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Abstract

Imputing missing data from a multivariate time series dataset remains a challenging problem. There is an abundance of research on

using various techniques to impute missing, biased, or corrupted values to a dataset. While a great amount of work has been done

in this field, most imputing methodologies are centered about a specific application, typically involving static data analysis and

simple time series modelling. However, these approaches fall short of desired goals when the data originates from a multivariate

time series. The objective of this paper is to introduce a new algorithm for handling missing data from multivariate time series

datasets. This new approach is based on a vector autoregressive (VAR) model by combining an expectation and minimization (EM)

algorithm with the prediction error minimization (PEM) method. The new algorithm is called a vector autoregressive imputation

method (VAR-IM). A description of the algorithm is presented and a case study was accomplished using the VAR-IM. The case

study was applied to a real-world data set involving electrocardiogram (ECG) data. The VAR-IM method was compared with both

traditional methods list wise deletion and linear regression substitution; and modern methods multivariate autoregressive state-space

(MARSS) and expectation maximization algorithm (EM). Generally, the VAR-IM method achieved significant improvement of the

imputation tasks as compared with the other two methods. Although an improvement, a summary of the limitations and restrictions

when using VAR-IM is presented.

Keywords: Missing data, EM algorithm, VAR Model, ECG

1. Introduction

Throughout the literature, many imputation methods for miss-

ing data have been proposed. The methods fall primarily into

two broad classifications: traditional and modern techniques.

Traditional techniques such as simple deletion, averaging, or

regression estimation are limited but still used in many cases.

On the other hand, modern approaches such as multiple im-

putation (MI) and maximum likelihood (ML) routines, have

proved superior and are have gained favour. In fact modern

data imputation algorithms that use these approaches are very

prevalent and can be easily administered in standard statistical

packages such as Statistical Package for Social Sciences (SPSS)

and Multivariate Autoregressive State-Space (MARSS or even

standalone applications such as NORM. [1, 2]. The MI ap-

proach first imputes multiple data sets from random samples

of the population using techniques such as bootstrapping [3]

or data augmentation [4]. Then, using Rubins rules, the results

from the imputed data sets are combined [5]. The ML technique

for handling missing data is becoming commonplace in micro-

computer packages. Specifically, ML algorithms are currently

available in many existing software packages (e.g. EM algo-
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rithm) [6]. When conducted properly, both ML and MI tech-

niques enable researchers to make valid statistical inferences

when data are missing at random [7]. However, these tech-

niques either have limitations or are difficult to carry out for

dynamic systems modelling [8]. For example, many dynamic

models involve autoregressive variables and the output is nor-

mally a linear or nonlinear combination of a lagged variable.

The estimation of autoregressive models requires that the data

be fully observed. With the existence of missing values, this

is not possible, rendering it impossible to estimate the model.

Furthermore, these methods often lead to bias in the estimates.

In this paper, a new method is proposed for missing data impu-

tation in multivariate time series datasets. The new algorithm

utilizes a vector autoregressive model (VAR) to handle missing

data by combining the prediction error minimization (PEM) [9]

with an EM algorithm. The new algorithm is called a vector

autoregressive imputation method (VAR-IM). A description of

the algorithm is presented and a case study was accomplished

using the VAR-IM. The case study involved electrocardiogram

waves that contain multivariate time series data. Also the ad-

vantages and limitations of the proposed method are analysed.

Finally a simulation study of the proposed algorithm is com-

pared to traditional and modern imputation methods.

Preprint submitted to Journal of LATEX Templates September 18, 2017
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2. Overview of Traditional and Modern Data Imputation

Techniques

Obtaining good, reliable, and complete data for a research

study is often taken for granted, however, without good data;

the results of a research project will be incorrect and could lead

to significant errors in model development. For various reasons

the obtained data may be corrupted with missing, incorrect, or

distorted values. These anomalies may occur during or after

the data collection process. The problem of how to deal with

corrupted data has been a significant problem throughout many

research fields for many years. Data imputation is the process

of replacing missing, abnormal and distorted values of dataset.

Many techniques of imputing missing data have been devel-

oped as it constitutes a central part of data mining and analysis

[10]. For this study, two of the traditional and modern meth-

ods were selected as baseline comparisons to the proposed new

algorithm. These are list wise deletion, linear regression impu-

tation, MARSS package and EM algorithm.

2.1. Listwise Deletion

List wise deletion is among the simplest techniques for im-

puting missing data. Specifically, in this technique, all mea-

sured values at a specific time point, are ignored if one of the

variables has a missing value for that specific measurement.

Because this method removes the data with missing values, it

decreases the number of variables and the length of sequences

resulting in a reduced sample size. In dynamic modelling where

all values are important for estimating the current values, the list

wise deletion approach can significantly affect the autoregres-

sive model estimation. Although even with these weaknesses,

this approach is still being used for missing data analysis due

to its simplicity. In some mainstream statistical programming

such as R and SAS, this method is the most popular one for

dealing with missing values, especially when analysing time

series. However, there is no obvious indication that list wise

deletion is adequate for handling missing data involving multi-

variate time series modelling [8].

2.2. Linear regression imputation

Linear regression imputation is a very general technique for
dealing with missing values in time series analysis. Linear re-
gression imputation uses the available data (observed data) to
estimate the missing values by using a linear model:

Y1 = B10 + B11Y2 + B12Y3 + ....B1nYn + e

Y2 = B20 + B21Y1 + B22Y3 + ....B2nYn + e

Yn = Bn0 + Bn1Y1 + Bn2Y2 + ....BnnYn−1 + e

{Y1} = {Z1}{B} + {e}

where {Y1} contains the imputation data, {B} is the parame-
ters of the linear model, {e} is the error vector at each data point,
and [Z1] is regression matrix with n time series and m length of
observed data:

Z1 =



























1 Y21 Y31 Y1n

1 Y22 Y32 Yn2

1 .. .. ..

1 Y2m Y3m Bnm



























The main advantage of this method is that it does not de-

crease the variation of data as compared to mean substitution.

The main drawback of this method is that it handles the avail-

able data as static, thus eliminating the property of autoregres-

sion.

2.3. Multivariate Auto-Regressive State-Space (MARSS) Model

The Multivariate Auto-Regressive State Space (MARSS)

model was introduced in 2012 as the first complete package

for handling missing data in multivariate time series data [11].

MARSS incorporates an expectation-maximization (EM) algo-

rithm. It is an R package employing a special formula of vector

autoregressive state-space models to fit multivariate time series

with missing data via an EM algorithm. A MARSS model has

the following matrix structure:



















xt = At xt−1 + Btbt + εt

yt = Ct xt−1 + Dtdt + µt

(1)

where εt ∼ MVN(0,Qt), µt ∼ MVN(0,Rt)

and x1 ∼ MVN(π,Λ) or x0 ∼ MVN(0,Λ)

The state vector is represented by xt and the measured value

is designated by yt. Driven by data, the model evolves but it

is possible that some value may be missing when measuring

y. The variables bt and dt are inputs representing for example

some indicators or exogenous variables. At, Bt, Ct, and Dt are

system matrices, εt and µt are process and non-process error re-

spectively, Qt and Rt are m×m and n×n variance-covariance ma-

trices respectively, where m is number of states and n the num-

ber of time series. Compared with the traditional approaches,

MARSS can generate better results especially for multivariate

time series modelling [12].

2.4. EM Algorithm

The expectation-maximization (EM) algorithm is an itera-

tive algorithm for parameter estimation using maximum like-

lihood parameter values when the information (e.g. measure-

ments) of some variables are incomplete [13, 14, 15]. The EM

algorithm is achieved through two basic steps: estimation step

(aka E-step) which replaces missing values by estimated val-

ues, and the maximization step (aka M-step) which estimates

the parameters. These two steps alternately iterate until conver-

gence [16, 17]. The conditional expectations of missing data in

observed series and estimates of model parameters in the E-step

are calculated by:

Q(Bn|Bn+1) = E(xm |X0),Bn+1
[logL(B; X0, Xm)] (2)

where, L(B; X0, Xm) is the likelihood function, B is the pa-

rameter vector, Bn+1 is the estimate of the model parameters,

X0 is observed data, Xm is the missing data. In the M-step,

the model parameters can be calculated using (2) to maximize

completedata log likelihood function from the E-step:

Bn+1 = argBmaxQ(B|Bn) (3)

2



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

3. Overview of Stationary Multivariate Time Series

A time-series is a sequence of measured values arranged

by their sequential time order. The time-series may be in ei-

ther discrete or continuous time units. Multivariate time series

processes are of considerable interest in a variety of fields of

engineering, sciences, and medicine. By studying many related

variables together rather than a single variable a better under-

standing of the observed process is often obtained. Nowadays,

improved data collection methods permit large amounts of time

series multivariate data to be collected from various application

domains. For n time series random variables y1t, y2t, ., ynt, let

Yt denote a multivariate time series for an n-dimensional time

series vector, where each yit time series represents ith raw of Yt

vector, that is, for any time t, Yt = (y1t, y2t, ., ynt)
T One of the

fundamental objectives of multivariate time series analysis of

Yt is to fit the data to a model and demonstrate the dynamic re-

lationships among univariate time series. The selection of each

time series model, included in Yt depends on the dynamic in-

terrelationships between these time series variables which are

affected directly by time lags between the data points for each

time series. The multivariate time series data set Yt is stationary

time series if at arbitrary time intervals t1, t2, ., tk the probability

distributions of the component time series variables yt1, yt2, ., ytk

and yt1−p, yt2−p, ., ytk−p are the same, where k is the number of

the measured values p represents the lag. That means cross time

intervals t1, t2, ., tk throughout the stationary multivariate time

series, has a random probability distribution of the observed

data points with respect to the time lags. Consequently, any

stationary multivariate time series should have the same mean

value M at any time intervals where:

M = E(Yt) =





























m1

m2

..

mn





























(4)

In addition, the covariance matrix,
∑

Y , of a stationary time

series Yt is a constant matrix [18]:

∑

Y

= E[(Yt − M)(Yt − M)T ].

4. Filtering of Multivariate Time Series

A multivariate linear (time-invariant) filter relating an l di-

mensional input series Ut to n-dimensional output series Yt of-

ten formulated as:

Yt =

∞
∑

N=−∞

Ut−N BN (5)

where BN are n × 1 matrices. The filter is physically realiz-

able or causal if BN = 0 for N < 0 leading to Yt =
∑∞

N=0 Ut−N BN ,

which means that Yt can be characterized by past values of the

input Ut. The filter is said to be stable, if Yt =
∑∞

N=−∞ ‖BN‖ <

∞.Under the stability condition, together with an assumption

that the input random vectors Ut have uniformly bounded sec-

ond moments, the output random vector Yt defined by (5), exists

uniquely and represents the limit:

limr−→∞

r
∑

N=−r

Ut−N BN (6)

such that as r −→ ∞

Yt = E[(Yt −

r
∑

N=−r

Ut−N BN)(Yt −

r
∑

N=−r

Ut−N BN)T ].

When the filter is stable and the input series Ut is stationary

with cross-covariance matrices ΓU(p), (5) is a stationary pro-

cess [19]. The cross-covariance matrices of the stationary pro-

cess Yt are then given by

ΓU(p) = Cov(Yt,Yt−p) =

i=∞
∑

i=−∞

j=∞
∑

j=−∞

BiΓU(p + i − j)BT
j (7)

5. Vector Autoregressive Model (VAR)

The vector autoregressive model (VAR) is commonly used

model for the analysis of multivariate time series. In many ap-

plications where the variables of interest are linearly each re-

lated to each other the VAR model has shown to be a good

choice for representing and predicting the behaviour of dynamic

multivariate time series[20]. It primarily provides good fore-

casts as compared to models from univariate time series and

many other models. Because the VAR model can make condi-

tions on the prediction paths of specified time series within the

model itself, the forecasts from this model are relatively easy to

derive [20]. In addition to time series analysis and prediction,

the VAR model is additionally utilized for causality inference

and strategy investigation of the multiple time series. In causal-

ity analysis, specific hypotheses of the causality of the time se-

ries under analysis are assumed, and the subsequent causal ef-

fects of each time series are outlined. This chapter concentrates

on the use of the VAR model to analyse stationary multiple time

series datasets with missing data.

5.1. Vector Autoregressive State Space Model

State-space models are models that use state variables to de-

scribe a system by a set of differential or difference equations.

State variables can be reconstructed from the measured input-

output data, but the variables themselves are not measured dur-

ing an experiment. A state-space models can be estimated us-

ing in either time and frequency domains. In this paper, the

discrete-time state-space model is used to present the multivari-

ate time series data set, having the following structure [21]:

X(t + T s) = AX(t) + BU(t) + E(t) (8)

Y(t) = CX(t) + DU(t) + e(t) (9)

3
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where x(t) is the vector of state values, A is the state matrix,

B is the input matrix, C is the output matrix, D is the feedfor-

ward matrix, Y and U are the input and output vectors respec-

tively, and ε(t) are state errors as specified with the matrix q.

Matrix r contains the output errors, e(t).

5.2. VAR Model for Stationary Time Series

Let Yt = (y1t), y2t, ...., ymt)
T be an (m × 1) time series vector.

A VAR(p) model for the multiple time series can be represented

by:

Yt = A0 +

p
∑

i=1

AiYt−i + ε(t) (10)

Yt = A0 + A1Yt−1 + A2Yt−2 + ... + ApYt−pε(t) (11)

where t = 1, ...,T , Ai are M× coefficient matrices and ε(t) ∈

(0,
∑

) denotes an M × 1 vector of white noise.

(11) can be written in lagged notation:

Ap(L)Yt = A0 + ε(t) (12)

where

Ap = Im − A1L − ... − ApLp (13)

The stability of the VAR model is depended on the roots of

(14)

|Im − A1z − ... − Apzp| = 0 (14)

6. VAR-IM algorithm

The proposed algorithm for imputing missing data into a

multivariate time series dataset is to use a Vector Autoregressive-

Imputation (VAR-IM) method combined with an EM algorithm

together with a prediction error minimization (PEM) algorithm.

The method based on a combination of these algorithms can

significantly improve the imputation performance for dealing

with missing data problem. Specifically, in the first step, the

traditional linear interpolation estimate is made for an initial

guess of the missing data. Then a VAR(p) model is estimated

by selecting the best lag value p. Finally, the parameters of

the VAR(p) model are estimated by alternatively using EM and

PEM algorithms resulting in an improved value for the data im-

putation. Basically, the alternation of the two algorithms be-

tween imputing missing data and estimating models, improves

the model performance by applying PEM algorithm in a way

similar to the EM algorithm. The flow chart for the proposed

VAR-IM algorithm is shown in Figure 1.

The VAR-IM method formalizes an intuitive idea for iden-

tifying a best VAR model for imputing missing data:

• Calculate the initial values to start the algorithm.

• Check the causality of time series.

• Select the order of the identified VAR∗ Model.

• Impute the missing values by usingVAR∗.

• Identify the new VAR model.

• If no convergence, go to step III, otherwise, go to step

VII

• Perform PEM algorithm to update the missing values.

• Impute the missing values.

Figure 1: VAR-IM algorithm flow chart.

For more details, assume that Xt represents a multivariate

data set and a set of VAR models can simulate Xt with different

lags p=1,2,3,. and parameters Ap. If there is no missing values,

it is of interest to calculate the least squares estimate of Ap based

on:

Xt = φA + E (15)

For dynamic systems the auto-regression process depends

on the past values of the targeted data point, if the time series

includes missing values, means that there is past values missed

and the auto-regression cannot be applied in (15). In this case

the traditional approaches such as list wise will not work, be-

cause ignoring of missing values will effect on the property of

dynamic system. To start up the estimation process correctly,

4
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the initial values are required; the simple way to determine

these initial values is using a simple traditional method such

as linear interpolation. We will denote this by expressing Xt

as (Xtmiss, Xtobs), where Xtmiss denotes the multivariate data set

with missing values, and Xtobs represents the multivariate data

set with replacing missing values by initial values (imputed by

interpolation technique).

Consequently (15) becomes [22]:

X̂t = φkApk + E =⇒ X̂t = φ0Ap0 + E (16)

Apk = (φT
k φk)−1φT

k Xk =⇒ Ap0 = (φT
0 φ0)−1φT

0 X0 (17)

where φ0 is the initial regression matrix, k = 0, 1, 2, , and

Ap0 is the initial coefficients matrix of the select VAR(pk) model.

The order of the model pk is updated until the differenceApk−

Ap(k+N) is less than ξ, where ξ is a prescribed small value [22].

6.1. Model Order Selection

The model selection for the VAR(p) model is usually speci-

fied utilizing model selection criteria. The basic idea is to iden-

tify models with different lags values p = 0, 1, 2, .., pmax and

select the p lag value that can minimizes the model selection

criteria [23]. Model order selection formula is represented by:

IC(p) = ln|
∑

(p)| + S T .ϕ(m, p) (18)

where |
∑

(p)| is the covariance matrix of the residual error S T

are the indexed values sequence (1, ...,T ), and the penalty func-

tion ϕ(m, p) which impedes the large models order. The term

|
∑

(p)| is non-growing function whereas the function ϕ(m, p)

increases with the order P. The basic idea of the model order

selection depends on balancing these two functions. There are

five techniques for model order selection in the applied VAR(P)

model literature generally broadly utilized:

• Akaikes information criterion (AIC) [24].

AIC(p) = ln|
∑

(p)| +
2

T
pm2 (19)

Where the penalizing function ϕ(m, p) = pm2 and S T =
2

T

• Schwarz criterion (S C) [25].

S C(p) = ln|
∑

(p)| +
lnT

T
pm2 (20)

Where the penalizing function ϕ(m, p) = pm2 and S T =
lnT

T

• Hannan-Quinn criterion (HQ) [26].

S C(p) = ln|
∑

(p)| +
2ln(lnT )

T
pm2 (21)

For which the penalizing function ϕ(m, p) = pm2 and S T =
2ln(lnT )

T
Note that for all the three criteria, the penalty function ϕ(m, p)

has the same formula.

• Final Prediction Error (FPE) [27].

FPE(p) = [
T + mp + 1

T − mp + 1
]m|
∑

(p)| (22)

• Likelihood ratio test (LRtest) [28].

Where j = 1, 2, , (p − 1) Other techniques do exist. They

were not included in this study because they are not widely used

in the applied VAR model literature.

7. Case study

The significance of a good data imputation process is es-

pecially important in the field of medicine where discovery and

imputation of missing values can help to identify abnormal con-

ditions and reduce incorrect diagnosis [22]. Hence, interest has

risen considerably in this and associated fields where it is im-

portant to effectively model and analyze multivariate time series

data. Therefore to examine the performance of the proposed

algorithm for handling a real-world missing data problem, a

case study involving Electro-Cardio Gram (ECG) signals was

accomplished. An ECG dataset without missing values was ob-

tained from the Physionet website (http://www.physionet.org/

physiobank/data

base/ptbdb). Then two datasets were created by randomly re-

moving data elements. A 10% missing completely at random

(MCAR) and a 20% MCAR dataset was created. The initial

Physionet dataset included 290 patients with 549 records (aged

between 17 and 87, mean 57.2; 209 men, mean age 55.5, and

81 women, mean age 61.6; ages were not recorded for 1 female

and 14 male subjects). Each subject is represented by one to five

records. There are no subjects numbered 124, 132, 134, or 161.

Each record includes 15 simultaneously measured signals: the

conventional 12 leads (i, ii, iii, avr, avl, av f , v1, v2, v3, v4, v5, v6)

together with three Frank lead ECGs (vx, vy, vz). Each signal

is digitized at 1000 samples per second, with 16-bit resolution

over a range of 16.384 mV. On special request to the contribu-

tors of the database, recordings may be available at sampling

rates up to 10KHz. More detailed discussion can be found

[29, 30]. The diagnostic classes of the patients are divided into

nine types; this case study considered a 12-lead ECG signals

for two diagnostic classes: myocardial infarction and healthy

control for two patients. Two cases of MCAR missing data

mechanism with two different percentages 10% and 20% were

generated. Table 1 shows the values of the four model order

selection criteria. As can be seen each test indicates that the

model with lag two has the highest priority. Tables 2 and 3

5
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show the recovering accuracy for the missing data in the heart

rate signal using different imputation methods, under two cases

of missing data mechanisms, i.e., 10% and 20% MCAR, re-

spectively. In both cases, the proposed method VAR-IM gives

better results comparing with the other methods.

Table 1: VAR Model order selection.

Model order AIC SC LR HQ FPE

1 4.8001 6.4028 21.4948 5.4479 0.0002

2 2.1151 3.2691 17.8260 2.5816 0.0001

3 5.1866 9.3537 91.4041 6.8710 0.0002

4 5.5062 10.956 53.7518 7.7089 0.0002

Table 2: Proposed methods for Heart-rate-10% MCAR.

The conventional 12 leads

Method i ii iii avr avl avf V1 V2 V3 V4 V5 V6

Complete-data 78.12 65.87 73.02 58.58 56.05 65.48 34.96 42.67 52.95 75.82 75.58 74.38

Missing -data 73.9 63.8 66.78 47.8 49.95 60.91 30.48 37.82 45.78 66.23 66.35 64.85

VAR-IM 79 67.08 70.13 54.58 55.08 65.48 37.73 43.58 50.48 70.97 73.51 72.13

List-wise 87.79 74.05 76.07 49.82 58.84 72.17 34.71 43.92 52.03 74.40 74.96 72.85

Linear-reg 76.82 67.80 70.28 50.07 56.57 100.40 76.32 52.65 57.55 85.47 83.57 69.87

MARSS 73.98 63.8 66.83 47.87 49.98 60.93 30.51 37.92 45.82 66.32 66.38 64.9

EM 75.37 64.05 67.33 49.3 51.27 61.38 31.31 38.6 48.95 70.57 66.36 69.6

Table 3: Proposed methods for Heart-rate-20% MCAR.

The conventional 12 leads

Method i ii iii avr avl avf V1 V2 V3 V4 V5 V6

Complete-data 78.12 65.87 73.02 58.58 56.05 65.48 34.96 42.67 52.95 75.82 75.58 74.38

Missing -data 73.90 63.80 66.78 47.80 49.95 60.91 30.48 37.82 45.78 66.23 66.35 64.85

VAR-IM 80.87 68.20 70.55 52.05 56.78 68.15 38.72 44.43 50.53 69.82 73.30 72.22

List-wise 71.63 62.55 64.85 42.27 48.17 58.17 28.43 35.63 44.35 63.57 63.35 61.85

Linear-reg 74.48 66.47 68.35 44.23 57.317 101.32 73.97 56.28 59.45 84.73 82.92 67.03

MARSS 71.67 62.55 64.93 42.32 48.22 58.15 28.50 35.68 44.42 63.63 63.38 61.90

EM 74.80 63.05 65.77 44.28 51.70 59.13 29.68 36.87 49.83 69.58 64.33 67.95

7.1. QRS Waves

The ventricular depolarization of the heart can be repre-

sented by three nodes on the heart electrical wave displayed

within ECG signal. These are the Q, R and S nodes, known

as the QRS complex. The amplitude of QRS represents the

polarization and depolarization of the ventricular. The QRS du-

ration is the required time for the signal to pass through the

ventricular myocardium [31]. The normality of QRS complex

is measured by its duration (time interval). A normal duration

of the QRS complex is between 0.08 and 0.10 seconds. An in-

termediate QRS complex has an interval between 0.10 and 0.12

seconds. While an abnormal QRS time interval is more than

0.12 seconds. Important QRS properties include rise level (Lr),

fall level (L f ), rise duration (Tr), and fall duration (T f ). These

factors represent the quality of a QRS wave in terms of specify-

ing the ventricular depolarization. The rise and fall levels rep-

resent length of edges of R peak on the right and left hand side

respectively, the rise and fall durations are the required time to

move from the Q peak to R peak and from R peak to S peak

respectively [32].

Lr = Amplitude R peak - Amplitude Q peak

Lf = Amplitude S peak - Amplitude R peak

Tr = Time point R peak - Time point Q peak

Tf = Time point R peak - Time point Q peak

Mean Error = mean (noisy-ECG (QRS locations) - ((filtered

(QRS locations))

7.2. QRS waves and missing values

The performance of the VAR-IM method is evaluated by

comparing the effectiveness of missing data imputation on QRS

wave properties, in both cases of missing data (10% and 20%

MCAR) and complete data. Furthermore, the efficiency of miss-

ing data imputation is considered in the filtering processing.

Figure 2 shows the QRS complex rise level, fall level, rise time

and fall time in the case of complete data. In comparison, Fig-

ures 3-5 show various results with respect to the case of 10%

MCAR. The four proposed techniques with VAR-IM methods

were applied to solve the missing data problem here. Clearly,

most approaches generated obviously different results: for ex-

ample, the list wise deletion could not achieve any improvement

in all features; it gave results similar to the case of missing data.

on the other hand, all the other methods gave acceptable results,

for some features such as Lr, L f , Tr and T f , but the VAR-IM

methods still has the highest priority to be the best methods

to recover the missing values, which is similar to the real data

especially the QRS peaks locations. Table.4 summarizes the re-

sults of the effectiveness of missing data imputation of the four

methods for the QRS wave properties.

Table 4: Q-R-S wave properties in case of 10% MCAR.

Data Imputed data 10% MCAR missing

Complete data Missing -data VAR-IM List-wise Linear-reg MARSS EM

MeanError Qwave -0.004 NAN -0.0109 - 0.1420 -0.0417 -0.006

MeanError Rwave 0.021 NAN 0.0243 - 0.0277 0.0212 -0.0068

MeanError Swave -0.0155 NAN -0.342 - -0.0576 -0.0147 -0.018

avg riseTime 29 NAN 28 - 30 28.5 28

avg fallTime 56 NAN 59 - 56 56.5 57

avg riseLevel 1.4419 NAN 1.424 - 1.0171 1.4332 1.4312

avg fallLevel 1.9204 NAN 1.9165 - 1.5867 1.9199 1.9296

Figure 2: QRS wave properties for Complete Data
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Figure 3: QRS Wave Properties VAR-IM Imputed Data (10%MCAR)

Figure 4: QRS Wave Properties for Linear-regression Imputed Data

(10%MCAR)

Figure 5: QRS Wave Properties for EM Imputed Data (10%MCAR)

Figure 6: QRS Wave Properties for MARSS Imputed data (10%MCAR)

When the percentage of the missing data increases from

10% to 20%, the proposed VAR-IM method gives the best re-

sults among the five methods. Table 5 summarizes the results

generated from the recovered data using the five methods, as

well as a comparison with that generated from the complete

data. As can be noted in both cases of missing data (MCAR

10% and 20%) the MARSS package and EM algorithm have

similar results. The reason may be that the MARSS depends

mainly on EM algorithm in estimating an MARSS model.

Table 5: Q-R-S wave properties in case of 20% MCAR.

Data Imputed data 20% MCAR missing

Complete data Missing -data VAR-IM List-wise Linear-reg MARSS EM

MeanError Qwave -0.004 NAN -0.0067 - 0.0131 0.0016 0.0014

MeanError Rwave 0.021 NAN 0.0191 - 0.0630 0.022 0.0163

MeanError Swave -0.0155 NAN -0.018 - -0.0802 -0.0096 -0.0191

avg riseTime 29 NAN 29 - 27 28.5 28.5

avg fallTime 56 NAN 56.5 - 429.5 55.5 56.5

avg riseLevel 1.4419 NAN 1.4414 - 0.9402 1.4391 1.4445

avg fallLevel 1.9204 NAN 1.9307 - 1.4009 1.9243 1.9341

Figure 7: QRS Wave Properties VAR-IM Imputed Data (20%MCAR)
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Figure 8: QRS Wave Properties for Linear-regression Imputed Data

(20%MCAR)

Figure 9: QRS Wave Properties for -EM Imputed Data (20%MCAR)

Figure 10: QRS Wave Properties -MARSS Imputed Data (20%MCAR)

8. Conclusion

It is extremely important to effectively handle multivari-

ate data anomalies that contain missing values. This is espe-

cially true for medical data, which could involve great num-

ber of critical health diagnostic variables. The proposed VAR-

IM method provides improvements to speed and accuracy for

imputing missing values of multivariate time series datasets.

It outperforms the commonly used methods such as list wise

deletion, linear regression imputation, MARSS and EM algo-

rithms. From the results of the case study, the VAR-IM method

provides an effective alternative for the imputation of missing

values in multivariate time series. While the other proposed

traditional and modern methods become less effective with the

increase of the proportion of missing data, VAR-IM shows less

deterioration in performance with increasing percentages of miss-

ing entries. In addition, the VAR-IM method is more robust

than the other proposed techniques when applied to the data

types discussed in the case study, and performed better on static

and noisy data. There are some limitations of the proposed

method. Firstly, this study only considered the scenario in which

data was missing completely at random (MCAR), that is, the

cause of the missing data was independent of both the observed

and missing values. A less stringent assumption of missing data

mechanism missing at random (MAR) may be more realistic in

practice. MAR refers to the case in which missingness is related

to the observed values, but not to the missing values themselves.

Secondly, the validity of VAR-IM approach requires that the

time series should be stationary. Finally, the percentage of miss-

ing data has significant impact on most missing data analysis

methods, VAR-IM does not have the priority to be used if the

percentage of missing data is quite low (say less 10%). Despite

these limitations, VAR-IM provides an important alternative to

existing methods for handling missing data in multivariate time

series. Further extension of the method to include other types

of methods will be considered in other future work.
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