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Abstract

Learning with Fredholm kernel has attracted increasing attention recently since it can
effectively utilize the data information to improve the prediction performance. Despite
rapid progress on theoretical and experimental evaluations, its generalization analysis
has not been explored in learning theory literature. In thispaper, we establish the gen-
eralization bound of least square regularized regression with Fredholm kernel, which
implies that the fast learning rateO(l−1) can be reached under mild capacity condi-
tions. Simulated examples show that this Fredholm regression algorithm can achieve
the satisfactory prediction performance.

Keywords: Fredholm learning, generalization bound, learning rate, data dependent
hypothesis spaces

1. Introduction

Inspired from Fredholm integral equations, Fredholm learning algorithms are de-
signed recently for density ratio estimation [2] and semi-supervised learning [3]. Fred-
holm learning can be considered as a kernel method with data-dependent kernel. This
kernel usually is called as Fredholm kernel, and can naturally incorporate the data
information. Although its empirical performance has been well demonstrated in the
previous works, there is no learning theory analysis on generalization bound and learn-
ing rate. It is well known that generalization ability and learning rate are important
measures to evaluate the learning algorithm [8, 18, 17]. In this paper, we focus on this
theoretical theme for regularized least square regressionwith Fredholm kernel.

In learning theory literature, extensive studies have beenestablished for least square
regression with regularized kernel methods, e.g., [12, 13,16]. Although the Fredholm
learning in [3] also can be considered as a regularized kernel method, there are two
key features: one is that Fredholm kernel is associated withthe “inner” kernel and the
“outer” kernel simultaneously, the other is that for the prediction function is double
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data-dependent. These characteristics induce the additional difficulty on learning the-
ory analysis. To overcome the difficulty of generalization analysis, we introduce novel
stepping-stone functions and establish the decompositionon excess generalization er-
ror. The generalization bound is estimated in terms of the capacity conditions on the
hypothesis spaces associated with the “inner” kernel and the “outer” kernel, respec-
tively. In particular, the derived result implies that fastlearning rate withO(l−1) can
be reached with proper parameter selection, wherel is the number of labeled data. To
best of our knowledge, this is the first discussion on generalization error analysis for
learning with Fredholm kernel.

The rest of this paper is organized as follows. Regression algorithm with Fredholm
kernel is introduced in Section 2 and its generalization analysis is presented in Section
3. The proofs of main results are listed in Section 4. Simulated examples are provided
in Section 5 and a brief conclusion is summarized in Section 6.

2. Regression with Fredholm kernel

LetX ⊂ Rd be a compact input space andY ⊂ [−M,M] for some constantM > 0.
The labeled dataz = {zi}li=1 = {(xi , yi)}li=1 are drawn independently from a distribution
ρ onZ := X × Y and the unlabeled data{xl+ j}uj=1 are derived random independently

according to the marginal distributionρX onX. Givenz, x = {xi}l+u
i=1, the main purpose

of semi-supervised regression is to find a good approximation of the regression function

fρ(x) =
∫

Y
ydρ(y|X) = arg min

f

∫

Z
(y− f (x))2dρ(x, y).

In learning theory,

E( f ) :=
∫

Z
(y− f (x))2dρ(x, y)

and its discrete version

Ez( f ) :=
1
l

l
∑

i=1

(y− f (xi))
2

are called as the expected risk and the empirical risk of function f : X → R, respec-
tively.

Let w(x, x′) be a continuous bounded function onX2 with ω := sup
x,x′

w(x, x′) < ∞.

Define the integral operatorLw as

Lw f (x) =
∫

X
w(x, t) f (t)dρX(t),∀ f ∈ L2

ρX
,

whereL2
ρX is the space of square-integrable functions.

Let HK be a reproducing kernel Hilbert space (RKHS) associated with Mercer
kernelK : X2 → R. Denote‖ · ‖K as the corresponding norm ofHK and assume the
upper boundκ := sup

x,x′∈X
K(x, x′) < ∞.
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If chooseLwH = {Lw f , f ∈ HK} as the hypothesis space, the learning problem
can be considered as to solve the Fredhom integral equationLw f (x) = y. Sine the
distributionρ is unknown, we consider the empirical version ofLw f associated with
x = {xi}l+u

i=1, which is defined as

Lw,x f (x) =
1

l + u

l+u
∑

i=1

w(x, xi) f (xi).

In the Fredholm learning framework, the prediction function is constructed from
the data dependent hypothesis space

Lw,xH = {Lw,x f , f ∈ HK}.

Givenz, x, least-square regression with Fredholm kernel (LFK) can beformulated
as the following optimization

fz := fz,x = arg min
f∈HK

{Ez(Lw,x f ) + λ‖ f ‖2K }, (1)

whereλ > 0 is a regularization parameter.

Remark 1. Equation (1) can be considered as a discrete and regularizedversion of
the Fredholm integral equation Lw f = y. When w is theδ-function, (1) becomes the
regularized least square regression in RKHS

f̃z = arg min
f∈HK

{Ez( f ) + λ‖ f ‖2K }. (2)

Whenx = {xi}li=1 and replacing‖ f ‖2K with
∑l

i=1 | f (xi)|q, q = 1, 2, (1) is equivalent to the
data-dependent coefficient regularization

f̃z(x) =
l
∑

i=1

αz,iw(x, xi),

where

αz = arg min
α∈Rl

{

Ez(
l
∑

i=1

αiw(·, xi)) + λ
l
∑

i=1

|αi |q
}

. (3)

It is well known that (2) and (3) have been studied extensively in learning litera-
tures, see, e.g. [10, 12, 13]. These results relied on error analysis techniques for
data independent hypothesis space [8, 9, 17] and data dependent hypothesis space
[4, 13, 14, 10], respectively. Therefore, the Fredholm learning provides a novel frame-
work for regression related with the data independent spaceHK and the data dependent
hypothesis space Lw,xH simultaneously.

Remark 2. Equation (1) involves the “inner” kernel K and the “outer” kernel w.
Denote

K̂(x, x′) =
1

(l + u)2

l+u
∑

i, j=1

w(x, xi)K(xi, x j)w(x, x j),

3



K̂ = (K̂(xi , x j))l
i, j=1, andY = (y1, · · · , yl)T . It has been demonstrated in [3] that

Lw,x fz(x) =
1

l + u

l+u
∑

i=1

w(x, xi) fz(xi) =
l
∑

s=1

K̂(x, xs)αs, (4)

whereα = (α1, · · · , αl)T = (K̂ + λI )−1Y. Therefore, Fredholm regression in (1) can
be implemented efficiently and the data-dependent kernelK̂(x, x′) is called Fredholm
kernel in [3].

3. Generalization bound

To provide the estimation on the excess risk, we introduce some conditions on the
hypothesis space capacity and the approximation ability ofFredholm learning frame-
work.

ForR> 0, denote
BR = { f ∈ HK : ‖ f ‖K ≤ R}

and

B̃R = { f =
l+u
∑

i=1

αiw(·, ui) :
l+u
∑

i=1

|αi | ≤ R, ui ∈ X}.

For anyε > 0 and function spaceF , denoteN∞(F , ε) as the covering number with
ℓ∞-metric.

Assumption 1. (Capacity condition) For the “inner” kernel K and the “outer” kernel
w, there exists positive constants s and p such that for anyε > 0, logN∞(B1, ε) ≤
cs,Kε

−s andlogN∞(B̃1, ε) ≤ cp,wε
−p, where cs,K , cp,w > 0 are constants independent of

ε.

It is worthy notice that the capacity condition has been wellstudied in [8, 9, 12].
In particular, this condition holds true when setting the “inner” and “outer” kernels as
Gaussian kernel.

For a functionf : X → R andq ∈ [1,+∞), denote theLq-norm onX as

‖ f ‖q := ‖ f ‖Lq
ρX
=

(

∫

X
| f (x)|qdρX(x)

)
1
q

.

Define the data independent regularized function

fλ = arg min
f∈HK

{‖Lw f − fρ‖22 + λ‖ f ‖2K }.

The predictor associated withfλ is

Lw fλ =
∫

X
w(x, t) fλ(t)dρX(t)

and the approximation ability of Fredholm scheme inHK is characterized by

D(λ) = E(Lw fλ) − E( fρ) + λ‖ fλ‖2K .
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Assumption 2. (Approximation condition) There exists a constantβ ∈ (0, 1] such that

D(λ) ≤ cβλ
β, ∀λ > 0,

where cβ is a positive constant independent ofλ.

This approximation condition relies on the regularity offρ, and has been investi-
gated extensively in [9, 13, 7]. To get tight estimation, we introduce the projection
operator

π( f )(x) =



















M, if f (x) > M;
f (x), if | f (x)| ≤ M;
−M, if f (x) < −M.

It is a position to present the generalization bound.

Theorem 1. Under Assumptions 1 and 2 , there exists

E(π(Lw,x fz)) − E( fρ) ≤ c log2(6/δ)(λ−
s

2+s l−
s

2+s + λβ + λβ−1l−
s

2+p ),

where c is a positive constant independent of l, λ, δ

The generalization bound in Theorem 1 depends on the capacity condition , the
approximation condition, the regularization parameterλ, and the number of labeled
data. In particular, the labeled data is the key factor on theexcess risk without the
additional assumption on the marginal distribution. This observation is consistent with
the previous analysis for semi-supervised learning [1, 6].

To understand the learning rate of Fredholm regression, we present the following
result whereλ is chosen properly.

Theorem 2. Under Assumptions 1 and 2, for any0 < δ < 1, with confidence1 − δ,
there exists some positive constantc̃ such that

E(π(Lw,x fz)) − E( fρ) ≤ c̃ log2(6/δ)l−θ,

where

θ =















min{ 2β
2+p ,

2
2+s −

2s
(2+s)(2+p) }, λ = l−

2
2+p ;

min{ 2β
2β+sβ+s,

(2β+sβ+s)(β−1)
2+s − 2

2+p}, λ = l−
2

2β+sβ+s .

Theorem 2 tells us that Fredholm regression has the learningrate with polynomial
decay. Whens= p, there exists some constant ¯c > 0 such that

E(π(Lw,x fz)) − E( fρ) ≤ c̄ log(6/δ)l−θ

with confidence 1− δ, where

θ =















2β
2+s, β ∈ (0, 2

2+s];
2β

s+2β+sβ , β ∈ ( 2
2+s,+∞].
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and the rate is derived by setting

λ =















l−
2

2+s , β ∈ (0, 2
2+s];

l−
2

s+2β+sβ , β ∈ ( 2
2+s,+∞].

This learning rate can be arbitrarily close toO(l−1) ass tends to zero, which is regarded
as the fastest learning rate for regularized regression in the learning theory literature.
This result verifies the LFK in (1) inherits the theoretical characteristics of least square
regularized regression in RKHS [9, 16] and in data dependenthypothesis spaces [12,
14].

4. Error analysis

We first present the decomposition on the excess riskE(π(Lw,x fz))−E( fρ), and then
establish the upper bounds of different error terms.

4.1. Error decomposition

According to the definitions offz, fλ, we can get the following error decomposition.

Proposition 1. For fz defined in (1), there holds

E(π(Lw,x fz)) − E( fρ) ≤ E1 + E2 + E3 + D(λ),

where

E1 = E(π(Lw,x fz)) − E( fρ) − (Ez(π(Lw,x fz)) − Ez( fρ)),

E2 = Ez(Lw,x fλ) − Ez( fρ) − (E(Lw,x fλ) − E( fρ)),

and
E3 = E(Lw,x fλ) − E(Lw fλ).

Proof: By introducing the middle functionLw,x fλ, we get

E(π(Lw,x fz)) − E( fρ)

≤ E(π(Lw,x fz)) − Ez(π(Lw,x fz)) + [Ez(Lw,x fz) + λ‖ fz‖2K − (Ez(Lw,x fλ) + λ‖ fλ‖2K)]

+Ez(Lw,x fλ) − E(Lw,x fλ) + E(Lw,x fλ) − E(Lw fλ) + E(Lw fλ) − E( fρ) + λ‖ fλ‖2K
≤ E1 + E2 + E3 + D(λ)

where the last inequality follows from the definitionfz. This completes the proof.�
In learning theory,E1,E2 are called the sample error, which describe the difference

between the empirical risk and the expected risk.E3 is called the hypothesis error
which reflects the divergence of expected risks between the data independent function
Lw fλ and data dependent functionLw,x fλ.
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4.2. Estimates of sample error

We introduce the concentration inequality in [15] to measure the divergence be-
tween the empirical risk and the expected risk.

Lemma 1. Let F be a measurable function set onZ. Assume that, for any f∈ F ,
‖ f ‖∞ ≤ B and E( f 2) ≤ cE f for some positive constants B, c. If for some a> 0 and
s ∈ (0, 2), logN2(F , ε) ≤ aε−s for anyε > 0, then there exists a constant cs such that
for anyδ ∈ (0, 1),

∣

∣

∣

∣
E f − 1

m

m
∑

i=1

f (zi)
∣

∣

∣

∣
≤ cs max{c2−s

2+s , B
2−s
2+s }( a

m
)

2
2+s +

1
2

E f +
(2c+ 18B) log(1/δ)

m

with confidence at least1− 2δ.

To estimateE1, we consider the function set containingfz for anyz ∈ Zl , u ∈ Xu.
The definitionfz in (1) tells us that‖ fz‖K ≤ M√

λ
. Hence,∀z ∈ Zl , fz ∈ BR with R= M√

λ

and‖ fz‖∞ ≤ κM√
λ
.

Proposition 2. Under Assumption 1, for any0 < δ < 1,

E1 ≤
1
2

(E(π(Lw,x fz)) − E( fρ)) + c1λ
− s

2+s m−
s

2+s + 176M2l−1 log(1/δ)

with confidence1− δ.

Proof: For f ∈ BR, z ∈ Zl , x ∈ Xl+u, denote

GR = {g(z) = (y− π(Lw,x f ))2 − (y− fρ(x))2}.

For anyz ∈ Z,

|g(z)| ≤ |2y− π(Lw,x f )(x) − fρ(x)||π(Lw,x f ) − fρ(x)| ≤ 8M2.

Moreover,

Eg2 ≤ 16M2E(π(Lw,x f )(x) − fρ(x))2 = 16M2Eg.

For any f1, f2 ∈ BR, there exists

|g1(z) − g2(z)| ≤ 4M
l + u

∣

∣

∣

∣

l+u
∑

i=1

( f1(xi) − f2(xi))w(x, xi)
∣

∣

∣

∣

≤ 4Mω‖ f1 − f2‖∞.

This relation implies that

logN∞(GR, ε) ≤ logN∞(B1,
ε

4MωR
) ≤ cs,K(4MωR)sε−s,

where the last inequality from Assumption 1.
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Applying the above estimates to Lemma 1, we derive that

Eg− 1
l

l
∑

i=1

g(zi)

≤ 1
2

Eg+max{16M2ω, 8M2} 2−s
2+s c

2
2+s

s,K (4MωR)
2s

2+s l−
2

2+s + 176M2l−1 log(1/δ)

with confidence 1− δ.
Consideringfz ∈ BR with R= M√

λ
, we obtain the desired result.�

Proposition 3. Under Assumption 1, with confidence1− 4δ, there holds

E2 ≤
1
2

E3 +
1
2

D(λ) + c2D(λ)λ−1l−
2

2+p log(1/δ),

where c2 is a positive constant independent ofλ,m, δ.

Proof: Denote

G = {gv,λ : gv,λ(x) = Lw,v fλ(x), x, vi ∈ X}.

From the definitionfλ, we can deduce that∀g ∈ G, g ∈ B̃R with R= ωκ
√

D(λ)
λ

. For

z ∈ Z, v ∈ Xl+u, define

H = {h(z) = (y− Lw,v fλ(x))2 − (y− fρ(x))2}.

It is easy to check that for anyz ∈ Z

|h(z)| = |2y− Lw,v fλ(x) − fρ(x)| · |Lw,v fλ(x) − fρ(x)|

≤ (3M + ω‖ fλ‖∞)2 ≤
(

3M + ωκ

√

D(λ)
λ

)2
. (5)

Then,

Eh2 = E(2y− Lw,v fλ(x) − fρ(x))2(Lw,v fλ(x) − fρ(x))2

≤
(

3M + wk

√

D(λ)
λ

)2
Eh. (6)

For anyu, v ∈ Xl+u, there exists

‖h1 − h2‖∞ = sup
z
|(y− Lw,u fλ(x))2 − (y− Lw,v fλ(x))2|

≤ 2
(

M + ωκ

√

D(λ)
λ

)

‖Lw,u fλ − Lw,v fλ‖∞

= 2
(

M + ωκ

√

D(λ)
λ

)

‖gu,λ − gv,λ‖∞.

8



Then from Assumption 1,

logN∞(H , ε) ≤ logN∞
(

B̃R,
ε

2(M + ωκ
√

D(λ)
λ

)

)

≤ 4cp,w

(

M + ωκ

√

D(λ)
λ

)2p
ε−p. (7)

Combining (5)-(7) with Lemma 1, we get with confidence 1− δ

E2 ≤
1
2

(E(Lw,x fλ) − fρ) + (M + ωκ

√

D(λ)
λ

)2l−
2

2+p

·cp(4cp,w)
2

2+p +
20(3M + ωκ

√

D(λ)
λ

) log(1/δ)

l
.

ConsideringE(Lw,x fλ) − E( fρ) ≤ E3 + D(λ), we get the desired result.�

4.3. Estimate of hypothesis error

The following concentration inequality with values in Hilbert space can be found
in [11], which is used in our analysis.

Lemma 2. LetH be a Hilbert space andξ be independent random variable on Z with
values inH . Assume that‖ξ‖H ≤ M̃ < ∞ almost surely. Let{zi}mi=1 be independent
random samples fromρ. Then, for anyδ ∈ (0, 1),

∥

∥

∥

∥

1
m

m
∑

i=1

ξ(zi) − Eξ
∥

∥

∥

∥H
≤

2M̃ log(1
δ
)

M
+

√

2E‖ξ‖2H log(1
δ
)

m

holds true with confidence1− δ.

Now we turn to estimateE3, which reflects the affect of inputsx = {xi}l+u
i=1 to the

regularization functionfλ.

Proposition 4. For any0 < δ < 1, with confidence1− δ, there holds

E3 ≤ 24ω2κ2 log2(
1
δ

)D(λ)λ−1(l + u)−1 + D(λ).

Proof: Note that

E(Lw,x fλ) − E(Lw fλ)

≤ ‖Lw,x fλ − Lw fλ‖2 · (‖Lw,x fλ − fρ‖2 + ‖Lw fλ − fρ‖2)

≤ ‖Lw,x fλ − Lw fλ‖2(‖Lw,x fλ − Lw fλ‖2 + 2‖Lw fλ − fρ‖2)

≤ 2‖Lw,x fλ − Lw fλ‖22 + ‖Lw fλ − fρ‖22
≤ 2‖Lw,x fλ − Lw fλ‖22 + D(λ). (8)

Denoteξ(xi) = fλ(xi)w(·, xi), which is continuous and bounded function onX. Then

Lw,x fλ =
1

l + u

l+u
∑

i=1

ξ(xi)

9



and

Lw fλ =
∫

w(·, t) fλ(t)dρX(t) = Eξ.

We can deduce that‖ξ‖2 ≤ ω‖ fλ‖∞ ≤ ωκ‖ fλ‖K and E‖ξ‖22 ≤ ω2κ2‖ fλ‖2K . From
Lemma 2, for any 0< δ < 1, there holds with confidence 1− δ

‖Lw,x fλ − Lw fλ‖2 ≤
2ωκ‖ fλ‖K log(1

δ
)

l + u
+

√

2 log(1
δ
)

l + u
ωκ‖ fλ‖K . (9)

Combining (8) and (9), we get with confidence 1− δ,

E3 ≤ 2(
2ωκ‖ fλ‖K log(1

δ
)

l + u
+ ωκ‖ fλ‖K

√

2 log(1
δ
)

l + u
)2 + D(λ)

≤
16ω2κ2‖ fλ‖2K log2( 1

δ
)

(l + u)2
+

8ω2κ2‖ fλ‖2K log(1
δ
)

l + u
+ D(λ).

Then, the desired result follows from‖ fλ‖2K ≤
D(λ)
λ

. �

4.4. Proofs of Theorem 1 and 2

Proof of Theorem 1: Combining the estimations in Propositions 1-4, we get with
confidence 1− 6δ,

E(π(Lw,x fz)) − E( fρ)

≤ 1
2

(E(π(Lw,x fz)) − E( fρ)) + c1λ
− s

2+s l−
2

2+s + 176M2l−1 log(
1
δ

)

+3D(λ) + c2D(λ)λ−1l−
2

2+p log(
1
δ

) +
36w2k2 log2( 1

δ
)

l + u
D(λ)
λ
.

Consideringu > 0, for 0< δ < 1, we have with confidence 1− 6δ

E(π(Lw,x fz)) − E( fρ) ≤ c log2(
1
δ

)[λ−
s

2+s l−
s

2+s + λβ + λβ−1l−
2

2+p ],

wherec is a constant independent ofl, λ, δ.
Proof of Theorem 2: When settingλβ = λβ−1l−

2
2+p , we obtainλ = l−

2
2+p . Then,

Theorem 1 implies that

E(π(Lw,x fz)) − E( fρ) ≤ 3c log2(
1
δ

)l−min{ 2β
2+p ,

2
2+s−

2s
(2+s)(2+p) }.

When settingλβ = λ−
s

2+s l−
2

2+s , we getλ = l−
2

2β+sβ+s . Then, with confidence 1− 6δ

E(π(Lw,x fz)) − E( fρ) ≤ 3c log2(
1
δ

)l−min{ 2β
2β+sβ+s ,

(2β+sβ+s)(β−1)
2+s + 2

2+p }.

This complete the proof of Theorem 2.
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Table 1: MSE±STD for LFK and SVM with 50 and 100 training samples

Function Number SVM LFK1 LFK2 LFK3
f1 50 0.041± 0.033 0.434± 0.032 0.423± 0.059 0.036 ± 0.053

300 0.044± 0.006 0.419± 0.023 0.404± 0.021 0.042 ± 0.006
f2 50 0.075± 0.046 18.52± 1.30 18.7± 1.30 0.060 ± 0.028

300 0.011 ± 0.006 17.10± 0.941 17.00± 1.35 0.012± 0.004
f3 50 0.013± 0.012 0.670± 0.034 0.458± 0.082 0.010 ± 0.005

300 0.004± 0.001 0.667± 0.013 0.427± 0.020 0.003 ± 0.001
f4 50 0.076± 0.027 0.260± 0.012 0.194± 0.040 0.073 ± 0.021

300 0.039± 0.018 0.251± 0.017 0.158± 0.026 0.032 ± 0.009

5. Empirical studies

To verify the effectiveness of LFK in (1), we present some simulated examples
for the regression problem. The competing method is supportvector machine re-
gression (SVM), which has been used extensively used in machine learning com-
munity (https://www.csie.ntu.edu.tw/ cjlin/libsvm/). The Gaussian kernelK(x, t) =

exp{− ‖x−t‖22
2σ2 } is used for SVM. For LFK in (1), we consider the following “inner” and

“outer” kernels:

• LFK1: w(x, z) = xTzandK(x, z) = exp{− ‖x−t‖22
σ2 }.

• LFK2: w(x, z) = exp{− ‖x−t‖22
σ2 } andK(x, z) = xTz.

• LFK3: w(x, z) = exp{− ‖x−t‖22
σ2 } andK(x, z) = exp{− ‖x−t‖22

σ2 }.

Here the scale parameterσ belongs to [2−5 : 2 : 25] and the regularization parameter
belongs to [10−5 : 10 : 105] for LFK and SVM. These parameters are selected by 4-fold
cross validation in this section.

The following functions are used to generate the simulated data:

f1(x) = sin
( 9π
0.35x+ 1

)

, x ∈ [0, 10]

f2(x) = xcos(x), x ∈ [0, 10]

f3(x) = min(2|x| − 1, 1), x ∈ [−2, 2]

f4(x) = sign(x), x ∈ [−3, 3].

Note that f1 is highly oscillatory,f2 is smooth,f3 is continuous not smooth, andf4 is
not even continuous. These functions have been used to evaluate regression algorithms
in [14].

In our experiment, Gaussian noiseN(0, 0.01) is added to the data respectively. In
each test, we first draw randomly 1000 samples according to the function and noise
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Figure 1: MSE for Gaussian noise and varying training samplesize. (a)f1 ; (b) f2; (c) f3; (d) f4.

distribution, and then obtain a training set randomly with sizes 25, 50, 100, 200,300
respectively. Three hundred samples are selected randomlyas the test set. TheMean
Squared Error(MSE) is used to evaluate the regression results on synthetic data. To
make the results more convincing, each test is repeated 10 times. Table 1 reports the
average MSE andStandard Deviation(STD) with 50 training samples and 300 training
samples respectively. Furthermore, we study the impact of the number of training
samples on the final regression performance. Figure 1 shows the MSE for learningf1−
f4 with numbers of training samples. These results illustratethat LFK has competitive
performance compared with SVM.

6. Conclusion

This paper investigated the generalization performance ofregularized least square
regression with Fredholm kernel. Generalization bound is presented for the Fredholm
learning model, which shows that the fast learning rate withO(l−1) can be reached. In
the future, it is interesting to investigate the leaning performance of ranking [5] with
Fredholm kernel.
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