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Abstract

Sketch-based image retrieval (SBIR) is challenging due to the inherent domain-gap between
sketch and photo. Compared with pixel-perfect depictions of photos, sketches are iconic
renderings of the real world with highly abstract. Therefore, matching sketch and photo
directly using low-level visual clues are unsufficient, since a common low-level subspace that
traverses semantically across the two modalities is non-trivial to establish. Most existing
SBIR studies do not directly tackle this cross-modal problem. This naturally motivates
us to explore the effectiveness of cross-modal retrieval methods in SBIR, which have been
applied in the image-text matching successfully. In this paper, we introduce and compare
a series of state-of-the-art cross-modal subspace learning methods and benchmark them
on two recently released fine-grained SBIR datasets. Through thorough examination of
the experimental results, we have demonstrated that the subspace learning can effectively
model the sketch-photo domain-gap. In addition we draw a few key insights to drive future
research.

Keywords: Cross-modal subspace learning; Sketch-based image retrieval; Fine-grained.

1. Introduction

Sketch-based image retrieval (SBIR) has drawn increasingly more attention in the past
decade, especially with the prevalence of touchscreens. There exist many annotated datasets [1,
2, 3, 4, 5, 6] and methods tackling all aspects of the problem [7, 1, 5, 8, 9, 10]. The vibrancy
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of the SBIR area also promoted the development of other related research problems, such
as sketch recognition [11, 12], sketch synthesis [13, 14, 15], sketch-based 3D retrieval [16],
and sketch segmentation [17]. From a technical perspective, SBIR is traditionally cast into
a classification task, with most prior work evaluating the retrieval performance at category-
level [12, 18, 19, 20, 21]. More recently, fine-grained variants of SBIR [7, 1] requires retrieval
to be conducted within single object categories. With this more constrained ranking setting
of the problem, researchers no longer carry out similarity matching based only on low-level
and hand-designed visual features [2, 3, 22], but begin to devolve into high-level and partial
information for sketch and photo matching, e.g., local stroke ordering [8, 23], and part-level
attributes [4, 5, 9].

Despite great strides made, most prior work ignores the cross-modal gap that inherently
exists between sketch and photo, treating images as edgemaps (semi-sketches) [7, 17, 1, 10].
This assumption works well when the retrieval system is presented with good quality sketches
that are close to contour tracings of intended objects, but would not work well with free-
hand sketches where sketches are much more abstract and do not offer close resemblance
natural objects. However, effectively solving the sketch-photo cross-modal gap is non-trivial:
(i) Sketch can only capture limited shape and contour information. It utilizes coarse lines
to describe key features of an object at an abstract and semantic level. As shown in Fig. 1,
a pyramid can be denoted as a triangle in sketch form. (ii) Different people have different
observations, past experiences, drawing styles, and drawing skill [5, 6]. Fig. 1 shows us that
sketches drawn by different persons for the same cat or shoe may be highly diverse. This
naturally motivates us to apply cross-modal matching methods to tackle the SBIR problem.
However, to the best of our knowledge, all previous cross-modal work [24, 25, 26, 27, 28, 29]
are designed to address the image-text modal gap (e.g., Wikipedia image-text dataset [24],
Pascal VOC dataset [30], NUS-WIDE [31], LabelMe [32]). Therefore, making their general
applicableness to SBIR remains unclear.

The main approaches behind existing image-text cross-modal research can be roughly
categorized into pair-wise modeling [26, 33, 34, 35], ranking [36, 37, 38], mapping [39, 40, 41],
and graph embedding [25, 41, 42, 43]. In particular, probabilistic models [44, 45], metric
learning approaches [46, 47, 48, 49], and subspace learning methods [39, 50] have been
proven to be effective across a number of datasets. Probabilistic approaches learn the multi-
modal correlation by modeling the joint multi-modal data distribution [44]. Metric learning
methods learn and compute appropriate distance metrics between different modalities [46].
Subspace learning constructs the common subspace and map multi-modal data into it to con-
duct cross-modal matching [40]. Among these cross-modal techniques, cross-modal subspace
learning methods have achieved state-of-the-art results in recent years [24, 40, 43, 51, 52],
which have borrowed much inspiration from the conventional subspace approaches [53, 54,
55, 56, 57, 58, 59]. For a comprehensive survey, please refer to [60, 61].

In this paper, we focus on analyzing the interaction and relationship between sketch and
photo in the cross-modal setting. The main contributions of this paper are two-fold:

• We present and compare a series of state-of-the-art cross-modal subspace learning
methods, and benchmark them on two recently released fine-grained SBIR datasets [1,
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Figure 1: Illustration of abstraction and diversity of sketches.

5].

• We conduct detailed comparative analysis towards the general applicability of cross-
modal techniques on matching sketches and photos.

The remaining parts of this paper are organized as follows. Section 2 briefly presents
some state-of-the-art cross-modal subspace learning methods and the corresponding char-
acteristics. In Section 3, we report and analyze their experimental performances for the
SBIR task. Potential future research insights for SBIR are discussed in Section 4. Finally,
conclusions are drawn in Section 5.

A preliminary version of this work has been presented in [62]. The main extensions are:

• We add three cross-modal subspace learning methods (CDFE [63], CCA-3V [64], JF-
SSL [43]) for intensive comparisons.

• Extensive experiments are performed on one extra recently released fine-grained SBIR
dataset (i.e., the chair SBIR dataset).

• We simultaneously evaluate the performances of these methods for SBIR tasks on both
subcategory-level and instance-level.

2. Cross-modal Subspace Learning

In this section, we will briefly survey some state-of-the-art cross-modal subspace learning
methods designed for image and text. All these methods will share the same notation. Sup-
pose that sample matrices Xa = [xa

1,x
a
2, · · · ,xa

n] ∈ Rda×n and Xb = [xb
1,x

b
2, · · · ,xb

n] ∈ Rdb×n

are extracted from modality a and modality b, respectively. These multi-modal samples can
be categorized into c classes. Samples and the corresponding class labels are denoted as
{xa

i , c
a
i }ni=1 and {xb

i , c
b
i}ni=1, where each pair {xa

i ,x
b
i} (1 6 i 6 n) represents the same object

or content belonging to the same class. Y = [y1,y2, · · · ,yn]T ∈ Rn×c denotes the class label
matrix for the multi-modal data. The transform for the i-th sample of modality a is denoted
as xa

i → fai . Similarly, the transform for the i-th sample of modality b is denoted as xb
i → f bi .

Throughout this paper, vectors and matrices are denoted as straight bold lower-case x and
upper-case X, respectively.
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These cross-modal subspace learning methods have the common workflow of learning
a projection matrix for each modality to project the data from different modalities into a
common comparable subspace in the training phase. In the test phase, the test data samples
from one modality will be taken as the query set to retrieve matched samples from the other
modality. In this paper, Wa and Wb denote the projection matrices for modality a and
modality b, respectively.

2.1. Canonical Correlation Analysis (CCA)

CCA [24, 39, 50] is an effective multivariate statistical analysis approach, which is anal-
ogous to principal component analysis (PCA) [65]. It was originally designed for data
correlation modeling and dimension reduction. Recently, CCA has been applied widely in
multi-modal data fusion and cross-media retrieval [24, 51, 64, 66]. CCA has become one of
the most popular unsupervised cross-modal subspace learning methods due to its general-
ization capability.

CCA learns a set of canonical component pairs for Xa and Xb, i.e., directions wa ∈
Rda and wb ∈ Rdb along which the multi-modal data is maximally correlated [24] as

max
wa 6=0,wb 6=0

wT
a Σabwb√

wT
a Σaawa

√
wT

b Σbbwb

, (1)

where Σaa and Σbb denote the empirical covariance matrices for a modality and b modality,
respectively. Σab = ΣT

ba represents the cross-covariance matrix between different modalities.
By repeatedly solving (1), we can obtain a series of canonical component pairs. We can
choose the first d canonical component pairs {wa,wb}i (1 6 i 6 d) for projecting Xa and Xb

into two d dimensional subspaces. Here, d is a hyper-parameter. This optimization objective
of (1) can be solved as a generalized eigenvalue problem (GEV) [67].

2.2. Partial Least Squares (PLS)

PLS [68] can linearly map multi-modal data into a linear subspace that preserves the
data correlation. It can be adopted to solve the cross-modal matching in many multi-modal
scenarios. PLS has been effectively applied in face recognition and multi-media retrieval
with different motivations [52, 69, 70, 71, 72, 73, 74].

PLS models Xa and Xb such that [52]

XT
a = TPT + E

XT
b = UQT + F

U = TD + H .

(2)

T ∈ Rn×d and U ∈ Rn×d contain the d extracted PLS scores or latent projections. P ∈
Rp×d and Q ∈ Rq×d are the matrices of loadings and E ∈ Rn×p, F ∈ Rn×q, and H ∈ Rn×d are
the residual matrices. D ∈ Rd×d is a diagonal matrix describing the latent scores of
XT

a and XT
b .
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PLS learns the basis vectors wa and wb such that the covariance between the score
vectors t and u (rows of T and U) is maximized as

max([cov(t,u)]2) = max
wa,wb

([cov(XT
a wa,X

T
b wb)]

2)

s.t. ‖wa‖ = ‖wb‖ = 1 .
(3)

2.3. Generalized Multi-view Analysis (GMA)

GMA [25] is a special multi-view framework, which can be solved efficiently as a gener-
alized eigenvalue problem. As we will show in this section, many popular supervised and
unsupervised feature extraction techniques can be derived based on GMA.

The constrained objective is

max
wa,wb

wT
a Aawa + µwT

b Abwb + βwT
a XaX

T
b wb

s.t. wT
a Bawa + αwT

b Bbwb = 1 ,
(4)

where, wa and wb denote the projection directions. The positive terms µ, β, and α are hyper-
parameters controlling the balance among the objectives. Ai (i = a, b) is the between-class
variance matrix while Bi (i = a, b) is the within-class covariance matrix. Sharma et al. [25]
have illustrated that if we substitute {Ai, Bi, Xi}i=a,b in (4) with particular expressions,
we obtain the corresponding objective functions of different methods.

2.3.1. Bilinear Model (BLM)

In (4), setting Ai = XiX
T
i /n, Bi = I, and we obtain BLM under the proposed GMA

framework.

2.3.2. Generalized Multi-view Linear Discriminant Analysis (GMLDA)

We can set Ai = SB
i , Bi = SW

i , where SW/SB are the within/between-class scatter
matrices. Here, Xi is substituted by its class mean matrix.

2.3.3. Generalized Multi-view Margin Fisher Analysis (GMMFA)

Based on GMA framework, the expression for the multi-view version of MFA is complex.
It utilizes the graph construction to restrict the projected data. More details can be found
in [25].

2.4. Common Discriminant Feature Extraction (CDFE)

Lin and Tang [63] used the empirical separability and the local consistency to propose
the CDFE method for subspace learning. The empirical separability ensures the intra-class
compactness and the inter-class dispersion, which are measured respectively as follows [63]

Jintraclass =
1

N1

n∑
i=1

∑
j:cbj=cai

‖fai − f bj ‖2 , (5)
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Jinterclass =
1

N2

n∑
i=1

∑
j:cbj 6=cai

‖fai − f bj ‖2 , (6)

where N1 and N2 are the quantities of sample pairs from the same class and the different
classes, respectively.

Figure 2: Diagram of CDFE empirical separability. The smaller solid and hollow figures represent the data
from the different modalities. The smaller figures with the same shape and different colors represent
different samples belonging to the same class. The bigger figures with different shapes indicate the

corresponding domain-independent semantic labels. The short dashed straight lines visualize the pair-wise
relationships. The short bold arrows link multi-modal sample pairs to their semantic labels. The short

dashed straight lines visualize the pair-wise relationships. The bold black dashed circles describe
the empirical separability. The intra-class compactness can be intuitively understood as compressing the

two circles. The inter-class dispersion can be described as keeping them far from each other.

As shown in Fig. 2, the empirical separability can be defined as:

Je = Jintraclass − αJinterclass , (7)

where α is a hyper-parameter for trade-off. To prevent the overfitting, local consistency can
be used to regularize the empirical separability. The objective function of CDFE can be
formulated as follows:

JCDFE = Je + βJl , (8)

where β is a hyper-parameter to adjust the trade-off between these two objectives. Here, Jl
represents the local consistency objective. More details can be found in [63].

2.5. Three-view Canonical Correlation Analysis (CCA-3V)

The objective function of CCA-3V has three terms [64]:

min
Wa,Wb,Wc

‖XT
a Wa −XT

b Wb‖2F +

‖XT
a Wa −XT

c Wc‖2F + ‖XT
b Wb −XT

c Wc‖2F .
(9)

6



(a) Subspace learned by CCA-2V (b) Subspace learned by CCA-3V

Figure 3: The differences between CCA-2V and CCA-3V. (a) Traditional two-view CCA pair-wise
maximizes the correlation. (b) Three-view CCA incorporates semantic classes as a third view. The smaller
solid and hollow figures represent the data from the different modalities. The smaller figures with the same
shape and different colors represent different samples belonging to the same class. The bigger figures with
different shapes indicate the corresponding domain-independent semantic labels. The short dashed straight

lines visualize the pair-wise relationships. The short bold arrows link multi-modal sample pairs to their
semantic labels.

Obviously, the latent correlation among three views or three modalities can be captured by
optimising this function. Moreover, for the cross-modal matching, some high-level seman-
tic information can be utilized as the third view [64]. If we put the ground-truth labels
into its third view, it becomes a supervised method. As shown in Fig. 3, comparing with
the conventional CCA, CCA-3V constructs a semantic embedding subspace to improve the
performance. CCA-3V aligns the corresponding multi-modal sample pairs by not only re-
ferring to the data distribution but also following the guidance of the high-level semantics.
Multi-modal samples belonging to the same semantic cluster are forced to be close to each
other.

2.6. Learning Coupled Feature Spaces for Cross-modal Matching (LCFS)

Many earlier studies have demonstrated two properties:

• l21-norm has good performances in feature selection [75, 76, 77].

• The trace norm [78, 79, 80, 81] can model the correlation of the design matrix or prior
knowledge as the low-rank solution.

Integrating the properties of the l21-norm and the trace norm, Wang et al. [40] proposed
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a model of the following form

min
Wa,Wb

1

2
(‖XT

a Wa −Y‖2F + ‖XT
b Wb −Y‖2F )

+λ1(‖Wa‖21 + ‖Wb‖21) + λ2‖[XT
a Wa XT

b Wb]‖∗ ,
(10)

where Wa and Wb are the projection matrices for the coupled a modality and b modal-
ity, respectively. The first term is a coupled linear regression, which is used to learn two
projection matrices for mapping multi-modal data into a common subspace defined by label
information. The second term containing l21-norms conducts feature selection on two feature
spaces Xa and Xb simultaneously. The trace norm can enhance the relevance of projected
data with connections inside the subspace.

2.7. Joint Feature Selection and Subspace Learning for Cross-modal Retrieval (JFSSL)

JFSSL [43] is an extension based on LCFS [40]. The objective function is a generic
minimization problem among M different modalities of data objects in the following form:

min
W1,··· ,WM

M∑
p=1

‖XT
p Wp −Y‖2F + λ1

M∑
p=1

‖Wp‖21 + λ2Ω(W1, · · · ,WM) , (11)

where Wp (p = 1, · · · ,M) denotes the projection matrix for the M -th modality. The roles
of its first term and the second term are the same as those in LCFS. The third term is a
multi-modal graph regularization reinforcing the intra-modality and inter-modality similar-
ity. Similar to the empirical separability term of CDFE objective, this multi-modal graph
regularization preserves the intra-modality compactness and the inter-modality dispersion.

3. Experimental Results and Discussions

3.1. Datasets

In this section, we will apply the aforementioned cross-modal subspace learning methods
on two recently released fine-grained sketch-based image retrieval datasets [1, 5]. Each photo
has a corresponding freehand sketch. That is, each sketch sample has a ground-truth photo
counterpart as shown in Fig. 4.

The shoe dataset has 419 photo-sketch pairs, which can be categorized into three sub-
classes. All the sample pairs are single-labeled. The chair dataset contains 297 photo-sketch
pairs. These chairs can be divided into six subclasses. The sketches are drawn by nonex-
perts using their fingers on the touch screens, therefore, these sketches are abstract enough
to escape the photo modal space.

3.2. Experimental Settings

These cross-modal subspace learning methods (i.e., CCA, PLS, BLM, GMLDA, GMMFA,
CDFE, CCA-3V, LCFS, JFSSL) were applied to be performed on shoe dataset and chair
dataset, for two SBIR retrieval tasks ((1) photos query sketches and (2) sketches query pho-
tos). The experimental results contain randomness due to the limitation by the numbers
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Figure 4: Samples of the shoe dataset and the chair dataset.

of the samples in the shoe dataset and chair dataset. To remove the effect of randomness,
we repeated each model on each setting 50 times. On the shoe dataset, each evaluation we
randomly chose 304 sample pairs as training set, and treated the remaining 115 sample pairs
as test set. On the chair dataset, the ratio of training and test data sets was kept as 200 to
97.

In the training phase, we input photo and sketch features into these cross-modal subspace
learning methods to learn a projection matrix for each modality. After model training, we
used the projection matrices to map the photo and sketch testing samples into a common
subspace. The cosine distance was adopt to measure the similarity between the projected
photos and sketches. Given a photo (or sketch) query, the goal of each SBIR task is to find
the nearest neighbors (NN) from the sketch (or photo) database.

In all the following experiments, we used Histogram of Oriented Gradient (HOG) fea-
tures to describe the photos and sketches. In order to evaluate the performance of these
methods with different scales, two kinds of metrics were adopted. The mean average pre-
cision (MAP) [24] was applied to evaluate the performances on semi-fine-grained level. A
retrieval was judged as correct by MAP as long as the retrieved sample and the query sam-
ple have the same subclass label. Another metric “acc.@K” [1, 5] was used to carry out
fine-grained evaluation on the instance-level, which is the percentage of the corresponding
photos or sketches ranked in the top K results.

3.3. Results on Shoe Dataset

3.3.1. Evaluation by MAP

The MAP scores of different cross-modal subspace learning methods on shoe dataset are
reported in Table 1. The minimum (min), maximum (max), mean value (mean), variance
(var), and standard deviation (std) for each method are also presented.
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Wang et al. [40, 43] have illustrated that CCA, PLS, BLM, GMLDA, GMMFA, CDFE,
and CCA-3V are incapable of feature selection. Hence we utilize Principal Component
Analysis (PCA) to remove the redundancy in the input features for these seven kinds of
methods. In order to validate the feature selection abilities of LCFS and JFSSL, their
results without performing PCA on the input features are also reported in Table 1. It can
be observed that LCFS and JFSSL outperform the remaining methods for photo querying
sketch and sketch querying photo on shoe dataset. This is because LCFS and JFSSL can
simultaneously select discriminative and effective features from different modalities while
learning the common subspace.

In terms of performance, GMLDA and GMMFA are close to LCFS and JFSSL. The
performance gaps between GMLDA, GMMFA, and LCFS, JFSSL are not as obvious as those
for image and text matching. This is due to the inherent data difference between sketch and
text. GMLDA and GMMFA are superior to CDFE and CCA-3V. Among these cross-modal
subspace learning methods, CCA performs the worst while its supervised enhanced version
CCA-3V achieves good performance. PLM and BLM are a little better than CCA for photo
querying sketch and sketch querying photo.

The overall trend of Table 1 can be summarized as supervised methods outperforming
the unsupervised methods. This trend can also be explained by Fig. 9, which shows the
differences between these methods. CCA, PLS, and BLM used only pair-wise information
to build the common subspace, as shown in Fig. 9(c). Fig. 9(d) illustrates that GMLDA,
GMMFA, and CCA-3V can take the advantage of class label information and pair-wise
relationship to construct preferable inter-class separation in the common subspace. CDFE
mainly attempts to keep the intra-class and inter-class structures in a subspace. LCFS and
JFSSL devote to minimize the subcategory-based residuals. However, their graph embedding
technologies can only improve intra-class compactness and inter-class dispersion. CDFE,
LCFS, and JFSSL cannot thoroughly capture the pair-wise relationship. In contrast to
Fig. 9(e), the sample pairs of Fig. 9(d) have dashed lines to connect each other to visualize
the pair-wise connections.

These phenomena are consistent with the results presented in [43]. In [43], it was dis-
cussed and verified that JFSSL can utilize the multi-modal graph embedding constraint
to obtain performance improvements basing on LCFS. However, for experiments on shoe
dataset, their performances are almost the same. This is because the graph embedding
constraint of JFSSL cannot fully play its role on this sketch dataset.

All the experimental results in Table 1 are also visualized as box-plots in Fig. 5. The
box range of certain method shows the performance stability of corresponding method for
the SBIR tasks. We can conclude that these cross-modal subspace learning methods have
similar stabilities for SBIR on shoe dataset.

All the samples extracted from the same dataset follow the same underlying data distri-
bution. Each method has its own unique principle and can be regarded as a system. Theoret-
ically, the experimental results of a method will also follow a certain latent data distribution
when it is repeated on the same dataset. Thus we can judge that the performances of these
aforementioned methods for the SBIR tasks on shoe dataset are fundamentally different,
only when their experimental result distributions do not belong to the same distribution.
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Table 1: MAP scores achieved by different cross-modal subspace learning methods on shoe dataset.

Method
Photo queries sketch Sketch queries photo

min max mean var std min max mean var std
PCA+CCA 0.5442 0.6442 0.5836 0.0007 0.0264 0.5474 0.6415 0.5868 0.0006 0.0255
PCA+PLS 0.5712 0.6687 0.6169 0.0005 0.0218 0.5795 0.6649 0.6187 0.0004 0.0205
PCA+BLM 0.5805 0.6762 0.6272 0.0005 0.0217 0.5900 0.6755 0.6294 0.0004 0.0206

PCA+GMLDA 0.6943 0.8103 0.7542 0.0007 0.0267 0.7244 0.8213 0.7712 0.0006 0.0253
PCA+GMMFA 0.7000 0.8111 0.7577 0.0006 0.0248 0.7317 0.8199 0.7733 0.0005 0.0227
PCA+CDFE 0.6696 0.8024 0.7302 0.0008 0.0277 0.6755 0.8268 0.7559 0.0007 0.0271

PCA+CCA-3V 0.6339 0.7284 0.6837 0.0005 0.0219 0.6494 0.7261 0.6930 0.0004 0.0191
PCA+LCFS 0.7229 0.8365 0.7705 0.0007 0.0255 0.7079 0.8473 0.7745 0.0006 0.0244

LCFS 0.7236 0.8480 0.7798 0.0007 0.0258 0.7475 0.8518 0.8014 0.0006 0.0237
PCA+JFSSL 0.7211 0.8355 0.7700 0.0006 0.0254 0.7067 0.8457 0.7748 0.0006 0.0242

JFSSL 0.7080 0.8222 0.7619 0.0006 0.0249 0.7016 0.8253 0.7632 0.0006 0.0244

Table 2: MAP scores achieved by different cross-modal subspace learning methods on chair dataset.

Method
Photo queries sketch Sketch queries photo

min max mean var std min max mean var std
PCA+CCA 0.4973 0.6407 0.5558 0.0012 0.0347 0.4998 0.6400 0.5588 0.0011 0.0334
PCA+PLS 0.5477 0.6557 0.5948 0.0008 0.0279 0.5557 0.6585 0.5998 0.0007 0.0273
PCA+BLM 0.5435 0.6549 0.5942 0.0007 0.0260 0.5541 0.6507 0.5987 0.0006 0.0241

PCA+GMLDA 0.6469 0.7798 0.7110 0.0010 0.0311 0.6426 0.7826 0.7077 0.0010 0.0321
PCA+GMMFA 0.6473 0.7852 0.7094 0.0011 0.0331 0.6341 0.7892 0.7053 0.0011 0.0336
PCA+CDFE 0.5638 0.7393 0.6585 0.0011 0.0328 0.5603 0.7400 0.6637 0.0009 0.0293

PCA+CCA-3V 0.5457 0.6692 0.6040 0.0007 0.0265 0.5585 0.6765 0.6127 0.0006 0.0254
PCA+LCFS 0.6491 0.7993 0.7139 0.0013 0.0357 0.6292 0.8043 0.7046 0.0013 0.0360

LCFS 0.6302 0.7804 0.7120 0.0012 0.0351 0.6227 0.7819 0.7049 0.0013 0.0363
PCA+JFSSL 0.6504 0.8004 0.7137 0.0013 0.0356 0.6284 0.8036 0.7043 0.0013 0.0359

JFSSL 0.6339 0.7949 0.7119 0.0013 0.0357 0.6283 0.7833 0.7045 0.0013 0.0365

Table 3: P -value comparisons between LCFS (inputting feature without PCA preprocess) and other
cross-modal subspace learning methods on shoe dataset. The significant level is 0.05.

PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+
JFSSL

CCA PLS BLM GMLDA GMMFA CDFE CCA-3V LCFS JFSSL
Photo Query 5.1e-60 3.9e-56 1.2e-53 4.0e-06 3.2e-05 4.8e-15 1.7e-36 0.0728 0.0578 0.0006
Sketch Query 5.2e-66 9.4e-64 3.0e-61 1.5e-08 2.8e-08 2.4e-14 1.3e-44 2.0e-07 2.4e-07 3.5e-12
Average Value 2.5e-60 1.9e-56 6.1e-54 2.0e-06 1.6e-05 1.4e-14 8.9e-37 0.0364 0.0289 0.0003

According to Table 1 and Fig. 5, we get a preliminary conclusion that LCFS is the
best among these methods on shoe dataset for photo querying sketch and sketch querying
photo. To verify whether LCFS is fundamentally superior to other methods, we conducted
students t-test between LCFS and other methods, as shown in Table 3. The null hypothesis
is that the two results have similar means with unknown variance. We can observe that
LCFS and JFSSL have the same output MAP distribution for photo querying sketch task
no matter whether their input features are preprocessed by PCA. However, their output
MAP distributions for sketch querying photo task are different. In all other cases, LCFS is
statistically different from the others. Based on the above observations, we conclude that
the performance of LCFS for the subcategory-level SBIR tasks on shoe dataset is essentially
different with the performances of CCA, PLS, BLM, GMLDA, GMMFA, CDFE, and CCA-
3V.
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Table 4: P -value comparisons between LCFS (inputting feature without PCA preprocess) and other
cross-modal subspace learning methods on chair dataset. The significant level is 0.05.

PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+
JFSSL

CCA PLS BLM GMLDA GMMFA CDFE CCA-3V LCFS JFSSL
Photo Query 2.7e-40 1.0e-33 9.9e-35 0.8698 0.6971 4.4e-12 1.0e-31 0.7965 0.8117 0.9825
Sketch Query 5.9e-38 8.8e-30 2.1e-31 0.6830 0.9536 1.0e-08 1.4e-26 0.9633 0.9309 0.9516
Average Value 2.9e-38 4.4e-30 1.0e-31 0.7764 0.8254 5.3e-09 7.2e-27 0.8799 0.8713 0.9670
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Figure 5: Box-plots of MAP scores achieved by different cross-modal subspace learning methods on shoe
dataset. The inputs of all the methods are preprocessed by PCA excepting methods marked with an

asterisk. The top and bottom edges of the box are the 75th and 25th percentiles, respectively. The outliers
are marked as red cross patterns individually.

3.3.2. Evaluation by “acc.@K”

The shoe dataset and the chair dataset are fine-grained SBIR datasets in which each
sketch sample has a photo sample as its instance-level counterpart. Hence we can also
evaluate the performances of these cross-modal subspace learning methods by counting the
percentage of the corresponding photos or sketches ranked in the top K results. Please note
that the parameters of all the methods are readjusted when we evaluated them by “acc.@K”.

Similar as the previous chapter, PCA is conducted for all the methods. In addition, to
verify the feature selection capabilities of LCFS and JFSSL, we also input features without
PCA reprocessing for these two methods.

The Cumulative Match Characteristic (CMC) curves are plotted in Fig. 6. We can ob-
serve that in terms of relative distribution relationships and trends of the curves, Fig. 6(a)
is consistent with Fig. 6(b). And the performances of these cross-modal subspace learning
methods are different from theirs on subcategory-level evaluation (MAP). CCA-3V achieves
the highest instance-level accuracy for photo-sketch query and sketch-photo query on shoe
dataset. The curves of CCA, GMMFA, PLS, and BLM are slightly lower than CCA-3V’s.
GMLDA obtains more satisfying experimental results than LCFS and JFSSL. LCFS and
JFSSL are little better than CDFE. And LCFS and JFSSL still can obviously show their fea-
ture selection ability for the instance-level SBIR retrieval on shoe dataset. The experimental
result of CDFE is the worst.

These supervised cross-modal subspace learning methods do not show a distinct advan-
tage over unsupervised methods for the instance-level SBIR tasks on shoe dataset. We can
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Figure 6: CMC curves for different cross-modal subspace learning methods on shoe dataset.
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Figure 7: Box-plots of MAP scores achieved by different cross-modal subspace learning methods on chair
dataset. The inputs of all the methods are preprocessed by PCA excepting methods marked with an

asterisk. The top and bottom edges of the box are the 75th and 25th percentiles, respectively. The outliers
are marked as red cross patterns individually.

conclude that learning pair-wise information is more effective than learning subcategory-level
relationship for instance-level SBIR. CCA, PLS, and BLM can achieve good results because
they can learn the pair-wise relationships of multi-modal samples. CCA-3V, GMLDA, and
GMMFA can utilize sample labels to learn some subcategory separation in the common
subspace in the same time capturing the sample pair-based correlation crossing modali-
ties. CCA-3V is more focused on modeling the association between the pairs of samples
while GMMFA and GMLDA also learn some structured information in the common sub-
space. LCFS and JFSSL cannot obtain the desired results. For LCFS, its objective function
engages in optimizing the subcategory-based residuals and feature selection for each modal-
ity. The trace norm constraint in Eq. (10) can enforce the relevance of projected sample
data with connections, but its weighting coefficient λ2 is often too small to learn enough
sample pair-wise information. For JFSSL, its optimization is also mainly minimizing the
subcategory-based residuals. Its graph embedding term in Eq. (11) only preserves the inter-
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Figure 8: CMC curves for different cross-modal subspace learning methods on chair dataset.

modality and intra-modality similarity. Hence, LCFS and JFSSL are not good at learning
the instance-level or pair-wise relationship of sample data pairs.

(a) Original space of a

modality

(b) Original space of b

modality

(c) Subspace learned by

CCA/PLS/BLM

(d) Subspace learned by

GMLDA/GMMFA/CCA-

3V

(e) Subspace learned by

CDFE/LCFS/JFSSL

Figure 9: Demonstration and comparison of various cross-modal approaches. The smaller solid and hollow
figures represent the data from the different modalities. The smaller figures with the same shape and

different colors represents different samples belonging to the same class. The bigger figures with different
shapes indicate the corresponding domain-independent semantic labels. The short dashed straight lines

visualize the pair-wise relationships. The short bold arrows link multi-modal sample pairs to their
semantic labels. The short dashed straight lines visualize the pair-wise relationships. The short bold

arrows link multi-modal sample pairs to their semantic labels.

3.4. Results on Chair Dataset

3.4.1. Evaluation by MAP

The MAP score comparison of different cross-modal subspace learning methods on chair
dataset are reported in Table 2. Each experiment on each setting is also repeated for 50 times.
And as in the previous chapter, PCA is also utilized to remove the redundancy in the input
features for CCA, PLS, BLM, GMLDA, GMMFA, CDFE, and CCA-3V. We can observe
that the experimental results are analogous to those on shoe dataset. Comprehensively
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considering photo-sketch query and sketch-photo query tasks, LCFS and JFSSL performs
best. The performances of GMLDA and GMMFA are very close to the performances of
LCFS and JFSSL.

The corresponding box-plots for Table 2 are visualized in Fig. 7. We observe that the
stabilities of these methods for subcategory-level SBIR on chair dataset do not have much
difference. We also conducted the students t-test for the repeated 50 times experimental
results between LCFS and other methods, as shown in Table 4. We observe that GMLDA,
GMMFA, LCFS, and JFSSL have the same output MAP distribution for photo querying
sketch and sketch querying photo tasks.

As described above, shoe dataset contains three subcategories and chair dataset has six
subcategories. In common sense, the three-class problem should be easier than the six-class
one when we evaluate the experimental results by MAP. Thus the MAP score of the same
method on shoe dataset should be significantly higher than it on chair dataset. However,
comparing Table 1 and Table 2, the MAP scores in Table 1 are not obviously higher than
their counterpart values in Table 2. Moreover, Fig. 5 has many outliers (marked red) while
Fig. 7 shows almost no outliers. These phenomena can be interpreted as that these shoe
sketches are not drew very well. Shoe dataset is mixed with too much noise due to that
those shoe sketch samples were painted too rough.

3.4.2. Evaluation by “acc.@K”

We readjust the parameters for all the methods and compare their performances by
counting the percentage of the corresponding photos or sketches ranked in the top K results.
The CMC curves are plotted in Fig. 8. For photo querying sketch task and sketch querying
photo task, CCA-3V outperforms other methods. And the curves of GMMFA, GMLDA,
BLM, and PLS in Fig. 8(a) and Fig. 8(b) almost overlap together respectively. We can
observe that in Fig. 8(a), ‘LCFS’ curve is slightly lower than ‘PCA+LCFS’ curve and ‘JFSSL’
curve locates at a high distance above ‘PCA+JFSSL’ curve. In Fig. 8(b), ‘LCFS’ curve is
significantly lower than ‘PCA+LCFS’ curve and ‘JFSSL’ curve and ‘PCA+JFSSL’ curve are
overlapped. This illustrates that the feature selection abilities of LCFS and JFSSL cannot
work well for instance-level SBIR on chair dataset. In the objective functions of LCFS and
JFSSL, the constraint terms for feature selection are optimized with the subcategory-based
regression residuals simultaneously. Thus the effect of their feature selection is to reduce the
subcategory-based errors rather than instance-level matching errors.

3.5. Feature Selection and Graph Embedding

In the experiments of this paper, the performances of LCFS and JFSSL are almost
the same on shoe dataset and chair dataset. However, JFSSL is the improved version of
LCFS and owns theoretical advantages. JFSSL has feature selection constraint and graph
embedding constraint which are classical operational processes or technologies for cross-
modal matching. Hence, it is worth exploring the synergy between the feature selection
and graph embedding terms for SBIR tasks. In its objective function Eq. (11), λ1 and λ2
are the weighting parameters for feature selection and graph embedding terms, respectively.
We tune λ1 and λ2 in the range of {0, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100} fixing the remaining
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parameters. This adjusting process is illustrated in Fig. 10. We can observe a smooth and
symmetric correlation variation between λ1 and λ2. This shows us that these two techniques
can co-work harmoniously for SBIR. When λ1 is fixed, MAP value slightly changes with the
variations of λ2. MAP varies with λ1 while λ2 is set to a certain value. This proves that
the performance of JFSSL is largely determined by its feature selection technology. The
importances of the feature selection technology and the graph embedding technology are
not equal in the optimization process of JFSSL for subcategory-level SBIR. This inspires us
to further explore these two techniques in our future research for sketch.

0

0.2

0     

0.4

M
A

P

0.0001

0.6

0.001 

0.8

100   0.01  

6
1

10    0.1   1     1     

6
2

0.1   10    0.01  
100   0.001 

0.0001
0     

(a) Photo queries sketch on shoe dataset

0

0.2

0     

0.4
M

A
P

0.0001

0.6

0.001 

0.8

100   0.01  

6
1

10    0.1   1     1     

6
2

0.1   10    0.01  
100   0.001 

0.0001
0     

(b) Sketch queries photo on shoe dataset

0

0.2

0     

0.4

M
A

P

0.0001

0.6

0.001 

0.8

100   0.01  

6
1

10    0.1   1     1     

6
2

0.1   10    0.01  
100   0.001 

0.0001
0     

(c) Photo queries sketch on chair dataset

0

0.2

0     

0.4

M
A

P

0.0001

0.6

0.001 

0.8

100   0.01  

6
1

10    0.1   1     1     

6
2

0.1   10    0.01  
100   0.001 

0.0001
0     

(d) Sketch queries photo on chair dataset

Figure 10: JFSSL MAP variation with respect to λ1 and λ2 while its remaining parameters are fixed.

3.6. Complexity Analysis

In this section, the computational complexity of each compared cross-modal subspace
learning method is discussed briefly. The asymptotic time complexity of CCA is O(d3) [82]
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Table 5: Running time comparison in the unit of second.

PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+ PCA+
LCFS

PCA+
JFSSL

CCA PLS BLM GMLDA GMMFA CDFE CCA-3V LCFS JFSSL
shoe 0.793 4.217 5.609 5.497 10.287 5.558 4.035 5.124 139.665 5.357 160.894
chair 0.691 7.189 5.979 7.454 7.416 5.200 2.494 2.785 122.104 2.938 137.910

where d = max(da, db). PLS is a fitting model embedding regression technique, for which its
complexity is defined in terms of its Degrees of Freedom [83]. GMA can be formulated as a
standard generalized eigenvalue problem and solved by any eigenvalue solving technique [25].
CDFE can be solved using an alternate optimization strategy including a main step that
is a convex quadratic optimization program with linear constraint [63]. The approximate
kernel maps can be adopted to solving CCA-3V [64] reducing the size of this problem to
(d̃1 + d̃2 + d̃3)× (d̃1 + d̃2 + d̃3), where d̃i (i = 1, 2, 3) are the dimensionalities of the respective
explicit mappings. The complexity of LCFS is O(d3 + n2.376) [40] where d = max(da, db).
The complexity of JFSSL can be denoted as O(dn2 + d2) [43] where d = max(da, db).

For rigorous comparison, the running time for learning the projection matrices is com-
pared among these cross-modal subspace learning methods. Each methods on each setting
are repeated 50 times. The average running time are reported in Table 5 which reveals that
the feature selection processing is time-consuming. All the MATLAB codes are run on a
2.40GHz server with 64G RAM.

3.7. Discussion

Our experimental results demonstrate that the cross-modal subspace learning methods
designed for image and text can be applied in subcategory-level and instance-level SBIR
tasks. The main advantage of cross-modal subspace learning for SBIR is its clear physical
significance. Their performance rankings for subcategory-level SBIR tasks are almost con-
sistent with those in cross-modal retrieval for image and text. For subcategory-level SBIR,
the class label information is useful and supervised methods are usually superior to unsu-
pervised methods. Feature selection and graph embedding technologies are also efficient to
subcategory-level SBIR and they can work together well. Their performance rankings for
instance-level SBIR tasks are not the same as those for subcategory-level retrieval. Learn-
ing pair-wise information is more effective than learning subcategory-level relationship for
instance-level SBIR. Supervised learning has no significant advantages over unsupervised
methods for instance-level SBIR task. On the shoe dataset and the chair dataset, LCFS
outperforms other methods for subcategory-level SBIR and CCA-3V achieves the highest ac-
curacy for instance-level SBIR. This leads us to conclude that subcategory-level information
can also be beneficial to instance-level SBIR.

4. Discussion and Future work

We have demonstrated the feasibility of utilizing cross-modal subspace learning meth-
ods to tackle the domain-gap between sketches and photos. In the future, we may gain
access to better solutions for SBIR by including the advantages of the cross-modal subspace
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learning techniques, e.g., pair-wise modeling, subcategory-based residual, joint feature se-
lection, graph embedding. In particular, many researchers use deep Convolutional Neural
Network (CNN) to conduct cross-modal matching [84, 85, 86] or SBIR which is essentially
to learn some feature subspaces to match multi-modal data. Moreover, the convolutional
sparse coding technology can also learn subspace satisfying certain qualities [87, 88, 89],
which illustrates the convolutional idea and subspace learning can be reasonably combined.
Therefore, it is natural to also utilize cross-modal subspace learning concepts to improve
CNN for SBIR, and potentially incorporating saliency information [90, 91] to improve part-
level examination in the same network.

If we assume that sketch sits between photo and text in terms of their expressive power,
i.e., photo is the most expressive for it can capture a like-for-like depiction of the visual world,
sketches are unlikely to do so since they are highly abstract yet still visual, text on the other
hand can be vague and more importantly not in the visual domain anymore. This bears the
question that if modeling sketch together with text and photo could be worthwhile to better
bridge the gap between text and photo, e.g., for text-based image retrieval. The fact that
CCA-3V achieved the best performance for the fine-grained case is a good indicator of the
promise that such three-way modelling offers. However, currently available SBIR datasets
cannot provide detailed and adequate semantic textual information. Hence new datasets
that capture all three domains are required.

5. Conclusion

In this paper, we discussed and evaluated a series of state-of-the-art cross-modal subspace
learning methods. We described each method and applied these approaches to two recently
released fine-grained SBIR datasets. This paper provided detailed comparisons and analysis
on experimental results and discussed future research opportunities for SBIR.
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