
TraX: The visual Tracking eXchange Protocol and

Library

Luka Čehovin

Faculty of Computer and Information Science, University of Ljubljana

Abstract

In this paper we address the problem of developing on-line visual tracking
algorithms. We present a specialized communication protocol that serves as
a bridge between a tracker implementation and utilizing application. It de-
couples development of algorithms and application, encouraging re-usability.
The primary use case is algorithm evaluation where the protocol facilitates
more complex evaluation scenarios that are used nowadays thus pushing for-
ward the field of visual tracking. We present a reference implementation
of the protocol that makes it easy to use in several popular programming
languages and discuss where the protocol is already used and some usage
scenarios that we envision for the future.

Keywords: computer vision, visual tracking, performance evaluation,
algorithm analysis, communication protocol, software library

1. Introduction

Visual tracking is an active and diverse research area in computer vision
which deals with the question how to predict a state of one or more objects
in a sequence of images. This problem is difficult to tackle as a whole and
has therefore sprouted numerous different approaches with different track-
ing scenarios, constraints, methodologies for performance evaluation, and
techniques for algorithm analysis. Integrating tracking algorithms with eval-
uation tools requires at the very least some tedious source code adaptation.
Moreover, classical batch evaluation approaches, that come from classifica-
tion and detection methodologies are very limiting because of complex se-
quential nature of the tracking problem.

1

ar
X

iv
:1

70
5.

04
46

9v
1 

 [
cs

.C
V

] 
 1

2 
M

ay
 2

01
7



In this paper we present a technical solution to these problems. We have
designed a specialized protocol called TraX, which stands for visual Tracking
eXchange. The protocol (Section 3) defines a standardized way of integrating
tracking algorithms with applications, without requiring access to the source
code and therefore facilitates software re-use and consolidation. We present
a reference cross-platform implementation of the protocol (Section 4) that
simplifies its adoption, list its features and discuss existing and potential use
cases (Section 4.1), provide an example of integration (Section 4.2 and 4.3)
and conclude with a summary and development road-map (Section 5).

2. Problems and Background

A common challenge when evaluating a newly developed tracking algo-
rithm is ensuring that the results and methodology are comparable with
existing work. Results in papers are trimmed down due to paper length
limitations, therefore the experiments often have to be repeated to ensure
a meaningful comparison. This requires access to reliable implementations
of the algorithms. Because of this, large-scale comparisons using a consis-
tent methodology were in the past a challenging manual task of adapting
or implementing trackers and typically resulted in standalone survey pa-
pers [1, 2, 3, 4]. Recently, more focus has been directed towards designing
consistent evaluation methodologies [5, 6, 4]. Wu et al. [3] presented a bench-
mark dataset and provided a toolkit for performance evaluation of detection-
based trackers. To use this toolkit, one has to adapt their tracker as well as
modify the toolkit’s code. In [4] authors propose only the methodology, but
leave its implementation to researchers, which makes its adoption difficult.
Perhaps the most advanced in this respect is the VOT Challenge initiative [7]
that started in 2013 and organizes an annual challenge and a workshop based
on the results of a challenge. From the technical point of view, the core of
the challenge is a toolkit that can perform various experiments on a large
number of tackers.

Another important research problem is determining which tracking algo-
rithms are suitable for a specific tracking task, which requires testing algo-
rithms under various conditions. A handful of such task-specific tools were
proposed, such as the ODViS system [8] which is focused on tracking in a
surveillance system scenarios, or the work by Nawaz and Cavallaro [9], who
proposed a system that simulates several sources of noisy input, such as ini-
tialization noise, per-pixel image noise, and changes in the frame-rate. Both

2



systems require direct integration of tracking algorithms into the evaluation
code-base which is time-consuming, limits the choice of programming lan-
guage, and presents a software stability risk.

The issue of consistent evaluation and its repeatability is partially ad-
dressed if the authors share their implementation, either as source code or
in a binary form. However, there is still a lot of work in making these im-
plementations run with a specific methodology or application. In case of
binary versions it can be even impossible to properly run the tracker beyond
its predefined purpose. Evaluation methodologies are also becoming more
ambitious, but also more complex and implementing them multiple times is
error-prone. From the perspective of the research community, the best strat-
egy is to encourage development of common open-source evaluation tools and
focus on their stability and reliability. This is where our work steps in. The
proposed protocol acts as a standardized bridge between the tracker and the
utilizing application targeting primarily on-line tracking scenarios where con-
sistent integration interface is especially difficult to make. Once conforming
with the protocol, tracker implementations can be quickly used in various sce-
narios without additional modifications (or even access to the source code).
The protocol is implemented in a multi-platform open-source library, which
can be used to add the protocol support to a tracker implementation or to
design a new use-case.

3. The protocol

The TraX protocol is simple, yet flexible enough to allow extensions and
custom use-cases. Still, all technical details of the protocol are too long for
this presentation, and we refer the reader to [10] and the on-line project
documentation for more information.

To describe the interaction between the tracker and utilizing application,
we adopt a standard client-server terminology. A server is the tracker pro-
cess that answers to requests made by the client1. The client is driving the
tracking session; typically this would be an evaluation tool that aggregates
tracking data for performance analysis. Client’s requests may tell the tracker
to initialize its model with initial object state in the given image, or to predict
state of the object in a given image. The possible states of both parties and

1Unlike traditional servers that communicate with multiple clients, the server in our
case only communicates with a single client.

3



Figure 1: Protocol states for client and server (a) protocol message format (b).

the messages that trigger change are visualized in 1(a). The synchronous
communication allows clients to select images based on the trackers output,
opening new possibilities in tracker evaluation, which, up until now was lim-
ited by batch execution of tracker program.

The protocol is designed to use standard input and output streams, a
mechanism that all modern operating systems provide, to exchange line-
based messages between the tracker process and evaluation application, em-
bedded between normal tracker output (e.g. debug messages). Other media,
such as TCP streams can be used as well, enabling remote and distributed
evaluation. Each protocol message is separated from the past and future
stream content by the new-line character. A fixed message prefix is used
to distinguish between arbitrary program outputs and embedded TraX mes-
sages. The prefix is followed by a message type identifier, which is followed
by message arguments. A protocol message, illustrated in Figure 1(b), con-
sists of a header and mandatory arguments as well as optional parameters
that can carry additional data. The two core data-types conveyed by the
protocol are image (filesystem path, in-memory data) and target state (e.g.
bounding box, polygon).

4. Reference library

The TraX protocol is simple to implement in its basic form, however, its
full and consistent implementation requires more time. To make the adoption
more convenient we have created a reference implementation library that
hides the protocol details and can be used to implement support in servers

4



Figure 2: Overview of the library infrastructure.

(trackers) as well as in clients. The library is written in pure C2, is cross-
platform and does not require any external dependencies. We also provide
C++ and Matlab/Octave wrappers that expose the underlying functionality
in a more friendly manner, a Python implementation of the protocol, and
utility libraries that handle some common use cases, e.g. integration with
the OpenCV library or writing a client application. Figure 2 illustrates the
architecture of the entire project.

4.1. Functionality and use cases

There are two ways to use the library: (1) include the support in your
tracker implementation, as demonstrated in Section 4.2, (2) write a client,
i.e., program that drives the tracking session. We envision several client ap-
plications, some of which go beyond the current state of tracker evaluation.
The most typical client application performs comparative experiments in ob-
jective and repeatable manner. In fact the proposed protocol (together with
the reference library) was recently adopted as the default means of integration
in VOT Challenges, significantly shortening the time of experiment execu-
tion3. Because of its flexibility, the protocol may also be used to test a tracker
under different combinations of parameters (passed to the tracker as extra
parameters during initialization) or to aggregate and analyze tracker-specific
information (passed to the application for each frame as extra parameters
during tracking), helping researchers to understand its behavior.

2The reason for this is that C code is easy to bind into other languages.
3By definition, supervised experiments require reinitialization on tracker failure, which

can be detected immediately when using the proposed protocol.

5



Moving beyond classical performance benchmarking, the most important
potential of the protocol lies in its synchronized exchange of information,
which could be used to simulate real-time requirement for algorithms (e.g.
dropping frames), as well as simulate scenarios of active tracking, where the
response of the tracker influences the content of the subsequent images.

4.2. Tracker integration

In Figure 3 we show how a typical tracker can be extended to support
the protocol. For brevity, we use high-level pseudo-language. More realistic
and complete examples in various programming languages can be found in
the project documentation.

Setup tracker
Read initial object region and first image
Initialize tracker with provided region and image
loop

Read next image
if image is empty then

Break the tracking loop
end if
Update tracker with provided image
Write region to file

end loop
Cleanup tracker

Setup tracker
TraX: Initialize protocol, send introduction
loop

TraX: Wait for message from client
if initialization request then

Initialize tracker with provided region and image
else if frame request then

Update tracker with provided image
else if terminate request then

Break the tracking loop
end if
TraX: Report current state

end loop
TraX: Cleanup protocol
Cleanup tracker

Figure 3: Pseudo-code of a tracker loop before (left) and after (right) protocol integration.

The major modification of the original tracking loop in the example is
that tracker initialization is moved within the tracking loop as the client
may request reinitialization during the tracking session. The tracker only
has to take care of serving the incoming requests which takes away a lot of
boilerplate code, e.g., loading image sequence and ground-truth.

4.3. Client applications

In Figure 4 we show how a generic client application in pseudo-language.
According to the TraX protocol the client application has to manage the
tracker process, how this is done is not specified by the protocol and depends
on the platform and the language used. A C++ support library for the refer-
ence protocol implementation that takes care of platform specifics. A detailed
tutorial on how to use this library is available in the on-line documentation.

6



Start tracker process
TraX: Initialize protocol, wait for introduction
loop

Obtain sequence frame
if not initialized then

Obtain ground-truth for the current frame
TraX: Send initialize command with frame data and ground-truth

else
TraX: Send update command with frame data

end if
if tracker terminated then

Break the tracking loop
else

Inspect tracker’s output and react
end if

end loop
TraX: Cleanup protocol
Cleanup client

Figure 4: Pseudo-code of a simple client application according to the TraX protocol.

5. Conclusions

We have presented a specialized communication protocol that separates
the development of on-line tracking algorithms from the development of tools
that are used to drive the tracking session. This allows researchers to focus
on the development of new algorithms without implementing the boilerplate
code for evaluation or other uses. The presented version of the protocol
and its corresponding implementation have some limitations, e.g. they can
only be used for single-target tracking and the state of the target can only be
specified with a simple region. We plan to address these constraints in future
versions together with support for more programming languages. We would
like to emphasize that the protocol is also already being used in practice, most
prominently with the adoption for tracker integration in the VOT Challenge
evaluation toolkit [7].

References

[1] Q. Wang, F. Chen, W. Xu, M.-H. Yang, An experimental comparison
of online object-tracking algorithms, in: SPIE Optical Engineering+
Applications, San Diego, 2011, pp. 81381A–81381A–11. doi:10.1117/

12.895965.
URL http://adsabs.harvard.edu//abs/2011SPIE.8138E..56W

[2] Y. Pang, H. Ling, Finding the Best from the Second Bests Inhibit-
ing Subjective Bias in Evaluation of Visual Tracking Algorithms, in:
IEEE International Conference on Computer Vision, 2013, pp. 2784–
2791. doi:10.1109/ICCV.2013.346.

7

http://adsabs.harvard.edu//abs/2011SPIE.8138E..56W
http://adsabs.harvard.edu//abs/2011SPIE.8138E..56W
http://dx.doi.org/10.1117/12.895965
http://dx.doi.org/10.1117/12.895965
http://adsabs.harvard.edu//abs/2011SPIE.8138E..56W
http://dx.doi.org/10.1109/ICCV.2013.346


[3] Y. Wu, J. Lim, M.-h. Yang, Online Object Tracking: A Benchmark, in:
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2013, pp. 2411–2418.

[4] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. De-
hghan, M. Shah, Visual Tracking: an Experimental Survey, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 36 (7) (2013) 1442–
1468. doi:10.1109/TPAMI.2013.230.

[5] H. Wu, A. C. Sankaranarayanan, R. Chellappa, Online empirical eval-
uation of tracking algorithms., IEEE Transactions on Pattern Analysis
and Machine Intelligence 32 (8) (2010) 1443–58. doi:10.1109/TPAMI.

2009.135.
URL http://dl.acm.org/citation.cfm?id=1829895.1830140http:

//www.ncbi.nlm.nih.gov/pubmed/20558876

[6] L. Čehovin, A. Leonardis, M. Kristan, Visual object tracking per-
formance measures revisited, IEEE Transactions on Image Processing
25 (3) (2016) 1261–1274.

[7] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder, G. Fer-
nandez, G. Nebehay, F. Porikli, L. Čehovin, A Novel Performance
Evaluation Methodology for Single-Target Trackers, Pattern Analy-
sis and Machine Intelligence, IEEE Transactions onarXiv:1503.01313,
doi:10.1109/TPAMI.2016.2516982.

[8] C. Jaynes, S. Webb, R. Steele, Q. Xiong, An open development envi-
ronment for evaluation of video surveillance systems, in: Performance
Evaluation of Tracking and Surveillance, 2002.
URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.4.3326{&}rep=rep1{&}type=pdf{#}page=39

[9] T. Nawaz, A. Cavallaro, A protocol for evaluating video trackers under
real-world conditions, Image Processing, IEEE Transactions on 22 (4)
(2013) 1354—-1361. doi:10.1109/TIP.2012.2228497.
URL https://ieeexplore.ieee.org/xpls/abs{_}all.jsp?

arnumber=6357282

[10] L. Čehovin, TraX: Visual Tracking eXchange Protocol (apr 2014).

8

http://dx.doi.org/10.1109/TPAMI.2013.230
http://dl.acm.org/citation.cfm?id=1829895.1830140 http://www.ncbi.nlm.nih.gov/pubmed/20558876
http://dl.acm.org/citation.cfm?id=1829895.1830140 http://www.ncbi.nlm.nih.gov/pubmed/20558876
http://dx.doi.org/10.1109/TPAMI.2009.135
http://dx.doi.org/10.1109/TPAMI.2009.135
http://dl.acm.org/citation.cfm?id=1829895.1830140 http://www.ncbi.nlm.nih.gov/pubmed/20558876
http://dl.acm.org/citation.cfm?id=1829895.1830140 http://www.ncbi.nlm.nih.gov/pubmed/20558876
http://arxiv.org/abs/1503.01313
http://dx.doi.org/10.1109/TPAMI.2016.2516982
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3326{&}rep=rep1{&}type=pdf{#}page=39
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3326{&}rep=rep1{&}type=pdf{#}page=39
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3326{&}rep=rep1{&}type=pdf{#}page=39
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.4.3326{&}rep=rep1{&}type=pdf{#}page=39
https://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6357282
https://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6357282
http://dx.doi.org/10.1109/TIP.2012.2228497
https://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6357282
https://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=6357282

	1 Introduction
	2 Problems and Background
	3 The protocol
	4 Reference library
	4.1 Functionality and use cases
	4.2 Tracker integration
	4.3 Client applications

	5 Conclusions

