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Abstract

Imputing missing data from a multivariate time series dataset remains a challenging problem. There is‘an abundance of research on
using various techniques to impute missing, biased, or corrupted values to a dataset. While a great amount of work has been done
in this field, most imputing methodologies are centered about a specific application, typically involving static data analysis and
simple time series modelling. However, these approaches fall short of desired goals when the dataroriginates from a multivariate
time series. The objective of this paper is to introduce a new algorithm for handling missing data from multivariate time series
datasets. This new approach is based on a vector autoregressive (VAR) model by combining an expectation and minimization (EM)
algorithm with the prediction error minimization (PEM) method. The new algorithm is called a vector autoregressive imputation
method (VAR-IM). A description of the algorithm is presented and a case study was accomplished using the VAR-IM. The case
study was applied to a real-world data set involving electrocardiogram (ECG) data. The VAR-IM method was compared with both
traditional methods list wise deletion and linear regression substitution; and modern methods multivariate autoregressive state-space
(MARSS) and expectation maximization algorithm (EM). Generally, the\VAR-IM method achieved significant improvement of the
imputation tasks as compared with the other two methods. Although.an improvement, a summary of the limitations and restrictions

when using VAR-IM is presented.
Keywords: Missing data, EM algorithm, VAR Model, ECG

1. Introduction

Throughout the literature, many imputation‘methods for miss-
ing data have been proposed. The methods fall'primarily into
two broad classifications: traditional and modern techniques.
Traditional techniques such as simple” deletion, averaging, or
regression estimation are limited butstill used in many cases.
On the other hand, modern approaches such as multiple im-
putation (MI) and maximumylikelihood (ML) routines, have
proved superior and are havejgained favour. In fact modern
data imputation algorithms that use these approaches are very
prevalent and can be,easily administered in standard statistical
packages such as Statistical'Package for Social Sciences (SPSS)
and Multivariate Autoregressive State-Space (MARSS or even
standalone applications”such as NORM. [1, 2]. The MI ap-
proach first imputesrmultiple data sets from random samples
of the population using techniques such as bootstrapping [3]
or data augmentation [4]. Then, using Rubins rules, the results
from the imputed data sets are combined [5]. The ML technique
for handling missing data is becoming commonplace in micro-
computer packages. Specifically, ML algorithms are currently
available in many existing software packages (e.g. EM algo-
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rithm) [6]. When conducted properly, both ML and MI tech-
niques enable researchers to make valid statistical inferences
when data are missing at random [7]. However, these tech-
niques either have limitations or are difficult to carry out for
dynamic systems modelling [8]. For example, many dynamic
models involve autoregressive variables and the output is nor-
mally a linear or nonlinear combination of a lagged variable.
The estimation of autoregressive models requires that the data
be fully observed. With the existence of missing values, this
is not possible, rendering it impossible to estimate the model.
Furthermore, these methods often lead to bias in the estimates.
In this paper, a new method is proposed for missing data impu-
tation in multivariate time series datasets. The new algorithm
utilizes a vector autoregressive model (VAR) to handle missing
data by combining the prediction error minimization (PEM) [9]
with an EM algorithm. The new algorithm is called a vector
autoregressive imputation method (VAR-IM). A description of
the algorithm is presented and a case study was accomplished
using the VAR-IM. The case study involved electrocardiogram
waves that contain multivariate time series data. Also the ad-
vantages and limitations of the proposed method are analysed.
Finally a simulation study of the proposed algorithm is com-
pared to traditional and modern imputation methods.

September 18, 2017



2. Overview of Traditional and Modern Data Imputation
Techniques

Obtaining good, reliable, and complete data for a research
study is often taken for granted, however, without good data;
the results of a research project will be incorrect and could lead
to significant errors in model development. For various reasons
the obtained data may be corrupted with missing, incorrect, or
distorted values. These anomalies may occur during or after
the data collection process. The problem of how to deal with
corrupted data has been a significant problem throughout many
research fields for many years. Data imputation is the process
of replacing missing, abnormal and distorted values of dataset.
Many techniques of imputing missing data have been devel-
oped as it constitutes a central part of data mining and analysis
[10]. For this study, two of the traditional and modern meth-
ods were selected as baseline comparisons to the proposed new
algorithm. These are list wise deletion, linear regression impu-
tation, MARSS package and EM algorithm.

2.1. Listwise Deletion

List wise deletion is among the simplest techniques for im-
puting missing data. Specifically, in this technique, all mea-
sured values at a specific time point, are ignored if one of the
variables has a missing value for that specific measurement.
Because this method removes the data with missing values, it
decreases the number of variables and the length of sequences
resulting in a reduced sample size. In dynamic modelling where
all values are important for estimating the current values, the list
wise deletion approach can significantly affect the autoregres-
sive model estimation. Although even with these weaknesses,
this approach is still being used for missing data afialysis due
to its simplicity. In some mainstream statistical‘programming
such as R and SAS, this method is the most popular_ene for
dealing with missing values, especially when/analysing time
series. However, there is no obvious indication,that list wise
deletion is adequate for handling missing data involving multi-
variate time series modelling [8].

2.2. Linear regression imputation

Linear regression imputation.is a’very general technique for
dealing with missing values in time series analysis. Linear re-
gression imputation uses, the ayailable data (observed data) to
estimate the missing valuessby using a linear model:

Yi=Bio+B1Ys+BnYs+..B,Y,+e

Y50=By) + By Y1 + BnY; +...By, Y, +e
Yy =Buo + BuY1 + BYa + .By Y1 +e
M} ={Z }{B} + {e}

where {Y;} contains the imputation data, {B} is the parame-

ters of the linear model, {e} is the error vector at each data point,
and [Z;] is regression matrix with n time series and m length of
observed data:
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The main advantage of this method is that it does not de-
crease the variation of data as compared to mean substitution.

The main drawback of this method is that it handles the avail-
able data as static, thus eliminating the property of autoregres-
sion.

2.3. Multivariate Auto-Regressive State-Space (MARSS) Model

The Multivariate Auto-Regressive State Space (MARSS)
model was introduced in 2012 as the first complete package
for handling missing data in multivariate time series data [11].
MARSS incorporates an expectation-maximization (EM) algo-
rithm. It is an R package employing a special formula of vector
autoregressive state-space models to fit multivariate time series
with missing data via an EM algorithm. A'MARSS model has
the following matrix structure:

X; = Axi_| + B:b; +o&;

(D
v = Coxdy=eD,d; +

where &, ~ MVN(0, Qy), u; )~ MVN(O, R;)
and x; ~ MVN(npA) or.xg ~MVN(, A)

The state vectorissepresented by x; and the measured value
is designated by y,. Driven by data, the model evolves but it
is possiblé that seme value may be missing when measuring
y. The“variables b, and d; are inputs representing for example
some.indicators or exogenous variables. A;, B;, C;, and D, are
system matrices, &; and y, are process and non-process error re-
spectively, O, and R, are mxm and nXn variance-covariance ma-
trices respectively, where m is number of states and » the num-
ber.of time series. Compared with the traditional approaches,
MARSS can generate better results especially for multivariate
time series modelling [12].

2.4. EM Algorithm

The expectation-maximization (EM) algorithm is an itera-
tive algorithm for parameter estimation using maximum like-
lihood parameter values when the information (e.g. measure-
ments) of some variables are incomplete [13, 14, 15]. The EM
algorithm is achieved through two basic steps: estimation step
(aka E-step) which replaces missing values by estimated val-
ues, and the maximization step (aka M-step) which estimates
the parameters. These two steps alternately iterate until conver-
gence [16, 17]. The conditional expectations of missing data in
observed series and estimates of model parameters in the E-step
are calculated by:

O(B,|Bn+1) = Ex,,x0),8,,, [l0g L(B; X0, Xm)] 2)

where, L(B; Xo, X;,) is the likelihood function, B is the pa-
rameter vector, B, is the estimate of the model parameters,
Xo is observed data, X,, is the missing data. In the M-step,
the model parameters can be calculated using (2) to maximize
completedata log likelihood function from the E-step:

Bn+1 = argBmaxQ(BIB,,) (3)



3. Overview of Stationary Multivariate Time Series

A time-series is a sequence of measured values arranged
by their sequential time order. The time-series may be in ei-
ther discrete or continuous time units. Multivariate time series
processes are of considerable interest in a variety of fields of
engineering, sciences, and medicine. By studying many related
variables together rather than a single variable a better under-
standing of the observed process is often obtained. Nowadays,
improved data collection methods permit large amounts of time
series multivariate data to be collected from various application
domains. For n time series random variables yi;, ya, ., Yur, let
Y; denote a multivariate time series for an n-dimensional time
series vector, where each y;, time series represents i"" raw of Y,
vector, that is, for any time ¢, Y; = (y1y, Yor, .,y,,,)T One of the
fundamental objectives of multivariate time series analysis of
Y, is to fit the data to a model and demonstrate the dynamic re-
lationships among univariate time series. The selection of each
time series model, included in Y, depends on the dynamic in-
terrelationships between these time series variables which are
affected directly by time lags between the data points for each
time series. The multivariate time series data set Y; is stationary
time series if at arbitrary time intervals #;, t5, ., #; the probability
distributions of the component time series variables y;i, ys2, ., Vi
and y;1_p, Y—p, -» Yik—p are the same, where k is the number of
the measured values p represents the lag. That means cross time
intervals #, t, ., #; throughout the stationary multivariate time
series, has a random probability distribution of the observed
data points with respect to the time lags. Consequently, any.
stationary multivariate time series should have the same“mean
value M at any time intervals where:

my
M=Ex,)=|" )
my,

In addition, the covariance matrix, )y, of a stationary time
series Y; is a constant matrix [18]:

> = Bl My, = M)

Y

4. Filtering of Multivariate Time Series

A multivariate linear(time-invariant) filter relating an 1 di-
mensional inputsseries U; to n-dimensional output series Y; of-
ten formulated,as:

Y= > Ui nBy (5)
N=—c0

where By are n X 1 matrices. The filter is physically realiz-
able or causal if By = O for N < Oleadingto Y; = }\_, Ui—~nBw,
which means that Y; can be characterized by past values of the
input U,. The filter is said to be stable, if ¥, = Y5__ lIByll <
oo.Under the stability condition, together with an assumption

that the input random vectors U, have uniformly bounded sec-
ond moments, the output random vector Y; defined by (5), exists
uniquely and represents the limit:

lim,—co ) Ur-nBy (©)
N=—r

such that as r — oo

Y= E[(Y,— ) UrnBWYi = > UrvBy)'l.
N=-r N==r

When the filter is stable and the input series U, is stationary
with cross-covariance matrices ['y(p), (5) is-a stationary pro-
cess [19]. The cross-covariancednatrices of the stationary pro-
cess Y, are then given by

i=60_ j=00

Lu(p) = Con¥tip) = D D) BLu(p+i=pB] ()

I=—00 j=—00

5. VectorAutoregressive Model (VAR)

The vectorsattoregressive model (VAR) is commonly used
modelforthe analysis of multivariate time series. In many ap-
plications where the variables of interest are linearly each re-
latedyto ‘each other the VAR model has shown to be a good
choice for representing and predicting the behaviour of dynamic
multivariate time series[20]. It primarily provides good fore-
casts as compared to models from univariate time series and
many other models. Because the VAR model can make condi-
tions on the prediction paths of specified time series within the
model itself, the forecasts from this model are relatively easy to
derive [20]. In addition to time series analysis and prediction,
the VAR model is additionally utilized for causality inference
and strategy investigation of the multiple time series. In causal-
ity analysis, specific hypotheses of the causality of the time se-
ries under analysis are assumed, and the subsequent causal ef-
fects of each time series are outlined. This chapter concentrates
on the use of the VAR model to analyse stationary multiple time
series datasets with missing data.

5.1. Vector Autoregressive State Space Model

State-space models are models that use state variables to de-
scribe a system by a set of differential or difference equations.
State variables can be reconstructed from the measured input-
output data, but the variables themselves are not measured dur-
ing an experiment. A state-space models can be estimated us-
ing in either time and frequency domains. In this paper, the
discrete-time state-space model is used to present the multivari-
ate time series data set, having the following structure [21]:

X(t+Ts)=AX(t)+ BU(t) + E(t) (8)

Y() = CX(t) + DU(1) + e(t) ©))



where x(¢) is the vector of state values, A is the state matrix,
B is the input matrix, C is the output matrix, D is the feedfor-
ward matrix, Y and U are the input and output vectors respec-
tively, and &(¢) are state errors as specified with the matrix g.
Matrix r contains the output errors, e(t).

5.2. VAR Model for Stationary Time Series

Let Y, = (311), Y21s oo Yu)| be an (m X 1) time series vector.
A VAR(p) model for the multiple time series can be represented
by:

Yi=A+ ) AY,;+¢&() (10)

p
i=1

Y, =Ag+A 1Y +A2Y,,2+...+Ath,p8(t) (11)

wheret = 1,...,T, A; are M X coefficient matrices and () €
(0, X)) denotes an M x 1 vector of white noise.
(11) can be written in lagged notation:

ALY, = Ag + &(1) (12)

where
Ap=T,-AL—-.. —A,L’ (13)

The stability of the VAR model is depended on the roots of
(14)
Ly — A1z — ... — A2’ = 0 (14)

6. VAR-IM algorithm

The proposed algorithm for imputing missing data into“a
multivariate time series dataset is to use a Vector Autoregressive-
Imputation (VAR-IM) method combined with an EM algorithm
together with a prediction error minimization/(PEM) algorithm.
The method based on a combination of these/algorithms can
significantly improve the imputation petformancé for dealing
with missing data problem. Specifically, in,the first step, the
traditional linear interpolation estimate is made for an initial
guess of the missing data. Then a VAR(p) model is estimated
by selecting the best lag value p.* Finally, the parameters of
the VAR(p) model are estimated by alternatively using EM and
PEM algorithms resulting in an improved value for the data im-
putation. Basically; the alternation of the two algorithms be-
tween imputing missing data and estimating models, improves
the model performance by applying PEM algorithm in a way
similar to the EMialgorithm. The flow chart for the proposed
VAR-IM algorithmis shown in Figure 1.

The VAR-IM method formalizes an intuitive idea for iden-
tifying a best VAR model for imputing missing data:

o Calculate the initial values to start the algorithm.
o Check the causality of time series.
o Select the order of the identified VAR* Model.

o Impute the missing values by usingVAR*.

Identify the new VAR model.

If no convergence, go to step III, otherwise, go to step
VII

Perform PEM algorithm to update the missing values.

Impute the missing values.

Input

n time seres with incomplete data

e

K=0

Initial values
B

Specify VAR model order

L |

E-step:

Impute mizzing values
1

k=k+1

M-step:

Compute B

Perform PEM algorithm

¥

Impute missing values

Figure 1: VAR-IM algorithm flow chart.

For more details, assume that X; represents a multivariate
data set and a set of VAR models can simulate X; with different
lags p=1,2,3,. and parameters A,. If there is no missing values,
itis of interest to calculate the least squares estimate of A, based
on:

X, =¢A+E (15)

For dynamic systems the auto-regression process depends
on the past values of the targeted data point, if the time series
includes missing values, means that there is past values missed
and the auto-regression cannot be applied in (15). In this case
the traditional approaches such as list wise will not work, be-
cause ignoring of missing values will effect on the property of
dynamic system. To start up the estimation process correctly,



the initial values are required; the simple way to determine
these initial values is using a simple traditional method such
as linear interpolation. We will denote this by expressing X,
as (Xpniss» Xrobs), Where X, denotes the multivariate data set
with missing values, and X, represents the multivariate data
set with replacing missing values by initial values (imputed by
interpolation technique).
Consequently (15) becomes [22]:

X, = trAp+ E= X, = dpoApo + E (16)
Apr = (DL 0 DL X = Apo = (B d0) o0 X0 (17)

where ¢ is the initial regression matrix, k = 0,1,2,, and
Ao is the initial coefficients matrix of the select VAR(py) model.

The order of the model py is updated until the differenceA ,;—
Ap+n) 18 less than &, where ¢ is a prescribed small value [22].

6.1. Model Order Selection

The model selection for the VAR(p) model is usually speci-
fied utilizing model selection criteria. The basic idea is to iden-
tify models with different lags values p = 0, 1,2, .., pjuax and
select the p lag value that can minimizes the model selection
criteria [23]. Model order selection formula is represented by:

IC(p) = Inl ) (p)I +S7.0(m, p) (18)

where | > (p)| is the covariance matrix of the residual error S 7
are the indexed values sequence (1, ..., T), and the penalty fune-
tion ¢(m, p) which impedes the large models order. The term
| >2(p)| is non-growing function whereas the function g(m, p)
increases with the order P. The basic idea of theumodel order
selection depends on balancing these two functions. There are
five techniques for model order selection in'the applied VAR(P)
model literature generally broadly utilized:

e Akaikes information criterion (A/C) [24].

2
AIC(p) =Hnl Yo ()l + = pm® (19)

2
Where the penalizing function ¢(m, p) = pm* and S = T

e Schwarz criterion(S C) [25].

InT
SC(p) = Inl Y (P + ——pm’ (20)
Where the penalizing function ¢(m, p) = pm? and S7 =
InT

T
e Hannan-Quinn criterion (HQ) [26].

2In(InT) 2
- p

For which the penalizing function ¢(m, p) = pm? and S =
2In(InT)

SC(p) = Inl ) (p)l + @1

T
Note that for all the three criteria, the penalty function ¢(m, p)
has the same formula.

e Final Prediction Error (FPE) [27].

T 1
FPE(p) = [—2 1 Sp)

P 22
T —mp +#1 (22)

e Likelihood ratio test (LRtest) [28].

Where j = 1,2,,(p =(1) Other techniques do exist. They
were not included in this'study,because they are not widely used
in the applied VAR model literature.

7. Case study

The significance of a good data imputation process is es-
pecially important in the field of medicine where discovery and
imputationrof missing values can help to identify abnormal con-
ditionsand reduce incorrect diagnosis [22]. Hence, interest has
risen,considerably in this and associated fields where it is im-
portant to effectively model and analyze multivariate time series
data. Therefore to examine the performance of the proposed
algorithm for handling a real-world missing data problem, a
case study involving Electro-Cardio Gram (ECG) signals was
accomplished. An ECG dataset without missing values was ob-
tained from the Physionet website (http://www.physionet.org/
physiobank/data
base/ptbdb). Then two datasets were created by randomly re-
moving data elements. A 10% missing completely at random
(MCAR) and a 20% MCAR dataset was created. The initial
Physionet dataset included 290 patients with 549 records (aged
between 17 and 87, mean 57.2; 209 men, mean age 55.5, and
81 women, mean age 61.6; ages were not recorded for 1 female
and 14 male subjects). Each subject is represented by one to five
records. There are no subjects numbered 124, 132, 134, or 161.
Each record includes 15 simultaneously measured signals: the
conventional 12 leads (i, ii, iii, avr, avl,av f, v1,v2,v3,v4,v5,v6)
together with three Frank lead ECGs (vx, vy, vz). Each signal
is digitized at 1000 samples per second, with 16-bit resolution
over a range of 16.384 mV. On special request to the contribu-
tors of the database, recordings may be available at sampling
rates up to 10KHz. More detailed discussion can be found
[29, 30]. The diagnostic classes of the patients are divided into
nine types; this case study considered a 12-lead ECG signals
for two diagnostic classes: myocardial infarction and healthy
control for two patients. Two cases of MCAR missing data
mechanism with two different percentages 10% and 20% were
generated. Table 1 shows the values of the four model order
selection criteria. As can be seen each test indicates that the
model with lag two has the highest priority. Tables 2 and 3



show the recovering accuracy for the missing data in the heart
rate signal using different imputation methods, under two cases
of missing data mechanisms, i.e., 10% and 20% MCAR, re-
spectively. In both cases, the proposed method VAR-IM gives
better results comparing with the other methods.

Table 1: VAR Model order selection.
Model order  AIC SC LR HQ FPE

1 4.8001 6.4028 21.4948 5.4479 0.0002
2 2.1151 32691 17.8260 2.5816 0.0001
3 5.1866 9.3537 91.4041 6.8710 0.0002
4 5.5062 10.956 53.7518 7.7089 0.0002

Table 2: Proposed methods for Heart-rate-10% MCAR.

The conventional 12 leads

Method i ii iii avr avl avf Vi V2 V3 V4 V5 Vo6
Complete-data  78.12  65.87 73.02 5858 56.05 6548 3496 4267 5295 7582 7558 7438
Missing -data ~ 73.9 638 6678 478 4995 6091 3048 37.82 4578 66.23 6635 64.85
VAR-IM 79 67.08 70.13 5458 5508 6548 3773 4358 5048 7097 7351 72.13
List-wise 87.79 7405 76.07 4982 5884 72.17 3471 4392 52.03 7440 7496 7285
Linear-reg 76.82 67.80 7028 50.07 56.57 10040 76.32 52.65 57.55 8547 8357 69.87
MARSS 7398 638 6683 47.87 4998 6093 3051 37.92 4582 6632 6638 649
EM 7537 6405 6733 493 5127 6138 31.31 386 4895 70.57 66.36 69.6

Table 3: Proposed methods for Heart-rate-20% MCAR.

The conventional 12 leads

Method i ii iii avr avl avf Vi V2 V3 V4 Vs Vo
Complete-data  78.12  65.87 73.02 5858 56.05 6548 3496 42.67 5295 7582 7558 7438
Missing -data 73.90 63.80 66.78 47.80 49.95 6091 3048 37.82 4578 6623 6635 64.85
VAR-IM 80.87 6820 70.55 5205 56.78 68.15 3872 4443 50.53 69.82 7330 72.22
List-wise 71.63  62.55 64.85 4227 48.17 58.17 2843 3563 4435 6357 6335 61.85
Linear-reg 7448 6647 6835 4423 57317 101.32 73.97 5628 5945 8473 8292 67.03
MARSS 71.67 6255 6493 4232 4822 5815 2850 3568 4442 63.63 6338 61.90
EM 74.80 63.05 6577 4428 5170 59.13 29.68 36.87 49.83 69.58 6433 67.95

7.1. ORS Waves

The ventricular depolarization of the heart can be repre-
sented by three nodes on the heart electrical wave displayed
within ECG signal. These are the Q, R and S nodes; known
as the QRS complex. The amplitude of QRS sepresents the
polarization and depolarization of the ventricular. The QRS du-
ration is the required time for the signal to, pass through the
ventricular myocardium [31]. The normality of QRS complex
is measured by its duration (time interval). A normal duration
of the QRS complex is between 0.08 and 0.10"seconds. An in-
termediate QRS complex has an interyal between 0.10 and 0.12
seconds. While an abnormal’QRS time interval is more than
0.12 seconds. Important QRS properties include rise level (Lr),
fall level (L), rise duration (T'r), and fall duration (7 f). These
factors represent the quality of 2 QRS wave in terms of specify-
ing the ventricular’depolarization. The rise and fall levels rep-
resent length of edges of R peak on the right and left hand side
respectively,ithe rise‘and fall durations are the required time to
move from the Q peak to R peak and from R peak to S peak
respectively [32].

Lr = Amplitude R peak - Amplitude Q peak

Lf = Amplitude S peak - Amplitude R peak

Tr = Time point R peak - Time point Q peak

Tf = Time point R peak - Time point Q peak

Mean Error = mean (noisy-ECG (QRS locations) - ((filtered
(ORS locations))

7.2. QRS waves and missing values

The performance of the VAR-IM method is evaluated by
comparing the effectiveness of missing data imputation on QRS
wave properties, in both cases of missing data (10% and 20%
MCAR) and complete data. Furthermore, the efficiency of miss-
ing data imputation is considered in the filtering processing.
Figure 2 shows the QRS complex rise level, fall level, rise time
and fall time in the case of complete data. In comparison, Fig-
ures 3-5 show various results with respect to the case of 10%
MCAR. The four proposed techniques with VAR-IM methods
were applied to solve the missing data pfoblem here. Clearly,
most approaches generated obviously different results: for ex-
ample, the list wise deletion could not achieve any improvement
in all features; it gave results similar tothe case of missing data.
on the other hand, all the other methods gave acceptable results,
for some features such as Lr, Lf, Triand T f, but the VAR-IM
methods still has the highest/priority to be the best methods
to recover the missing values, which is similar to the real data
especially the QRS peaks locations. Table.4 summarizes the re-
sults of the effectiveness of missing data imputation of the four
methods for the QRS wave properties.

Table 4: Q-R-S wave properties in case of 10% MCAR.

Data Imputed data 10% MCAR missing

Complete data  Missing -data VAR-IM  List-wise Linear-reg MARSS EM
MeanError_ Qwave -0.004 NAN -0.0109 - 0.1420 -0.0417  -0.006
MeanError_ Rwave 0.021 NAN 0.0243 - 0.0277 0.0212  -0.0068
MeanError_Swave -0.0155 NAN -0.342 - -0.0576 -0.0147  -0.018

avg riseTime 29 NAN 28 - 30 28.5 28

ayg fallTime 56 NAN 59 - 56 56.5 57
avg riseLevel 1.4419 NAN 1.424 - 1.0171 1.4332 1.4312
avg_fallLevel 1.9204 NAN 1.9165 - 1.5867 1.9199  1.9296
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Figure 2: QRS wave properties for Complete Data
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Figure 3: QRS Wave Properties VAR-IM Imputed Data (10%MCAR)
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Figure 4: QRS Wave Properties for Linear-fegression Imputed Data
(10%MCAR)
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Figure 5: QRS Wave Properties for EM Imputed Data (10%MCAR)
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Figure 6: QRS Wave Properties for MARSS Imputed data (10%MCAR)

When the percentage of the missing data increases from
10% to 20%, thesproposed VAR-IM method gives the best re-
sults among the, five methods. Table 5 summarizes the results
generated from the recovered data using the five methods, as
well as a comparison with that generated from the complete
datamsAs.can be noted in both cases of missing data (MCAR
10% and 20%) the MARSS package and EM algorithm have
similar results. The reason may be that the MARSS depends
mainly on EM algorithm in estimating an MARSS model.

Table 5: Q-R-S wave properties in case of 20% MCAR.

Data Imputed data 20% MCAR missing

Complete data  Missing -data VAR-IM List-wise Linear-reg MARSS EM
MeanError_Qwave -0.004 NAN -0.0067 0.0131 0.0016  0.0014
MeanError Rwave 0.021 NAN 0.0191 0.0630 0.022 0.0163
MeanError_Swave -0.0155 NAN -0.018 -0.0802 -0.0096  -0.0191

avg_riseTime 29 NAN 29 - 27 28.5 28.5

avg_fallTime 56 NAN 56.5 - 4295 55.5 56.5
avg_riseLevel 1.4419 NAN 1.4414 0.9402 1.4391 1.4445
avg_fallLevel 1.9204 NAN 1.9307 1.4009 1.9243 19341
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Figure 7: QRS Wave Properties VAR-IM Imputed Data (20%MCAR)
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Figure 8: QRS Wave Properties for Linear-regression Imputed Data
(20% M CAR)
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Figure 9: QRS Wave Properties for -EM Imputed Data (20%MCAR)
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Figure 10: QRS Wave Properties -MARSS Imputed Data (20%MCAR)

8. Conclusion

It is extremely important to effectively handle multivari-
ate data anomalies that contain missing values. This is espe-
cially true for medical data, which could involve great num-
ber of critical health diagnostic variables. The proposed VAR-
IM method provides improvements to speed and accuracy for
imputing missing values of multivariate time series datasets.
It outperforms the commonly used methods such as list wise
deletion, linear regression imputation, MARSS and EM algo-
rithms. From the results of the case study, the VAR-IM method
provides an effective alternative for the/imputation of missing
values in multivariate time series. ;While the other proposed
traditional and modern methods beécome less effective with the
increase of the proportion of missing data, VAR-IM shows less
deterioration in performance.with increasing percentages of miss-
ing entries. In addition, the VAR-IM method is more robust
than the other proposed techniques when applied to the data
types discussed in the case study, and performed better on static
and noisy data. ~Thereyare/Some limitations of the proposed
method. Firstly, this'study only considered the scenario in which
data was missing completely at random (MCAR), that is, the
cause of the missing data was independent of both the observed
and miSsing values. A less stringent assumption of missing data
mechanisnimissing at random (MAR) may be more realistic in
practice. MAR refers to the case in which missingness is related
torthe observed values, but not to the missing values themselves.
Secondly, the validity of VAR-IM approach requires that the
time series should be stationary. Finally, the percentage of miss-
ing data has significant impact on most missing data analysis
methods, VAR-IM does not have the priority to be used if the
percentage of missing data is quite low (say less 10%). Despite
these limitations, VAR-IM provides an important alternative to
existing methods for handling missing data in multivariate time
series. Further extension of the method to include other types
of methods will be considered in other future work.
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