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Abstract

Visual saliency has been increasingly studied in relation to image quality assessment. Incorpo-
rating saliency potentially leads to improved ability of image quality metrics to predict perceived
quality. Howeyver, challenges to optimising the combination of saliency and image quality metrics
remain. Previous psychophysical studies have shown that distortion occurring in an image causes
visual distractions, and alters gaze patterns relative to that of the image without distortion. From
this, it can be inferred that the measurable changes of gaze patterns driven by distortion may be
used as a proxy for the likely variation in perceived quality of natural images. In this paper, rather
than using saliency as an add-on to image quality metrics, we investigate the plausibility of ap-
proximating picture quality based on measuring the deviation of saliency induced by distortion.
First, we designed and conducted a large-scale eye-tracking experiment to clarify the knowledge
on the relationship between the deviation of saliency and the variability of image quality. We
then used the results to devise an algorithm which predicts perceived image quality based on vi-
sual distraction. Experimental results demonstrate this can provide good results of image quality
prediction.

Keywords: Picture quality, visual distraction, saliency, eye-tracking, statistical learning

1. Introduction

Image quality metrics (IQMs) form the basis of algorithms that can automatically assess per-

ceived quality of image material. They are nowadays widely available in many digital imaging
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systems in a broad range of applications, e.g., for fine tuning image and video processing pipelines,
quality monitoring and control of displays. Substantial progress has been made on the develop-
ment of IQMs over the last several decades. State of the art algorithms, however, demonstrate a
lack of sophistication when it comes to dealing with real world complexity [1, 2], which makes
image quality assessment a continued problem of interest. The fundamental challenge intrinsically
lies in the fact that our knowledge about how the human visual system assesses image quality and
how to express that in an efficient mathematical model remains rather limited. Being able to re-
liably predict image quality as perceived by humans requires a better understanding of functional
aspects of the human visual system relevant to image quality perception, and optimal use of that
to improve existing IQMs or devise more rigorous algorithms for IQMs.

In the literature, IQMs range from dedicated models that assess the annoyance of a specific type
of visual distortion [3, 4, 5] to general models that measure the overall perceived quality [6, 7].
These IQMs can be categorised into full-reference, reduced-reference and no-reference metrics,
depending on to what extent their algorithms utilise the undistorted reference. Full-reference met-
rics require the full access to the reference when assessing the quality of the distorted image [8, 9].
In the scenarios where the reference is partially available (e.g., in complex communication net-
works), reduced-reference metrics are meant to assess image quality by using information ex-
tracted from the reference [10, 11]. No-reference metrics attempt to predict the perceived quality
purely based on the distorted image, and are useful for scenarios where there is no access to
the reference at all [12, 13]. Generally, full-reference IQMs are more accurate and reliable than
reduced-reference and no-reference IQMs. This is due to the quality of the distorted image can be
directly measured against its original distortion-free reference [14]. However, full-reference IQMs
are less practical in many real-world applications, where the reference is not fully available.

Successful IQMs in the literature mainly benefit from the advances in modelling early visual
processing in the human visual system, e.g., contrast sensitivity [15], masking [16] and percep-
tion of structured information [17]. A growing trend in image quality research is to investigate
the significance of visual attention on judging image quality. Visual attention exists as an impor-
tant mechanism in the human visual system that allows effective selection of the most relevant

information in a visual scene [18]. This attentional selection is known to be controlled by two
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kinds of mechanisms: stimulus-driven, bottom-up mechanism and expectation-driven, top-down
mechanism [19]. The former is often interchangeably referred to as visual saliency in the field
of machine vision [20]. Eye movements of human observers serve as the empirical foundation of
saliency modelling [21]. Saliency (i.e., bottom-up attention) models intend to explicitly predict
fixations during (the first few seconds) freely viewing a visual stimulus [18]. A computational
model of saliency aims to output a topographic map that represents conspicuousness of scene
locations, where some parts of a scene appear to stand out relative to their neighbouring parts [22].

Incorporating saliency potentially leads to improved ability of IQMs to predict perceived qual-
ity [23, 24, 25]. The basic idea is to weight local distortions with local saliency, resulting in a
more sophisticated means of image quality prediction. For example, in [26], a well-established
saliency model (i.e., STB [27]) is integrated into a popular IQM (i.e., SSIM [17]) to improve its
performance. However, finding ways to achieve such integration by means of a perceptually opti-
mised strategy remains very challenging, and requires detailed mathematical models of distortion
and saliency and of how both are perceived by the human visual system. In this paper, we hypoth-
esize that distortion would cause visual distraction, i.e., variation in saliency, and that the extent of
visual distraction should be related to the strength of distortion and can be used as a proxy for the
likely variation in image quality. Therefore, rather than using saliency as a weighting function for
IQMs, we investigate the plausibility of approximating image quality by means of measuring the
saliency variation induced by distortion. The proposed investigation will provide a better under-
standing of how visual saliency plays a role in image quality assessment. Moreover, the proposed
concept contains a new scope of developing saliency-based IQMs. It should, however, be noted
that the proposed ideas fall into the full-reference (or reduced-reference) category of IQMs, where

the saliency information of the reference image is needed.

2. Related work and contributions

2.1. Related work

Psychophysical studies have been undertaken to understand saliency in relation to image qual-

ity assessment [28, 29, 30, 31]. In [28], eye-tracking experiments were conducted to study how
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human fixations might be affected by visual distortions in images. It is found that distortions can
alter fixations relative to that obtained from the undistorted scene, and that the observed changes
of fixations depend on the amount of distortion. A dedicated eye-tracking study was performed
in [29] to investigate how JPEG compression affects fixations. The study shows that the impact
of JPEG artifacts on fixations is more disruptive at low image quality than the high image quality.
The eye-tracking data resulted from the study in [30] indicate that fixations change when visual
distortions occur in an image, and that the extent of the change seems to be more related to the
strength of artifacts rather than the type of artifacts. The eye-tracking study in [31] measured the
gaze behaviour of viewers on original images and their distorted versions using three distortion
types at two distortion levels. The results reveal that distortion added to an image leads to changes
in gaze patterns and that this impact is predominately driven by distortion intensity rather than
distortion type. In general, psychophysical studies as mentioned above show the tendency that
distortion occurring in an image results in the deviation of fixations from their original patterns of
deployment, and the extent of deviation largely depends on the strength of distortion.

It should, however, be noted that the generalisability of the empirical evidence found in above
studies remains limited by the choices made in their experimentation, such as the use of a limited
number of human subjects and a small degree of stimulus variability. For example, the experiments
in [28, 29, 30, 31] all made use of a restrictive selection of visual stimuli (i.e., two distortion levels
in [28] and [31], one distortion type in [29] and a total of six stimuli in [30]), which potentially
affects the validity of these experiments in terms of making generalisations. The other drawback to
existing studies is that they potentially suffer from an inherent bias in their data collection, where
each observer had to view the same scene several times (with multiple variations of distortion)
throughout a single session. In such a scenario, the viewers might have been forced to e.g., learn
where to look for the impairments rather than observing the stimuli naturally. As a consequence,
the recorded eye movements of fixations might have been more influenced by the visual distortions
than the natural scenes . This implies that the eye-tracking data collected under such circumstances
may potentially bias the actual relationship between saliency and distortion. In addition, some
eye-tracking experiments (e.g., [30] and [31]) were performed in company with an image quality

scoring task. Since a task given to the subjects is known to impact the deployment of fixations [32],
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it is thus difficult to identify the extent to which the observed changes in gaze patterns are related to
distortion rather than due to the perceptive and cognitive load of the assessor in need of completing
a visual inspection task. Up till now, very little, if any, meaningful progress has been made on
relating saliency variation (i.e., visual distraction) to image quality with detailed mathematical

models, which is the topic to be investigated in this paper.

2.2. Contributions of the paper

(1) Obviously, existing psychophysical studies are either strongly biased in their data collection
or limited by the generalisability of their results. To provide substantial and statistically sound
empirical evidence, we start from designing and conducting a large-scale eye-tracking exper-
iment by means of a reliable methodology. To this end, we propose a refined experimental
design with an aim to eliminate bias induced by each subject having to view multiple varia-
tions of the same scene in a conventional experiment. This methodology allows reliably col-
lecting eye-tracking data with a large degree of stimulus variability in terms of scene content,
distortion type as well as degradation level.

(2) Unlike existing studies that have mainly focused on a limited dataset and rather qualitative
analysis, we perform exhaustive statistical learning approaches using the “ground truth” data
obtained from our eye-tracking experiment. This allows us to clarify the knowledge on the re-
lationship between the distortion-driven saliency variation and perceived image quality, which
provides a solid empirical foundation for computational modelling.

(3) We then use the results of our psychophysical studies to devise an algorithm which approxi-

mates perceived quality of natural images based on saliency deviation induced by distortion.

3. Psychophysical studies

To investigate the changes of saliency induced by distortion and their relation to image qual-
ity, we performed an eye-tracking experiment, where ground truth data of saliency were collected
on natural scenes of varying quality. To be able to vary the perceived quality, each natural scene

should be distorted with different types of distortion and at various levels of degradation. Asking



Table 1: Configuration of test stimuli extracted from the LIVE image quality database [33]. For each subset of the
database, each interval (i.e., perceived quality level (PQL)) along the quality scale (i.e., DMOS) contains three images

of different scenes.
JPEG2000 JPEG WN GBLUR FF

PQL | image | DMOS | image | DMOS | image | DMOS | image | DMOS | image | DMOS
imgl91 | 78.16 | img9l 78.98 | imgl06 | 77.63 | imgl2l | 74.67 | img2l 78.40
1 img79 | 79.17 | imgl00 | 81.20 | img61 78.47 | img69 | 79.76 | imgl8 | 81.02
imgl07 | 79.85 | imgl188 | 83.03 | img50 | 79.44 | imgll 83.27 | img92 | 81.44

img220 | 70.84 | img207 | 70.02 | img96 | 69.26 | imgl25 | 68.02 | imgll2 | 70.08
2 img227 | 70.88 | imgl75 | 70.50 | imgl34 | 70.65 | imgll8 | 70.26 img3 70.14
img28 | 70.95 | imgl34 | 7236 | img39 | 71.76 | imgl20 | 71.84 | imgl4l | 71.64
imgl22 | 58.56 | imgl56 | 59.65 | img32 | 60.28 | img53 | 59.57 | img88 | 59.17
3 imgl60 | 58.75 img9 59.74 | imgl24 | 61.46 | imgd0 | 59.73 | img66 | 59.22
imgl37 | 60.61 img41 59.87 | img26 | 61.63 | img73 60.11 img98 | 60.48
img91 | 4872 | img69 | 48.87 | img25 | 49.83 | imgl30 | 49.54 | img81 | 48.85
4 imgl63 | 49.97 | img2l | 50.12 | imgl02 | 50.19 | img38 | 49.57 | img56 | 49.80
imgl70 | 50.19 | imgl28 | 52.32 | imgl39 | 52.70 | img30 | 50.78 | img32 | 52.33

img8 39.38 | imgl5 | 41.37 | imgl32 | 38.09 | img76 | 40.32 | img93 | 38.39
5 imgl33 | 40.05 | img90 | 42.04 | img90 | 39.71 | img77 | 40.77 | imgl35 | 38.98
imgl20 | 40.34 | img86 | 42.58 | img70 | 41.32 | imgl03 | 41.62 | imgl23 | 41.42
imgl87 | 29.92 | imgl63 | 28.82 | img22 | 29.05 | img29 | 29.71 | img38 | 30.78
6 img78 | 30.57 | img63 | 30.00 imgl 29.05 | img35 | 29.95 | imgl09 | 30.89
img222 | 31.28 | img56 | 32.01 | img8&4 | 31.25 | imgl3 | 30.51 | img89 | 31.06

img61 | 21.46 | img38 | 18.03 | img54 | 20.53 | img32 | 2042 | imgl4 | 19.72
7 | img2l | 2246 |imgl74 | 19.47 | imgl38 | 22.15 | img90 | 20.70 | img44 | 20.70
img80 | 20.57 | img216 | 20.93 | imgl03 | 22.88 | img51 | 21.91 | img98 | 20.90
img198 | 9.47 |imgl0l | 10.25 | img59 | 11.04 | img95 | 17.16 | imgl19 | 8.32
8 | img59 | 10.11 | img58 | 10.55 |imgl0l | 11.17 | imgl37 | 17.75 | img64 | 10.14
img75 | 11.04 |imgl30 | 11.02 | img98 | 13.27 | img63 | 18.64 | img27 | 10.90

15 a human subject to view multiple variations of the same scene is likely to result in biased eye-
tracking data [34]. To eliminate such potential bias, we proposed a refined experimental method-

ology for reliably collecting eye-tracking data, which is detailed below. Our experiment contains
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Figure 1: Illustration of the average DMOS of all stimuli for each perceived quality level (PQL) in our database. The

error bars indicate the standard deviation.

149 test stimuli with a large degree of variability in terms of image content, distortion type as well

as distortion level, and involves 100 human observers.

3.1. Proposed experimental methodology
3.1.1. Stimuli

To leave out expensive picture quality scoring experiments, we decided to construct our set
of stimuli by systematically selecting images from the LIVE database [33], which already con-
tains per image a ground truth quality score, i.e., difference mean opinion score (DMOS). A
higher DMOS indicates a lower perceived quality. The LIVE database consists of five subsets:
JPEG2000 compression (JPEG2000), JPEG compression (JPEG), white noise (WN), Gaussian
blur (GBLUR) and simulated fast-fading Rayleigh occurring in wireless channel (FF). From each
subset, we selected images to position at eight intervals along the DMOS scale; and each interval
(i.e., perceived quality level (PQL)) accommodated three images of different scenes. This yielded
a total of 149 test images (5 distortion type X 8 PQLs X 3 scenes + 29 originals). Table. 1 shows
the configuration of the stimuli. Figure. 1 further illustrates the average DMOS of all stimuli for
each PQL. It clearly visualises that our dataset contains eight distinct levels of perceived picture
quality. Note that making sure the quality levels are perceptually distinct is an important prerequi-

site for the following study. Pairwise comparisons are performed with a Wilcoxon signed rank test
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(i.e., an alternative for t-test for non-normal distributions) between two consecutive quality levels,
selecting DMOS as the dependent variable, and the quality level as the independent variable. The
results indicate that the difference between any pair of consecutive levels is statistically significant,

with P < 0.01 at 95% confidence level.

3.1.2. Refined protocol

Note that stimuli used for image quality scoring purposely include per reference image its sev-
eral versions of varying quality. Althought asking the same group of subjects to view all stimuli
(i.e., so called “within-subjects”) is customarily adopted in many eye-tracking studies [23, 28,
29, 30], this method potentially skews the results due to carryover effects [35]. This means ev-
ery subject has to view multiple variations of the same scene, and may carry over undesirable
effects (e.g., learning from experience) from viewing one stimulus to another. To overcome the
bias, we propose to use an alternative method, in which multiple groups of subjects are to be ran-
domly assigned to partitions of stimuli, each contains little or no stimulus repetition (i.e., so called
“between-subjects”). In our experiment, the test dataset was divided into 5 partitions (i.e., one
contains 29 images and the other four contain 30 images each); and only up to two repeated ver-
sions of the same scene were allowed in each partition. Stimuli assigned to each partition covered

all distortion types and the full range of quality levels.

3.1.3. Experimental procedure

We set up a standard office environment as to the guidelines specified in [49] for the conduct
of our experiment. The test stimuli were displayed on a 19-inch LCD monitor (native resolu-
tion: 1024x768 pixels). The viewing distance was approximately 60cm. The eye-tracking system
(SensoMotoric Instrument RED-m) featured a sampling rate of 120Hz, a spatial resolution of 0.1
degree and a gaze position accuracy of 0.5 degree. Each subject was provided with instructions
on the purpose and general procedure of the experiment (e.g., the task, the format of stimuli and
timing) before the start of the actual experiment. A training session was carried out to familiarise
the participants with the experiment, using 10 images that were different from those used in the
real experiment. Each session per subject was preceded by a 9-point calibration of the eye-tracking

equipment. The participants were instructed to experience the stimuli in a natural way (“view it
8
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Figure 2: Illustration of the ground truth saliency maps for the original images used in our database (a) and for samples
of their distorted versions (b). The stimuli in the first row of (b) are placed in order of perceived quality (with the
corresponding DMOS values listed at the bottom of (b)), and the third row of (b) shows the image patches extracted

from the stimuli (i.e., as indicated by the red boxes in the stimuli).

as you normally would”). Each participant viewed all stimuli (in his/her assigned partition) in
a random order. Each stimulus was shown for 10 seconds followed by a mid-gray screen of 2
seconds.

We recruited a total of 100 participants in our experiment. The subject pool consisted of 50
male and 50 female university students and staff members. They were aged between 22 to 47
years, and all inexperienced with image quality assessment and eye-tracking recordings. The
subjects were not examined for vision defects, and their verbal expression of the soundness of
their vision was considered sufficient. The participants were first randomly divided into 5 groups
of equal size, each with 10 males and 10 females; and the 5 groups of subjects were then randomly

assigned to 5 partitions of stimuli. This gives a sample size of 20 subjects per test stimulus.
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3.2. Results
3.2.1. Saliency map

A topographic saliency map that reflects the stimulus-driven, bottom-up aspects of visual at-
tention is derived from free-viewing fixations. For a given stimulus, its saliency map is con-
structed by first accumulating fixations over all viewers (i.e., 20 subjects in our experiment) and
then convolving the resulting fixation map with a Gaussian kernel. The width of the Gaussian
kernel approximates the size of fovea (i.e., 2 degrees of visual angle, and 45 pixels in our experi-
ment) [23, 30, 36]. The intensity of the resulting saliency map is linearly normalised to the range
[0, 1]. Convolving a fixation map with a Gaussian kernel is conventionally used to construct a to-
pographic saliency map. Both saliency map and the original fixation map are commonly used for
various purposes, e.g., the former is often used for the visualization and comparison of the atten-
tive regions [37] and the latter is needed for the comparison of fixation deployment [18]. Figure. 2
illustrates the saliency maps for the original images (i.e., referred to as scene saliency (SS)) used
in our experiment, and for samples of their distorted versions (i.e., referred to as distorted scene
saliency (DSS)). In Figure. 2 (b), we intentionally selected distorted stimuli from our dataset and
showed them in order of perceived quality level (i.e., DMOS increases from 8.31 for the left end
image to 81.44 for the right end image). As can be seen, the difference between SS and DSS in-
creases as the perceived quality decreases (or DMOS increases), which will be further investigated

below.

3.2.2. Reliability testing

Since the reliability of eye-tracking data strongly depends on, e.g., the number of viewers used
and the strength of carryover effects, it is crucial to validate the reliability of the collected data
before using them as a “ground truth”. We propose and perform rigorous reliability testing to
assess (1) whether the variances of eye-tracking data are homogeneous across different subject
groups (in a between-subjects method); (2) whether the sample size (number of participants) used

per stimulus is sufficient to achieve a stable saliency map.

Homogeneity of variance across groups. Since a between-subjects method is adopted, it is essen-

tial to make sure the variances of data across all groups are homogeneous. To be able to assess
10
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Figure 3: Illustration of the inter-observer agreement (IOA) averaged over all stimuli assigned to each group in our

experiment. The error bars indicate a 95% confidence interval.

the homogeneity, we measure the inter-observer agreement (I0A), which refers to the degree of
agreement among observers viewing the same stimulus [38, 39]. We implement IOA by com-
paring the saliency map derived from the fixations over all-except-one observers to the individual
saliency map of the excluded observer; and by repeating this operation so that each subject serves
as the excluded observer once. The similarity between two saliency maps is measured by the area
under the receiver operating characteristic curve (AUC) [18]. Figure. 3 illustrates the IOA value
averaged over all stimuli assigned to each subject group, showing that the IOA remains similar
across five groups in our experiment. A statistical significance test (i.e., ANOVA) is performed
and the results (i.e., P > 0.05 at 95% confidence level) show that there is no statistically significant
difference between groups, suggesting a high degree of consistency in eye-tracking data across

groups.

Data saturation. To determine the number of participants required for an eye-tracking experiment,
researchers either follow the rule of thumb (i.e., use of 5-15 participants) or use “data saturation”
as a guiding principle to ensure a chosen sample size suffices for leading to a “saturated” saliency
map. The latter means a saliency map reaches the point at which no new information would be ob-
served by adding more participants. We evaluate whether the sample size used in our experiment
is adequate to reach saliency “saturation” (i.e., a proxy of sufficient degree of reliability). The

validation is again based on the principle of IOA, which is extended to an inter-k-observer agree-
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Figure 4: Illustration of the inter-k-observer agreement (I0OA-k) averaged over all stimuli contained in our entire

dataset. The error bars indicate a 95% confidence interval.

ment measure (i.e., referred to as IOA-k, and k=2, 3...20 in our experiment). More specifically,
for a given stimulus, IOA-k is calculated by randomly selecting k observers among all. Figure. 4
illustrates the IOA-k value averaged over all stimuli contained in our entire dataset. It shows that
“saturation” starts to occur with 18 participants, suggesting that our sample size (i.e., 20 observers

per stimulus) gives a stable and saturated saliency map.

3.2.3. Significant findings: changes of saliency vs. changes of quality

As can be seen from Figure. 2, when comparing a DSS map to its corresponding SS map,
there exist some consistent patterns, e.g., the highly salient regions tend to occur around the same
places in both maps. The deviation of DSS from SS seems to be caused by distortion. Based on
the observed trend, one may hypothesize that the degree of saliency deviation is associated with
the strength of distortion (or level of perceived quality). To verify this hypothesis, we use the SS
map derived from the original undistorted scene as the reference, and quantify the deviation of a
DSS map from the reference (i.e., referred to as SS-DSS deviation), using three popular similarity
measures: AUC, normalized scanpath saliency (NSS) [40, 41] and Kullback-Leibler divergence
(KLD) [42]. These measures are already described in more detail in [43]; and we only briefly
repeat their meaning in our context. AUC =1 means DSS is the same as its reference SS; whereas

AUC = 0.5 corresponds to a chance level of finding similarity between DSS and SS. When NSS

12
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Figure 5: The measured SS-DSS deviation in terms of AUC, NSS and KLD for images of different perceived quality

(or distortion strength). The error bars indicate a 95% confidence interval.

> 0, the higher the value, the more similar the DSS and SS. KLD = 0 means SS and DSS are
absolutely equal. The higher the value, the more the DSS and SS are different.

Figure. 5 illustrates the SS-DSS deviation (in terms of AUC, NSS and KLD) averaged over all
distorted stimuli within each distortion level. In general, the figure shows that distortion strength
has a statistically significant effect on SS-DSS deviation, independent of the similarity measure
used. The degree of SS-DSS deviation increases as the perceived quality decreases (or strength
of distortion increases). An ANOVA test (preceded by a test for the assumption of normality)
is further performed by selecting SS-DSS deviation as the dependent variable, and the perceived
quality as the independent variable. The ANOVA results show that the image quality (or distortion
strength) has a statistically significant effect (P < 0.01 at 95% confidence level) on the saliency

deviation, independent of the similarity measure (i.e., AUC, NSS or KLD) used.

4. Computational modelling

Based on the findings of our psychophysical studies, it can be inferred that the changes of
saliency induced by distortion are strongly associated with the changes of image quality. We
further investigate the plausibility of modelling SS-DSS deviation as a proxy for the likely vari-
ation in perceived image quality. However, eye-tracking is cumbersome and impractical in many
real-world applications. A more realistic and practical system will use a computational model of
saliency rather than eye-tracking. Fundamental problems such as how to gauge the effectiveness of

saliency models and to what extent the SS-DSS deviation measured by these models is useful for

13



Table 2: The structure of stimuli contained in three image quality databases

Image quality database

No. of source images

No. of distortion types

No. of distorted images

LIVE 29 5 779
CSIQ 30 6 866
TID2013 25 25 3000

Y

ori imal

RARE2012 salLiu

4

-\

IeI distorted CBS

PQFT RARE2012 salLiu SR Torralba

Figure 6: Illustration of saliency maps generated by 17 saliency models for one of the original images in CSIQ

database and one of its jpeg distorted versions.

image quality prediction remain unsolved, and are the topics to be investigated below. Note that we
focus on validating the plausibility of using computational saliency in place of eye-tracking data
for SS-DSS deviation, rather than developing a new image quality metric. The latter is outside the

scope of this paper, and will be treated in a separate contribution.

4.1. Investigation framework

To have sufficient statistical power, our evaluation is conducted using 17 state of the art
saliency models and on three widely recognised image quality databases:LIVE [33], CSIQ [44]

and TID2013 [45] as their structure of stimuli summarised in Table 2. The saliency models con-

14
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sidered are CA, CBS, CovSal, DVA, GBVS, GR, ITTI, LGS, PQFT, RARE, salLiu, SDSF, SDSR,
SigSal, SR, SUN and Torralba (as already detailed in [18, 46]). Figure. 6 shows the saliency maps
generated by these models for one of the reference images and one of its distorted versions in our
database.

To quantify the SS-DSS deviation using modelled saliency, KLD is used. Note since both AUC
and NSS essentially require the access to the original fixation locations of SS which are, however,
not available for a modelled SS, they become unrealistic for comparing two computed saliency
maps and producing SS-DSS deviation. To compensate for the lack of appropriate similarity

measures, we devise a new measure, saliency deviation measure (SDM), as follows:

28S -DSS +¢
SS2+DSS%+¢

)

SDMSS—DSS = mean(

where the constant ¢ is to avoid instability when S S? + DSS? is very close to zero (i.e., £ = 0.01
is used in our experiment, note the value is somewhat arbitrary, but we find that the performance
of the SDM algorithm is fairly insensitive to variations of this value).

Finally, the strength of the relationship between the SS-DSS deviation and the perceived im-
age quality (i.e., DMOS scores) is quantified by the Pearson linear correlation coefficient (PLCC),
Spearman rank order correlation coefficient (SROCC) and Kendall rank order correlation coeffi-
cient (KROCC). Note the PLCC is customarily calculated after performing a nonlinear regression

using the formula below (as also used in [47, 48, 49]):

1

To oty (x_%)) + ayx + as 2)

1
fx) = 01(5 -

where @), s are five fitting parameters.

4.2. Experimental results

4.2.1. Performance of saliency models on ground truth SS and DSS

Benchmarking saliency models against ground truth SS has been extensively attempted [18,
46], however, little is known about the performance of existing saliency models in terms of detect-
ing DSS. Being able to detect both kinds of saliency would justify the applicability of a saliency

model in the specific area of image quality, where stimuli are distorted. We use our eye-tracking
15
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Figure 7: Illustration of the rankings of saliency models in terms of predictive power measured by SAUC. The error

bars indicate a 95% confidence interval.

data that contain both SS and DSS to evaluate the performance of saliency models. The eval-
uation criterion is selected to be the shuffled AUC (SAUC) [18], which is a refined version of
the traditional AUC, intent on precisely comparing the performance of different saliency models.
Figure. 7 illustrates the rankings of saliency models in terms of the average SAUC. It shows that
there is variation in performance among saliency models. The observed variation is further sta-
tistically analysed with an ANOVA, and the results (i.e., P < 0.01 at 95% confidence level) show
that saliency model has a statistically significant effect on SAUC. This suggests the ability of pre-
dicting the ground truth saliency in terms of both SS and DSS is different for different saliency

models.

4.2.2. Relationship between SS-DSS deviation and image quality

For each stimulus in a database, its SS-DSS deviation can be computed using a saliency model
combined with a similarity measure. Table 3 and Table 4 illustrate the correlation between the
SS-DSS deviations (i.e., measured by KLLD or SDM) and image quality scores (i.e., DMOS) for
three databases (i.e., LIVE, CSIQ and TID2013), using 17 different saliency models. Both tables
show that the correlation varies significantly depending on the saliency model used. For example,
in Table 3, the SROCC values range from 0.47 to 0.84 on LIVE, from 0.50 to 0.80 on CSIQ and

from 0.28 to 0.73 on TID2013. However, the results are insensitive to the variations of similarity
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Table 3: The correlation between SS-DSS deviation and image quality, using KLD as the similarity measure
LIVE CSIQ TID2013

model | SROCC | KROCC | PLCC | SROCC | KROCC | PLCC | SROCC | KROCC | PLCC
CA 0.7690 | 0.5734 | 0.7920 | 0.7468 | 0.5416 | 0.7639 | 0.5435 | 0.3747 | 0.5733
CBS 0.4664 | 0.3396 | 0.4795 | 0.5680 | 0.3940 | 0.5765 | 0.3793 | 0.2588 | 0.3910
CovSal | 0.8052 | 0.6025 | 0.8099 | 0.7995 | 0.5947 | 0.7840 | 0.7343 | 0.5512 | 0.7512
DVA 0.6889 | 0.4862 | 0.7169 | 0.7068 0.500 | 0.7370 | 0.5242 | 0.3591 | 0.5189
GBVS | 0.7895 | 0.5921 | 0.8177 | 0.7813 0.586 | 0.8003 | 0.5747 | 0.4027 | 0.5909
GR 0.5592 | 0.3848 | 0.5613 | 0.5251 | 0.3593 | 0.5438 | 0.3815 | 0.2609 | 0.4042
ITTI 0.8366 | 0.6394 | 0.8455 | 0.6602 | 0.4806 | 0.6965 | 0.6470 | 0.4639 | 0.6678
LGS 0.7986 | 0.5970 | 0.8078 | 0.6072 | 0.4334 | 0.6325 | 0.5298 | 0.3696 | 0.5505
PQFT 0.7900 | 0.5762 | 0.7924 | 0.6896 | 0.4922 | 0.7609 | 0.4659 | 0.3202 | 0.4949
RARE | 0.6665 | 0.4722 | 0.6874 | 0.6124 | 0.4242 | 0.6746 | 0.4333 | 0.2965 | 0.4682
salLiu | 0.4708 | 0.3258 | 0.4912 | 0.5008 | 0.3500 | 0.5329 | 0.2830 | 0.1934 | 0.3091
SDSF 0.7227 | 0.5313 | 0.7286 | 0.6280 | 0.4498 | 0.6327 | 0.4959 | 0.3445 | 0.4914
SDSR | 0.7219 | 0.5256 | 0.7386 | 0.7117 | 0.5115 | 0.7417 | 0.6363 | 0.4526 | 0.6490
SigSal | 0.6900 | 0.4948 | 0.7541 | 0.7065 | 0.5213 | 0.7758 | 0.6172 | 0.4414 | 0.6666
SR 0.7863 | 0.5952 | 0.7845 | 0.7803 | 0.5914 | 0.8033 | 0.6336 | 0.4552 | 0.6782
SUN 0.6728 | 0.4858 | 0.6818 | 0.5334 | 0.3656 | 0.5706 | 0.4060 | 0.2742 | 0.4064
Torralba | 0.8193 0.635 | 0.8159 | 0.6759 | 0.4937 | 0.7367 | 0.6540 | 0.4750 | 0.6814

measure: both KLD and SDM yield consistent correlation coefficients. For example, Torralba and
CovSal give the strongest correlation and salLiu and CBS give the weakest correlation, indepen-
dent of the similarity measure used.

In order to provide the overall rankings of saliency models, we use the following formula:
Overallcc(model) = By - CCrive + B2 - CCripors + B3 - CCcsig (3)

where S, 5, and B; are weights assigned to each dataset depending on the number of distorted
images in that dataset. For example, 8, equals to 0.168 (i.e., 779/(779 + 866 + 3000)) according
to Table 2. CC indicates the averaged correlation score over a certain correlation coeflicient (i.e.,
either SROCC or KROCC or PLCC) and over two cases (i.e.,KLD and SDM).

Figure. 8 illustrates the saliency models in order of overall correlation for SROCC (the results
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Table 4: The correlation between SS-DSS deviation and image quality, using SDM as the similarity measure
LIVE CSIQ TID2013

model | SROCC | KROCC | PLCC | SROCC | KROCC | PLCC | SROCC | KROCC | PLCC
CA 0.7699 | 0.5714 | 0.7813 | 0.7758 | 0.5617 | 0.7866 | 0.5732 | 0.3866 | 0.5797
CBS 0.6451 | 0.4584 | 0.6580 | 0.5633 | 0.3878 | 0.5647 | 0.3856 | 0.2616 | 0.3954
CovSal | 0.7086 | 0.5116 | 0.7158 | 0.6605 | 0.4679 | 0.6508 | 0.6697 | 0.4855 | 0.6881
DVA 0.7317 | 0.5208 | 0.7438 | 0.6909 | 0.4804 | 0.7150 | 0.5751 | 0.3997 | 0.5762
GBVS | 0.7876 | 0.5912 | 0.8031 | 0.7827 | 0.5833 | 0.7933 | 0.5500 | 0.3831 | 0.5527
GR 0.8300 | 0.6306 | 0.8337 | 0.7373 | 0.5335 | 0.7752 | 0.5078 | 0.3563 | 0.5598
ITTI 0.8305 | 0.6325 | 0.8340 | 0.6447 | 0.4665 | 0.6890 | 0.6449 | 0.4608 | 0.6582
LGS 0.7348 | 0.5357 | 0.7440 | 0.6130 | 0.4353 | 0.6299 | 0.4875 | 0.3377 | 0.5092
PQFT 0.6230 | 0.4333 | 0.6177 | 0.4933 | 0.3154 | 0.5169 | 0.2682 | 0.1775 | 0.3092
RARE | 0.6718 | 0.4779 | 0.6949 | 0.6081 | 0.4214 | 0.6792 | 0.4270 | 0.2921 | 0.4570
salLiu | 0.4678 | 0.3247 | 0.4867 | 0.4535 | 0.3160 | 0.4906 | 0.2593 | 0.1771 | 0.2844
SDSF 0.7251 | 0.5326 | 0.7304 | 0.6272 | 0.4430 | 0.6212 | 0.4875 | 0.3355 | 0.4836
SDSR | 0.7507 | 0.5530 | 0.7596 | 0.7388 | 0.5345 | 0.7590 | 0.6537 | 0.4662 | 0.6639
SigSal | 0.6903 | 0.4903 | 0.7399 | 0.6858 | 0.4933 | 0.7297 | 0.6077 | 0.4294 | 0.6311
SR 0.8846 | 0.7153 | 0.8766 | 0.8551 | 0.6706 | 0.8887 | 0.6649 | 0.4883 | 0.7250
SUN 0.5533 | 0.3808 | 0.5797 | 0.5747 | 0.3871 | 0.6003 | 0.3250 | 0.2174 | 0.3429
Torralba | 0.8854 | 0.6937 | 0.8904 | 0.7204 | 0.5321 | 0.8007 | 0.6905 | 0.5029 | 0.7423

for KROCC and PLCC exhibit similar trends and thus not presented here). It shows that by use of
saliency models, such as CovSal, SR and Torralba, the resulting SS-DSS deviation can reasonably
predict the perceived image quality. To further justify of our idea of using SS-DSS deviation
as a proxy for image quality prediction, we compare our best performing models (i.e., SS-DSS
based on CovSal, SR and Torralba) to five state of the art image quality metrics in literature,
including PSNR, SSIM [17], VIF [49], VSNR [50] and MAD [51]. Table 5 shows the comparison
of overall performance (i.e., also calculated using Equation (3)) of these image quality metrics.
It shows that the SS-DSS models are fairly comparable to some of the traditional image quality
metrics, suggesting that measuring saliency deviation induced by distortion is a plausible method

for assessing image quality.
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Figure 8: Illustration of the overall ability of saliency models in producing the correlation (in terms of SROCC)

between SS-DSS deviation and image quality.

Table 5: The comparison of the overall performance (in terms of SROCC) between the best performing saliency

models and some image quality metrics

model image quality metric
Torralba SR CovSal || PSNR | VSNR | VIF SSIM | MAD
Overall SROCC | 0.7079 | 0.7124 | 0.7166 | 0.7101 | 0.7466 | 0.7708 | 0.8012 | 0.8428

4.2.3. Impact of saliency models on the effectiveness of SS-DSS deviation measure

Having identified the benefits of SS-DSS deviation for image quality prediction, one could

intuitively hypothesize that the better a saliency model can predict ground truth SS and DSS, the

better the resulting SS-DSS model can predict image quality. To validate this hypothesis, we scat-

ter plot in Figure. 9 the following two variables: the saliency predictive power of a saliency model

(i.e., SAUC, based on the results of Figure. 7) and the quality predictive power of a corresponding

SS-DSS model (i.e., SROCC, based on the results of Figure. 8). The Pearson correlation is equal

to 0.87, suggesting a fairly strong positive relationship. In general, saliency models (e.g., CovSal,

SR, Torralba and I'TTI) that perform well in detecting ground truth SS and DSS lead to competitive

performance of quality prediction when using these models for SS-DSS deviation measure, and

vice versa (e.g., salLLiu, Sun, CBS and PQFT). The findings above suggest that the accuracy of a
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Figure 9: Scatter plot of two variables: the saliency predictive power of a saliency model (i.e., SAUC, based on the
results of Figure. 7) and the quality predictive power of a corresponding SS-DSS model (i.e., SROCC, based on the

results of Figure. 8

saliency model in detecting both SS and DSS should be used as a criterion to determine whether
or not a specific saliency model is suitable for SS-DSS deviation measure and for image quality

prediction.

5. Conclusion

This paper investigated the relationship between the changes of gaze patterns driven by distor-
tion and the likely variability of perceived image quality. A large-scale eye-tracking experiment
was conducted and an exhaustive statistical evaluation was performed on the resulting data. We
found that the occurrence of distortion in an image causes the deviation of fixations from their orig-
inal places in the image without distortion, and that the extent of distortion determines the amount
of saliency deviation. We also considered how the findings can be used to devise an algorithm
for image quality prediction. Experimental results show that it is highly plausible to approximate

image quality by means of saliency deviation.
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