balance be-

ween these two algorithms, we introduce a slight modification

f PSIR namely p re-training a pproximate s election for 0.5-source

 ubset (PASS). We show that this algorithm is computationally ef-

cient and precise for selection at a significance level of 0.5. 

.1. Pre-training selection algorithm based on set relevance 

The pre-training selection algorithm based on set relevance

PSSR) is given in Algorithm 1 . Given a target data set T , a source

ata set S , significance level ε, and an instance nonconformity

unction A , it outputs the largest source subset S ∗⊆S that passes

he test at the significance level ε. The computation process is

mplemented as follows. The algorithm first computes the non-

onformity scores for all the target and source instances using the

nstance nonconformity function A . More precisely, the nonconfor-

ity score α(x t ,y t ) 
for any target instance ( x t , y t ) ∈ T is calculated

.r.t. subset T �{( x t , y t )}, and the nonconformity score α(x s ,y s ) for

ny source instance ( x s , y s ) ∈ S is calculated w.r.t. T . Then, it

etermines the maximal target nonconformity score αT max 
and

orts the source instances in increasing order of the nonconfor-

ity scores. After that, the algorithm initializes the largest source

ubset S ∗ by including all the source instances ( x s , y s ) ∈ S with

onconformity scores α(x s ,y s ) smaller than αT max 
. By Theorem 1 the

 -value function t is a decreasing function for the nonconformity

cores greater than or equal to αT max 
. Therefore, if the set p -value

 ( TS ∗, | S ∗|) of the subset S ∗ is bigger than or equal to ε, the p -value

f any superset of S ∗ decreases as more source instances added.

his allows the algorithm to apply the binary-search method to

nd the final largest source subset S ∗ that is subsequently output. 

If the set p -value t ( TS ∗, | S ∗|) of the subset S ∗ is smaller than ε,

hen the algorithm reduces minimally S ∗. It does by sequentially

emoving instances from the sorted S ∗ starting with the instance

ith the highest nonconformity score until the p -value of S ∗ equals

r exceeds ε. We note that this process is sequential due to the fact
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Algorithm 1 Pre-training selection algorithm based on set rele- 

vance. 

Input: Target data T , Source data S, Significance level ε, 

Instance nonconformity function A . 

Output: The largest subset S ∗ ⊆ S s.t. t(T S ∗, | S ∗| ) ≥ ε. 

1: for each target instance (x t , y t ) ∈ T do 

2: Set the nonconformity score α(x t ,y t ) 
equal to A (T \ 

{ (x t , y t ) } , (x t , y t )) . 

3: end for 

4: for each source instance (x s , y s ) ∈ S do 

5: Set the nonconformity score α(x s ,y s ) equal to A (T , (x s , y s )) . 

6: end for 

7: Determine the maximal target nonconformity score αT max 
. 

8: Sort the source data S in increasing order of the nonconformity 

scores α(x s ,y s ) . 

9: Set the largest set S ∗ equal to { (x s , y s ) ∈ S : α(x s ,y s ) < αT max 
} . 

10: if t(T S ∗, | S ∗| ) ≥ ε then 

11: Set the left counter L equal to | S ∗| and the right counter R 

equal to m S − 1 . 

12: while L ≤ R do 

13: Set the middle index m equal to 
⌊

L + R 
2 

⌋
. 

14: Set p-value p m 

of set S m 

equal to t(T S m 

, | S m 

| ) . 
15: Set p-value p m +1 of set S m +1 equal to t(T S m +1 , | S m +1 | ) . 
16: if p m 

≥ ε and p m +1 < ε then 

17: Set the set S ∗ equal to the set S m 

. 

18: break . 

19: else if p s > ε then 

20: Set L = m + 1 . 

21: else 

22: Set R = m − 1 . 

23: end if 

24: end while 

25: else 

26: while t(T S ∗, | S ∗| ) < ε do 

27: Exclude the last instance from S ∗. 

28: end while 

29: end if 

30: output S ∗. 
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that the p -value function t is not monotonic for the nonconformity

scores smaller than the maximal target conformity score αT max 
. 

PSSR is computationally inefficient because of the sequential

application of the p -value function t in the worst case (see line

26 in Algorithm 1 ). Nevertheless, PSSR provides more precise set

selection due to the fact that set p -values are a more precise esti-

mation of the relevance of source data w.r.t. the target domain. 

6.2. Pre-training selection algorithm based on individual relevance 

The pre-training selection algorithm based on individual rele-

vance (PSIR) is given in Algorithm 2 . Given a target data set T ,

a source data set S , significance level ε, and an instance noncon-

formity function A , it selects the largest source subset S ∗⊆S such

that any instance ( x s , y s ) ∈ S ∗ individually passes the test at ε. The

selection process is implemented as follows. First, the algorithm

initializes the largest subset S ∗ as an empty set. The nonconfor-

mity scores for the target and source instances are calculated by

the instance nonconformity function A similarly to the previous al-

gorithm. After that, the source instances are sorted in increasing

order of the nonconformity scores α(x s ,y s ) . Since the p -value func-

tion t is a decreasing function of the nonconformity scores α(x s ,y s ) ,

the individual p -values of source instances are arranged in decreas-

ing order of magnitude. This allows the algorithm to apply the
inary-search method to find the last source instance with a p -

alue greater than or equal to the significance level ε. This instance

s the right border of the largest source subset S ∗ in the sorted data

 . Therefore, all the source instances from S with indices smaller

han or equal to m are added to the final subset S ∗ that is subse-

uently output by the algorithm. 

lgorithm 2 Pre-training selection algorithm based on individual

elevance. 

nput: Target data T , Source data S, Significance level ε, 

Instance nonconformity function A . 

utput: Largest subset S ∗ ⊆ S s.t. ∀ (x s , y s ) ∈ S ∗, t(T ∪ { (x s , y s ) } , 1) ≥

1: Set the largest set S ∗ equal to ∅ . 
2: for each target instance (x t , y t ) ∈ T do 

3: Set the nonconformity score α(x t ,y t ) 
equal to A (T \

{ (x t , y t ) } , (x t , y t )) . 

4: end for 

5: for each source instance (x s , y s ) ∈ S do 

6: Set the nonconformity score α(x s ,y s ) equal to A (T , (x s , y s )) . 

7: end for 

8: Sort the source data S in increasing order of the nonconformity

scores α(x s ,y s ) . 

9: Set the left counter L equal to 1 and the right counter R equal

to m S − 1 1 . 

10: while L ≤ R do 

11: Set the middle index m equal to 
⌊

L + R 
2 

⌋
. 

12: Set p-value p m 

of instance (x m 

, y m 

) ∈ S equal to t(T ∪
{ (x m 

, y m 

) } , 1) . 

13: Set p-value p m +1 of instance (x m +1 , y m +1 ) ∈ S equal to t(T ∪
{ (x m +1 , y m +1 ) } , 1) . 

14: if p m 

≥ ε and p m +1 < ε then 

15: Add source instances from S with indices smaller than or

equal to m to S ∗. 

16: break . 

17: else if p m 

> ε then 

18: Set L = m + 1 . 

19: else 

0: Set R = m − 1 . 

21: end if 

2: end while 

3: output S ∗. 

PSIR is computationally efficient because of the binary-search

ethod used. However, due to the fact that source instances with

uite different nonconformity scores may result in the same indi-

idual p -value, the source subset is not precise. 

.3. Pre-training approximate selection for 0.5-source subset 

If a source subset is generated by the target distribution, the ex-

ected p -value of this subset is equal to 0.5. This implies that this

ubset is randomly drawn from the target distribution and, thus, it

s can be transferred. We call such a subset as 0.5-source subset S 0.5 

nd show below an efficient way to select a source subset that is

pproximately S 0.5 . 

So far we have demonstrated that using PSSR for the 0.5-

ource subset S 0.5 (i.e., the largest source subset S ∗ with set p -value

reater than or equal to 0.5) is computationally inefficient. How-

ver, a very precise approximation 

ˆ S 0 . 5 of the subset S 0.5 can be

omputed at a small cost. Assume that the source data S is sorted

n increasing order of the nonconformity scores α(x s ,y s ) and S n is a

ubset consists of the first n instances of the ordered source data

 . By Theorem 3 (see below) if the average of individual p -values

f all instances in a source subset S n equals 0 . 5 + 

1 
2(m +1) 

, then the

T 
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et p -value of S n is approximately 0.5. This means that the subset

 n is an approximation 

ˆ S 0 . 5 of the 0.5-source subset S 0.5 . 

The pre-training approximate selection for 0.5-source subset

PASS) is very similar to PSIR given in Algorithm 2 . It employs the

act that the average of individual p -values is decreasing with the

onconformity scores of instances in sorted source data S due to

he monotonicity of the p -value function t of those scores. There-

ore, the binary-search method is applied again to efficiently gen-

rate the largest source subset S ∗ which in this case equals the

pproximate subset ˆ S 0 . 5 . This implies the 0.5-source set selection

lgorithm differs from the set-selection shown in Algorithm 2 in

ine 14. Instead of testing the individual p -value p m 

at the middle

oint, the algorithm tests the average p -value of all the source in-

tances until the middle point. 

heorem 3. If the average of individual p-values of all the instances

n the subset S n ⊂ S is equal to 0 . 5 + 

1 
2(m T +1) 

, then the set p-value of

 n is approximately 0.5. 

roof. According to Definition 2 , for any source instance ( x s , y s ) ∈
 n , the number of target instances that have nonconformity scores

reater than or equal to that of ( x s , y s ) is equal to p s ∗ (m T + 1) − 1 ,

here p s is the individual p -value of ( x s , y s ). Thus, the number of

arget instances that associated with smaller nonconformity scores

s m T − p s ∗ (m T + 1) + 1 . 

Since all the instances in S n are sorted in increas-

ng order of nonconformity scores, there are 0 , 1 , . . . , n − 1

ource instances with smaller nonconformity scores than

(x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x n , y n ) , respectively. That is to say for

ny ( x s , y s ) ∈ S n there are s − 1 source instances with smaller

onconformity scores than that of ( x s , y s ). 

Combining these two parts, there are in total m T − p s ∗ (m T +
) + 1 + (s − 1) instances ranked higher than ( x s , y s ). Assuming

hat there is no tie, the rank of ( x s , y s ) is: 

 s = m T − p s ∗ (m T + 1) + 1 + s (2)

Therefore the rank sum of all instances in S n is: 

 S n = 

n ∑ 

s =1 

(m T − p s ∗ (m T + 1) + 1 + s ) 

= n (m T + 1) − (m T + 1) 
n ∑ 

s =1 

p s + 

n ∑ 

s =1 

s 

= n (m T + 1) − (m T + 1) n 

(
1 

2 

+ 

1 

2(m T + 1) 

)
+ 

1 

2 

n (n + 1) 

= n 

(
m T + 1 − 1 

2 

(m T + 1) − 1 

2 

+ 

1 

2 

n + 

1 

2 

)

= 

1 

2 

n (m T + n + 1) (3) 

According to the Wilcoxon Ranksum test, the expectation of

ank sum of any source subset of size n is equal to 1 
2 n (m T + n + 1) .

ince the rank sum of S n is equal to the expectation, the set p -

alue of S n is approximately 0.5. �

We prove Theorem 3 under the assumption that there are no

ies in the nonconformity scores. If there are some source instances

ied together, midpoint of this tie span is used as the rank. In this

ase the rank sum of these source instances stays the same, and

hus the p -value of the subset S n is still approximately 0.5. In case

here are some source instance tied with target instances, the rank

um gets bigger than that given in Eq. 3 . Assume that we have d t 
arget instances and d s source instances attached on one tie, and

here are in total l instances ranked higher than all instances in

his tie. Then the ranks of source instances in this tie are equal to

 + 

1 (1 + d t + d s ) , instead of l + 1 , l + 2 , l + d s . Therefore, the dif-
2 
erence in rank sum caused by this tie will be: 

 s ∗
(

l + 

1 

2 

(1 + d t + d s ) 
)

−
d s ∑ 

i =1 

(l + i ) = 

1 

2 

d s d t 

In case of ties’ existence, the rank sum will increase by
 e 
i =1 

1 
2 d s i d t i , where e is the number of ties. Thus, the set p -value

ill be lower than 0.5. To limit the number of such ties a proper

onconformity function needs to be chosen (an injective function

n the best case). 

By Theorem 3 the source subset S n is the approximation set
ˆ 
 

0 . 5 , if the average of individual p -values of the instances in S n 
quals 0 . 5 + 

1 
2(m T +1) 

. In fact, it is self-evident that for a target set

f a reasonable size the term 

1 
2(m T +1) 

can be ignored. That is to

ay for any source subset, if the average individual p -values of all

nstances in this subset is 0.5, then its set p -value is approximately

.5, and thus it is the approximate 0.5-source set ˆ S 0 . 5 . 

. Experiments 

This section presents our experimental results and conclusions.

e first provide the experiment setup in Section 7.1 . Then, we

resent instance-transfer tasks under study in Section 7.2 . Fi-

ally, in Section 7.3 , we evaluate the generalization performance

f proposed algorithms and compare them with existing instance-

ransfer techniques. 

.1. Experiment setup 

To set up our set-selection algorithms we needed to set up the

nstance nonconformity function employed in the p -value function

 . This setup was done depending on the dimensionality of the

ata. In our experiments we had two types of data: non-text data

ith relatively low dimensionality and text data with high dimen-

ionality. For the non-text data we used the nearest-neighbor in-

tance nonconformity function [10] . The nearest neighbor instance

onconformity function A NN outputs for the target data T and an

nstance ( x i , y i ) a nonconformity score 

∑ k 
j=1 d 

+ 
i j ∑ k 

j=1 d 
−
i j 

, where k is number

f neighbors, d + 
i j 

is the distance from x i to the jth closest instance

n T having the same class label as x i , and d −
i j 

is the distance from

 i to the jth closest instance in T having a different class label. For

he text data, due to the high dimensionality, we used the gen-

ral instance nonconformity function defined in [13] . The general

onconformity function A G outputs for the target data T and an in-

tance ( x i , y i ) a nonconformity score 
∑ 

y ∈ Y ,y  = y i s y , where s y is the

core of class y ∈ Y produced by a classifier trained on target data

 for the instance x i . In our experiments we employed Random For-

st [17] as a non-conformal classifier. 

We noticed that in most of the instance-transfer tasks the tar-

et data are class-imbalanced, and thus we employed the condi-

ional p -value function to estimate the relevance of source data. 

The significance level ε for PSIR was set equal to 0.5. This is

ue to the fact that if a source instance is randomly drawn from

he target distribution, its p -value is expected to be greater than

r equal to 0.5. Analogously, the significance level ε for PSSR was

et equal to 0.5. That is because if a source subset is a random

ample from the target distribution, its p -value is expected to be

qual to 0.5 as well. The significance level ε for PASS was 0.5 by

efault. 

Having selected source subset, we applied Support Vector Ma-

hines (SVM) [18] with linear kernel to train a prediction model

n the combination of target data and selected source data.

EKA’s [19] implementation of SVM with default setting was used

n the experiments. 
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Table 1 

Landmine detection instance-transfer classification tasks. 

Datasets Description Size p -value 

Landmine T Instances from Mine 26 to 29 1799 1.0 

S1 Instances from Mine 1 to 5 3086 0.17 

S2 Instances from Mine 6 to 10 2547 0.27 

S3 Instances from Mine 11 to 15 2902 0.24 

S4 Instances from Mine 16 to 20 2240 0.47 

S5 Instances from Mine 21 to 25 2246 0.45 
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To assess the quality of instance transfer we employed the gen-

eralization performance of the instance-transfer classifier repre-

sented by the Area Under the ROC Curve (AUC). The method of

AUC estimation was a stratified holdout method on the target data

repeated 100 times. For the non-text data (text data), 10% (4%) of

instances were randomly sampled from the target data for train-

ing and the remaining for testing. The smaller percentage for the

text data was due to the fact that for bigger percentage instance

transfer is no longer required. 

The set-selection algorithms were compared with four instance-

transfer algorithms presented in Section 2 : TrAdaBoost, Dynamic-

rAdaBoost, TraBagg, and DoubleBootStrap. All the algorithms used

SVM (with linear kernel) as a base classifier. The number of itera-

tions was set to 100 for all the four algorithms. 

7.2. Instance-transfer classification tasks 

Four real-world data sets were used in our experiments. They

are described below: 

• Landmine detection 

4 is a collection of 29 data sets related to

detecting landmine in 29 different landmine fields. The 29 data

sets have different distributions due to different geographic

conditions. For example, data sets 1 to 15 correspond to foliated

regions while sets 16 to 29 correspond to regions that have bare

earth. In this context we derived target and source data sets as

follows. Data sets 26 to 29 were combined together and used as

the target data set. Data sets 16 to 20 and 21 to 25 were com-

bined into two source data sets with a high similarity to the

target one while data sets 1 to 5, 6 to 10, and 11 to 15 were

combined into other three source data sets with a lower simi-

larity. The target data set and a source data set defined together

one instance-transfer classification task. For each task, 10% of

instances were randomly sampled from the target set for train-

ing and the remaining for testing. The p -values of the relevance

of the source data to the target data (computed by the p -value

function t ) are given in the last column of Table 1 . 

• Wine quality 5 is a data set of in 1599 red-wine and 4898

white-wine instances. Each instance is represented by 11 phys-

iochemical features (e.g., PH values) and a grade given by ex-

pert. In the experiments, red-wine instances were used as the

target data set and five source data sets were sampled from

white-wine instances based on different conditions. The target

data set and a source data set defined together one instance-

transfer classification task. The p -values for the source data sets

of all the tasks are given in the last column of Table 2 . 

• 20-Newsgroups 1 is a data set of about 20,0 0 0 news documents

organized in a two-level hierarchy. The hierarchy consists of 7

top categories and 20 subcategories. For example, ‘comp’ and

‘sci’ are two top categories such that ‘comp’ has two subcat-

egories, ‘comp1’ and ‘comp2’, and ‘sci’ has two subcategories,

‘sci1’ and ‘sci2’. Five instance-transfer classification tasks were
4 http://www.cse.ust.hk/TL/ 
5 https://archive.ics.uci.edu/ml/datasets/Wine+Quality 
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t  

p

defined as top-category tasks such that the target and source

data were drawn from different subcategories. For each task

50 instances were randomly sampled from the target data for

training and the remaining for testing. The p -values of the

source data are given in the last column of Table 3 . 

• Reuters-21578 1 is a collection of data sets with text doc-

uments organized in hierarchical structures. Three instance-

transfer classification tasks were defined in the same way as

those of the 20-newsgroups task. For each task 50 instances

were randomly sampled from the target data for training and

the remaining for testing. The p -values of the target relevance

of the source data are given in the last column of Table 4 . 

.3. Experimental results 

The generalization performance (AUCs) for PSIR, PSSR and PASS

re given in Tables 5 –8 . In addition, the generalization perfor-

ance (AUCs) of four instance-transfer algorithms mentioned in

ection 2 , TrAdaBoost, Dynamic-TrAdaBoost, TraBagg, and Double-

ootStrap are given for comparison. Since all the algorithms in our

xperiments used SVM as a base classifier, the generalization per-

ormance (AUC) of SVM on the target data (case of no instance

ransfer) is given as a baseline classifier. The maximal AUC for each

ow is given in bold. A series of paired t-tests was performed at the

ignificance level of 0.05 to compare the performance of instance-

ransfer classifiers to that of the baseline classifier. The statistically

ignificant improvement is marked with “+”, while the statistically

ignificant negative transfer is marked with “−”. A second series

f paired t-tests was performed at the significance level of 0.05

o compare the AUCs of PSIR, PSSR and PASS to those of TrAd-

Boost, Dynamic-TrAdaBoost, TraBagg, and DoubleBootStrap. If PSIR

PSSR, PASS) is statistically better than all the four algorithms, it is

arked with 

∗. 

From the Tables 5 to 8 we see that PSSR has the best gener-

lization performance over all the instance-transfer classification

asks. It achieves the highest AUC in 12 out of 18 tasks. PASS per-

orms comparably well as PSSR in most of the tasks, since it is

 close approximation of PSSR at a significance level of 0.5. PSSR

lightly outperforms PASS in some of the tasks due to the fact that

n the existence of ties the p -values of the sets returned by PASS

re a bit lower than 0.5. However, PSSR involves much bigger com-

utational cost comparing to PASS due to the sequential applica-

ion of the p -value function. In Table 9 , we compare the average

ime that PSSR and PASS spend to search for the 0.5-source set

rom sorted source data. As shown in the table, the computation

ime of PSSR may even be 10 times more than that of PASS in the

earch step, which confirms its computational inefficiency. 

PSIR has the second best generalization performance (achieves

he highest AUC in 3 out of 18 tasks). It is slightly worse than PSSR

nd PASS in particular for the tasks where the relevance of the

ource data to the target domain is relatively high. The reason is

wofold. First, the selection based on set relevance is more precise

han the selection based on individual relevance (as explained in

ection 5.1 ). Second, PSIR is more conservative: it selects a sub-

et of the source instances selected by PSSR and PASS. To clarify,

e give an example for the “orgs vs people” task. We sorted the

nstances from the source data in increasing order of the noncon-

ormity scores. Then, we added the source instance with the low-

st nonconformity score to a preliminary empty source subset and

omputed the set p -value . We repeated the last step till all the

ource instances were added, and we plotted the obtained subset

 -values against the size of the source subsets in Fig. 1 a. After that,

e repeated the same process for individual relevance, i.e., instead

f computing subset p -values we computed individual p -value for

he last instance of each subset, and then we plotted the individual

 -values in Fig. 1 a. 

http://www.cse.ust.hk/TL/
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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Table 2 

Wine quality instance-transfer classification tasks. 

Datasets Description Size p -value 

Wine T Red wine 1599 

S1 White wine that total sulphur dioxide > 0.2 and 0.16 < acid < 0.22 1548 0.2 

S2 Random sample of white wine 1469 0.21 

S3 White wine that alcohol < 0.5 and 0.16 < acid < 0.22 1499 0.24 

S4 White wine that total sulphur dioxide > 0.2 1499 0.29 

S5 White wine that alcohol < 0.5 1540 0.33 
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Fig. 1. (a): Individual p -values and subset p -values w.r.t. source instances ordered by the nonconformity scores. (b): AUCs of SVM trained on the target data and growing 

subsets of source instances ordered by the nonconformity scores. 

Table 3 

20-Newsgroups instance-transfer classification tasks. 

Datasets Tasks Sample size p -value 

| T | | S | 

20-Newsgroups Comp vs sci 3930 4900 0.30 

Rec vs talk 3669 3561 0.32 

Rec vs sci 3961 3965 0.34 

Sci vs talk 3374 3828 0.34 

Comp vs talk 4482 3652 0.39 

Table 4 

Reuters-21578 instance-transfer classification tasks. 

Datasets Tasks Sample size p -value 

| T | | S | 

Reuters People vs places 1239 1210 0.15 

Orgs vs places 1079 1080 0.27 

Orgs vs people 1016 1046 0.37 
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Comparing the plots of set p -values and individual p -values, we

bserve that the set p -value is much bigger than the individual

 -value for the same subset. At the significance level of 0.5 PSIR

elects the first 645 instances from the sorted source data, while
Table 5 

Performance of instance-transfer transfer algorithms for the landmine tasks. 

Datasets Source p -value Baseline PSIR PSSR PASS 

Landmine S1 0.17 0.53 0.54 0.54 0.54 

S2 0.27 0.53 0 . 55 + 0.54 0.54 

S3 0.24 0.53 0 . 57 + ∗ 0 . 58 + ∗ 0 . 56 + 

S4 0.47 0.53 0 . 61 + 0 . 63 + ∗ 0 . 63 + ∗
S5 0.45 0.53 0 . 61 + 0 . 63 + ∗ 0 . 63 + ∗
SSR and PASS select the first 1083 and 1158 instances from the

orted source data, respectively. That is why PSIR exhibits a more

onservative selection. As a result, it benefits less from the rele-

ant source data. Fig. 1 b presents the generalization performance

f a prediction model (SVM) trained on the target data and grow-

ng subsets of the same sequence of the sorted source instances.

he maximization of the model performance happens for the sub-

et contains 1020 instances from the sorted source data, which is

ery close to the set selected by PSSR. On the contrary, PSIR stops

uch earlier with limited benefit from instance transfer. The sub-

et selected by PASS contains more irrelevant source instances than

he 0.5-source set, and results in a set p -value equals to 0.46. That

xplains why PASS gets close but a bit lower AUC than PSSR. 

From the Tables 5 to 8 we see that the PSIR, PSSR and PASS

utperform TrAdaBoost, Dynamic-TrAdaBoost, TraBagg and Double- 

ootStrap. They are significantly better than the other four algo-

ithms in more than half of the tasks. For example, for the 20-

ewsgroups tasks PSSR and PASS are significantly better than other

lgorithms with a margin of 0.1 (see Table 7 ). For the Reuters-

1578 tasks PSSR, PASS, and PSIR result in positive transfers: they

ave improved the generalization performance comparing to the

ase line classifier. However, TrAdaBoost, Dynamic-TrAdaBoost and

raBagg result in a negative transfer, especially for the “people-vs-

laces” task. Our algorithms achieve better results due to following
TrAdaBoost Dynamic TrAdaBoost TraBagg Double Bootstrap 

0.54 0 . 55 + 0.53 0.53 

0 . 55 + 0.54 0.53 0.53 

0 . 55 + 0.54 0.53 0.53 

0 . 60 + 0 . 60 + 0 . 58 + 0 . 59 + 

0 . 58 + 0 . 59 + 0 . 56 + 0 . 59 + 
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Table 6 

Performance of instance-transfer transfer algorithms for the wine tasks. 

Datasets Source p -value Baseline PSIR PSSR PASS TrAdaBoost Dynamic TrAdaBoost TraBagg Double-Bootstrap 

Wine S1 0.20 0.52 0 . 66 + ∗ 0 . 65 + 0 . 64 + 0 . 62 + 0 . 64 + 0 . 55 + 0 . 55 + 

S2 0.21 0.52 0 . 67 + ∗ 0 . 66 + ∗ 0 . 66 + ∗ 0 . 63 + 0 . 64 + 0 . 57 + 0 . 55 + 

S3 0.24 0.52 0 . 67 + ∗ 0 . 66 + 0 . 66 + 0 . 65 + 0 . 66 + 0 . 57 + 0 . 55 + 

S4 0.29 0.52 0 . 67 + 0 . 68 + 0 . 68 + 0 . 66 + 0 . 68 + 0 . 59 + 0 . 56 + 

S5 0.33 0.52 0 . 67 + 0 . 69 + 0 . 68 + 0 . 68 + 0 . 67 + 0 . 59 + 0 . 57 + 

Table 7 

Performance of instance-transfer transfer algorithms for the 20-Newsgroups tasks. 

Datasets Source p -value Baseline SSIR PSSR PASS TrAdaBoost Dynamic TrAdaBoost TraBagg Double-Bootstrap 

20News -groups Comp vs sci 0.30 0.51 0 . 59 + ∗ 0 . 64 + ∗ 0 . 61 + ∗ 0 . 54 + 0.53 0.53 0.52 

Rec vs talk 0.32 0.51 0 . 64 + ∗ 0 . 68 + ∗ 0 . 68 + ∗ 0 . 61 + 0 . 62 + 0 . 58 + 0.53 

Rec vs sci 0.34 0.52 0 . 64 + 0 . 66 + ∗ 0 . 66 + ∗ 0 . 64 + 0 . 64 + 0 . 65 + 0.53 

Sci vs talk 0.34 0.51 0 . 68 + ∗ 0 . 72 + ∗ 0 . 72 + ∗ 0 . 64 + 0 . 65 + 0 . 62 + 0.53 

Comp vs talk 0.39 0.50 0 . 72 + ∗ 0 . 76 + ∗ 0 . 74 + ∗ 0 . 66 + 0 . 68 + 0 . 64 + 0.53 

Table 8 

Performance of instance-transfer transfer algorithms for the Reuters-21578 tasks. 

Datasets Source p -value Baseline SSIR PSSR PASS TrAdaBoost Dynamic TrAdaBoost TraBagg Double-Bootstrap 

Reuters 21578 People vs places 0.15 0.70 0 . 73 + ∗ 0 . 72 + ∗ 0 . 72 + ∗ 0 . 56 − 0 . 56 − 0 . 62 − 0.69 

Orgs vs places 0.27 0.70 0 . 73 + ∗ 0 . 75 + ∗ 0 . 73 + 0.71 0 . 69 − 0 . 72 + 0.71 

Orgs vs people 0.37 0.72 0 . 74 + 0 . 76 + 0 . 75 + 0 . 73 + 0 . 74 + 0 . 76 + 0 . 76 + 

Table 9 

Average search time for 0.5-source sets of PSSR 

and PASS, recorded in milliseconds. 

Datasets Average search time (ms) 

PSSR PASS 

Landmine 11.02 0.63 

Wine 4.41 0.61 

20News-groups 3.65 0.51 

Reuters-21578 1.28 0.53 
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Fig. 2. The AUCs as functions of the size of training data for the “people vs places”
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two reasons. First, our algorithms employ pre-training selection of

source instances. In contrast, TrAdaBoost, Dynamic-TrAdaBoost and

TraBagg employ post-training selection. As is stated in Section 2 ,

post-training algorithms can not effectively filter out irrelevant

source instances when the algorithms stop at early iterations (e.g.,

because of big training errors). As a result, they suffer from neg-

ative transfer when the relevance of source data is limited. Sec-

ondly, our algorithms are robust against class-imbalanced target

data thanks to the usage of the class-conditional p -value function.

On the contrary, the other four algorithms mostly select instances

from majority class(es) in the presence of class-imbalanced target

data. This limits the performance of the final prediction model. 

In Fig. 2 we focus on the “people vs places” task, where the rel-

evance of the source data to the target data is low. The percentage

of target data used for training is gradually increased from 1% to

10%. AUCs of all classifiers are plotted against the size of the tar-

get training data. It can been seen from the figure that pre-training

instance-transfer classifiers, PSIR, PSSR, PASS and DoubleBootstrap,

never result in negative transfer. They improve the model when

the training size is very small (e.g., less than 5%). On the contrary,

post-training instance-transfer algorithms are very vulnerable to

irrelevant source data. This observation confirms our claim that

pre-training selection is superior to post-training selection. PSIR

achieves the best results for this task due to the conservative selec-

tion it employs. We believe that it is a safer choice for source data

with a low p -value (e.g. less than 0.2). If we generalize the exper-

imental results, we conclude that instance-transfer algorithms that

employ pre-training selection for source instances are better than
hose that employ post-training selection. They achieve promising

esults in the whole range of source data from relevant to less rel-

vant w.r.t. the target domain. PSIR, PSSR and PASS outperform

xisting post-training source-selection algorithms because of the

tatistical soundness and the ability of handling class-imbalanced

arget data. Comparing PSSR and PASS to PSIR, we conclude that

y applying pre-training selection based on set relevance, the final

odel can benefit more from instance transfer. 

. Conclusion 

In this paper, we introduced three pre-training source-subset

election algorithms, PSSR, PSIR, and PASS, for instance transfer.

he algorithms are statistically sound due to the conformal test

CT) employed and robust against class-imbalanced target data due

o the class-conditional version of the same test. PSIR estimates the

ource subset relevance using individual instance relevance and it

s computationally efficient. PSSR estimates the source subset rele-

ance using set relevance and it is computationally inefficient. PASS
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s essentially PSIR that approximates PSSR at the significance level

f 0.5 and it is proposed as a computationally efficient substitute

f PSSR. 

Experiments demonstrated that PSSR, PSIR and PASS outper-

orm existing post-training and pre-training transfer algorithms. In

ddition they showed that PSSR and PASS outperform PSIR. Thus,

e may conclude that pre-training selection with set relevance is a

uperior approach for instance selection in the context of instance

ransfer. 
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