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Abstract

Many real-world machine learning tasks have very limited labeled data but a
large amount of unlabeled data. To take advantage of the unlabeled data for en-
hancing learning performance, several semi-supervised learning techniques have
been developed. In this paper, we propose a novel semi-supervised ensemble
learning algorithm, termed Multi-Train, which generates a number of heteroge-
neous classifiers that use different classification models and/or different features.
During the training process, each classifier is refined using unlabeled data, which
are labeled by the majority prediction of the rest classifiers. We hypothesize that
the use of different models and different input features can promote the diversity
of the ensemble, thereby improving the performance compared to existing meth-
ods such as the co-training and tri-training algorithms. Experimental results on
the UCI datasets clearly demonstrated the effectiveness of using heterogeneous
ensembles in semi-supervised learning.

Keywords: Unlabeled data, Classification, Heterogeneous ensembles,
Semi-supervised learning, Tri-training, Multi-Train

1. Introduction

In machine learning and data mining applications, many attempts have been
made to enhance the perforamnce of classifiers [1, 2, 3]. Most existing algorithms
use only labeled data to build the classifier and in many cases and the amount
of labeled data is usually insufficient to train a robust classifier. However, it is
more often than not that labeled data are expensive to obtain while unlabeled
data can be easily made available. Out of this reason, semi-supervised learning
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(SSL), which is able to benefit from unlabeled samples together with labeled
ones, has attracted increasing attention over the past decade.

Most existing SSL techniques distinguish themselves mainly in the way of
labelling unlabeled data. These methods can largely be divided into three
main categories, which are graph based algorithms [4, 5, 6, 7], expectation-
maximization (EM) methods [8, 9, 10, 11] and ensemble methods [12, 13, 14,
15, 16, 17]. Recently, deep learning techniques have been widely used in SSL [18].
However, the performance enhancement of these techniques is at the expense of
a massive increase in computational complexity. In this work, we focus on using
SSL with simple algorithms for applications where small to medium-sized data
is involved.

Co-training [12], which trains two classifiers on two different views then la-
bels unlabeled data based on the prediction of one classifier to augment the
training set of the other. In that work, two “views” are two sets of attributes
which are sufficient and redundant. In other words, each view must be sufficient
to train the classifier while the two views are conditionally independent. Das-
gupta et al. [19] have shown that if these conditions are met, co-training could
achieve better generalization by maximizing its base classifiers’ agreement over
unlabeled samples. In practice, however, these conditions are not easy to be sat-
isfied. In order to address the above issue, Goldman and Zhou [13] attempted
to use two different supervised learning algorithms to partition the example
space into a set of equivalent classes. Unfortunately, their method entails a
time-consuming cross-validation technique to label the unlabeled samples.

Zhou [16] extended the co-training method by proposing a tri-training algo-
rithm. Instead of using two classifiers, tri-training uses three classifiers. Those
three classifiers are initially constructed by bootstrap-sampling the labeled sam-
ples. At each training iteration, an unlabeled data is labeled for one classifier
if the other two classifiers agree on the labelling, under certain conditions. The
tri-training method is attractive as it has successfully lifted the requirement for
two conditionally independent views in the original co-training method without
undergoing the time-consuming cross-validation process proposed in [13]. One
potential weakness of the tri-training algorithm is that, as the initial classifiers
are trained by bootstrap-sampling the labeled data, the diversity among the
three classifiers may not be guaranteed.

To benefit from the improved accuracy of ensemble learning [20, 21, 22,
23], techniques that combine SSL with ensembles have recently attracted much
interest. For example, Shao and Tian [24] proposed a selective SSL ensemble
learning method based on the distance to the model. Xiao et al. [25] proposed
an SSL ensemble for clustering applications.

In this paper, we propose a new semi-supervised ensemble learning algo-
rithm, which is called Multi-Train. Compared to the existing work, Multi-Train
does not require two views like co-training does, instead, it creates multiple
views by either manipulating the features in different ways or using different
types of learning models. The unlabeled data are predicted by a simple ma-
jority voting of the ensemble members, instead of complex measuring methods
like DM, in a hope to efficiently improve the accuracy in predicting the labels
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of unlabeled samples with minimum overhead cost.
One main advantage of the tri-training algorithm [16] over co-training based

semi-supervised learning is that tri-training does not require that the attributes
used for classification be described by multiple independent views, thereby con-
siderably extending the applicability of co-training based semi-supervised learn-
ing. However, as indicated in [16], the success of the tri-training algorithm
heavily depends on the diversity of the original ensemble classifier. In [16], di-
versity of the classifiers is generated using Boosting, which generates diversity
my manipulating the labeled data only.

The present work aims to enhance the performance of tri-training whilst
maintaining its wide applicability. Compared with the tri-training algorithm,
the proposed Multi-Train algorithm contains the following two main new contri-
butions. First, Multi-Train employs heterogeneous ensembles to more effectively
promote diversity of the classifiers. In Multi-Train, classifier diversity is gleaned
by simultaneously manipulating data, manipulating input attributes, using vari-
ous machine learning algorithms, and various models. Heterogeneous ensembles
have proved to be more effective in achieving diversity [23, 26, 27], which is also
empirically confirmed by statistically better results than those of the tri-training
algorithm on the 12 datasets used in this work. Second, the proposed method
predicts a probability of a data having a particular label, which can then be used
to select the most confidently predicted unlabeled data to be added to labeled
data. By contrast, tri-training uses a simple majority voting rule; as a result,
tri-training randomly selects a certain number of unlabeled data in the pool to
be added to labeled data. Given these properties, the Multi-Train algorithm is
able to be reliably applied to a wide range of classification problems.

The rest of this paper is organized as follows. Section 2 describes the related
work, which includes co-training and tri-training algorithms. Section 3 presents
the proposed Multi-Train algorithm. Section 4 gives the experimental settings
and empirical results on a set of UCI benchmark datasets. Finally, we conclude
this paper in Section 5.

2. Related Work

Let L denote the labeled dataset of a size of |L|, and U the unlabeled dataset
of a size of |U |. As in many machine learning problems, |L| is typically small.
The key issue is how to label some samples in U and use them for training the
classifiers together with the labeled samples so that the ensemble can predict
more accurately on unseen data.

2.1. Co-training

Co-training is a class of SSL algorithms, which tries to label unlabeled data
by taking two independent feature sets as two “views” that are independent and
sufficient for correct classification.

We denote the feature space X = X1 × X2, each sample x = (x1, x2), the
distribution over X as D, two target functions f1 ∈ C1 and f2 ∈ C2 over X1

and X2, respectively.
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Sufficiency: The instance distribution D is assumed to be compatible with
the target function f = (f1, f2) if for any x = (x1, x2) with non-zero probability,
f(x) = f1(x1) = f2(x2). The compatibility of f with D:

p = 1− PrD[(x1, x2) : f1(x1) 6= f2(x2)] (1)

Independency: A pair of views (x1, x2) satisfy view independency if:

Pr[X1 = x1|X2 = x2, Y = y] = Pr[X1 = x1, Y = y] (2)

Pr[X2 = x2|X1 = x1, Y = y] = Pr[X2 = x2, Y = y] (3)

Algorithm 1 The co-training algorithm

1: L: The labeled samples set
2: U : The unlabeled samples set
3: n: Sample size
4: T : Maximum number of iterations
5: C: Number of classes
6: H(X): The learning algorithm
7: {Prc}Cc=1 ← class prior probabilities
8: Class growth rate nc ← n× Prc, (c = 1, . . . , C)
9: h01 ← H(L(X1)), h02 ← H(L(X2)), t← 1

10: repeat
11: for v ∈ {1, 2} do
12: Predict U using ht−11

13: Sv ← ∅
14: for c ∈ {1, . . . , C} do
15: Sv ← Sv ∪ {nc most confident samples of c in prev. prediction }
16: L← L ∪ Sv, U ← U \ Sv

17: end for
18: end for
19: ht1 ← H(L(X1)), ht2 ← H(L(X2)), t← t+ 1
20: until t = T or |U | = 0
21: return combination of the predictions of ht1 and ht2

In the training process, two classifiers are initially trained with L, each
classifier then label one sample in U based on its prediction, which labels are
then used to retrain the other classifier. This process iteratively refines the
classifiers by moving samples in U to L and then retrain the classifier. This
process repeats for k iterations.

The pseudocode of the algorithm is presented in Algorithm 1.

2.2. Tri-training

One main difficulty for co-training algorithm is that it requires two indepen-
dent views, which can hardly be satisfied in most machine learning problems.
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Furthermore, the estimation of the most confident samples in co-training is
done by cross-validation, which is a time-consuming process. In order to over-
come these difficulties, Zhou [16] proposed the tri-training algorithm. Instead
of training each classifier using different feature sets in co-training, tri-training
subsamples L to create different classifiers.

The idea of tri-training is to train three classifiers from L. Each classifier is
then refined using the unlabeled data that other two classifiers agree on their
predictions. Therefore, the estimation of confidence is no longer necessary.

Algorithm 2 Error estimation in tri-training

1: < x, y >∈ X: The samples set with label
2: H: Trained learning algorithm
3: err ← 0, count← 0
4: for all x ∈ X do
5: flag ← True
6: for all hi ∈ H do
7: yi ← hi(x)
8: for all hj ∈ {H \ {hi}} do
9: yj ← hj(x)

10: if yi 6= yj then
11: flag ← False
12: end if
13: end for
14: if flag = True then
15: count← count+ 1
16: if yi 6= y then
17: err ← err + 1
18: end if
19: end if
20: end for
21: end for
22: return err/count

Three classifiers are initially trained by data bootstrap-sampled from L so
that diverse ensemble members can be created. In each iteration, three classifiers
are refined one by one, guided by the error E on the rest two classifiers. As the
estimation of classification error on the unlabeled data is difficult, E is measured
on labeled data only, based on the assumption that unlabeled data have the same
distribution as the labeled ones. E is defined by the percentage of samples in L
are simultaneously misclassified by the rest of the classifiers. The pseudocode
for error estimation can be found in Algorithm 2.

The training of tri-training progress continues until the error E stops decreas-
ing, which indicates that the maximum generalization has been achieved. With
certain theoretically proved restrictions, agreed unlabeled samples are gradually
added to the labeled data, which are used to refine the corresponding classifier
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Algorithm 3 The tri-training algorithm

1: L: The labeled samples set
2: U : The unlabeled samples set
3: H(X): The learning algorithm
4: B(X): The bootstrap algorithm
5: S(X,nout): The subsampling algorithm
6: E(X,h, . . . ): The simultaneous error measuring algorithm
7: for i ∈ {1, . . . , 3} do
8: hi ← H(B(L))
9: e′i ← 0.5

10: l′i ← 0
11: end for
12: repeat
13: for i ∈ {1, . . . , 3} do
14: Li ← ∅
15: updatei ← False
16: ei ← E(L, hj , hk), (j, k 6= i)
17: if ei < e′i then
18: for all x ∈ U do
19: if hj(x) = hk(x), (j, k 6= i) then
20: Li ← Li ∪ {< x, hj(x) >}
21: end if
22: end for
23: if l′i = 0 then

24: l′i ←
⌊

ei
e′i − ei

+ 1

⌋
25: end if
26: if l′i < |Li| then
27: updatei ← True

28: else if l′i >
ei

e′i − ei
then

29: Li ← S(Li,

⌈
e′il
′
i

ei
− 1

⌉
)

30: updatei ← True
31: end if
32: end if
33: end for
34: for i ∈ {1, . . . , 3} do
35: if updatei = True then
36: hi ← H(L ∪ Li)
37: e′i ← ei
38: l′i ← |Li|
39: end if
40: end for
41: until none of hi(i ∈ {1, . . . , 3}) changes

42: return h(x)← arg max
y∈label

∑
i:hi(x)=y

1
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until the prediction error of none of the classifiers further reduces.
Once the training process is complete, the ensemble can be used to predict

the unlabeled or unseen data with the label that two or more member classifiers
agree on.

The detailed tri-training algorithm is listed in Algorithm 3.

3. Proposed Method

While tri-training can be considered as an extension of the co-training frame-
work, this work aims to create even more “views” to enhance the performance
of semi-supervised learning. To this end, we resort to different means to create
diversity among the ensemble members. These may include the use of different
classifier models or different feature manipulation methods, or a combination of
both. For instance, there are many machine learning models as well as various
supervised learning algorithms, which can be used to create different “views”.
It is worth mentioning that in order to create views as independent as possible,
the models should be as different as possible. For example, linear discriminant
analysis (LDA) and linear support vector machines (LSVM) have both linear
hyperplanes, thus, the “views” they create are less independent. By contrast,
LDA and k-nearest-neighbor (kNN) are more likely to create different views, as
kNN has discrete hyperplanes that are different from that in LDA.

Another way of creating different “views” is to apply various feature manip-
ulation methods to create different features, either by selecting a subset of the
original features, or by transforming the original features into a difference space
using a dimension reduction method.

With the help of the artificially created multiple views, a large number of
base classifiers could be generated. Consequently, some modifications must be
made to the tri-training algorithm. First, as the number of base classifiers may
be large, it is less likely that all the rest classifiers are able to agree on an
unlabeled data. A solution to this issue is to introduce a voting mechanism to
predict the label. Unlike in tri-training algorithm where a deterministic label is
given, the proposed method predicts a probability of a data having a particular
label. This probability can then be used to select the most confidently predicted
unlabeled data to be added to L. This process is listed in Algorithm 4.

To label an unlabeled data, a parameter σ that defines the minimum con-
fidence level of the ensemble is required. Only samples that have a confidence
level greater than σ can be added to the pool in which data that can be selec-
tively added to L. It is easy to understand that σ should be in the range of
[0.5, 1], where σ = 0.5 represents a majority voting and σ = 1 denotes that all
the rest classifiers must agree on the predicted label.

In addition, we also modify the sampling process for selecting unlabeled data
in the pool to be added to L. As the tri-training algorithm has no confidence
indication on the unlabeled samples, it randomly selects a certain number of
unlabeled data in the pool to be added to L. The proposed algorithm, however,
adds a certain number of data to L that have the highest confidence level.
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Algorithm 4 The algorithm of prediction on unseen data

1: x: A sample without label
2: C: The classes
3: H: Trained learning algorithms
4: for all l ∈ L do
5: votel ← 0, probl ← 0
6: end for
7: for all hi ∈ H do
8: < yi, pi >← hi(x)
9: for all c ∈ C do

10: if c = yi then
11: votec ← votec + 1, probc ← probc + pi
12: end if
13: end for
14: end for
15: c← arg max

l
votec

16: return <
votec
|C|

,
probc
|C|

>

This will not add much computational complexity compared to the co-training
algorithm, as the confidence level is calculated based on the confidence output
from each base classifier rather than using cross-validation as in the co-training
algorithm.

Finally, the proposed algorithm requires the user to pair up the feature
manipulation methods and the learning model, each pair representing a base
classifier. The corresponding classifier is initially trained with the specified
learning algorithm with features manipulated by the pre-specified feature ma-
nipulation method. Therefore, a pair of feature manipulation method and a
model represents a “view” to the data.

The entire Multi-Train algorithm is presented in Algorithm 5.

Algorithm 5 The Multi-Train algorithm

1: L: The labeled samples set
2: U : The unlabeled samples set
3: σ: The voting confident
4: P =< F(x),H(X) >: The feature manipulation and learning algorithm

pairs
5: B(X): The bootstrap algorithm
6: S(X,nout, R): The subsampling algorithm with ranking vector R
7: E(X,h, . . . ): The simultaneous error measuring algorithm
8: N ← size(P)
9: for i ∈ {1, . . . , N} do

10: homoF lagi ← False
11: for j ∈ {i, . . . , N} do
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12: if Fi = Fj and Hi = Hj then
13: homoF lagi = True
14: homoF lagj = True
15: end if
16: end for
17: end for
18: for i ∈ {1, . . . , N} do
19: tmpi ← Fi(L)
20: if homoF lagi = True then
21: tmpi ← B(tmpi)
22: end if
23: hi ← Hi(tmpi), e′i ← 0.5, l′i ← 0
24: end for
25: repeat
26: for i ∈ {1, . . . , N} do
27: Li ← ∅, Ranki ← ∅, updatei ← False
28: ei ← E(L, h∗), (∗ ∈ {1, . . . , i− 1, i+ 1, . . . , N})
29: if ei < e′i then
30: for all x ∈ U do
31: < label, confidence >← predicted class label with confidence
32: if confidence > σ then
33: Li ← Li ∪ {< x, label >}
34: Ranki ← Ranki ∪ {confidence}
35: end if
36: end for
37: if l′i = 0 then

38: l′i ←
⌊

ei
e′i − ei

+ 1

⌋
39: end if
40: if l′i < |Li| then
41: updatei ← True

42: else if l′i >
ei

e′i − ei
then

43: Li ← S(Li,

⌈
e′il
′
i

ei
− 1

⌉
, Ranki)

44: updatei ← True
45: end if
46: end if
47: end for
48: for i ∈ {1, . . . , N} do
49: if updatei = True then
50: hi ← Hi(Fi(L ∪ Li))
51: e′i ← ei
52: l′i ← |Li|
53: end if
54: end for
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55: until none of hi(i ∈ {1, . . . , N}) changes

56: return h(x)← arg max
y∈label

∑
i:hi(x)=y

1

4. Experiments

4.1. Experimental Setup

In order to compare the performance of the proposed algorithm with the
original tri-training algorithm, we conducted a set of experiments on the 12
datasets from UCI Machine Learning Repository [28]. The properties of datasets
are summarized in Table 1.

For each dataset, we use 25% samples in the dataset as test data, and the
rest 75% are for training. As we are testing the SSL algorithm, not all training
data are used with labels, although all data are labeled. We artificially set 20%
of the data as labeled and the rest 80% as unlabeled. For example, assuming we
have a dataset containing 1000 instances, 250 instances are used as test data,
750 instances are used as training data, among which 150 out of 750 instances
are considered as labeled and the rest 600 out of 750 instances are treated as
unlabeled. The selection of training and test sets is randomized while preserving
the original ratio of positive and negative classes in all sets.

Table 1: Dataset characteristics

Dataset Attribute Size Classes

australian 14 690 2
bupa 6 345 2
colic 22 368 2
diabetes 8 768 2
german 20 1000 2
hypothyroid 29 3772 2
ionosphere 34 351 2
kr-vs-kp 36 3196 2
sick 29 3772 2
tic-tac-toe 9 958 2
vote 16 435 2
wdbc 30 568 2

The proposed algorithm is implemented on Java SE 8 (revision 1.8.0 45),
using Weka [29] data mining library version 3.7.12 for base classification algo-
rithms.

We use three methods to create different views from the same training data,
namely, use of different learning models, use differently manipulated features,
or a combination of the above.
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For the different learning models, we use random tree [30], Naive Bayes
classifier [31], J4.8 decision trees [32] and the kNN [33] with k = 5 as three
different learning models.

The methods of manipulated features include all original features, subsets of
features and transformed features. We simply use principal component analysis
(PCA) for transforming the features and a variant of the competitive swarm
optimizer (CSO) [34], which has been shown to work well for large scale opti-
mization to select optimized feature subsets.

We use the average error rates of n-fold cross validation (with n = 3) on
labeled data as the fitness function of the CSO to reduce the risk of overfitting
in selecting feature subsets. Other parameters in the CSO algorithms are set
as follows. The population size is 30, the max number of iterations is 100, φ is
0.1. In the first iteration, particles are randomly initialized between [0, 1] and
the threshold parameter λ is 0.5. The variance covered in PCA transformation
is set to 0.95. Finally, σ in the Multi-Train algorithm is set to 0.5.

To make the comparisons as fair as possible, we apply feature manipulation
prior to building the SSL base learners. In this way, we are able to directly
compare the classification error rates of single classifiers, tri-training classifiers
and the Multi-Train algorithm.

Each algorithm is run for 25 times independently, and the average results
are presented and discussed in the following section.

4.2. Empirical Results

We break down the comparison into three parts. In the first part, we compare
ensembles whose base learners use features generated using the same feature
manipulation method, while in the second part, the classifier models are the
same. The last part of the comparison compares Multi-Train ensembles using a
combination of different features and different models.

4.2.1. Comparisons of ensembles with different classifier models

We employ three different feature manipulation methods in our tests. The
first comparisons aim to demonstrate the benefits of using different classifier
models. Therefore, we use a fixed feature manipulation method but different
classifier models for comparisons.

In the tables, “MT” denotes Multi-Train and “TT” means tri-training algo-
rithms respectively. If there are no prefixs, then these are supervised learning
algorithms. “CSO”, “PCA”, and “NONE” indicate the feature manipulation
methods, which are CSO-based feature selection, PCA-based feature transfor-
mation (dimension reduction), and the original features, respectively. In addi-
tion, “RT”, “NB”, “J48”, and “kNN” denote the learning algorithms, which are
random trees, Naive Bayes classifiers, J4.8 decision trees and the kNN algorithm,
respectively. All results are shown in Tables 2, 3 and 4, respectively.

The first column in each table lists the result of Multi-Train containing four
base learners, with each member being trained using features obtained from the
same feature manipulation method, while different classifier models are adopted
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Table 2: The classification error rate of Multi-Train, tri-training and single classifier with
features selected by the CSO-based algorithm

Dataset MT-CSO TT-CSO-RT TT-CSO-NB TT-CSO-J48 TT-CSO-kNN CSO-RT CSO-NB CSO-J48 CSO-kNN

australian 0.1285 0.1946+ 0.2079+ 0.1759+ 0.1622+ 0.2019+ 0.2083+ 0.1514+ 0.1422+

(0.0181) (0.0504) (0.0595) (0.0424) (0.0376) (0.0445) (0.0630) (0.0334) (0.0221)
bupa 0.3586 0.4199+ 0.4556+ 0.4080+ 0.3996+ 0.4019+ 0.4598+ 0.3954+ 0.3667=

(0.0613) (0.0636) (0.0658) (0.0592) (0.0660) (0.0666) (0.0625) (0.0647) (0.0512)
colic 0.1493 0.2326+ 0.2072+ 0.2101+ 0.1924+ 0.2424+ 0.1899+ 0.1986+ 0.1768+

(0.0319) (0.0679) (0.0526) (0.0637) (0.0429) (0.0785) (0.0461) (0.0471) (0.0423)
diabetes 0.2446 0.3111+ 0.2589+ 0.3023+ 0.2950+ 0.3241+ 0.2486= 0.2917+ 0.2778+

(0.0315) (0.0409) (0.0297) (0.0425) (0.0388) (0.0355) (0.0256) (0.0562) (0.0384)
german 0.2729 0.3288+ 0.2956+ 0.3319+ 0.3151+ 0.3417+ 0.2864+ 0.3219+ 0.2988+

(0.0251) (0.0312) (0.0283) (0.0322) (0.0334) (0.0358) (0.0243) (0.0373) (0.0262)
hypothyroid 0.0339 0.0423+ 0.0543+ 0.0358= 0.0437+ 0.0447+ 0.0554+ 0.0331= 0.0410+

(0.0170) (0.0235) (0.0114) (0.0192) (0.0182) (0.0292) (0.0112) (0.0190) (0.0177)
ionosphere 0.0996 0.1742+ 0.1735+ 0.1739+ 0.1985+ 0.1773+ 0.1610+ 0.1595+ 0.1837+

(0.0430) (0.0682) (0.0629) (0.0672) (0.0616) (0.0599) (0.0696) (0.0586) (0.0436)
kr-vs-kp 0.0436 0.0525+ 0.1065+ 0.0475= 0.0786+ 0.0563+ 0.0993+ 0.0451= 0.0761+

(0.0107) (0.0140) (0.0295) (0.0123) (0.0184) (0.0142) (0.0282) (0.0124) (0.0179)
sick 0.0243 0.0360+ 0.0562+ 0.0285= 0.0326+ 0.0391+ 0.0591+ 0.0263= 0.0292+

(0.0063) (0.0109) (0.0260) (0.0094) (0.0076) (0.0096) (0.0248) (0.0080) (0.0056)
tic-tac-toe 0.2353 0.2987+ 0.3106+ 0.3003+ 0.2671+ 0.2892+ 0.2901+ 0.2979+ 0.2425=

(0.0286) (0.0400) (0.0299) (0.0453) (0.0344) (0.0447) (0.0269) (0.0384) (0.0352)
vote 0.0343 0.0554+ 0.0523+ 0.0520+ 0.0596+ 0.0532+ 0.0489+ 0.0526+ 0.0529+

(0.0154) (0.0284) (0.0217) (0.0330) (0.0269) (0.0254) (0.0245) (0.0242) (0.0250)
wdbc 0.0387 0.0798+ 0.0587+ 0.0772+ 0.0545+ 0.0892+ 0.0528+ 0.0829+ 0.0469+

(0.0149) (0.0305) (0.0175) (0.0300) (0.0181) (0.0331) (0.0166) (0.0324) (0.0152)

avg 0.1386 0.1855 0.1864 0.1786 0.1749 0.1884 0.1800 0.1714 0.1612
win/lose/tie 12/0/0 12/0/0 9/0/3 12/0/0 12/0/0 11/0/1 9/0/3 10/0/2

Table 3: The classification error rate of Multi-Train, tri-training and single classifier with
features transformed by PCA

Dataset MT-PCA TT-PCA-RT TT-PCA-NB TT-PCA-J48 TT-PCA-kNN PCA-RT PCA-NB PCA-J48 PCA-kNN

australian 0.1528 0.2416+ 0.2262+ 0.2198+ 0.2050+ 0.2530+ 0.2010+ 0.2100+ 0.1765+

(0.0353) (0.0492) (0.0550) (0.0437) (0.0334) (0.0485) (0.0516) (0.0468) (0.0364)
bupa 0.3939 0.4678+ 0.4544+ 0.4494+ 0.4425+ 0.4544+ 0.4425+ 0.4280+ 0.4314+

(0.0420) (0.0543) (0.0570) (0.0578) (0.0593) (0.0516) (0.0410) (0.0350) (0.0609)
colic 0.2543 0.3928+ 0.3286+ 0.3286+ 0.3333+ 0.3891+ 0.3225+ 0.3145+ 0.3033+

(0.0517) (0.0609) (0.0365) (0.0802) (0.0667) (0.0561) (0.0455) (0.0883) (0.0468)
diabetes 0.2595 0.3276+ 0.2620= 0.3226+ 0.3012+ 0.3493+ 0.2585= 0.3274+ 0.2832+

(0.0261) (0.0291) (0.0315) (0.0303) (0.0286) (0.0438) (0.0314) (0.0380) (0.0265)
german 0.2911 0.3629+ 0.3272+ 0.3593+ 0.3215+ 0.3872+ 0.3189+ 0.3687+ 0.3092+

(0.0190) (0.0309) (0.0280) (0.0382) (0.0326) (0.0356) (0.0293) (0.0301) (0.0205)
hypothyroid 0.0724 0.0795+ 0.2606+ 0.0793+ 0.0715= 0.1095+ 0.2670+ 0.0884+ 0.0694=

(0.0066) (0.0065) (0.1058) (0.0097) (0.0055) (0.0127) (0.1225) (0.0139) (0.0036)
ionosphere 0.0807 0.1705+ 0.1269+ 0.1807+ 0.2670+ 0.1939+ 0.1148+ 0.1670+ 0.2492+

(0.0291) (0.0487) (0.0483) (0.0736) (0.0621) (0.0699) (0.0378) (0.0666) (0.0489)
kr-vs-kp 0.1615 0.2164+ 0.2316+ 0.1954+ 0.1822+ 0.2369+ 0.2385+ 0.2176+ 0.1530=

(0.0246) (0.0276) (0.0416) (0.0154) (0.0166) (0.0219) (0.0399) (0.0268) (0.0183)
sick 0.0519 0.0607+ 0.1677+ 0.0580+ 0.0559+ 0.0730+ 0.1480+ 0.0686+ 0.0536=

(0.0067) (0.0075) (0.0698) (0.0072) (0.0058) (0.0108) (0.0698) (0.0101) (0.0055)
tic-tac-toe 0.2379 0.3282+ 0.3108+ 0.3037+ 0.2653+ 0.3324+ 0.2944+ 0.3003+ 0.2288=

(0.0249) (0.0292) (0.0260) (0.0458) (0.0322) (0.0481) (0.0270) (0.0590) (0.0275)
vote 0.0786 0.1453+ 0.1171+ 0.1147+ 0.0905+ 0.1538+ 0.0865= 0.1257+ 0.0844=

(0.0154) (0.0464) (0.0352) (0.0327) (0.0233) (0.0673) (0.0318) (0.0332) (0.0232)
wdbc 0.0526 0.1035+ 0.0824+ 0.0876+ 0.0862+ 0.1188+ 0.0697+ 0.0878+ 0.0876+

(0.0204) (0.0314) (0.0344) (0.0268) (0.0281) (0.0571) (0.0279) (0.0343) (0.0353)

avg 0.1739 0.2414 0.2413 0.2249 0.2185 0.2543 0.2302 0.2253 0.2025
win/lose/tie 12/0/0 11/0/1 12/0/0 11/0/1 12/0/0 10/0/2 12/0/0 7/0/5
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Table 4: The classification error rate of Multi-Train, tri-training and single classifier with all
original features

Dataset MT-NONE TT-NONE-RT TT-NONE-NB TT-NONE-J48 TT-NONE-kNN NONE-RT NONE-NB NONE-J48 NONE-kNN

australian 0.1277 0.1961+ 0.2110+ 0.1699+ 0.1551+ 0.2291+ 0.2081+ 0.1703+ 0.1412+

(0.0205) (0.0455) (0.0387) (0.0368) (0.0275) (0.0462) (0.0316) (0.0471) (0.0250)
bupa 0.3337 0.4008+ 0.4368+ 0.3969+ 0.4299+ 0.3847+ 0.4291+ 0.3893+ 0.4138+

(0.0423) (0.0629) (0.0518) (0.0623) (0.0564) (0.0650) (0.0531) (0.0568) (0.0549)
colic 0.1402 0.2804+ 0.2257+ 0.2130+ 0.2156+ 0.3134+ 0.2112+ 0.2047+ 0.1862+

(0.0332) (0.0658) (0.0475) (0.0662) (0.0347) (0.0699) (0.0445) (0.0625) (0.0343)
diabetes 0.2394 0.2984+ 0.2651+ 0.3071+ 0.2946+ 0.3349+ 0.2502+ 0.2983+ 0.2766+

(0.0201) (0.0357) (0.0279) (0.0382) (0.0314) (0.0393) (0.0308) (0.0438) (0.0292)
german 0.2687 0.3341+ 0.2916+ 0.3376+ 0.3211+ 0.3552+ 0.2737= 0.3359+ 0.3091+

(0.0209) (0.0293) (0.0284) (0.0341) (0.0212) (0.0288) (0.0280) (0.0308) (0.0238)
hypothyroid 0.0454 0.0423= 0.0454= 0.0176− 0.0806+ 0.0452= 0.0459= 0.0179− 0.0772+

(0.0088) (0.0129) (0.0092) (0.0065) (0.0071) (0.0193) (0.0095) (0.0069) (0.0047)
ionosphere 0.0837 0.1621+ 0.1640+ 0.1545+ 0.2383+ 0.1761+ 0.1568+ 0.1477+ 0.1970+

(0.0356) (0.0513) (0.0551) (0.0557) (0.0666) (0.0516) (0.0562) (0.0662) (0.0577)
kr-vs-kp 0.0475 0.0924+ 0.1521+ 0.0366− 0.1358+ 0.0956+ 0.1364+ 0.0298− 0.1224+

(0.0107) (0.0284) (0.0253) (0.0138) (0.0180) (0.0359) (0.0211) (0.0082) (0.0146)
sick 0.0274 0.0403+ 0.0759+ 0.0247= 0.0527+ 0.0432+ 0.0802+ 0.0251= 0.0526+

(0.0054) (0.0100) (0.0221) (0.0066) (0.0075) (0.0132) (0.0225) (0.0065) (0.0068)
tic-tac-toe 0.2160 0.3018+ 0.3188+ 0.2853+ 0.2551+ 0.3089+ 0.2954+ 0.2883+ 0.2390+

(0.0218) (0.0358) (0.0287) (0.0351) (0.0265) (0.0387) (0.0255) (0.0431) (0.0255)
vote 0.0538 0.0841+ 0.0792+ 0.0581= 0.0728+ 0.0844+ 0.0768+ 0.0615= 0.0682+

(0.0138) (0.0408) (0.0168) (0.0329) (0.0194) (0.0330) (0.0198) (0.0279) (0.0198)
wdbc 0.0399 0.0690+ 0.0523+ 0.0744+ 0.0507+ 0.0852+ 0.0469+ 0.0833+ 0.0453=

(0.0116) (0.0221) (0.0149) (0.0284) (0.0218) (0.0390) (0.0135) (0.0341) (0.0198)

avg 0.1353 0.1918 0.1932 0.1730 0.1919 0.2047 0.1842 0.1710 0.1774
win/lose/tie 11/0/1 11/0/1 8/2/2 12/0/0 11/0/1 10/0/2 8/2/2 11/0/1

for base learners. The following four columns present results of four settings of
the tri-training algorithm. Each setting uses features pre-manipulated the same
as the Multi-Train algorithm and classifier models as noted. Other settings are
the same as suggested in the tri-training algorithm. The last four columns show
the results from the single classifier with feature being manipulated as in the
Multi-Train algorithm, and the classifier models as well.

We used the Wilcoxon rank sum test to verify the significance of the im-
provement of the proposed algorithm, symbol ‘+’ denotes the particular setup is
significantly outperformed by Multi-Train, while ‘-’ denotes the particular setup
is significantly better than Multi-Train, and finally ‘=’ denotes that there is no
statistically significant difference between the results obtained by Multi-Train
and the particular setup. Those results are also concluded as “win/lose/tie” at
the bottom of each table.

Our results shown in Tables 2, 3 and 4 demonstrate that the proposed al-
gorithm is statistically outperformed by only in four out of the 288 different
settings, which is when the J48 decision tree is used as the learning model. By
taking a closer look, we find that the J48 decision tree alone generalizes much
better than other learning models on these particular datasets, while other mod-
els produce much large errors on the same datasets. It is thus understandable
that other models can degrade the overall performance of the ensembles as they
give significant more errors. Thus, the proposed algorithm performed worse
than setups using J48 decision tree alone. However, as none of these classifier
models constantly outperform others, we can still conclude that the proposed
algorithm is very competitive with others.
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4.2.2. Comparisons of ensembles using different feature manipulation methods

Table 5: The classification error rate of Multi-Train, tri-training and single classifier with
random tree classifier model

Dataset MT-RT TT-CSO-RT TT-PCA-RT TT-NONE-RT CSO-RT PCA-RT NONE-RT

australian 0.1426 0.1946+ 0.2416+ 0.1961+ 0.2019+ 0.2530+ 0.2291+

(0.0219) (0.0504) (0.0492) (0.0455) (0.0445) (0.0485) (0.0462)

bupa 0.3866 0.4199+ 0.4678+ 0.4008= 0.4019= 0.4544+ 0.3847=

(0.0528) (0.0636) (0.0543) (0.0629) (0.0666) (0.0516) (0.0650)

colic 0.1967 0.2326+ 0.3928+ 0.2804+ 0.2424+ 0.3891+ 0.3134+

(0.0460) (0.0679) (0.0609) (0.0658) (0.0785) (0.0561) (0.0699)

diabetes 0.2583 0.3111+ 0.3276+ 0.2984+ 0.3241+ 0.3493+ 0.3349+

(0.0293) (0.0409) (0.0291) (0.0357) (0.0355) (0.0438) (0.0393)

german 0.2927 0.3288+ 0.3629+ 0.3341+ 0.3417+ 0.3872+ 0.3552+

(0.0235) (0.0312) (0.0309) (0.0293) (0.0358) (0.0356) (0.0288)

hypothyroid 0.0483 0.0423− 0.0795+ 0.0423= 0.0447− 0.1095+ 0.0452=

(0.0113) (0.0235) (0.0065) (0.0129) (0.0292) (0.0127) (0.0193)

ionosphere 0.0951 0.1742+ 0.1705+ 0.1621+ 0.1773+ 0.1939+ 0.1761+

(0.0298) (0.0682) (0.0487) (0.0513) (0.0599) (0.0699) (0.0516)

kr-vs-kp 0.0486 0.0525= 0.2164+ 0.0924+ 0.0563+ 0.2369+ 0.0956+

(0.0097) (0.0140) (0.0276) (0.0284) (0.0142) (0.0219) (0.0359)

sick 0.0358 0.0360= 0.0607+ 0.0403= 0.0391= 0.0730+ 0.0432+

(0.0059) (0.0109) (0.0075) (0.0100) (0.0096) (0.0108) (0.0132)

tic-tac-toe 0.2547 0.2987+ 0.3282+ 0.3018+ 0.2892+ 0.3324+ 0.3089+

(0.0329) (0.0400) (0.0292) (0.0358) (0.0447) (0.0481) (0.0387)

vote 0.0514 0.0554= 0.1453+ 0.0841+ 0.0532= 0.1538+ 0.0844+

(0.0198) (0.0284) (0.0464) (0.0408) (0.0254) (0.0673) (0.0330)

wdbc 0.0502 0.0798+ 0.1035+ 0.0690+ 0.0892+ 0.1188+ 0.0852+

(0.0163) (0.0305) (0.0314) (0.0221) (0.0331) (0.0571) (0.0390)

avg 0.1551 0.1855 0.2414 0.1918 0.1884 0.2543 0.2047
win/lose/tie 8/1/3 12/0/0 9/0/3 8/1/3 12/0/0 10/0/2

As the original co-training algorithm learns two classifier models from two
different “views” of data, and the “views” are actually different sets of features,
it might be of interest to examine the influence of different feature manipulation
methods on the performance.

Tables 5, 6, 7, and 8 show the comparative results obtained by ensembles
with different feature manipulation methods. The results show that using dif-
ferent feature manipulation methods can also help enhance the performance of
the proposed method. The proposed algorithm is statistically outperformed by
others only in six out of 288 compared settings.

The results in this set of the comparison confirmed the conclusions drawn
from the first set of the comparisons.

4.2.3. Comparison of heterogeneous ensembles

In the previous comparisons, we use different classifier models or different
feature manipulation methods to create diversity among the base learners. The
results show that the proposed Multi-Train algorithm has achieved statically
better performance than the tri-training algorithm and non-SSL methods. We
are interested in investigating whether a larger ensemble containing more base
learners is able to further improve the generalization capability.

The last set of experiments to be made in this work is to compare ensem-
bles generated using a combination of the settings used in the first two sets of
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Table 6: The classification error rate of Multi-Train, tri-training and single classifier with
Naive Bayes classifier model

Dataset MT-NB TT-CSO-NB TT-PCA-NB TT-NONE-NB CSO-NB PCA-NB NONE-NB

australian 0.1719 0.2079+ 0.2262+ 0.2110+ 0.2083+ 0.2010+ 0.2081+

(0.0361) (0.0595) (0.0550) (0.0387) (0.0630) (0.0516) (0.0316)
bupa 0.4429 0.4556= 0.4544= 0.4368= 0.4598= 0.4425= 0.4291=

(0.0523) (0.0658) (0.0570) (0.0518) (0.0625) (0.0410) (0.0531)

colic 0.1837 0.2072+ 0.3286+ 0.2257+ 0.1899= 0.3225+ 0.2112+

(0.0451) (0.0526) (0.0365) (0.0475) (0.0461) (0.0455) (0.0445)

diabetes 0.2330 0.2589+ 0.2620+ 0.2651+ 0.2486+ 0.2585+ 0.2502+

(0.0247) (0.0297) (0.0315) (0.0279) (0.0256) (0.0314) (0.0308)

german 0.2715 0.2956+ 0.3272+ 0.2916+ 0.2864+ 0.3189+ 0.2737=

(0.0254) (0.0283) (0.0280) (0.0284) (0.0243) (0.0293) (0.0280)

hypothyroid 0.0496 0.0543+ 0.2606+ 0.0454= 0.0554+ 0.2670+ 0.0459=

(0.0091) (0.0114) (0.1058) (0.0092) (0.0112) (0.1225) (0.0095)

ionosphere 0.1258 0.1735+ 0.1269= 0.1640+ 0.1610+ 0.1148= 0.1568+

(0.0520) (0.0629) (0.0483) (0.0551) (0.0696) (0.0378) (0.0562)

kr-vs-kp 0.1127 0.1065= 0.2316+ 0.1521+ 0.0993= 0.2385+ 0.1364+

(0.0219) (0.0295) (0.0416) (0.0253) (0.0282) (0.0399) (0.0211)

sick 0.0662 0.0562= 0.1677+ 0.0759+ 0.0591= 0.1480+ 0.0802+

(0.0254) (0.0260) (0.0698) (0.0221) (0.0248) (0.0698) (0.0225)

tic-tac-toe 0.2733 0.3106+ 0.3108+ 0.3188+ 0.2901+ 0.2944+ 0.2954+

(0.0198) (0.0299) (0.0260) (0.0287) (0.0269) (0.0270) (0.0255)

vote 0.0584 0.0523= 0.1171+ 0.0792+ 0.0489= 0.0865+ 0.0768+

(0.0192) (0.0217) (0.0352) (0.0168) (0.0245) (0.0318) (0.0198)

wdbc 0.0430 0.0587+ 0.0824+ 0.0523+ 0.0528+ 0.0697+ 0.0469=

(0.0151) (0.0175) (0.0344) (0.0149) (0.0166) (0.0279) (0.0135)

avg 0.1693 0.1864 0.2413 0.1932 0.1800 0.2302 0.1842
win/lose/tie 8/0/4 10/0/2 10/0/2 7/0/5 10/0/2 8/0/4

empirical studies. As shown in Table 9, eight settings are considered in this
comparison, including MT-Hybrid, MT-CSO, MT-PCA, MT-NONE, MT-RT,
MT-NB, MT-J48, and MT-kNN. The differences among the settings lie mainly
in the base learners as well as the features the base learners use for creating
diversity. MT-Hybrid creates diversity by using a combination of three different
feature manipulation methods and four different classifier models, resulting in
12 different base learners. MT-CSO, MT-PCA, and MT-NONE have the same
settings as those in Section 4.2.1, which create diversity by using four different
classifier models. Therefore, the number of base learners is four. Finally, MT-
RT, MT-NB, MT-J48, and MT-kNN are settings used in Section 4.2.2, which
create diversity by using three different feature manipulation methods. The
number of base learners is thus three.

The results show that MT-Hybrid has the lowest average error rate. The
statistical tests also confirm that MT-hybrid outperforms other methods, ex-
cept for one setting using MT-CSO and MT-NONE, and two settings using
MT-J48. These findings re-confirm that heterogeneous ensembles have better
generalization ability.

5. Conclusion

We propose a new ensemble based semi-supervised learning algorithm in
this paper, namely Multi-Train. By comparing it with the tri-training algo-
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Table 7: The classification error rate of Multi-Train, tri-training and single classifier with J4.8
decision tree classifier model

Dataset MT-J48 TT-CSO-J48 TT-PCA-J48 TT-NONE-J48 CSO-J48 PCA-J48 NONE-J48

australian 0.1329 0.1759+ 0.2198+ 0.1699+ 0.1514+ 0.2100+ 0.1703+

(0.0229) (0.0424) (0.0437) (0.0368) (0.0334) (0.0468) (0.0471)

bupa 0.3567 0.4080+ 0.4494+ 0.3969+ 0.3954+ 0.4280+ 0.3893+

(0.0526) (0.0592) (0.0578) (0.0623) (0.0647) (0.0350) (0.0568)

colic 0.1580 0.2101+ 0.3286+ 0.2130+ 0.1986+ 0.3145+ 0.2047+

(0.0357) (0.0637) (0.0802) (0.0662) (0.0471) (0.0883) (0.0625)

diabetes 0.2566 0.3023+ 0.3226+ 0.3071+ 0.2917+ 0.3274+ 0.2983+

(0.0349) (0.0425) (0.0303) (0.0382) (0.0562) (0.0380) (0.0438)

german 0.2960 0.3319+ 0.3593+ 0.3376+ 0.3219+ 0.3687+ 0.3359+

(0.0256) (0.0322) (0.0382) (0.0341) (0.0373) (0.0301) (0.0308)

hypothyroid 0.0262 0.0358+ 0.0793+ 0.0176= 0.0331+ 0.0884+ 0.0179=

(0.0166) (0.0192) (0.0097) (0.0065) (0.0190) (0.0139) (0.0069)

ionosphere 0.1091 0.1739+ 0.1807+ 0.1545+ 0.1595+ 0.1670+ 0.1477+

(0.0348) (0.0672) (0.0736) (0.0557) (0.0586) (0.0666) (0.0662)

kr-vs-kp 0.0327 0.0475+ 0.1954+ 0.0366= 0.0451+ 0.2176+ 0.0298=

(0.0070) (0.0123) (0.0154) (0.0138) (0.0124) (0.0268) (0.0082)

sick 0.0215 0.0285+ 0.0580+ 0.0247= 0.0263+ 0.0686+ 0.0251+

(0.0041) (0.0094) (0.0072) (0.0066) (0.0080) (0.0101) (0.0065)

tic-tac-toe 0.2361 0.3003+ 0.3037+ 0.2853+ 0.2979+ 0.3003+ 0.2883+

(0.0304) (0.0453) (0.0458) (0.0351) (0.0384) (0.0590) (0.0431)

vote 0.0517 0.0520= 0.1147+ 0.0581= 0.0526= 0.1257+ 0.0615=

(0.0225) (0.0330) (0.0327) (0.0329) (0.0242) (0.0332) (0.0279)

wdbc 0.0542 0.0772+ 0.0876+ 0.0744+ 0.0829+ 0.0878+ 0.0833+

(0.0228) (0.0300) (0.0268) (0.0284) (0.0324) (0.0343) (0.0341)

avg 0.1443 0.1786 0.2249 0.1730 0.1714 0.2253 0.1710
win/lose/tie 11/0/1 12/0/0 8/0/4 11/0/1 12/0/0 9/0/3

Table 8: The classification error rate of Multi-Train, tri-training and single classifier with kNN
classifier model

Dataset MT-kNN TT-CSO-kNN TT-PCA-kNN TT-NONE-kNN CSO-kNN PCA-kNN NONE-kNN

australian 0.1243 0.1622+ 0.2050+ 0.1551+ 0.1422+ 0.1765+ 0.1412+

(0.0187) (0.0376) (0.0334) (0.0275) (0.0221) (0.0364) (0.0250)

bupa 0.3663 0.3996+ 0.4425+ 0.4299+ 0.3667= 0.4314+ 0.4138+

(0.0465) (0.0660) (0.0593) (0.0564) (0.0512) (0.0609) (0.0549)

colic 0.1551 0.1924+ 0.3333+ 0.2156+ 0.1768+ 0.3033+ 0.1862+

(0.0307) (0.0429) (0.0667) (0.0347) (0.0423) (0.0468) (0.0343)

diabetes 0.2552 0.2950+ 0.3012+ 0.2946+ 0.2778+ 0.2832+ 0.2766+

(0.0270) (0.0388) (0.0286) (0.0314) (0.0384) (0.0265) (0.0292)

german 0.2839 0.3151+ 0.3215+ 0.3211+ 0.2988+ 0.3092+ 0.3091+

(0.0211) (0.0334) (0.0326) (0.0212) (0.0262) (0.0205) (0.0238)

hypothyroid 0.0649 0.0437− 0.0715+ 0.0806+ 0.0410− 0.0694+ 0.0772+

(0.0034) (0.0182) (0.0055) (0.0071) (0.0177) (0.0036) (0.0047)

ionosphere 0.2034 0.1985= 0.2670+ 0.2383+ 0.1837= 0.2492+ 0.1970=

(0.0551) (0.0616) (0.0621) (0.0666) (0.0436) (0.0489) (0.0577)

kr-vs-kp 0.0663 0.0786+ 0.1822+ 0.1358+ 0.0761+ 0.1530+ 0.1224+

(0.0128) (0.0184) (0.0166) (0.0180) (0.0179) (0.0183) (0.0146)

sick 0.0394 0.0326− 0.0559+ 0.0527+ 0.0292− 0.0536+ 0.0526+

(0.0060) (0.0076) (0.0058) (0.0075) (0.0056) (0.0055) (0.0068)

tic-tac-toe 0.2108 0.2671+ 0.2653+ 0.2551+ 0.2425+ 0.2288+ 0.2390+

(0.0286) (0.0344) (0.0322) (0.0265) (0.0352) (0.0275) (0.0255)

vote 0.0578 0.0596= 0.0905+ 0.0728+ 0.0529= 0.0844+ 0.0682+

(0.0158) (0.0269) (0.0233) (0.0194) (0.0250) (0.0232) (0.0198)

wdbc 0.0336 0.0545+ 0.0862+ 0.0507+ 0.0469+ 0.0876+ 0.0453+

(0.0139) (0.0181) (0.0281) (0.0218) (0.0152) (0.0353) (0.0198)

avg 0.1551 0.1749 0.2185 0.1919 0.1612 0.2025 0.1774
win/lose/tie 8/2/2 12/0/0 12/0/0 7/2/3 12/0/0 11/0/1
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Table 9: The classification error rate of Multi-Train with different heterogeneous base learner
sets

Dataset MT-Hybrid MT-CSO MT-PCA MT-NONE MT-RT MT-NB MT-J48 MT-kNN

australian 0.1102 0.1285+ 0.1528+ 0.1277+ 0.1426+ 0.1719+ 0.1329+ 0.1243+

(0.0183) (0.0181) (0.0353) (0.0205) (0.0219) (0.0361) (0.0229) (0.0187)

bupa 0.3586 0.3586= 0.3939+ 0.3337= 0.3866+ 0.4429+ 0.3567= 0.3663=

(0.0506) (0.0613) (0.0420) (0.0423) (0.0528) (0.0523) (0.0526) (0.0465)

colic 0.1228 0.1493+ 0.2543+ 0.1402+ 0.1967+ 0.1837+ 0.1580+ 0.1551+

(0.0266) (0.0319) (0.0517) (0.0332) (0.0460) (0.0451) (0.0357) (0.0307)

diabetes 0.2224 0.2446+ 0.2595+ 0.2394+ 0.2583+ 0.2330+ 0.2566+ 0.2552+

(0.0232) (0.0315) (0.0261) (0.0201) (0.0293) (0.0247) (0.0349) (0.0270)

german 0.2583 0.2729+ 0.2911+ 0.2687+ 0.2927+ 0.2715+ 0.2960+ 0.2839+

(0.0177) (0.0251) (0.0190) (0.0209) (0.0235) (0.0254) (0.0256) (0.0211)

hypothyroid 0.0538 0.0339− 0.0724+ 0.0454− 0.0483= 0.0496= 0.0262− 0.0649+

(0.0067) (0.0170) (0.0066) (0.0088) (0.0113) (0.0091) (0.0166) (0.0034)

ionosphere 0.0583 0.0996+ 0.0807+ 0.0837+ 0.0951+ 0.1258+ 0.1091+ 0.2034+

(0.0233) (0.0430) (0.0291) (0.0356) (0.0298) (0.0520) (0.0348) (0.0551)

kr-vs-kp 0.0328 0.0436+ 0.1615+ 0.0475+ 0.0486+ 0.1127+ 0.0327= 0.0663+

(0.0082) (0.0107) (0.0246) (0.0107) (0.0097) (0.0219) (0.0070) (0.0128)

sick 0.0268 0.0243= 0.0519+ 0.0274= 0.0358+ 0.0662+ 0.0215− 0.0394+

(0.0047) (0.0063) (0.0067) (0.0054) (0.0059) (0.0254) (0.0041) (0.0060)

tic-tac-toe 0.2157 0.2353+ 0.2379+ 0.2160= 0.2547+ 0.2733+ 0.2361+ 0.2108=

(0.0217) (0.0286) (0.0249) (0.0218) (0.0329) (0.0198) (0.0304) (0.0286)

vote 0.0394 0.0343= 0.0786+ 0.0538+ 0.0514+ 0.0584+ 0.0517+ 0.0578+

(0.0141) (0.0154) (0.0154) (0.0138) (0.0198) (0.0192) (0.0225) (0.0158)

wdbc 0.0300 0.0387+ 0.0526+ 0.0399+ 0.0502+ 0.0430+ 0.0542+ 0.0336=

(0.0131) (0.0149) (0.0204) (0.0116) (0.0163) (0.0151) (0.0228) (0.0139)

avg 0.1274 0.1386 0.1739 0.1353 0.1551 0.1693 0.1443 0.1551
win/lose/tie 8/1/3 12/0/0 8/1/3 11/0/1 11/0/1 8/2/2 9/0/3

rithm and non-SSL learning models, we show that the proposed Multi-Train
ensemble models outperform the compared algorithms. The better performance
can be attributed to the multiple views generated using different models as well
as different feature manipulation methods in contrast to the original single-
view data. Furthermore, by using ensemble method, the prediction accuracy
on the unlabeled data is improved, which therefore is able to reduce the risk
of incorrectly labelling the unlabeled data [5, 10]. Our results confirm that the
heterogeneous ensembles, which consist of different types of based models and
use different features have superior generalization performance.

As shown in some scenarios, one base learner in the Multi-Train performs
significantly better or worse than other base learners. It is therefore of interest
to assign a larger weight to those good base learners while prune the poor ones,
which can potentially further increase the generalization ability of Multi-Train.
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