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a b s t r a c t 

In recent years, many approaches have been proposed to compensate the lack of performance of GNSS 

(Global Navigation Satellites Systems) occurring when operating in constrained environments. One of 

these approaches consists in characterizing the environment of reception of GNSS signals using a wide- 

angle (fisheye) camera oriented to the sky. The content of acquired images is classified into two regions 

(sky and not-sky) in order to determine LOS (Line-Of-Sight) satellites and NLOS (Nonline-Of-Sight) satel- 

lites. This paper is aimed at proposing an image-content classification method to make this approach 

more effective. The proposed method is composed of four major steps. The first one consists of simplify- 

ing the acquired image with an appropriate couple of colorimetric invariant and exponential transform. 

In the second step, the simplified image is segmented using Statistical Region Merging method. The third 

step consists of characterizing the segmented regions with a number of local image region descriptors 

providing more statistically meaningful and discriminatory features. In order to classify the characterized 

regions into sky and non sky regions, we propose the supervised MSRC (Maximal Similarity Based Re- 

gion Classification) method by using Bhattacharyya coefficient-based distance. Comparative and extensive 

experiments have been conducted to investigate the effectiveness of the proposed MSRC method ac- 

cording to the proposed groups of local image region descriptors. Furthermore, we clearly validate the 

feasibility of MSRC method by comparing its results with those presented in the state of the art. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nowadays, GNSS systems (Global Navigation Satellites Systems),

such as GPS, European GALILEO, COMPASS and GLONASS con-

tribute widely to localization and navigation systems in Intelligent

Transport Systems (ITS). They have penetrated the transport mar-

ket through applications such as monitoring of containers, fleet

management, etc. Although most of them give satisfying accuracy

in terms of positioning, they cannot avoid propagation problems,

caused by multi-path phenomena (cf. Fig. 1 ) of GNSS signals (oc-

curring mainly in constraint environments such as urban zones).

Indeed, in dense environments, signals can be blocked (no signal
∗ Corresponding author. Tel: +212638875312. 

E-mail addresses: y.el-merabet@univ-ibntofail.ac.ma (Y. El merabet), 
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eceived), shadowed (signal received after reflections without any

irect ray) and direct. These constraints make tough the evalua-

ion of estimated position reliability. This drawback has no nega-

ive impact for applications like containers monitoring, flot man-

gement, etc., not requiring high availability, integrity and accu-

acy of the positioning system. On the contrary, for specific appli-

ations dealing with liability issues (toll, insurance, etc.) as well as

afety-related applications (automatic guidance or control), requir-

ng more stringent performances, this is a real challenge. There are

any techniques for localization performance enhancement in the

iterature. Multi-sensor-based approaches allowing to compensate

he lack of performance of GNSS by adding other sensors (odome-

er, Inertial Measurement Unit, etc.) that increase the system com-

lexity are commonly used [1–3] . Another workaround consists

n using complementarity between computer vision and localiza-

ion systems to characterize the environment of reception of satel-

ites. Koch and Teller [4] propose a localization method that uses

http://dx.doi.org/10.1016/j.neucom.2017.03.084
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.03.084&domain=pdf
mailto:y.el-merabet@univ-ibntofail.ac.ma
mailto:yassine.ruichek@utbm.fr
http://dx.doi.org/10.1016/j.neucom.2017.03.084
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Fig. 1. Illustration of the multipath phenomenon in urban areas. 
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 known 3D model of the treated environment and a wide angle

amera. This method seems inadequate face to the real-time con-

traint required for the application due to its low frame rate 0.1

mage/s. Meguro et al. [5] propose a method that aims to improve

he positioning accuracy. The authors use an infrared camera to

ddress the elimination of NLOS satellites, considered as a factor

egrading the performance of the positioning system. The detec-

ion of the horizon line is mainly based on an azimuthal projec-

ion. However, the result does not reflect the real horizon line and

he approach can potentially lead to errors when the camera is not

ertically oriented. Ramalingam et al. [6] propose a method aiming

o detect the horizon line using an omni-directional camera in the

isible range, as well as a 3D model of the environment. Another

se of 3D models is presented in [7] , which compares satellite real

isibility and theoretical visibility obtained with the model to re-

ne lateral accuracy of the position, and in [8] which proposes a

seudo-range bias estimation with EKF. Unfortunately, the major

rawback of these 3D model-based approaches is that the obten-

ion of a precise 3D model of the environment is not guaranteed. 

Recently, like Meguro [5] , the authors in [9] propose to enhance

ocalization accuracy by analyzing the structure of the environment

raveled by a vehicle using a single camera delivering visible range

o overcome the problems previously identified (lack of precision

f 3D models, time computation, etc.). The aim is not to develop

 new sensor but to study how could be improved the perfor-

ance of large existing public GNSS receivers from the analysis of

mages provided by a wide-angle camera (fisheye camera with a

arge field of view of 180 °) mounted near to a GPS receiver on the

oof of the mobile and oriented to the sky. The fisheye images are

cquired with the GPS acquisition frequency when the vehicle is

raveling. Once an image is acquired, two major steps are sequen-

ially applied. The first one, based on image processing, consists of

ky region detection. For that, the acquired image is simplified us-

ng a geodesic reconstruction with an optimal contrast parameter.

hen, a clustering step is performed in order to classify the regions

nto two classes (sky and not-sky). A set of unsupervised (Km lo-

al, Fuzzy Cmeans, Fisher and Statistical Region Merging) and su-

ervised (Bayes, K-Nearest Neighbor and Support Vector Machine)

lustering algorithms have been tested and compared. The second

tep consists of repositioning satellites in classified images to iden-

ify GNSS signals with direct path (resp. blocked/reflected signals)

.e. located in sky region of the image (resp. located in not-sky re-

ion). More details of this repositioning step can be found in [9] .

t might be worth to mention that the reliability of the proposed

ystem depends greatly on the classification results. The work pre-

ented in this paper, is related to the first step and tries to make
he proposed framework [9] more effective in terms of image clas-

ification results. 

. Main contributions 

In this paper, we propose to improve the framework introduced

n [9] in terms of classification of the content of fisheye images

nto two class (sky, not sky). Fig. 2 illustrates the flowchart of

he image processing-based method for localization. The method

s composed of two blocks: image processing and localization. Our

ontribution is concerned with the image processing part. The

ethod we propose is composed of several steps: (1) image sim-

lification, (2) image segmentation, (3) region features extraction

nd (4) region classification. These steps will be detailed in next

ections. The main contributions of this work are: 

• An automatic method for choosing an appropriate couple of

colorimetric invariant/image enhancement for image simpli-

fication purposes is adopted. The effect of this useful pre-

processing step is twofold: (1) it gives more precise segmenta-

tion that is faithful to the desired real objects and (2) it allows

sufficient attenuation of over-segmentation problem. 

• We extended color invariance to the RGB color space and pro-

posed 21 local color invariance histograms using image quanti-

zation in order to increase the photometric invariance proper-

ties and enhance the discriminative performance. 

• We also extended a set of existing texture descriptors to RGB

color space and proposed 10 color local texture histograms. 

• Based on these local histograms, we built a number of 31 new

local image region descriptors, denoted as local hybrid his-

tograms by concatenating color RGB histogram on the one hand

with color invariance histograms leading to 21 hybrid color his-

tograms, and on the other hand with color local texture his-

tograms leading to 10 hybrid color texture histograms. 

• In order to classify the regions of the segmented images, we

proposed a MSRC (maximal similarity based region classifica-

tion) method by using Bhattacharyya coefficient-based distance.

• Comparative and extensive experiments have been conducted

to investigate the effectiveness of the MSRC method according

to the proposed groups of local color invariance, local color tex-

ture and local hybrid image region descriptors. Furthermore, we

clearly validate the feasibility of the MSRC method by com-

paring its results with those of recent state-of-the-art methods

[9,10] . 

The organization of the paper is as follows: Section 3 , de-

ails the image simplification step of the proposed procedure.

ection 4 presents briefly the Statistical Region Merging algorithm

sed to obtain the preliminary fisheye image segmentation. In

ection 5 , we introduce the proposed local color invariance, color

ocal texture and color hybrid histograms. Section 6 , presents the

roposed MSRC algorithm. Experimental results and discussions 

re given in Section 7 . Conclusions are derived in Section 8 . 

. Image simplification 

Image simplification, which reduces content information of an

mage to suppress undesired details such as noise, is a very impor-

ant basic pre-processing step of a lot of image-based applications.

his step consists of choosing an appropriate couple of colorimet-

ic invariant/image enhancement for image simplification purposes

llowing increasing the robustness of sky extraction. 

.1. Colorimetric invariants (CI) 

In this paper, we investigate the effect of CI on the outcome of

RM-based fisheye image segmentation. In other words, the objec-

ive is to show how using color invariance could limit the artifacts



30 Y. El merabet et al. / Neurocomputing 265 (2017) 28–41 

Fig. 2. Flowchart of the image processing-based method for localization. 
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present in the acquired images (noise and unimportant fine-scale

details) and in fine enhance the fisheye image segmentation qual-

ity. 

In the context of our application, the color of the images ac-

quired in mobility with a mobile platform (instrumented vehicle)

is heavily dependent on several factors such as the surface re-

flectance, illuminant color, lighting geometry, response of the sen-

sor, etc. Indeed, the camera mounted on the roof of the moving ve-

hicle acquires the sky in the presence of clouds and sun rays with

high brightness. Therefore, images show brilliant peaks due to the

variation in brightness and may present saturated grayscale and,

homogeneous and bright local regions (see Fig. 7 ). If any segmen-

tation algorithm is applied directly to image segmentation without

any pre-processing step, the problem of over-segmentation caused

by insignificant structures or noise will reach important levels. To

deal with this drawback and therefore to extract sky regions with

high accuracy, we adopt a common strategy consisting of simpli-

fying the input image with a suitable CI to obtain invariant signa-

tures [11–14] . Then, we try to observe the effects of a certain num-

ber of low-level features invariants on the segmentations obtained

from SRM algorithm. In this paper, we used 21 CI summarized in

Table 1 . 

3.2. Exponential transform (ET) 

The second component of image simplification module is image

enhancement. This step consists in improving the interpretability

or perception of information in the images to provide better in-

put for the automated image processing steps. This pre-processing

step is considered in applications where images are ought to be

understood and analyzed like in medical/satellite imaging and nat-
ral environment imaging with high dynamic range, such as in

ur application. In this work, this useful step is used in order

o limit the problem of over-segmentation further, keeping all of

he regions of interest. There are lots of existing approaches that

ould be considered for image enhancement. In this work, sev-

ral efficient algorithms like Peer Group filtering [27] , Mean Cur-

ature Motion filtering (based on the diffusion equation) [28] , im-

ge simplification based on anisotropic smoothing [29] , exponen-

ial transform (ET), etc., have been tested and evaluated. According

o the obtained results, we have opted for exponential transform

ET), which provides the best performances in terms of classifica-

ion rate. The effect of ET is to approximate the exponential cor-

ection factor of grayscale images which maximizes the contrast

f the images in the class of exponential intensity mapping func-

ions. In other words, ET enhances detail in high-value regions of

he image (bright) while decreasing the dynamic range (defined as

 max − I min ) in low-value regions (dark). Such effect is illustrated in

ig. 3 where it can be seen that the histograms calculated from

he image simplified with the ET are likely to contain much more

iscriminating information than with those obtained on the initial

mage. ET is given by the following formula (cf. Eq. (1) ): 

 

 

 

I 
′ 
i j 

= exp(χ/ξ ) − 1 + I 
′ 
min 

χ = I i j − I min 

ξ = (I max − I min ) / (log(I 
′ 
max − I 

′ 
min 

+ 1)) 

(1)

here I ij is the intensity of the pixel at position ( i, j ), I max and I min

re the highest and lowest intensities of the image I , respectively

nd ξ is a normalization factor for stretching output values be-

ween the new lowest I 
′ 
min 

and highest I 
′ 
max intensities of the re-

ultant image I 
′ 
. 
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Table 1 

The 21 tested colorimetric invariants. 

Colorimetric invariants Acronym Reference 

Three-dimensional spaces - Affine normalization - Affine - [15] 

- Greyworld normalization - Greyworld - [16] 

- RGB-rank - [17] 

- Color Constant Color Indexing - CCCI - [17] 

- MaxRGB normalization - MaxRGB - [17] 

- Intensity normalization - Chromaticity - [18] 

- Comprehensive color normalization - Comprehensive - [19] 

- c1c2c3 - [20] 

- m1m2m3 - [20] 

- l1l2l3 - [20] 

- l4l5l6 - [21] 

- c4c5c6 - [21] 

- CrCgCb - [22] 

- m4m5m6 - [22] 

- A1A2A3 - [22] 

- Standard L 2 - L2 - [22] 

- Maximum-intensity normalization - Mintensity - [23] 

-hsl 

Bidimensional space - CrCb space - CrCb - [24] 

- Opposite colors (o1o2) - o1o2 - [25] 

- Reduced coordinates - RedCoord - [26] 

Fig. 3. Histograms of each color channel in the RGB color space (top to bottom red, green and blue channel histograms) obtained without(right) and with exponential 

transform (left) for the ROI object given by the mask in red color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 
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Note that, the ET is associated conjointly with the use of color

nvariance analysis. So, the simplified image, which is the input of

he SRM algorithm, is strongly dependent on the CI used. Thus,

ur analysis consists of determining the optimal couple of CI/ET in

he image simplification step. Tests have validated the interest in

sing this appropriate couple of CI/ET in the segmentation process.

ndeed, we will show in the experimental results section that the

se of this suitable couple permits to remove the image details,

hich are not necessary to image segmentation while preserving

he contours of the target objects (sky regions). 

Fig. 4 highlights the influence of the simplification step by us-

ng the optimal couple of CI/ET. One can note that the use of this
ouple appears to be a good compromise between sufficient at-

enuation of over-segmentation and proper restitution of the sky-

egions. Indeed, the corresponding segmentation is pertinent with

ood and correct boundary delineation of the desired object and

ith a low over-segmentation (only 8 regions). 

. Initial segmentation using Statistical Region Merging 

The second step of the proposed procedure consists in obtain-

ng a preliminary fisheye image segmentation that correctly ex-

racts all significant regions where boundaries coincide as closely

s possible with the significant edges present in the image. Of
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Fig. 4. Influence of simplification step. (first row) Initial images without/with transformation. left to right: original image, image with CI, image with ET and image with 

CI and ET conjointly; (second row) segmented images with: 81 regions, 66 regions, 20 regions and 8 regions, respectively; (third row) classification results (cf. Section 7 ); 

(fourth row) zoom of the rectangle zone in images of the third row. 
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course, there are many low level segmentation methods in the lit-

erature which can achieve that. One can cite Mean shift [30] , Jseg

unsupervised segmentation algorithm [31] , watershed, Turbopix-

els [32] , Statistical Region Merging (SRM) [33] , etc. In this paper,

we have chosen SRM algorithm to segment the simplified image

into homogeneous regions with the same properties (see third sec-

ond row of Fig. 4 ). Particular advantages of using this algorithm

for dealing with large images are that SRM dispenses dynamical

maintenance of region adjacency graph (RAG). It allows defining a

hierarchy of partitions and it runs in linear-time by using bucket

sorting algorithm while transversing the RAG. In addition, the SRM

segmentation method not only considers spectral, shape and scale

information, but also has the ability to cope with significant noise

corruption and handle occlusions. 

5. Region feature extraction 

In this stage of our method, we dispose of a segmented image

obtained via the SRM algorithm. It is still a challenging problem

to accurately extract the object contours from this image because

only the segmented regions are calculated and no information esti-

mation on their content, which is necessary for the extraction pro-
ess, is yet available. Our main goal consists in classifying each seg-

ented region as target object or background. For this purpose, we

eed first to join the strategy adopted by many authors and which

haracterizes the regions using suitable descriptors. 

It appears from the literature that there are several aspects that

ould be considered for representing a region such as color, tex-

ure, size, shape, and edge [34,35] . These two last features (shape

nd edge) are unfortunately difficult to describe, as the regions

rovided by the initial segmentation often change their shape and

dge in the images, in particular in fisheye images (non-matrix na-

ure) due to the presence of significant distortions. Identically, re-

ion size, although it can be measured simply by computing the

umber of pixels, it does not allow a unique distinction of objects

f interest since they can have different sizes from an image to

nother or simply they can have the same size as other objects

elonging to the background of the image. In this research, we

nvestigate the performance provided by the color and/or texture

nformation. For that, an evaluation of a proposed comprehensive

et of 22 local color histograms (rgb color histogram and 21 local

olor invariance histograms), 10 color local texture histograms and

 number of 31 local hybrid descriptors is performed. The descrip-

ors we have chosen for the tests are explained below. 
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Table 2 

Texture descriptors extracted and used in this work. 

Descriptors Acronym Reference 

Orthogonal combination of local binary pattern OCLBP [36] 

Local binary patterns LBP [44] 

Local quinary patterns LQP [45] 

Local ternary patterns LTP [46] 

Improved local ternary patterns ILTP [47] 

Center-symmetric local binary patterns CS-LBP [48] 

3D Local Binary Patterns 3DLBP [49] 

Local derivative pattern LDP [50] 

Local Phase Quantisation LPQ [51] 

Sum and difference histograms SDH [52] 

! #
$

Fig. 5. Calculation of color LBP histogram over each region of the segmented image. 
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.1. Local color histograms 

Color information, which can be tackled using simply by com-

uting its mean value or its histogram, is an effective parameter

o describe statistical information of object color distribution. Note

hat region histograms are local histograms and they reflect local

eatures in images. Therefore, we exploit color histogram to rep-

esent all regions of the segmented image. Recently, Zhu et al.

36] suggested to calculate color histograms using different color

pace (RGB, HSV, and Opponent color spaces). Six color histograms,

btained by concatenation of the histograms calculated over each

hannel of the color image, have been proposed. In this paper 22

olor histograms are used: (1) RGB color histogram and (2) 21

olor invariance histograms. 

.1.1. Local color RGB histograms 

A widely used feature in image retrieval and image classifica-

ion problems is the RGB color histogram, which is as well an im-

ortant feature for image representation [37,38] . The RGB color his-

ogram of an image is invariant with rotation, translation, and scale

39] ; therefore, it is very suitable for color based image classifica-

ion. In this paper, in order to produce the RGB color histograms,

rst we had recourse to uniformly quantize each RGB color channel

nto l levels; afterwards, the color histogram of each region is cal-

ulated in the feature space of z = l × l × l bins. Some experiments

ith small numbers of bins have been undertaken, good results

ave been reached with l = 16 bins. It is preferable to compute the

istogram from the highest spatial resolution available. However,

e did not try to increase this number, because it is computation-

lly too intensive. Given an image I containing N pixels quantified

n z = 4096 color bins, the RGB color histogram of a segmented re-

ion R is represented as 

ist RGB (R ) = [ Hist 1 R 

, Hist 2 R 

, . . . , Hist z R 

] (2)

here 

ist i R 

= 

√ (∑ N 
j=1 p i | j 
τ

)
; j ∈ R and 1 � i � z. (3)

Hist i R 

is the i th normalized histogram bin and τ= card( R ) is the

umber of pixels in the region R . p i | j is the conditional probability

f the selected j th pixel belonging to the i th color bin. It is ex-

ressed as follows: 

p i | j = 

{
1 , if the j th pixel is quantized into the i th color bin 

0 , otherwise . 
(4) 

.1.2. Local color invariance histograms 

In order to increase the photometric invariance properties and

nhance the discriminative performance, we extend the RGB color

istogram to different CI and propose 21 local color invariance his-

ograms that are invariants with different kinds of illumination

hanges (shadows, brightness, etc.). The 21 incorporated CI ( Hist L 2 ,

ist Greyworld , Hist c1 c2 c3 , Hist RGB −rank , etc.), summarized in Table 1 ,

re calculated by following the same way as for RGB color his-

ogram. 

.2. Color local texture histograms 

Texture analysis is an area of intense research. The keen interest

n this topic stems from the important role that it plays in many

isciplines and related applications: computer assisted diagnosis,

emote sensing, surface grading, defect detection and food inspec-

ion are just some examples where texture analysis, is, nowadays, a

tandard. Several general-purpose algorithms and techniques have

een developed for texture analysis in the state-of-the-art [40,41] . 
There has been a limited but increasing amount of works that

xploit the color aspects of textured images [36,42,43] . However,

he selection of suitable texture descriptors depends on the type of

bjects to be extracted. In this study, we investigate the effect of

everal existing texture descriptors on the outcome of supervised

lassification-based sky extraction. For that, a number of 10 tex-

ure features calculated for each region of the segmented image

re used (cf. Table 2 ). In order to incorporate color information, we

xtend these 10 texture descriptors to RGB color space and propose

0 color local texture histograms ( Hist LBP , Hist LT P , Hist LDP , etc.).

he main idea is to calculate the unichrome texture feature inde-

endently over different channels in a RGB color space, concate-

ate them to get a descriptor color image (for example the LBP

olor image in Fig. 5 ) and then the color local texture histogram

s calculated for each region of the segmented image by follow-

ng the same steps as for RGB color histograms, as shown in Fig. 5 .

his procedure is desirable in the sense that it is required to trans-

orm the unichrome texture feature, separately and independently

omputed from each color-component image, into a more compact,

nformative and fixed-length representation for more precise clas-

ification. Note that, the same procedure is used in order to calcu-

ate the color histograms for the others tested texture descriptors. 

.3. Local hybrid histograms 

Hybrid descriptors can be obtained by concatenating the feature

ectors provided by different descriptors. Given two local color

istograms Hist(R ) = [ Hist 1 R 

, Hist 2 R 

, . . . , Hist z R 

] and Hist 
′ 
(R ) =

 Hist 1 
′ 
, Hist 2 

′ 
, . . . , Hist z 

′ 
] of a region R , the corresponding local
R R R 
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Algorithm 1 Maximal similarity based region classification. 

Require: I ← input image. 

B obj ← learning database of objects of interest (sky regions). 

B back ← learning database of background (building, road, tree, etc.). 

Step 1 : Image Simplification and Segmentation 

1: Simplify I through the optimal couple of CI/ET to obtain the simplified image J. 

2: Segment J into regions through SRM algorithm in order to obtain the set M SRM 

of segmented regions. 

Step 2 : Region feature extraction 

3: Calculate the histogram feature of all regions of M SRM , B obj and B back . 

Step 3 : Region Classification 

Substep 3 . 1 : Distance Calculation 

4: for each candidate region R ∈ M SRM do 

5: Calculate the similarity vector V R 
ob j 

= { �(R , Q i ) ; (Q i ) i =1 ..m ∈ B obj } between R 

and B obj . �(R , Q i ) is the similarity between the region R and the region Q i ∈ 
B obj . 

6: Calculate the similarity vector V R 
back 

= { �(R , Q j ) ; (Q j ) j=1 ..n ∈ B back } between R 

and B back . �(R , Q j ) is the similarity between the region R and the region 

Q j ∈ B back . 

7: Get the order of V R 
ob j 

and V R 
back 

by decreasing sorting; 

8: Calculate μR 
ob j 

= 
∑ K 

i =1 �(R , Q i ) 
K 

, K ≤ m , the mean of the K first elements of V R 
ob j 

. 

9: Calculate μR 
back 

= 
∑ K 

j=1 �(R , Q j ) 
K 

, K ≤ n , the mean of the K first elements of V R 
back 

. 

Substep 3 . 2 : Decision rule 

10: if (μR 
ob j 

≥ μR 
back 

) then 

11: The region R has the maximal similarity with B obj , it is then classified as 

a part of sky regions. 

12: else 

13: The region R has the maximal similarity with B back , it is then classified as 

a part of background. 

14: end if 

15: end for 

16: return The final segmentation map. 
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hybrid color histogram is mathematically represented as 

Hist hyb (R ) = [ Hist R 

Hist 
′ 
R 

] 

= [ Hist 1 R 

, Hist 2 R 

, . . . , Hist z R 

, Hist 1 
′ 

R 

, 

Hist 2 
′ 

R 

, . . . , Hist z 
′ 

R 

] 

(5)

where Hist i R 

is ith histogram bins and the dimension of the ob-

tained Hist hyb (R ) will be (2 × z ) sized; z = 4096. 

In this study, we propose to concatenate color RGB histogram

on the one hand with color invariance histograms leading to 21 hy-

brid color invariance histograms ( Hist RGB 
c1 c2 c3 

, Hist RGB 
A f f ine 

, Hist RGB 
A 1 A 2 A 3 

,

etc.) and on the other hand with texture histograms leading to

10 hybrid color texture histograms ( Hist RGB 
LBP 

, Hist RGB 
LT P 

, Hist RGB 
ILT P 

, etc.).

While this can enrich the discrimination capacity of the result-

ing descriptor, it has the disadvantage that the dimensionality of

the resulting feature vector could be very high, increasing thus the

computation time. 

6. Maximal similarity based region classification 

Now that we have defined the feature adopted for characteriz-

ing the regions of the segmented image M SRM 

via SRM algorithm,

the key issue is to determine similarity between the regions of

M SRM 

and those of two learning databases B obj and B back that are

constructed respectively with m distinctive textures of objects to

be extracted (sky regions in our case) and n distinctive textures of

other objects such as building, road, tree, etc. For that, we need to

define a similarity measure rule �(R , Q ) between two regions R
and Q basing on their descriptors. The most similarity measures

commonly used are based on vector space model, i.e. taking im-

age region features as points in the vector space, through the cal-

culation of close degree of two points to measure the similarities

between the image region features. There are some well-known

goodness-of-fit statistical metrics such as Minkowski measure, his-

togram intersection method [53] , second type distance [54] , Bhat-

tacharyya coefficient [55,56] , log-likelihood ratio statistic [57] , etc.

For regions R and Q , using the notation �(R , Q ) representing the

similarity between them, the larger ϱ is, the higher similarity be-

tween regions R and Q we will get. Denote by Hist i R 

the normal-

ized histogram of a region R , the superscript i represents its i th

element. z = l × l × l = 4096 represents the feature space. 

In this work, we adopted Bhattacharyya coefficient (cf. Eq. (6) ),

which represents the cosine of angle between the unit vectors rep-

resenting the two regions to be compared: 

(√ 

Hist 1 R 

, . . . , 
√ 

Hist z R 

)T 

and (√ 

Hist 1 Q , . . . , 
√ 

Hist z Q 

)T 

This choice is due to the ability of this measure to model

closely the similarity value of the two formed vectors. The higher

the Bhattacharyya coefficient between regions R and Q is, the

higher the similarity between them is. That is to say their his-

tograms are very similar and the angle between the two histogram

vectors is very small. Certainly, two similar histograms do not nec-

essarily involve that the two corresponding regions are perceptu-

ally similar. Nevertheless, coupling with the proposed MSRC al-

gorithm summarized as in Algorithm 1 , Bhattacharyya similarity

works well in the proposed approach. It might be worth to men-

tion that a histogram is a global descriptor of a local region and

it is robust to noise and small variations. Given that the Bhat-

tacharyya coefficient is the inner product of two histogram vectors,
his coefficient is thus robust to noise and small variations too. 

(R , Q ) = 

z ∑ 

i =1 

√ 

Hist i R 

. Hist i Q (6)

We may further notice that the proposed MSRC algorithm can

e seen as a variant of k -Nearest Neighbor (KNN) method where

oth methods are conceptually quite simple. However, in KNN pro-

edure, an object is classified according to the classes of the k

losest objects, i.e. it is assigned to the class to which belong the

ajority of k neighboring objects. This assignment is performed

ithout taking into account any relation between objects inside a

iven class. However, in the context of regions classification, given

hat two similar color histograms do not necessarily involve that

he two corresponding regions are perceptually similar, considering

nly vote rule to classify regions seems to be insufficient. There-

ore, unlike KNN, the key decision rule of the proposed method

onsists in assigning an unknown region R to the class C n , if the

verage of the K first high similarity measures (in terms of the

hattacharyya measure) calculated between the region R and the

egions of the learning database corresponding to the class C n is

aximal, i.e, 

(R ) = arg max 
C n ∈ C 

1 

K 

K ∑ 

i =1 

�(R , Q i ) , Q i ∈ B n ⊂ D (7)

here D = { B 1 , B 2 , . . . , B l } is a set of learning databases correspond-

ng to the classes C = { C 1 , C 2 , . . . , C l } , R is a query, and ϱ is a simi-

arity measure rule. 

The MSRC algorithm becomes equivalent to KNN method

hen K = 1 and if the same measure is used to calculate distance

etween regions. As for KNN method, the optimal value of K is

earched by means of cross validation procedures, i.e. by testing

 set of values for K (e.g. from 1 to 10); then, the value giving the

owest classification error in cross-validation can be selected as the

ptimal one. 
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Fig. 6. The global trajectory during the database acquisition, within the framework of the CAPLOC project. 
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. Results and discussion 

An extensive experimental study was carried out to investi-

ate the effectiveness of the proposed MSRC method and the

roposed groups of local color invariance, color local texture and

ocal hybrid image region descriptors for classification of regions

f interest in fisheye images. A comparison with the method in

9] was performed to show the improvement that our method pro-

ides. In order to prove the performance of our proposed algo-

ithm, another comparison with the algorithm in [10] was also per-

ormed. The following sections describe in detail the experimental

esults of the different steps of the proposed approach, namely:

1) Choice of the appropriate couple of CI/ET; (2) MSRC and de-

criptors performance; and (3) Comparative evaluation and discus-

ion, as well as the image database and evaluation metrics used.

o better understand and visualize the performance of each step

f our proposed approach, we have chosen to show the results in

oth qualitative and quantitative ways. We point out that for bet-

er readability, we have only presented the results for best tested

escriptors. 

.1. Dataset 

The image database acquired in the framework of the CAPLOC

roject, was used to validate the proposed sky detection/extraction

rocedure. The database was acquired in June 2010 in Belfort situ-

ted on the north-eastern of France. It has heterogeneous data and

arying complex scenarios (urban canyon, vegetation abundance,

verexposure, brightness changes, etc.). Fig. 6 illustrates the global

rajectory traveled by the experimental vehicle during the database

cquisition. The image database contains 150 images exhibiting the

entioned various complex situations. Fig. 7 Illustrates six images

f the database. 
.2. Evaluation metrics 

In order to get a quantitative evaluation, we use ground-truth

sheye maps. The manually delineated sky regions were used as a

eference sky set to assess the automated sky-extraction accuracy.

he extracted results and ground-truth ones are compared pixel-

y-pixel. Each pixel in the images is categorized as one of the four

ollowing types. 

1. True positive (TP): Both manual and automated methods label

the pixel belonging to sky region. 

2. True negative (TN): Both manual and automated methods label

the pixel belonging to background. 

3. False positive (FP): The automated method incorrectly labels

the pixel as belonging to sky region. 

4. False negative (FN): The automated method incorrectly labels

the pixel as belonging to background. 

From these measures it is straightforward to compute the fol-

owing scores associated with the sky regions in the test images:

ecall, precision, F1 measure, accuracy, and Matthews Correlation

oefficient (MCC) (cf. Eqs. 8 –12 ). The MCC is in essence a corre-

ation coefficient between the observed and predicted binary clas-

ifications; it returns a value between −1 and +1. A value of +1

epresents a perfect prediction, 0 no better than random predic-

ion and −1 indicates total disagreement between prediction and

bservation. 

ecall = 

T P 

T P + F N 

× 100 (8) 

recision = 

T P 

T P + F P 
× 100 (9) 

 1 = 2 × recall × precision 

recall + precision 

(10) 
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Fig. 7. Six images of the database (acquired in the framework of the CAPLOC project) with varying complexity (overexposure, brightness changes, presence of clouds and 

strong illumination, etc.). 

Fig. 8. Attenuation of over-segmentation problem according to the use of the couple CI/ET. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Performance of the MSRC method based on the RGB color histogram 

without/with ET. 

Tested CI Recall Precision Fmeasure Accuracy MCC 

RGB 99.29 95.93 97.56 99.00 0.97 

RGB + ET 98.43 97.41 97.90 99.17 0.97 

RedCoord 87.08 86.19 86.28 94.29 0.83 

RedCoord + ET 85.55 96.75 90.03 96.34 0.89 

MaxRGB 99.29 95.93 97.56 99.00 0.97 

MaxRGB + ET 98.43 97.41 97.90 99.17 0.97 

RGB-rank 91.03 93.61 92.19 96.94 0.90 

RGB-rank + ET 98.28 95.72 96.94 98.77 0.96 

o1o2 99.38 96.36 97.82 99.12 0.97 

o1o2 + ET 98.54 97.44 97.97 99.20 0.97 

Affine 97.18 97.73 97.43 98.98 0.97 

Affine + ET 99.36 96.42 97.85 99.13 0.97 

r  

p  

c  

c  

fi  

s  

e  
accuracy = 

T P + T N 

T P + T N + F P + F N 

× 100 (11)

MCC = 

T P × T N − F P × F N √ 

(T P + F P ) × (T P + F N) × (T N + F P ) × (T N + F N) 
(12)

7.3. Choice of the appropriate couple of colorimetric 

invariant/exponential transform 

As indicated in Section 3 , we propose to simplify the initial

image using an appropriate couple of CI/ET transform where the

effect is to limit illumination changes and thus reduce the over-

segmentation problem. Fig. 8 illustrates the attenuation of over-

segmentation problem according to the use of different couples

of CI/ET. We point out that for better readability, we have only

presented 14 best invariants among the 21 tested. Each bar rep-

resents the mean value of the number of segmented regions cal-

culated on all images of the test database according to the cou-

ple CI/ET tested. One can see that when using the CI and the

ET conjointly, the number of regions is considerably reduced, and

this, for the most tested CI. Considering the region reduction rate,

we can rank the best couples as follows: rc/ET (reduction rate of

84.65%), Affine/ET (reduction rate of 73.46%), o1o2/ET (reduction
ate of 72.62%), Chromaticity/ET (reduction rate of 70.3%), Com-

rehensive/ET (reduction rate of 70.27%), etc. Nevertheless, if we

onsider the evaluation of classification results, we notice that the

ouple Affine/ET appears to be a good compromise between suf-

cient attenuation of over-segmentation and proper restitution of

ky regions (cf. Table 3 ). Indeed, using the couple rc/ET consid-

rably reduces the over-segmentation of the images (providing in
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Fig. 9. Under-segmentation problem: presence of mixed regions that are provided by the couple rc/ET. 

Table 4 

Classification results according to the local color invariance histograms used. 

Descriptors Recall Precision Fmeasure Accuracy MCC 

RGB 99.36 96.42 97.85 99.13 0.97 

A1A2A3 99.14 96.87 97.98 99.17 0.97 

Affine 98.70 96.66 97.64 99.05 0.97 

RedCoord 99.14 96.80 97.94 99.16 0.97 

Greyworld 99.11 97.25 98.15 99.26 0.98 

l1l2l3 98.77 96.56 97.63 99.02 0.97 

l4l5l6 99.03 96.14 97.55 98.97 0.97 

Maximum intensity 99.11 97.25 98.15 99.26 0.98 

MaxRGB 99.11 97.25 98.15 99.26 0.98 

L2 98.54 97.36 97.93 99.18 0.97 

hsl 99.03 96.06 97.45 99.03 0.97 

o1o2 98.11 97.26 97.66 99.10 0.97 

m1m2m3 98.54 96.38 97.37 99.00 0.97 

c4c5c6 99.15 95.38 97.20 98.82 0.96 
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Table 5 

Classification results according to the color local texture histograms 

used. 

Descriptors Recall Precision Fmeasure Accuracy MCC 

LBP 95.29 97.09 96.14 98.43 0.95 

OCLBP 99.14 96.87 97.97 99.17 0.97 

LQP 85.55 96.75 90.03 96.34 0.89 

ILTP 91.86 97.31 94.44 97.81 0.93 

LPQ 72.75 96.16 81.15 93.42 0.80 

LTP 90.44 95.88 92.22 97.29 0.91 

CSLBP 94.10 92.24 92.76 96.92 0.91 

3DLBP 72.03 96.99 81.36 93.33 0.80 

LDP 87.27 94.90 90.56 96.11 0.89 

SDH 99.15 96.36 97.70 99.07 0.97 

Table 6 

Classification results according to the color hybrid histograms used. 

Descriptors Recall Precision Fmeasure Accuracy MCC 

RGB ∪ LBP 99.13 97.15 98.11 99.24 0.98 

RGB ∪ OCLBP 99.14 97.05 98.07 99.22 0.98 

RGB ∪ LQP 99.13 96.88 97.97 99.18 0.97 

RGB ∪ ILTP 99.13 97.15 98.11 99.24 0.98 

RGB ∪ LPQ 99.13 96.88 97.97 99.18 0.97 

RGB ∪ LTP 97.24 97.35 97.27 98.89 0.97 

RGB ∪ CSLBP 99.13 96.88 97.97 99.18 0.97 

RGB ∪ 3DLBP 99.13 96.88 97.97 99.18 0.97 

RGB ∪ SDH 99.14 96.61 97.83 99.13 0.97 

RGB ∪ Greyworld 99.13 97.23 98.13 99.24 0.98 

RGB ∪ c4c5c6 99.36 96.72 98.00 99.20 0.98 

RGB ∪ l1l2l3 99.36 96.42 97.85 99.13 0.97 

RGB ∪ l4l5l6 99.41 96.42 97.86 99.15 0.97 

RGB ∪ hsl 98.54 97.15 97.82 99.13 0.97 

RGB ∪ A1A2A3 99.12 96.92 98.03 99.15 0.97 

RGB ∪ m1m2m3 99.40 96.36 97.83 99.13 0.97 

RGB ∪ o1o2 99.34 96.39 97.82 99.12 0.97 
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verage 5.8467 regions per image) but the classification results

how that it is not suitable for obtaining the preliminary seg-

entation results. The underlying reason of this shortcoming is

hat the couple rc/ET based preliminary segmentation leads to seg-

ented images with under-segmentation, i.e. presence of mixed

egmented regions (i.e., presence of regions that contain pixels be-

onging to different classes) in the corresponding segmentation re-

ults (cf. Fig. 9 ). Consequently, the pixels misclassification prob-

em will emerge, i.e. the classifier will affect the same label to

he whole pixels belonging to any mixed segmented region lead-

ng to some errors independently to the descriptor and the clas-

ifier being used. Even if the couple Affine/ET leads to a number

f segmented regions, which is relatively higher (in average 10,43

egions per image) in comparison with the couple rc/ET, it pro-

ides good classification results where the produced classified im-

ges are most close the corresponding ground truth (judged by the

valuation results given in Table 3 ). In conclusion, we opted to use

ffine normalization/Exponential transform as an appropriate cou-

le for image simplification purposes. 

.4. MSRC and descriptors performance 

In this section, we study using the evaluation measures previ-

usly introduced, the performance of the proposed MSRC method

nd different descriptors to classify the segmented regions and

hus extract those corresponding to sky regions. Our goal is to

hoose the appropriate descriptor which with the MSRC method

s able to correctly classify all regions of the segmented image into

ky and non sky regions. In Tables 4 –6 , we report experimental re-

ults obtained using local color invariance histograms, color local
exture histograms, color hybrid histograms and color texture hy-

rid histograms. 

Table 4 summarizes the average (on the dataset) of the perfor-

ance indicators recall, precision, F1 measure, Accuracy and MCC

ccording to the MSRC procedure and the local color RGB and in-

ariance histograms used. As can be seen, all of the tested color

escriptors allows obtaining good classification results with a small

ncrease when using certain local color invariance histograms. It is

orthy to notice that the local color invariance histograms Grey-

orld, Maximum intensity and MaxRGB are the most promising

ecause they give the maximum classification rates compared to

he other tested descriptors. 
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Fig. 10. Gain between the proposed color LBP and MSRC method. 
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Table 5 is similar to Table 4 , however this time the descriptors

used are color local texture histograms. One can notice that the

SDH and OCLBP descriptors allowed obtaining the best classifica-

tion rates compared to the other tested descriptors. Table 6 sum-

marizes the performance of the used hybrid descriptors. The analy-

sis of the classification rates leads us to weight the influence of the

use of hybrid descriptors. Indeed, when used in a hybrid form with

rgb color histogram, all tested color local texture histograms give

good results as they permit to increase the classification rate. This

increase also concerns certain color invariance histograms while

for others the results remain relatively stable. 

We may further notice that, the proposed local color invariance

descriptors demonstrate their effectiveness as they show superior

performances than their texture or hybrid counterparts. The under-

lying reason could be that the acquired images contain more vari-

eties of illumination changes and do not show significant textural

properties. This also explains why normalization intensity based

color invariance descriptors perform the best among the others

color invariance descriptors, since they possess the strongest in-

variance properties (invariant to light color change and to illumi-

nation of the scene). 

In the following, we show the gain between the new local de-

scriptors and MSRC method. For simplicity, we considered as ref-

erence the classical LBP (gray level) descriptor and KNN (K-Nearest

Neighbors) method as its principle is quite similar to the one used

in MSRC. To perform fair evaluation KNN is applied with the same

distance as the one used in MSRC (Bhattacharyya coefficient-based

distance). Again for simplicity, we considered for this evaluation

the proposed color LBP descriptor. Fig. 10 shows the recognition

accuracy for the combinations classic LBP/KNN, classic LBP/MSRC,

proposed color LBP/KNN and proposed color LBP/MSRC, for dif-

ferent values of K. One can see that both proposed color LBP

descriptor (proposed color LBP/KNN) and MSRC method (classic

LBP/MSRC) increased the performance, with relatively significant

improvement for the proposed color LBP for K varying in [4,6]. The

figure confirms once again that the combination proposed color

LBP/MSRC method provides the best performance by outperform-

ing all the others. 

7.5. Comparative evaluation and discussion 

As indicated in Section 1 , the study of this paper followed the

work initiated within the CAPLOC project [9] where one of the

objectives is to classify images into sky and non-sky classes. In
his project, the authors have compared the performance of dif-

erent well known clustering algorithms often used for image clas-

ification purposes. Several unsupervised (Fisher, KMlocal, Fuzzy-

means, SRM) and supervised (Bayes, KNN, SVM) classifiers are

ested. Our method was also compared to the algorithm described

n [10] which is based on pixel classification formulated as a min-

mization task. It is obvious to note that in the evaluation phase,

or meaningful comparison, each algorithm (pre-processing, classi-

cation and post-processing) was tested over many possible com-

inations of input parameters. 

Table 7 illustrates the best classification rates for each tested

ethod. It can be seen that the proposed framework behaves bet-

er than the popular tested classifiers in [9] and the algorithm pro-

osed in [10] . Indeed, the proposed approach maximizes the clas-

ification rate for all the used evaluation metrics. For example, if

e consider the MCC measure, our method performs clearly better

nd gives the best classification rate (98% using the local color in-

ariance histograms as descriptors) compared to other supervised

nd unsupervised tested methods (96% with ALE, 95% with Fisher,

tc.). Thus, the proposed MSRC algorithm permits to increase the

CC measure with 2%. If we consider the accuracy measure, the

roposed approach gives the classification rate of 99.26% vs 97,71%

ith Fisher vs. 97.67% with KNN, vs. 97.59% with ALE, etc. This

hows that our method allows to increase the accuracy with 1,55%.

Fig. 11 illustrates an example of visual comparison of the re-

ion classification results. From left to right: acquired image, clas-

ified image into two classes (sky and non-sky) obtained with the

est classifier defined in [9] , classified image obtained with the

ethod in [10] and classification result obtained with the pro-

osed MSRC method applied with the optimal couple CI/ET and

ith the defined best local color invariance histograms. Basing on

his visual evaluation, one can state that the developed approach

emonstrates excellent accuracy in terms of sky boundary extrac-

ion. Indeed, for all of the images in the first column of Fig. 11 , the

roduced classification results (cf. fourth column of Fig. 11 ) agree

ost closely with the corresponding ground truth where the ma-

ority of the sky regions are detected with good boundary delin-

ation. Note that the results obtained by the method proposed in

9] , which is based on pixel-by-pixel classification that tries to ex-

ract high level information without any knowledge of how pixels

hould be grouped, is often accompanied with false positives. In-

eed, from the second column of Fig. 11 , which illustrates classifi-

ation results obtained with the best classifier defined in [9] , one

an see clearly that, due to radiometric similarity between some
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Table 7 

Classification results according to the classifiers used in the CAPLOC project [9] , according to the method introduced 

in [10] and according to our proposed method. 

Algorithm Ref. Optimized parameters Recall Precision Fmeasure Accuracy MCC 

Fuzzy-Cmeans F = 2 99.34 93.49 96.27 96.89 0.94 

Fisher Blue 99.49 95.08 97.19 97.71 0.95 

SVM – 98.96 91.08 94.79 95.53 0.91 

Bayes [9] – 99.26 94.31 96.68 97.27 0.94 

KNN K = 6 98.07 95.71 96.76 97.67 0.95 

SRM – 98.96 91.08 94.79 95.53 0.91 

KMlocal Loyds 99.37 93.69 96.40 97.03 0.94 

ALE [10] Default 98.60 96.04 97.29 97.59 0.96 

Our approach This paper K = 6 & Greyworld 99.11 97.25 98.15 99.26 0.98 

Fig. 11. Visual comparison of region classification results. From left to right: acquired image, classified image into two classes (sky and non-sky) obtained by the best 

classifier defined in [9] , classified image obtained with the method in [10] and classification result obtained by the proposed MSRC approach. 
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[  
pixels belonging to building and sky regions, several not-sky parts

are classified as true positive (sky region). In addition, some parts

of building or tree regions, which are exposed to the sun, are lost

and classified as true positive (sky region). The method in [10] ,

which is based also on pixel classification, suffers from the same

problem, as illustrated in the third column of Fig. 11 where some

parts of building, floor lamp or tree regions are detected as true

positive (sky region). 

This visual evaluation confirms hence the conclusion given from

the analysis of the results of Table 7 . The outperformance of

the proposed method is possible thanks to its two main steps

(new regions representation and MSRC based regions classifica-

tion), as demonstrated through the analysis of the results reported

in Fig. 10 . 

8. Conclusion 

This paper presented a region based classification method for

line of sight extraction using fisheye images, in the framework of

enhancing GNSS based localization. The proposed method starts by

image simplification using an appropriate couple of colorimetric

invariant and exponential transform. 

Then, we have introduced several new local color descriptors

for image region description based on color invariance and texture

features. The proposed descriptors incorporate color information to

increase their discriminative power, and also to enhance their pho-

tometric invariance properties over various illumination changes. 

Finally, from regions obtained with the SRM algorithm, a Max-

imal Similarity Based Region Classification using Bhattacharyya

coefficient-based distance has been proposed in order to classify

the characterized regions into two classes (sky and non-sky re-

gions). Comparison of our method with the results obtained with

the state-of-the-art approaches showed that the proposed method

outperforms all the tested methods. 

Future works will focus on processing images acquired all day

and in different meteorological situations in order to study the

ability of the proposed approach to deal with hard scenarios. We

envision also night situation by using infrared imaging. Further-

more, we plan to extend the analysis by considering more color

spaces and texture descriptors. Another perspective is to extend

the evaluation of the proposed framework to other data sets re-

lated to applications dealing with automatic objects recognition. 
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