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Abstract

Artificial perception is traditionally handled by hand-designing task specific
algorithms. However, a truly autonomous robot should develop perceptive abil-
ities on its own, by interacting with its environment, and adapting to new situ-
ations. The sensorimotor contingencies theory proposes to ground the develop-
ment of those perceptive abilities in the way the agent can actively transform its
sensory inputs. We propose a sensorimotor approach, inspired by this theory,
in which the agent explores the world and discovers its properties by capturing
the sensorimotor regularities they induce. This work presents an application of
this approach to the discovery of a so-called visual field as the set of regular-
ities that a visual sensor imposes on a naive agent’s experience. A formalism
is proposed to describe how those regularities can be captured in a sensorimo-
tor predictive model. Finally, the approach is evaluated on a simulated system
coarsely inspired from the human retina.

Keywords: autonomous systems, developmental robotics, sensorimotor
contingencies, predictive processing, sensorimotor learning, human-like vision

1. Introduction

Autonomy in robotics relies on sensory data processing to capture infor-
mation about the world and adapt to it. Although the influence of machine
learning has been growing more important in the last decades, traditional ap-
proaches to this problem of data processing involve significant manual design
from engineers that build the robot. Consequently the resulting techniques for
artificial perception appear rigid and constrained for tractability. Each of these
specialized algorithms is applicable to only a small set of tasks, with potentially
limiting inbuilt biases from the designer. While acceptable for well-defined pro-
cesses, such as industrial manufacturing, the potential need for a large degree
of human involvement makes such methods inadequate as a source of long-term
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autonomy in a robot. Instead, an autonomous robot must be able to cope with
the complexity of its world, build its own way to perceive it and adapt to its
variations.

To address this issue, the field of developmental robotics takes inspiration
from biological and cognitive development in children [4]. It proposes that an
agent learns to interact with its environment, autonomously and on an ontogenic
timescale. Without prior knowledge, a naive robot must learn the structure of
its own body, of its environment, and how the two interact. In this context,
perception is a prerequisite to developing more advanced cognitive abilities that
allow a rich interaction with the environment. Yet, the emergence of this fun-
damental capacity, traditionally hand-coded in the system, poses a challenge:
What is perception for a naive agent in which manually pre-defined features and
labels are replaced by a flow of uninterpreted sensorimotor data?

Sensorimotor contingencies theory (SMCT) attempts to answer this ques-
tion [24] by fundamentally re-defining perception: perception is the mastery of
reqularities in the way actions transform sensory inputs. It suggests that a naive
agent can actively explore its environment, extract regularities that the world
imposes on its sensorimotor flow, and later identify those regularities when in-
teracting with the environment in order to perceive it. Those regularities, or
contingencies, are the ground on which the agent can build perceptive abilities.
Moreover this active account of perception naturally links actions to perception,
meaning that the agent intrinsically knows what it could do with any perceived
feature [27]. Despite its philosophical aspect, the SMCT is based on experimen-
tal results. Among other things, it elegantly accounts for instance for sensory
substitution. Those are experiences in which a subject is provided with infor-
mation from one modality (e.g. vision) through another modality’s pathway
(e.g. skin or ears) [2}[I]. The theory naturally encompasses such a phenomenon
as it defines perception as based on structure in the sensorimotor flow instead
of properties of the pathway it takes. Such a possibility leads us to consider
artificial “plug-and-play” agents that could be equipped with new sensors, and
would discover how to perceive with them by learning to master the associated
sensorimotor flows.

The SMCT has been relatively slow to spread in the robotics community,
partly because of the complete overhaul it induces in the field of artificial per-
ception. To date, the approach has been applied to model the acquisition of
perceptive concepts such as space [I8, 29], colors [25, [30], environments [17],
and objects [16]. Primarily, these works characterize properties of the external
world explored by the agent. However, a naive agent’s body is also part of the
unknown world it has to discover. It contributes, like the structure of the en-
vironment, to shaping the regularities the agent experiences in its sensorimotor
flow. As such, properties of the agent’s body should also be captured through
sensorimotor contingencies. In this paper, we address the problem of captur-
ing properties of sensors plugged on a naive agent, and in particular properties
of the wvisual field generated by visual sensors. The experience of visual field
encapsulates the set of regularities describing how visual features are encoded
differently by various parts of the sensor, as well as how they shift on it due



to motion. This fact is particularly striking when considering heterogeneous
visual sensors, like the human retina, for which visual features are encoded by
significantly different cell patterns depending on where they land on the retina.
This discrepancy between our stable subjective experience of visual features
and their actual variable sensory encoding has already been brought forward in
the paper introducing the SMCT [24]. Yet, only recently has it led to further
inquiries with the development of psycho-motor experiments [8]. Their results
suggest that the brain learns the correspondence between the different sensory
patterns that encode the same visual feature on different parts of the retina,
and the motor commands (ocular saccades) that transform one into the other.
By exploring artificial visual setups where two distinct visual features are con-
sistently associated before and after a saccade, it is possible to alter previously
learned correspondences. This artificial interaction with the world leads to a
modification of the subjective perceptive experience of visual features, even in
adult subjects.

The work presented in this paper proposes a computational model inspired
by this perceptive phenomenon. Nonetheless it also fits into a more general
endeavor to develop a computational model for the autonomous learning of sen-
sorimotor regularities [I7, 211, 27], the lack of which has been the second reason
of the slow spread of SMCT. The formalism converges towards the hierarchical
building of a predictive model of sensorimotor experiences [17]. This approach
is in line with recent developments in neuroscience, which describe the brain as
a predictive machine [6, 5], [9]. By learning to predict future sensory outcomes
of its actions, the agent estimates latent causes of its experience and progres-
sively extends the control from its motor component to its sensory component.
The work presented in this paper will focus on letting a naive agent discover
the sensorimotor regularities that define the visual field associated with a visual
sensor. The next section presents a formalization of the problem and describes
a computational model to address it. A simulation is then introduced in Sec[3]
to illustrate the approach. The results are analyzed in Sec. [d] in light of previ-
ous works in the sensorimotor approach of perception. Finally, limitations and
potential future extensions of the model are discussed in the last section.

2. Problem Formulation

In this section we present the problem a naive agent is facing when discov-
ering the sensorimotor structure induced by its visual sensor. We describe the
regularities that underlie the experience of a wvisual field. Then we propose a
computational formalism to process the agent’s sensorimotor flow and detail
how it can capture those regularities.

2.1. Ezperiencing a visual field

This work focuses on agents equipped with a visual-like sensor: an array of
sensels collecting information from a part of the environment, where a sensel
is the basic element of a sensor array (e.g. pixels in a camera, or rods and
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Figure 1: The heterogeneous structure of the retina implies that visual features are encoded
by different sensory inputs depending on where they are in the visual field. These different
sensory inputs can be experienced by saccading with the eye.

cones in our retina). In this work, we use the term visual feature to refer to the
visual information received from a small part of the environment. Contrarily
to computer vision literature where visual features are the internal outcome
of some sensory processing, the term here describes the (partial) state of the
external environment. Conversely, we use the term semsory inputs to refer to
the information generated when visual features are projected on the sensor and
transformed into an encoded signal accessible to the agent (see Fig. [1f).

Depending on where it is present in the visual field, a visual feature can
be projected onto different parts of the sensor array. It can thus be encoded
by different sensory inputs. Such a claim does not appear obvious when con-
sidering a camera because it is usually assumed that the sensory encoding is
translation-invariant: physical properties of the sensor are such that a visual
feature generates the same sensory input regardless of where it is encoded in
the array. This is for instance an implicit hypothesis in Convolutional Neural
Networks, a class of algorithms that prove to be very efficient in visual scene
analysis [I4]. It also indirectly assumes that the later unit that processes sen-
sory inputs does know the spatial organization of sensels and can switch on the
fly between different groups of neighboring sensels.

Yet, such a property is far from evident for a biological system like our
visual cortex. This fact appears even less realistic when taking into account
the heterogeneity of the human retina [26]. As underlined in [24], the way
visual features are encoded changes significantly across the retina, due to its
physiological properties. Yet, our subjective experience of visual features is that
they are stable across the whole field of view. The sensorimotor point of view
on such a phenomenon claims that the brain learns to associate the different
sensory inputs corresponding to the same visual feature by actively exploring
visual scenes. This hypothesis has been recently strengthened by psycho-motor
experiments in which those associations were artificially altered [8].

According to SMCT, the very mastery of those sensorimotor associations
participates in the experience of seeing. More precisely, by focusing on regulari-
ties induced by the physical structure of the sensor, one can describe those that



give rise the experience of having a visual field:

e Sets of different sensory inputs encode the same visual features on different
parts of the sensor.

e Motor commands can transform sensory inputs into another one encoding
the same visual feature.

Those two statements describe that visual features shift on the retina and that
their encoding changes when the agent moves its sensor (see Fig. . It is im-
portant to notice that the only way for a naive agent to discover such properties
is to actively explore visual scenes. They could not be extracted through a pas-
sive sensory processing, like the ones usually proposed in unsupervised contexts
[3]. For instance, the different sensory inputs related to a single visual feature
would not necessarily share the same statistical properties or lie close to one
another in the sensory space, especially if the sensor is significantly heteroge-
neous. Additionally, passively extracted knowledge wouldn’t be directly useful
to a naive agent as it wouldn’t know how to actively transform its sensory state
to eventually reach a goal state (for instance, move the sensor to bring a visual
feature in a given part of the visual field). Yet, the association of sensory inputs
seems intimately linked to the ability to perform visual tasks such as search and
recognition, as demonstrated in [§].

We claim that a naive agent has to explore its environment and learn the
sensorimotor regularities induced by its visual sensor. In line with the Predicting
Processing approach [5], which describes the brain as a predictive machine, we
propose to capture those regularities in a predictive model described hereunder.

2.2. Formalization and learning of the predictive model

The phenomenon described in Sec. [2.1] suggests that the sensory experience
generated by the visual sensor can be studied locally. Taking inspiration from
biology, and in particular the structure of the human retina, we treat the array
as a cluster of receptive fields [I0]. Each receptive field is made of numerous
neighboring sensels that cover a limited part of the whole array, all with the same
physical extent. No additional constraint is assumed and the different receptive
fields may have different properties: e.g. the number of sensels, their spatial
arrangement, or their excitation function. Receptive fields encode independently
the visual feature they receive from the environment. For the naive agent, each
receptive field initially appears to be an independent sensor generating its own
sensory input.

Formally, we define the sensory input generated by a receptive field as a
multivariate random variable S® that can take values:

Sg‘ = [Si,17~-~7si,da]7 (1)

where i denotes the index of the sensory input, a denotes the receptive field,
s;.k is the individual sensation provided by the k" sensel in receptive field a,
and d* is the number of sensels in this receptive field. The agent is able to move



its visual sensor using saccades, analogous to human eye movements. Formally,
we denote the saccadic motor commands as a multivariate random variable M
that can take values:

mq = [mq,l, e ,mqum}, (2)

where ¢ denotes the index of the motor command, m, is the individual com-
mand sent to the k¥ motor moving the sensor, and d™ is the number of those
motors. No specific superscript is needed for the motor command as all re-
ceptive fields move together in a rigid manner when the sensor is moved. Like
with the human eye, we assume that saccades are fast enough that the state
of the environment can be considered constant during the execution of most of
the motor commands. Moreover, sensory inputs are supposed to be generated
instantaneously by each receptive field, before and after a saccade.

According to our sensorimotor approach, the naive agent needs to explore ac-
tively the world to capture regularities underlying its sensorimotor experiences.
In line with a Bayesian description of the brain [13], we propose to capture those
regularities by letting the agent build a predictive model of its sensorimotor ex-
periences. Note that we're interested in how the agent can actively transform
its experience, which means that it has to model sensorimotor transitions. A
similar modeling of sensorimotor transitions has already been proposed in the
literature, although often intimely linked to a reinforcement learning framework
[28, 23, [7]. More precisely here, the agent should estimate the probability:

P(S"(t 4 1) | $°(t) = s, M(t) = m,), (3)

corresponding to the conditional post-saccadic distribution of sensory input S°
in receptive field b, given that a sensory input s{ was experienced in receptive
field a before the execution of the saccadic motor command m,. For the sake
of simplicity, this probability is later denoted:

P(S"|sf,my). (4)

The agent can estimate this distribution by collecting multiple instances of
sensorimotor transitions,
b
(s, my — s)), (5)

and statistically estimate the distribution over j. This model is relatively simple
but notice that multiple ones have to be estimated in parallel as the sensor is
made of numerous receptive fields.

The physical embedding of the sensor in the world does not allow all possible
sensorimotor transitions. Those implicit constraints should appear as regular-
ities in the predictive model: transitions imposed by the sensor and the world
should have high probabilities while “forbidden” ones should be improbable. In
particular, the definition of a visual field proposed in Sec. can now be further
formalized by introducing the following set:

Gse = {sg | 9my : P(s?— |s¢,my) > €} (6)
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Figure 2: The simulated visual sensor is coarsely inspired by the retina structure. On the left,
the sensor has a field of view limited to a 30 X 30 pixels patch which captures information
from the environment. In the center, this initial patch is divided into smaller 10 x 10 ones
corresponding to the 9 receptive fields. Simultaneously, the resolution of all 8 peripheral
receptive fields is halved both in height and width to form the final inputs accessible to the
agent. On the right, independent K-Means are run for the different receptive fields to generate
sensory prototypes and cluster later sensory inputs.

where € is a threshold defined to distinguish significant probabilities from un-
significant ones. The set Gse gathers all sensory inputs s? that the agent can
transition to with a probability greater than e from input s{ by performing a
motor command m,. In our approach, the probability of active sensorimotor
transitions can be seen as a similarity measure between the two involved sensory
inputs s¢ and sg’- [1I7]. For a fixed significance threshold e, Gse can thus be seen
as the set of all sensory inputs s? considered similar to s by the agent.

In the next section, we introduce a simulated system to evaluate our ap-
proach on two different kinds of environments. The predictive models estimated
by the agent after exploring those environments will later be analyzed in detail
in Sec. @

3. Simulation

A simple system is simulated in order to illustrate the approach. In this
section, we describe the agent’s sensory and motor systems, the different kinds
of visual scenes considered during exploration, as well as the algorithmic details
of the predictive model estimation.

3.1. Simulated agent

As illustrated in Fig. [2| and the simulated system intends to coarsely
capture the kind of interaction a moving eye has with its environment. The
agent is a translatable camera exploring a two-dimensional visual environment.
Its field of view is limited to a narrow 30 x 30 pixels square. As such, it captures
only a small portion of what a human retina would capture in a visual scene.
The sensor must thus be seen as a simple model of what happens in a small
part of an actual retina. The field of view is divided into 9 receptive fields of
size 10 x 10 pixels. However, the resolution of each peripheral receptive field
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Figure 3: The agent interacts with its environment through its visual sensor. On the top left,
two kinds of environments, random and natural images, are considered and explored during
two independent runs of the simulation. On the center left, the narrow patch of information
captured by the sensor is encoded by 9 independent sensory states. On the bottom left, the
agent actively explores the visual environment by randomly performing 8 saccades that shift
the locations of receptive fields. On the right, the agent builds a predictive model of the
sensorimotor transitions it experiences. It is made up of multiple distributions over post-
saccadic states s? estimated for each pre-saccadic receptive field a and state 4, each post-
saccadic receptive field b and each motor command ¢. Individual distributions related to the
same values of a and b are grouped to form ’blocks’, which are themselves grouped according
to the value of ¢ to form the 3D matrix T'.

is artificially lowered to imitate the coarser sensory encoding in the peripheral
retina compared to the central fovea. The reduced resolution is obtained by
downsampling the original 10 x 10 inputs: only one column in every two and
one row in every two are considered to form a 5 x 5 pixels input (see Fig. .
Pixels discarded this way are considered nonexistent in the sensor and do not
interfere in any way in the remaining pixels excitation (for instance by applying
a local average or a max-pooling criterion). A fourth of the original information
is thus accessible to the agent in the peripheral layer of the retina. Finally, the
sensory inputs s{ generated by the different receptive fields are respectively of
size d* = 100 for the central receptive field (a = 5), and d* = 25 for peripheral
ones (a # 5).

In order to limit the simulation complexity, we consider that each recep-
tive field a can take only a restricted set of N prototypical sensory inputs
s?,i € [1, N, called sensory states. The constant N is arbitrarily set in re-
lation to the associated sensory space dimensionality: N® = 50 for the central
(foveal) receptive field (¢ = 5), and N* = 20 for the peripheral ones (a # 5).



The prototypical sensory states s{ are determined in a data-driven way by col-
lecting a large number of sensory inputs and applying a clustering algorithm.
Pragmatically, we let the agent randomly explore multiple environments and
collect 10° sensory inputs per receptive field. Independent K-Means [19] are
then run on the data collected in each receptive field to generate the prototypi-
cal sensory states. These latter are thus potentially different between receptive
fields, even with the same resolution. Such data clustering can be seen as the
analogous encoding that visual data undergoes just after the retina [20]. In later
exploration, sensory inputs received in a receptive field are simply encoded by
the closest prototypical sensory state s¢ (winner-takes-all strategy).

The agent can translate in the visual scene to sample different parts of its
environment. Similarly to sensory inputs, movements are discretized into a
limited set of () = 8 saccades m,. They correspond to all translations of the
retina such that the central receptive field shifts to the pre-saccadic location of
one of the 8 peripheral receptive fields (see Fig. [3]). Those saccades have been
purposely chosen so that visual features entirely shift between receptive fields
during movements of the sensor, which will facilitate the results analysis.

3.2. The environment

The environment corresponds to visual scenes, simple images that the agent
can explore one at a time. Two different types of images are considered in the
simulation (see Fig. [3):

e Random: gray-scale images of size 1024 x 1024 pixels generated by ran-
domly drawing the integer value of each pixel independently from a uni-
form distribution U(0, 255).

e Natural: images taken from a standard RGB database [12] and converted
to gray-scale pixel values.

The simulation can be run independently on each type of visual environment.
The random images are intended to test the system in the absence of any en-
vironmental structure. It corresponds to an optimal setting in which only the
sensor structure constrains the agent’s sensorimotor experience. On the con-
trary, natural images are used to evaluate the approach in a more realistic
setting. Note that we do not want the system to over-fit its model to a spe-
cific visual scene. For each type of environment, 100 different scenes are thus
generated /drawn for the agent to successively explore during the simulation.
As explained in Sec. we assume that saccades are fast enough so that the
environment can be considered static while most sensorimotor transitions are
experienced. More precisely, we hypothesize that the probability of having the
environment change (draw a new image) during a saccade is significantly lower
than the probability of executing a saccade (the ratio is arbitrarily set to 1
to 10%). Such a dynamic appears reasonable when considering the speed of a
human saccade. This constraint may nonetheless be loosened by assuming a
greater ratio. Implicitly this assumption means that if this temporal stability
hypothesis were to be broken and the environment would always change during



saccades, the agent could not discover enough regularities to structure an expe-
rience of visual field. This kind of assumption has also been recently described
as a requirement for robotic systems [I1].

3.3. Building the predictive model

We want the agent to model its interaction with the world by building a
predictive model of the sensorimotor transitions it can experience. As claimed
by the sensorimotor approach described previously, the agent needs to actively
explore its environment in order to build this model. To this end, the agent is
arbitrarily placed at the center of its environment (center position in the first
image it explores) and let to explore by randomly executing 10% successive mo-
tor commands. The visual scene is changed after every 10 saccades, so that the
agent successively interacts with all the 100 scenes. This random exploration
policy is natural for a naive agent that has no a priori knowledge about itself nor
the environment. It can be seen as analogous to body babbling observed in ba-
bies. Each saccade generates an elementary sensorimotor transition experience
(s, my — s?) for each a and b. Given that the sensor is divided into 9 receptive
fields, this sums up to 81 sensorimotor transitions for each saccade. The agent
estimates each discrete distribution P(S® |s¢, m,) based on the collected data
by simply building a normalized histogram of outputs sé’» for each triplet (a, 1, q).
Intuitively, the robot estimates in which state receptive field b will statistically
be if receptive a is in state ¢ and it performs the motor command gq.

For visualization, all atomic predictive models are stored in a 3D matrix T'
(see Fig.|3). Each distribution P(S®|s¢, m,) is stored as a row vector obtained
by concatenating the individual probabilities P(s}[s¢, m,),Vj € [1, N®]. All the
possible distributions generated by the different values of a, ¢, b, and ¢ are then
concatenated to form T such that: its rows correspond to the pre-saccadic states
1 for the different values of a, its columns correspond to the post-saccadic states
j for the different values of b, and its pages correspond to the executed saccadic
motor command g. This way, the matrix T can be interpreted by “blocks”,
which are 2D matrices corresponding to the predictive structure between pairs
of receptive fields (a, b) for a given saccade ¢. For this reason, we will later refer
to these blocks using the triplet (a,b,q) (see Fig. [3)).

In the next section, we analyze the predictive model built by the agent
while exploring the two kinds of environments. In particular, we will focus
on describing the sensorimotor structure captured by the naive agent and that
defines properties of the visual field generated by its sensor.

4. Results

As claimed by the sensorimotor approach described in Sec. [2] physical prop-
erties of the agent’s visual sensor and its related visual field constrain the sen-
sorimotor interaction it has with the world. Those constraints should appear as
a highly predictable structure in the predictive model built by the agent. Here-
under, we identify and analyze this structure for the two kinds of environments
considered in the simulation.
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Figure 4: The 3D matrix T estimated by exploring random visual scenes and displayed one
page at a time for each motor command ¢. Distributions in the whole matrix are generally
uniform. However, for each saccade, a few blocks (a,b) display sparser distributions. This is
for instance the case of block (¢ = 8,b = 7) for the saccade ¢ = 1. Looking at the sensor’s
structure, this higher predictability can be explained by the shift of visual features between
corresponding receptive fields when the saccade is performed. (best seen in color)

4.1. Random images
The matrix 7" built by the agent after exploring random images is presented
in Fig. Although unrealistic, this environmental setup is optimal to study
how the agent does capture the structure induced by its visual sensor. Indeed
no environmental structure is expected to influence the learning process.
Transitions probabilities in the whole matrix T" are generally very low. Such
a result is not surprising in a random environment as it indicates that the agent
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cannot accurately predict future sensory states sg’» based on current sensory
states s¢ and the saccade m,. Globally, each block (a,b,q) displays close to
uniform distributions over j for the different pre-saccadic states i. Those blocks
thus appear as almost uniform blue patches in Fig. [d] The central column of
blocks that corresponds to predicting the sensory state of the foveal receptive
field (b = 5) also appears darker. This is simply because those distributions
P(S° | s¢,m,) are spread across a larger number (N® = 50) of sensory states
than for peripheral receptive fields (N® = 20).

Yet a few blocks (a, b, q) appear to exhibit a different structure due to sparser
distributions (see highlighted blocks in Fig. . In other terms, for each saccade
g, there exist pairs of receptive fields (a, b) for which knowing s¢ helps predicting
s?. When checking the values (a, b, q) associated with those blocks and which
receptive fields/saccades they correspond to, one can notice that they actually
capture the shift of visual features on the sensor during saccades. As an example,
the first “structured” block encountered in the matrix T is (a = 2,b =1, = 1).
When looking at the actual sensor structure in Figures [2| and [3] one can verify
that any visual feature projected in the receptive field a = 2 gets transferred
to receptive field b = 1 when the saccade ¢ = 1 moves the sensor to the right.
Without specifying in advance the structure of the sensor, we can see that its
properties have been implicitly captured in the predictive sensorimotor model
built by the agent. Based on this model, the agent can determine relations
between its receptive fields (which initially appear as unknown independent
sensors) and its motor commands. It can know - or more precisely did esti-
mate - that some sets of sensory states exist, where members of the set can be
transformed into one another by sending motor commands (see Eq. @ From an
external point of view, those sets correspond to the different sensory encodings
of visual features projected on different parts of the sensor. The model of senso-
rimotor transitions built by the agent has thus intrinsically captured properties
of the visual field generated by the sensor. Importantly enough, those properties
are not internally represented as ungrounded symbolic information but directly
in a sensorimotor model that can be used by the agent to interact with the world
and perform visual tasks [§]. An example of such a visual task would be to look
into the estimated predictive model for the saccade that would transform, with
the highest probability, a current sensory input into another desired one. Such
an algorithm has been recently proposed in [15].

Influence of the model: The maximal values of P(sé’- | s¢, m,) are relatively
low, even in structured blocks where predictability should theoretically be very
high. This phenomenon is due to the simplicity of the predictive model we
proposed. As a reminder, sensory inputs of each receptive field have been clus-
tered using the K-Means algorithm. This method minimizes distances between
samples and their closest prototype, and form convex clusters. However, those
clusters are not necessarily “aligned” between the receptive fields. This means
that all the data falling into a cluster i of one receptive field can fall at the
intersection of multiple clusters j when projected into the sensory space of an-
other receptive field. The effect is particularly marked when exploring random
images: sensory samples can be scattered in the whole sensory space, which
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consequently generates a high variance in the positions of K-Means prototypes
between the receptive fields. The consequence of this misalignment for the pre-
dictive model is that each sensory state can be transformed into a few other
states in the associated receptive field when the sensor saccades (see highlighted
block in Fig. . Maximal predictability is thus relatively low, even in couple
blocks.

Information transfer: Despite those limitations, we were able to visually
distinguish a predictive structure in coupled blocks (a, b, q). However, in order to
evaluate this structure more formally, we propose to introduce a measure derived
from information theory. For each block (a,b,q) we compute the normalized
conditional entropy H(a|b,q) as follows:

P(s%,s¢ | m,) P(s%, s¢ | m,)
H b - _ 775 q R q
(@l = =3 g w ( P(st [my)

(7)

Entropy is a measure of uncertainty in the statistical model. Intuitively H(a | b, q)
measures the unpredictability of sensory input S’ in receptive field b given the
input S® in receptive field ¢ and the saccade m,. Consequently, H(a|b,q)
should be significantly lower in blocks coupled by the structure of the sensor
than in others.

As shown in Fig. [6] this is indeed the case as coupled blocks appear darker
than their counterparts. This measure validates the fact that, even if the sensory
clusters are misaligned in the different sensory spaces, a transfer of information
does occur between coupled receptive fields when saccades are performed. This
transfer is directly caused by the physical structure of the sensor. One can
also notice that coupled blocks involving the foveal receptive fields display a
slightly higher entropy than when they only involve peripheral ones (for instance,
blocks (a = 5,0 = 4,¢q = 1) and (¢« = 6,b = 5,q = 1) for the first motor
command). This is the result of multiple causes that reduce the quality of the
predictive mapping between a peripheral sensory space and the foveal one: the
dimension of the foveal sensory space is higher than in periphery, the number of
foveal prototypes is also higher than in periphery, and the loss of resolution (see
Sec. induces a lower predictability between peripheral and foveal sensory
states.

4.2. Natural images

The matrix T built by the agent after exploring natural images is presented
in Fig. This setup is proposed to evaluate the approach in a more realistic
environment containing structure.

Overall the estimated model appears to contain more predictive structure
than when the agent was exploring random environments. The different blocks
in the matrix T generally display sparser distributions. This visual analysis is
confirmed by the measure of conditional entropies H(a|b,q) that are signifi-
cantly lower than in the previous scenario (see Fig. @ Such a result is to be
expected when the agent explores natural images. Those visual scenes indeed
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sparser distributions 8
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Block (a=8,b=7,g=1)
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Transition probability matrix T

Figure 5: The 3D matrix T estimated by exploring natural visual scenes and displayed one page
at a time for each motor command ¢. Distributions in the whole matrix are sparser than when
exploring random images because environmental structure is captured in the predictive model.
However, same blocks (a, b, ¢) as in the previous simulation display higher predictability. They
correspond to receptive fields coupled by the physical structure of the sensor and between
which visual features shift when a saccade is performed. (best seen in color)

have some intrinsic structure which implies that, locally, visual features can help
predict other features with significant accuracy. For instance, surfaces in the
world tend to keep the same appearance and receiving a uniform black visual
feature in a receptive field allows to predict that neighboring receptive fields
also probably observe the same visual feature. The same way, one can predict
that all those receptive fields will most probably receive a black uniform feature
regardless of the saccade the agent performs. This environmental structure con-
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Figure 6: Normalized conditional entropies H(a|b,q) computed on blocks (a,b,q) and dis-
played so as to keep the shape as matrix 7. For both kinds of visual scenes, H(a|b,q) has a
significantly lower value in the coupled blocks already identified in matrices T". This measure
formally demonstrated that information is transferred between some receptive fields when a
saccade is performed. From an external point of view, this transfer is due to the physical
structure of the sensor.

strains the sensorimotor experience of the agent and naturally gets captured in
the sensorimotor predictive model it estimates.

Nonetheless, apart from this environmental structure that appears scattered
everywhere in the matrix 7', one can also notice that some blocks (a, b, q) dis-
play even sparser distributions. They correspond to the same blocks that were
already identified in the previous scenario (for instance, blocks (a = 2,b=4,q =
2) or (a =8,b=4,q=8)). As shown in Fig. [6] their conditional entropy mea-
sures H(a|b,q) are significantly lower than their counterparts, which confirms
the fact that information gets largely transferred between those paired receptive
fields when the corresponding saccade is performed. Once again, the constraints
imposed by the sensor’s structure have been captured by the agent and define
its visual field experience.

Notice however that the structure in those blocks is much sparser than in the
previous simulation (see Fig. [f| compared to Fig. [4]). In other words, in coupled
blocks (a, b, q), knowing the pre-saccadic sensory state s¢ allows to predict with
a very high probability the post-saccadic sensory state s;’», given m,. The reason
of such a good predictive mapping is that visual data provided by natural images
is not scattered in the whole sensory space of each receptive field like it was the
case for the randomly generated data. They instead tend to naturally cluster
in subparts of the sensory space. The independent K-Means performed in the
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different receptive fields’ sensory spaces thus tend to converge towards similar
clusters. Those clusters are thus relatively well aligned, which means that data
falling into one cluster in a receptive field almost entirely falls into a single
cluster when projected into another receptive field. This alignment allows the
predictive model to reach very high probabilities for those transitions.
Nonetheless, two exceptions can be identified. They both correspond to
transitions involving the fovea (see Fig. [5)). The first one is when the foveal
sensory state predicts the post-saccadic sensory state of a coupled peripheral
receptive field (for instance block (a = 5,b = 4,q = 1), or more generally any
coupled block with a = 5). In those blocks, some distributions P(S°|s¢, m,) are
very sparse, with a single peak (appearing red in the color code), while some
display multiple peaks of lower probability. This phenomenon is due to the
different quantizations of the foveal sensory space, with N = 50 prototypes, and
the peripheral ones, with N* = 20 prototypes. Intuitively, the 50 clusters, once
projected into a peripheral sensory space, cover a space that is otherwise covered
by 20 bigger clusters. Some former clusters thus get entirely included into a
bigger one while others end up partially overlapping multiple adjacent bigger
clusters. The first case leads to perfect predictability while the second case
leads to sparser distributions. This explains the particular predictive structure
observed in those blocks. The second exception is when a peripheral sensory
state predicts the post-saccadic sensory state of the fovea (for instance block
(a=6,b=>5,¢g=1), or more generally any coupled block with b = 5). In those
blocks, distributions are not as sparse as in blocks involving only peripheral
receptive fields. Consequently, they also display intermediary values in the
conditional entropy matrix (see Fig. @ This result can be explained by two
factors. First, the difference of number of prototypes between the two sensory
spaces has the inverse effect of the previous case. The 20 big peripheral clusters
overlap many smaller clusters when projected in the foveal sensory space. An
optimal configuration where a big cluster would be included entirely in a smaller
one thus never happens. This leads to lower predictability of the post-saccadic
foveal state. The second factor is not related to the computational model used in
the simulation but to the sensor properties. The difference of resolution between
the peripheral and foveal receptive fields is such that the peripheral encoding
of a visual field does not contain enough information to determine precisely
its foveal encoding. This ambiguity does set an upper limit on the transition
probabilities in those blocks. Despite those limitations, those blocks remain the
ones with the lowest conditional entropy H(a|b,q) compared to blocks in the
same column b = 5 for each saccade gq. This impossibility to optimally predict
the foveal sensory state would thus not prevent the agent to associate those
pairs of receptive fields when trying to predict next foveal experiences.
Visualizing similar sensory states: Due to the low probabilities observed in
matrix T when exploring random environments (see Sec. , trying to identify
similar sensory states was not a very meaningful endeavor. The situation is
however different with natural images as K-Means clusters are better aligned
and lead to more predictability in the model. According to Eq. [6] we estimate
sets Gse of sensory states S? considered similar to a given sensory state s¢. The
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due to the different clustering of sensory inputs in the receptive fields.

similarity threshold is arbitrarily set to e = 0.5. We also limit the analysis to
the foveal sensory states (a = 5) as the central receptive field has been the only
one to be shifted to all other receptive fields during the simulation. Ten of the
are displayed in Fig. E} One can see that, although the agent

N® = 50 sets gs?
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estimated as similar to foveal sensory states s for a
threshold value e = 0.5. Globally, the agent has been able to identify sensory states that
encode the same visual features in the different receptive fields. Some sets appear incomplete



had no a priori knowledge about the correspondence between the sensory states
of its different receptive fields, it has been able to group together sensory states
that encode the same visual features. For 6 of the sets Ggs (i = 1,2, 6,31, 32,44),
a similar sensory state has correctly been identified in all the other receptive
fields b. For 3 other sets (i = 36,47, 50), between 3 and 6 similar states have been
identified, and no similar state was found for i = 27. These incomplete results
are due to two factors. First, the number of foveal sensory states N¢ = 50
is greater than the number of peripheral ones N® = 20. This finer covering
of the foveal sensory space means that foveal sensory states do not necessarily
have an equivalent in all peripheral receptive fields. Second, because K-Means
has been run independently for all receptive fields, similar sensory states do
not necessarily exist in all of them. This is for instance well illustrated by
the presence of s3, in the set Gz - Visually, its pattern does not look like its
counterparts but it still appears in the set because the receptive field b = 8
does not have a better corresponding prototype. All sensory inputs looking like
s3; are thus encoded by s5,, the closest prototype, when encoded in receptive
field b = 8. This leads to a predictable sensorimotor transition between the two
prototypes and to the naive agent evaluating them as similar.

5. Conclusion

We propose a sensorimotor approach of perception, inspired by the senso-
rimotor contingencies theory, which claims that a naive agent should learn to
master the way it can transform its sensorimotor experience. In this work, we
applied such a view to explain how a robot without any a priori knowledge
about the structure of its body or the structure of the world can discover the
existence of the visual field generated by its unknown visual sensor. Discovering
this visual field means for the agent to capture the sensorimotor regularities that
it induces: different sensory states encode the same visual feature, depending
on where it is encoded on the sensor array, and the agent can actively transform
one into the other by sending motor commands. Those sensorimotor experiences
seen from the agent’s internal point of view correspond externally to the fact
that visual features from the environment shift on the retina when the sensor
moves and consequently get encoded by different sensels. This encoding vari-
ability is particularly marked in a heterogeneous sensor array like the human
retina.

We proposed a simple visual system inspired by the retina, as well as a
computational model to explain how an agent can explore and capture those
sensorimotor regularities. The model is based on the definition of receptive
fields, small neighborhoods of sensels that each encode only a small part of the
visual scene the agent can observe. Apart from its biological motivation, the
introduction of those receptive fields can be seen as an attempt to create a
compositional structure in the sensor that mirrors the compositional structure
of the world [22]. For the naive agent, all receptive fields act as independent
sensors which generate their own sensory inputs in parallel. However, by actively
exploring visual scenes, it can discover that its sensory experiences change in
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regular ways. In particular, the sensory state of some receptive fields is useful
to predict what the next sensory state will be in another receptive field when
it performs a certain motor command. Also, different pairs of receptive fields
are coupled this way when different motor commands are sent. One could ask
why it is so important for the agent to learn and model such a thing. The
answer is that this agent, that initially did not have any knowledge, can now
make use of what we would call its visual field. He does know that different
sensory states it experiences, and that belong to a set Gsa, can be interpreted
as similar, up to a motor command. This knowledge can be seen as the internal
emergence of the concept of wisual feature, an external reality that was not
previously accessible to the agent. Moreover, it also knows how to actively
transform one of those sensory states into the other. This active aspect of the
model is fundamental in our approach. It means that the sensory regularities
extracted by the agent only make sense through action. The knowledge acquired
through sensory information is thus directly able to guide action, which is the
fundamental role of perception. The agent could for instance use its estimated
model to perform a visual search task. Let us assume that, for some reason,
receiving the sensory state sjg (18" state of the foveal receptive field 5) is
rewarding for the agent. Given its internal model, it can counterfactually [27]
determine if a sensory state from another receptive field does correspond to
the same visual feature and which saccade to execute to reach the rewarding
sensory state. This is the kind of visual tasks that were proposed to subjects
with altered sensory states associations in [§] and for which a basic model has
recently been proposed in [15].

This use of the predictive model has not been illustrated in this paper. It is
part of the multiple future directions in which we intend to extend this work.
First, the system proposed in the simulation was very simple compared to its
biological counterpart. It will be replaced by a larger retina split into more
receptive fields organized in multiple concentric rings with decreasing visual
resolutions. A parallel version of the algorithm used in this simulation will
however be necessary to benefit from the computational power of a GPU and
process efficiently the huge amount of parallel data that such a richer sensor will
generate. This technical improvement can be seen as a computational require-
ment but also as a direct inspiration from our visual nervous system. Another
direction of future research is the analysis of the environmental structure cap-
tured in the predictive model. As mentioned in Sec. [1.2] this structure appears
in particular in unpaired blocks and reveals properties of the environment. Ac-
cording to the SMCT, it is thus possible to cluster sensory states that encode
the same visual features, but it is also possible to assess properties of those
features based on the way they get transformed by actions. A simple example
proposed in [24] is the one of an horizontal line. Regardless of the way such a
visual feature is encoded by the sensor, it is true that this sensory input will be
invariant to a leftward or rightward movement of the sensor. Characterizing vi-
sual features will also provide a better picture of the experience of seeing in the
sensorimotor approach of perception by describing the intermingled influence
of the sensor and environmental structures. The predictive model used in the
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simulation should also be modified to improve the predictability between sen-
sory states that encode the same visual features. The current model is far from
satisfying: it discards a lot of information by discretizing the sensory spaces
and relies on the alignment of clusters in sensory spaces that do not necessarily
share the same properties. A more powerful approach, but also more complex
to train, would be to directly estimate a non-linear mapping between the dif-
ferent sensory spaces associated with the receptive fields. Each sensory data
could be processed through those mappings without relying on clusters and the
associated loss of information. This would lead to a more satisfying notion
of equivalence between sensory states by increasing the threshold value e (see
Sec. . Finally, the most challenging improvement will be to take into account
continuous motor commands instead of the very limited discrete set of saccades
considered in the current simulation. Continuous saccades might require a less
constrained definition of receptive field for which any sensel and its neighbors
could be considered a receptive field, leading to an almost continuous coverage
of the retina by overlapping receptive fields.

Despite its current limitations, the model introduced in this paper proposes
an innovative perspective to address the problem of visual perception in artificial
systems. It relies on the division of the sensor into smaller sensory units and
on extracting regularities in the way actions transform their states. This is
very different from traditional approaches which generally process static images
as a whole to extract interesting features. Of course, many algorithms, such
as convolutional neural networks, do focus on small patches in the image that
could be compared to the receptive fields used in this work. However, they do so
based on the strong hypothesis that all patches share the same properties and
encode visual information the same way. This assumption is not realistic for a
heterogeneous sensor such as the human eye. Our approach is more general and
is able to deal with heterogeneous sensors. It also emphasizes the fact that action
is a necessary component for a naive agent to extract useful information from an
uninterpreted sensory flow. In fact, the algorithm used in this work is general
enough that it could process information coming from different kinds of sensor
arrays. For instance, the simulated sensor described in this paper could just as
much be a tactile sensor and the visual scenes could be tactile textures that the
agent would touch. The agent would discover properties of the “field of touch”
the sensor generates and how tactile features move in the array when motor
commands are sent. Moreover, the sensorimotor approach also seems promising
to address problems related to multimodality. Without a priori knowledge,
one does not need to assume the existence of separate modalities. The agent
would thus naturally extract sensorimotor regularities that combine multiple
modalities. Yet, an even more interesting and challenging question will be the
one related to the co-discovery of contingencies by a naive agent. So far the
sensorimotor approach of perception has been applied to capture regularities
associated with targeted properties of the world thanks to specific settings:
space, colors, environments, objects, and now visual field [I8], 29, 25| 30 17, 16].
The next difficult problem is to develop a system that is able to extract those
different contingencies, and others, in parallel. This should reveal the intrinsic
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intermingling of the notion of visual field with the one of space, especially when
extending the set of actions to 3D displacements in the environment.
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