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Abstract

Learning with Fredholm kernel has attracted increasingnétin recently since it can
effectively utilize the data information to improve the preutin performance. Despite
rapid progress on theoretical and experimental evalusitihgeneralization analysis
has not been explored in learning theory literature. Inpliger, we establish the gen-
eralization bound of least square regularized regressitmhvedholm kernel, which
implies that the fast learning ra@(I™) can be reached under mild capacity condi-
tions. Simulated examples show that this Fredholm regyasdgorithm can achieve
the satisfactory prediction performance.

Keywords: Fredholm learning, generalization bound, learning raé¢a dependent
hypothesis spaces

1. Introduction

Inspired from Fredholm integral equations, Fredholm leayralgorithms are de-
signed recently for density ratio estimation [2] and seapesvised learning [3]. Fred-
holm learning can be considered as a kernel method withdigtandent kernel. This
kernel usually is called as Fredholm kernel, and can nayuratorporate the data
information. Although its empirical performance has beesil iemonstrated in the
previous works, there is no learning theory analysis on gdization bound and learn-
ing rate. It is well known that generalization ability andueing rate are important
measures to evaluate the learning algorithm [8| 18, 17higgaper, we focus on this
theoretical theme for regularized least square regresgibrFredholm kernel.

In learning theory literature, extensive studies have les¢ablished for least square
regression with regularized kernel methods, e.g!,[[121&B, Although the Fredholm
learning in [3] also can be considered as a regularized kemathod, there are two
key features: one is that Fredholm kernel is associatedtivitiinner” kernel and the
“outer” kernel simultaneously, the other is that for thedicion function is double
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data-dependent. These characteristics induce the atlitigficulty on learning the-
ory analysis. To overcome thefficulty of generalization analysis, we introduce novel
stepping-stone functions and establish the decompositicexcess generalization er-
ror. The generalization bound is estimated in terms of thgacidy conditions on the
hypothesis spaces associated with the “inner” kernel aaddhter” kernel, respec-
tively. In particular, the derived result implies that féesarning rate withO(I*) can
be reached with proper parameter selection, wher¢he number of labeled data. To
best of our knowledge, this is the first discussion on geretédn error analysis for
learning with Fredholm kernel.

The rest of this paper is organized as follows. Regressgorighm with Fredholm
kernel is introduced in Sectidn 2 and its generalizatioryaisis presented in Section
[3. The proofs of main results are listed in Secfibn 4. Sineaa&xamples are provided
in Sectiorld and a brief conclusion is summarized in Se€fion 6

2. Regression with Fredholm kernel

Let X c RY be a compact input space a#dc [-M, M] for some constan > 0.
The labeled data = {Zi}::1 = {(>q,yi)}!:1 are drawn independently from a distribution
ponZ = X xY and the unlabeled data|+j}‘f:1 are derived random independently

according to the marginal distributigry on X. Givenz, x = {Xa}!ii, the main purpose

of semi-supervised regression s to find a good approximatithe regression function
109 = [ vt = argmin [y~ 100 dp(y).
In learning theory,

&(f) = fz (v - F(9)2do(x.)

and its discrete version
1
f):== - f(x))?
&(f) 1=, i§=1(y ()

are called as the expected risk and the empirical risk oftiand : X — R, respec-
tively.

Let w(x, X') be a continuous bounded function &R with w := supw(x, X') < co.
X, X
Define the integral operatdy, as

Luf(X) = fx w(x, t) f (O dox (), V1 € L2,

whereLﬁX is the space of square-integrable functions.

Let Hk be a reproducing kernel Hilbert space (RKHS) associatetl iiercer
kernelK : X2 — R. Denote] - ||k as the corresponding norm @fx and assume the
upper bound := sup K(x, X') < co.

X, X'eX



If chooseLH = {Lwf, f € Hk} as the hypothesis space, the learning problem
can be considered as to solve the Fredhom integral equifiofx) = y. Sine the
distributionp is unknown, we consider the empirical versionlQff associated with

x = {x}I*¥, which is defined as

I+u

Luf(9) = 1 D WOx ) F(x).
i=1

In the Fredholm learning framework, the prediction funetis constructed from
the data dependent hypothesis space

LuxH = {Lwxf, f € Hk).

Givenz, x, least-square regression with Fredholm kernel (LFK) cafobmulated
as the following optimization

f, = fux = ar;g minf&;(Lwx ) + A1), (1)
E(]‘(K

whered > 0 is a regularization parameter.

Remark 1. Equation [1) can be considered as a discrete and regulanzgdion of
the Fredholm integral equationlf = y. When w is thé-function, [1) becomes the
regularized least square regression in RKHS

f, = arg mirt&(f) + ANFIZY. 2
E(]‘(K

Whenx = {xi}}:1 and replacing|f||2K with Z!=1|f(xi)|q, g= 1,2, (@) is equivalent to the
data-dependent cgiicient regularization

|
B9 = > azw(x x),
i=1

where

aeR!

| |
0z = argmin{E,(). e x) + 4 ) ol @)
i=1 i=1

It is well known that[(R) and[{3) have been studied extengiirellearning litera-
tures, see, e.g.| [10, 12,113]. These results relied on errmalysis techniques for
data independent hypothesis spacel[8, 9, 17] and data deperd/pothesis space
[4),113,[14,10], respectively. Therefore, the Fredholm feag provides a novel frame-
work for regression related with the data independent spdgand the data dependent
hypothesis spacexH simultaneously.

Remark 2. Equation [[1) involves the “inner” kernel K and the “outer” keel w.

Denote
I+u

= > WX XK (X, X)W(X, X)),
=1



K = (K(x, Xj))!yjzl, andY = (y1,---,y)". It has been demonstrated in [3] that

I+u |

L) = o > W00 B0 = D R(x X, @
i=1 s=1

wheree = (a1, --,a)" = (R + A1)7Y. Therefore, Fredholm regression il (1) can
be implementedfgciently and the data-dependent keridx, X') is called Fredholm
kernel in [3].

3. Generalization bound

To provide the estimation on the excess risk, we introducgesconditions on the
hypothesis space capacity and the approximation abilifyrefiholm learning frame-
work.

ForR > 0, denote

Br={f e Hx :lIfIlk <R}

and
I+u I+u

Br={f = Zaiw(-,ui) : Zlail <R U € X}.
i=1 i=1
For anye > 0 and function spac&’, denoteN,. (¥, €) as the covering number with

{-metric.

Assumption 1. (Capacity condition) For the “inner” kernel K and the “outékernel

w, there exists positive constants s and p such that foreany0, 10g Neo(B1, €) <
Cske ® andlog N (By, &) < cpwe™P, where gk, Cpw > 0 are constants independent of
E.

It is worthy notice that the capacity condition has been weltied in[3/ O, 12].
In particular, this condition holds true when setting therér” and “outer” kernels as
Gaussian kernel.

For a functionf : X — R andq € [1, +0), denote thé_9-norm onX as

1
Il := 11k, = ( [ 1F091bx0)"
’ X
Define the data independent regularized function

fu = argminlliLwf — 15 + Al FIIF).
f€7’(|<

The predictor associated with is

Lufi = [ wix )T 0dox(®
X
and the approximation ability of Fredholm schem@Hhp is characterized by

D(1) = &(Lwfy) — E(F,) + AITIE.



Assumption 2. (Approximation condition) There exists a constart (0, 1] such that
D() < ¢, Va>0,
where ¢ is a positive constant independentiof

This approximation condition relies on the regularityfpf and has been investi-
gated extensively in [9, 13) 7]. To get tight estimation, widaduce the projection
operator

M, if f(X)> M;
() =4 f(x), ifIf)<M;
=M, if f(x) < -M.
It is a position to present the generalization bound.
Theorem 1. Under Assumptiorid 1 afd 2 , there exists
E(r(Lwxfr)) — E(F,) < clog?(6/6)(A 251775 + ¥ + -1 7%),
where c is a positive constant independent af &

The generalization bound in Theorém 1 depends on the cgpamidition , the
approximation condition, the regularization parameteand the number of labeled
data. In particular, the labeled data is the key factor onetteess risk without the
additional assumption on the marginal distribution. THiservation is consistent with
the previous analysis for semi-supervised learningl[1, 6].

To understand the learning rate of Fredholm regression,resept the following
result wherel is chosen properly.

Theorem 2. Under Assumptioris 1 and 2, for afy< § < 1, with confidencd - 4,
there exists some positive constérsiuch that

E(n(Lwxfz)) — &(f) < 6|092(6/5)|79,

where
in( 28 2 2s 155
0= { Mintzep 245~ @germ - r=re
- H 28 (2B+$8+9)(8-1) 2 — |” g
miny 28+B+s’ 2+5 - fp}’ A =177,

Theorenti® tells us that Fredholm regression has the learatagvith polynomial
decay. Whers = p, there exists some constant 0 such that

E(n(Lwx ) - &(f,) < clog(6/6)1~"

with confidence 1 &, where

9={ %ﬁ B e (0,5l

2
S B € (555, +o0].



and the rate is derived by setting
,1={ ==, pe (0l

2
1”577, e (5%, +].

This learning rate can be arbitrarily close®{~1) asstends to zero, which is regarded
as the fastest learning rate for regularized regressiondndarning theory literature.

This result verifies the LFK i {1) inherits the theoretichhcacteristics of least square
regularized regression in RKHS [9,/16] and in data depenkgmbthesis spaces [12,
14].

4. Error analysis

We first present the decomposition on the excessd{skLwx ;) — &(f,), and then
establish the upper bounds offérent error terms.

4.1. Error decomposition
According to the definitions of;, f;, we can get the following error decomposition.

Proposition 1. For f, defined in[(lL), there holds
E(r(Lwx ) — &(f,) < Ex + Ex + Es + D(1),
where

= E(m(Lwx f2)) = E(Fp) = (Ez(m(Lwix f2)) — Ex(fy)),
Ex = Sz(Lw,x fxl) - 82( fp) - (S(Lw,x f/l) - 8( fp))’

and
Es = S(Lw,x f/l) - S(wa/l)-

Proof: By introducing the middle functiohyxf,, we get

S(H(Lw,x fz)) - 8( fp)

E((Lwxfz)) — Ex(m(Lwx ) + [Ez(Lwx f2) + /1||fz||2|< — (Ez(Lwx f2) + Al fA”i)]
+Sz(|—w,x f/l) - 8(I—w,x f/l) + 8(I—W,x f/l) - 8(I—W f/l) + 8(I—W f/l) - 8( fp) + /l” f/1||2|<
< E1+E2+E3+D(/1)

IA

where the last inequality follows from the definitidn This completes the proaf.

In learning theoryE;, E; are called the sample error, which describe thiedince
between the empirical risk and the expected riflg is called the hypothesis error
which reflects the divergence of expected risks betweenateiddependent function
Lwfi and data dependent functitg« f,.



4.2. Estimates of sample error

We introduce the concentration inequality in|[15] to meastire divergence be-
tween the empirical risk and the expected risk.

Lemmal. Let# be a measurable function set @b Assume that, for any & F,

Iflle < Band §f?) < cEf for some positive constants® If for some a> 0 and
s€ (0,2), logN2(F, &) < asSfor anye > 0, then there exists a constantsuch that
foranys € (0, 1),

m

—s =3 1
> f(2a)| < csmaxcs:, BE)(2)E + ZEf+
= m 2

|Ef B (2c+ 182 log(1/6)

1
m
with confidence at leadt— 26.

To estimateE;, we consider the function set containifigfor anyz € Z', u € XV.
The definitionf, in () tells us thaf|f,||x < % HenceV¥ze Z', f, e BrwithR= M

Vi
kM
and” fz”oo < i

Proposition 2. Under Assumptiol 1, for ary< ¢ < 1,
E; < %(S(n(LW,X f,)) — &(f,)) + 1A s m 75 + 176M2 2 log(1/6)
with confidencé - 6.
Proof: For f € Bg,z € Z',x € X'*Y, denote
Gr = {92 = (y - n(LuxF)* = (y = f,(0)%).
Foranyze Z,
19@)| < 12y = 7(Lux )X = f(lr(Lwxf) = (] < BM2.
Moreover,
EQ? < 16M?E(n(Lwxf)(X) — f,(x))? = 16M?Eg.

For anyfy, f, € Bg, there exists

I+u

0.0 - 0l < | (000 M6 )| < Ml Tl

This relation implies that

&

[0g Noo(Gr, €) < log N (B4, IMOR

) < Csk(AMwR)%e ™3,

where the last inequality from Assumptigh 1.



Applying the above estimates to Lemfja 1, we derive that
|
1
Eg-T .Zl“ 9(2)

1 s 2 s
< Eg+ max16M%w, M2} cZ (4AMwR) 23172 + 1761 log(1/6)

with confidence L 6.
Consideringf, € B with R= % we obtain the desired resui.

Proposition 3. Under Assumption 1, with confidente- 45, there holds
E, < %Eg + %D(/l) + CaD() 7177 log(1/5),
where ¢ is a positive constant independentipfn, 6.
Proof: Denote
G = {0 : Qa(¥) = Lwy fa(X), X, vi € X}

From the definitionf,, we can deduce th&ig e G,g € Br with R = w« @. For
ze Z,v e XY define

H =1{h@) = (y - Luv f2(0)* = (y - fp(x))2}~

It is easy to check that for arge Z

|h(Z)| = |2y_ I—W,v fxl(x) - fp(x)| . “—w,v fxl(x) - fp(x)l
< M+ wlfille)? < (3|v| + am,/¥)z. 5)
Then,
ERP = E(2y- Luyfi(®) = £,(0)2(Lwy f2(X) = f,(X)?
D)\
< (3M +wk T) Eh ©6)

For anyu,v € X'*!, there exists

Ihy —holle = supl(y— Lwu f/l(x))z —(y— Lwy f,l(X))2|
zZ
D(A
< z(M + WK %)HLW,u 1 — Loy Falle

D(1
Z(M + wK\,%)”gu,A = Ov,allco-



Then from Assumptiohl1,

- 2p
log Nww(H, &) < IogNw(BR, ;) < 4cp,w(|v| + a)/q/%) P (7)
2(M +wk,/¥) &

Combining [5){{¥) with LemmaBl]1, we get with confidence &

Ex< %(S(Lw,xf/l) - )+ (M +wk D ))2|——

20(3M + wk + /%) log(1/6)
I .
ConsideringS(Lwx 1) — &(f,) < Ez + D(1), we get the desired resuit.

2

4.3. Estimate of hypothesis error

The following concentration inequality with values in Hilth space can be found
in [11], which is used in our analysis.

Lemma2. LetH be a Hilbert space ané be independentrandom variable on Z with
values inH. Assume thaltéllyr < M < oo almost surely. Letz}", be independent
random samples from. Then, for any € (0, 1),

H_Zf(z)—EfH M'Og() 2E|l12, log(3)

m
holds true with confidenck- 6.

Now we turn to estimat&s, which reflects the féect of inputsx = {xi}!if to the
regularization functiorf,.

Proposition 4. For any0 < § < 1, with confidencé — ¢, there holds
Es < 24w?k? Iogz(%)D(/l)/rl(l +u)1+ D).
Proof: Note that

S(Lw,x f/l) - S(wa/l)

||Lw,xf/l - wa/l||2 : (”Lw,xf/l - fp”Z + ||wa/l - fp||2)

ILwx f2 = Lw fall2(llwyx f2 = Lwfalle + 2lILw i = f,lI2)

2l|Lwx 2 = Lwfalls + ILwfa = 113

2lILuwx f1 = Lwfall + D(A). (8)

ININ TN A

Denotet(x) = fa(x)w(:, X), which is continuous and bounded function®nThen

I+u

wa/l |+UZ€(X|)



and
Lufi = f W(. ) F () dpx(t) = E€.

We can deduce thdtll, < wllfille < wkllfillk andE|El3 < w??|fllZ. From
Lemmd2, for any G< § < 1, there holds with confidence-15

2wk fallk log(3) 2log(3)
| +u l+u

ILwx fa = Lwfall2 < wkllfallk.- 9

Combining [8) and{9), we get with confidence &,

2wk fallk log(3 2log
Es < 2 M+MKIIUIIK g(b))2+D(,1)
I +u [ +u
16w f1l2 log?(2) 8wk fulI2 log(3
< kI fallg 10g=(5) k4| falli 1og(5) +D().
(I + u)2 I +u

Then, the desired result follows frolmﬂllﬁ < @. [

4.4. Proofs of Theorem 1 and 2

Proof of Theorem 1: Combining the estimations in Propositions 1-4, we get with
confidence * 66,

E(n(Luxfz)) - &(1,)
%(a(n(LW,X £,)) - &(f,)) + 1A 21775 4 176M2 Iog(%)

36wk’ log’(3) D(Y)
[+u 1

IA

+3D() + cD() U7 Iog(%) +
Considerings > 0, for 0 < § < 1, we have with confidence-166
E(n(Lwx ) — &(F,) < cIogZ(%)[/l‘fssl‘fss + 8 4 Y,

wherec is a constant independentloft, 5.

Proof of Theorem 2: When setting?? = U275 we obtaind = "5, Then,
Theorent ] implies that

1. i s
E(r(Lux ) = E(1,) < Belog?(5)1 ™M 7 wdies).
When settingt® = 73775, we getl = |~ 7555 Then, with confidence 4 6§

% (@rpr9-1) , 2
st

En(Luxt) - E(F,) < 3c|ogz(%)|’"“”{ i 2

This complete the proof of Theorem 2.
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Table 1: MSESTD for LFK and SVM with 50 and 100 training samples

Function| Number SVM LFK1 LFK2 LFK3
f 50 0041+ 0.033 0434+ 0.032 0423+0.059 0.036+0.053
300 Q044+ 0.006 Q419+0.023 0Q404+0.021 0.042 =+ 0.006
f, 50 0075+ 0.046 1852+ 1.30 187+ 1.30 0.060+ 0.028
300 0.011+0.006 1710+0941 1700+1.35 0012+ 0.004
fa 50 0013+ 0.012 0670+ 0.034 Q458+0.082 0.010+ 0.005
300 Q004+ 0.001 0667+0.013 Q427+0.020 0.003=+0.001
fa 50 0076+ 0.027 0260+ 0.012 0.194+0.040 0.073+0.021
300 Q039+ 0.018 0251+0.017 Q158+ 0.026 0.032=+ 0.009

5. Empirical studies

To verify the dfectiveness of LFK in[{1), we present some simulated examples
for the regression problem. The competing method is supgtor machine re-
gression (SVM), which has been used extensively used in imadbarning com-
munity (https//www csie.ntu.edu.tyvcjlin/libsvny). The Gaussian kernd{(x,t) =

ex p(—”X t”z } is used for SVM. For LFK in[{ll), we consider the following “iari and
“outer” kernels

. T _ lIx-tl3
e LFK1: W(x,2) = X' zandK(x,2) = exp——=%}.

o LFK2: W(x,2) = expi— t”z yandK(x,2) = X'z

o LFK3: W(x,2) = expi— t”z }yandK(x, 2) = expl— ”X_t”z
Here the scale parameterbelongs to [2° : 2 : 2] and the regularization parameter
belongsto[10°: 10 : 1] for LFK and SVM. These parameters are selected by 4-fold
cross validation in this section.

The following functions are used to generate the simulasd:d

f() = sin(%), x € [0,10]
fo(xX) = xcogx), xe€[0,10]
fa(x) = min(2x-1,1), xe[-2,2]
fa(x) = signx), xe[-3,3].

Note thatf; is highly oscillatory,f, is smooth,fs is continuous not smooth, arfg is
not even continuous. These functions have been used tcadgakgression algorithms
in [14].

In our experiment, Gaussian noisg0, 0.01) is added to the data respectively. In
each test, we first draw randomly 1000 samples accordingetdutction and noise

11
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Figure 1: MSE for Gaussian noise and varying training sarsigke. (a)f ; (b) f2; (c) fs; (d) f4.

distribution, and then obtain a training set randomly wittes 2550, 100,200, 300
respectively. Three hundred samples are selected randmnthe test set. THdean
Squared Error(MSE) is used to evaluate the regression results on synttiata. To
make the results more convincing, each test is repeatedr&3 ti Tabl€1l reports the
average MSE an8itandard DeviatioiSTD) with 50 training samples and 300 training
samples respectively. Furthermore, we study the impachefiumber of training
samples on the final regression performance. Figure 1 sh@Ad$E for learning; —

f4 with numbers of training samples. These results illustifzé LFK has competitive
performance compared with SVM.

6. Conclusion

This paper investigated the generalization performancegilarized least square
regression with Fredholm kernel. Generalization boundésgnted for the Fredholm
learning model, which shows that the fast learning rate @ith*) can be reached. In
the future, it is interesting to investigate the leaningf@enance of ranking [5] with
Fredholm kernel.
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