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Abstract

This work compares several node (and network) criticality measures quanti-
fying to which extend each node is critical with respect to the communication
flow between nodes of the network, and introduces a new measure based on
the Bag-of-Paths (BoP) framework. Network disconnection simulation exper-
iments show that the new BoP measure outperforms all the other measures on
a sample of Erdős-Rényi and Albert-Barabási graphs. Furthermore, a faster
(still O(n3)), approximate, BoP criticality relying on the Sherman-Morrison
rank-one update of a matrix is introduced for tackling larger networks. This
approximate measure shows similar performances as the original, exact, one.

Keywords: Criticality measure, network vulnerability, vital nodes, graph
mining, network science, graph and network analysis, betweenness
centrality.

1. Introduction

The analysis and the modeling of network data has become a popular
research topic in the last decade and is now often referred to as link analysis
(in computer science) and network science (in physics). Network data appear
in virtually every field of science and is therefore studied in many different
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disciplines, such as social sciences, applied mathematics, physics, computer
science, chemistry, biology, economics, etc. Within this context, one impor-
tant question that is often addressed is the following: Which node seems to be
the most critical, or vital, in the network? The present work introduces such
a new node criticality measure, also called vulnerability, quantifying to which
extend the deletion of each node hurts the connectivity within the network
in a broad sense, e.g., in terms of communication, proximity, or movement.
Criticality measures are often considered as a subset of centrality measures,
which are frequently used as a proxy for quantifying criticality. Interested
readers are invited to consult the recent comprehensive review [1].

Indeed, a huge number of centrality measures have been defined in vari-
ous fields, starting from social science (see, e.g., [2, 3, 4, 5, 6, 7] and [8] for a
survey). These quantities assign a score to each node of the graph G which
reflects the extent to which this node is “central” by exploiting the structure
of the graph G, or with respect to the communication flow between nodes.
Centrality measures tend to answer the following questions ADD REF: What
is the most representative, or central, node within a given graph (closeness
centrality)? How critical is a given node with respect to the information flow
in a network (criticality)? Which node is the most peripheral in a social net-
work (eccentricity)? Which node is the most important intermediary in the
network (betweenness centrality)? Centrality scores try to answer to these
questions by proposing measures modeling and quantifying these different,
somewhat vague, properties of the nodes.

Notice that, in general, these centrality measures are computed on undi-
rected graphs, or, when dealing with a directed graph, by ignoring the direc-
tion of edges. They are therefore denoted as “undirectional” [9]. Measures
defined on directed graphs – and therefore directional – are often called im-
portance or prestige measures. They capture to which extend a node is “im-
portant”, “prominent”, or “prestigious” with respect to the whole directed
graph by considering directed edges as representing some kind of endorse-
ment. However, this kind of measure will not be discussed here.

This work introduces a new, efficient and effective, criticality measure:
the bag-of-paths (BoP) criticality. The quantity relies on the bag-of-paths
framework assigning a Gibbs-Boltzmann distribution on the set of paths in
the network [10, 11, 12]. This framework already allowed to define new
distance measures between nodes interpolating between two well-known dis-
tances, the shortest-path distance and the resistance distance (or commute-
time distance) [10]. In this context, the BoP criticality of a node measures
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the impact of the node deletion on the total accessibility between nodes
within the network. More specifically, it is defined as the Kullback-Leibler
divergence between the bag-of-paths probabilities, quantifying relative acces-
sibilities, computed before and after removal of a node of interest. The larger
this decrease in accessibility, the higher the impact of the node deletion, and
thus the higher its criticality.

The novelty of the approach introduced in this paper can be understood as
follows. Most of the traditional criticality measures are essentially based on
two different paradigms about the communication occurring in the network:
optimal communication based on shortest paths and random communication
based on a random walk on the graph. For instance, the Wiener index
(described later in this paper) is based on shortest paths and the Kirchhoff
index on a random walk. However, both the shortest path and the random
walk have some drawbacks: shortest paths do not integrate the amount of
connectivity between the two nodes whereas random walks loose the notion
of proximity to the initial node when the graph becomes larger [13]. Contrary
to traditional measures, our criticality measure integrates both proximity and
amount of connectivity in the bag-of-paths framework. Nodes that are both
close and highly connected are qualified as highly accessible. Our introduced
bag-of-paths measure aims to quantify the accessibility between the nodes.
When the temperature of the model is low (close to zero), communication
occurs through a random walk, while for large temperatures, short paths are
promoted.

The introduced measure is compared experimentally to already developed
criticality measures as well as a sample of popular centrality measures, briefly
reviewed in this paper. All those measures are compared through a Kendall’s
correlation analysis and a disconnection methodology [14, 15] in Section 5.
This empirical analysis is performed on a large number, and two types, of
randomly generated graphs (see Subsection 5.1).

In summary, this work has the following main contributions,

• A new criticality measure, showing good performance in the identifica-
tion of the most critical nodes of a network, is introduced.

• All those methods are compared experimentally using two disconnec-
tion strategies on a large number of randomly generated graphs.

Finally, the paper is organized as follows: First, the underlying back-
ground and various notations are discussed in Section 2, then Section 3
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introduces ten centrality and criticality measures (some being quite well-
known). The bag-of-paths model described in [10] is summarized and the
new BoP criticality measure is derived in Section 4. Finally, those measures
are assessed and compared in Section 5.

2. Background and Notation

This section aims to introduce the necessary background and notation
used in this paper. Consider a weighted directed graph or network, G =
{V, E}, strongly connected with a set of n nodes V (or vertices) and a set of
edges E (or arcs, links). The n×n adjacency matrix of the graph, containing
non-negative affinities between nodes, is denoted as A, with elements [A]ij =
aij ≥ 0.

AT will refer to the transpose of A, A(−j) is a (n − 1)× (n − 1) matrix
obtained from A by removing its jth row and its jth column, e is a column
vector full of ones and ej is the jth column vector of the identity matrix I.
Except explicitly stated, all lower-case bold letters represent column vectors
while upper-case bold letters are matrices.

Moreover, to each edge between node i and j is associated a non-negative
number cij ≥ 0. This number represents the immediate cost of transition
from node i to j. If there is no link between i and j, the cost is assumed
to take a large value, denoted by cij = ∞. The cost matrix C is an n × n
matrix containing the cij as elements. Costs are usually set independently of
the adjacency matrix: they are quantifying the cost of a transition accord-
ing to the problem at hand. For example, costs can be set in function of
some properties, or features, of the nodes (or the edges) in order to bias the
probability distribution of choosing a path to follow. In the case of a social
network, we may, for instance, want to bias the paths in function of the edu-
cation level of the persons, therefore favoring paths visiting highly educated
persons. Now, if there is no reason to introduce a cost, we can simply set
cij = 1 (paths are penalized by their length) or cij = 1/aij (in this case, aij
is viewed as a conductance and cij as a resistance) – this last setting will be
used in the experimental section.

We also introduce the Laplacian matrix L of the graph, defined in the
usual manner and needed below,

L = D−A (1)
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where D = Diag(Ae) is the diagonal (out)degree matrix of the graph G
containing the ai• on its diagonal. One interesting property of L is that
its eigenvalues provide important information about the connectivity of the
graph [16].

One of the most interesting accessibility measure of the graph G, the
so-called connectivity, is often defined as the minimum number of nodes
that need to be removed to separate it into two disconnected sub-graphs
[17, 18]. Unfortunately, this quantity is hard to compute and cannot be
easily exploited in practice for this reason. Beside this, it can be shown that
the number of zero eigenvalues of L is equal to the number of disconnected
subgraphs, or connected components, of G [16]. Then, for a connected graph
the smallest eigenvalue of L is called the algebraic connectivity or spectral gap
and has been shown to be a good indicator of its overall “connectedness” (G
is disconnected when its algebraic connectivity is equal to zero). Finally, the
Moore-Penrose pseudoinverse of L is denoted as L+, and contains elements
l+ij . Due to the properties of the Moore-Penrose pseudoinverse, its largest
eigenvalue is the algebraic connectivity.

In addition, a natural random walk on G is defined in the standard way.
In node i, the random walker chooses the next edge to follow according to
reference transition probabilities

prefij =
aij

∑n

j′=1aij′
(2)

The n × n matrix Pref , containing transition probabilities prefij , is stochastic
and is simply equal to Pref = D−1A. Note that this can lead to a division by
zero if a node i is isolated or a dangling node; we therefore assume that the
graph is strongly connected. Pref represents the probability of jumping from
any node i to node j ∈ Succ(i), the set of successor nodes of i. In other words,
the random walker chooses to follow an edge with a likelihood proportional
to the affinity (apart from the sum-to-one normalization), therefore favoring
edges with a large associated affinity.

A path ℘ (also called a walk) is a sequence of transitions to adjacent nodes
on G (loops are allowed), initiated from a starting node s, and stopping in
an ending node e. The total cost of a path ℘, c̃(℘), is defined as the sum of
the individual transition costs cij along ℘.
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3. Related Work

In this paper, a large set of criticality measures will be compared experi-
mentally, and briefly reviewed in this section (see also [19]). It is convenient
to categorize them into three classes: node betweenness centrality measures,
global graph criticality measures, and node criticality measures.

3.1. Node betweenness centralities

As already mentioned, the concept of criticality is closely related to the
concept of betweenness centrality; we therefore also investigate a few of the
most well-known betweenness and centrality measures. The measure is de-
fined on each node, identified by its index j.

• The simple node degree, or edge connection (EC). This quantity is sim-
ply the number of nodes connected to a node j, weighted by edge
weights in the case of a weighted graph. It is obtained by summing the
entries on the jth row of the adjacency matrix A. The idea is that if
a node has a high degree, it is more likely to hurt or disconnect the
graph when removed. It can be computed by

ECj = eTj Ae (3)

• The famous shortest path betweenness (SPB), introduced by Freeman
[2]. It counts the proportion of shortest paths connecting any two nodes
i and k, and passing through an intermediate node j of interest (with
i 6= j 6= k 6= i). The idea is that if a node contributes to a large number
of shortest paths, it can be considered as an important intermediary be-
tween nodes when the information is spread “optimally” along shortest
paths. More precisely,

SPBj =
n
∑

i=1
i 6=j

n
∑

k=1
k 6=i,j

η(j ∈ P∗
ik)

|P∗
ik|

(4)

where P∗
ik is the set of all shortest paths from i to k, |P∗

ik| is the total
number of such shortest paths ℘∗

ik and η(j ∈ P∗
ik) =

∑

℘∗
ik
∈P∗

ik
δ(j ∈ ℘∗

ik)

is the total number of such paths visiting node j. We used Brandes’
algorithm [20] to compute the SPB of each node of the graph.
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• The random walk betweenness (RWB), introduced by Newman [3] and
closely related to Brandes’ electrical centrality [21]. Newman intro-
duced the current flow betweenness centrality, which measures the cen-
trality of a node as the total sum of electrical current that flow through
it, when considering all node pairs as source-destination pairs with a
unit current flow. The current flow betweenness is also called the ran-
dom walk betweenness centrality because of the well-known connection
between electric current flows and random walks [22, 19]. The idea is
thus the same as for the SPB, but taking into account a random walk-
based diffusion of information instead of shortest paths. Notice that
Brandes and Fleischer [21] proposed a more efficient algorithm com-
puting the random walk betweenness for all nodes of a network. The
properties and computation of the current flow betweenness have also
been discussed by Bozzo and Franceschet [23]. Kivimaki et al. pro-
posed a new betweenness measure interpolating between the shortest
path betweenness and the random walk betweenness [24].

• Estrada’s centrality (EST). In [4], Estrada et al. defined a centrality
measure called “subgraph centrality” for a weighted undirected graph
or subgraph. It summarizes simply as

ESTj = eTj

(

∞
∑

k=0

Ak

k!

)

ej = eTj diag(expm(A)) (5)

where expm(A) is the matrix exponential of A and diag(X) extract

the main diagonal of X. It is well-known that element a
(k)
ij = [Ak]ij of

matrix Ak (A to the power k) is the weighted number of paths between
node i and node j with exactly k steps. The subgraph centrality mea-
sure therefore integrates a contribution from all paths connecting node
j to himself, discounting paths according to their number of steps (it
favors shorter paths in terms of length). The intuition is that a node
should have a high centrality score if the closed paths (cycles) starting
from it are short and are visiting many different nodes [4].

3.2. Node criticalities

We now introduce the node criticalities studied in this work. As for the
betweenness, the criticality measure is defined on each node j.
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• Wehmuth’s criticality K (WK) is introduced in [5],

WKj =
λ
(j)
2

log2(dj)
(6)

where λ
(j)
2 is the algebraic connectivity of the h-neighbourhood of node

j (the subnetwork composed by all nodes within h hops of node j) and
dj is the degree of node j. Recall that the algebraic connectivity is the
second smallest eigenvalue of the Laplacian matrix L. The idea is to
take advantage of the algebraic connectivity property; the higher the
value of λ

(j)
2 , the higher the connectivity/density of the subnetwork.

Then, λ
(j)
2 is divided by the logarithm of the node degree as locally

computed algebraic connectivities show a bias towards higher values
on nodes with high degree. This bias causes λ

(j)
2 to be over-sensitive to

the presence of hubs [5].

• Klein’s edge criticality (KLE). Klein derived the analytical form of
this node criticality measure for several global measures, including the
Wiener index and the Kirchhoff index [6]. We will use the measure
based on the Kirchhoff index here [6],

KLEj =

n
∑

i=1

aij(ei − ej)
T(L+)2(ei − ej) (7)

The intuition behind the measure is the following. Klein’s edge (i, j)
criticality is defined as the sensitivity of the global network criticality
index (here the Kirchhoff index – defined in the next subsection) with
respect to the increase in the resistance of the edge (i, j) [6]. In other
words, it quantifies the impact of an increase in this resistance on the
global network. Edges having a high impact on the global network
criticality hurt most the network and are considered as highly critical.
Then, edge criticality is summed up over incident edges to provide a
node criticality.

3.3. Global network criticalities

The following global criticality indexes are defined on the whole network
G. They quantify the extend to which the network as a whole is efficient,
that is, highly interconnected and cohesive, with high accessibility. For a
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communication network, this measure can be, e.g., the “Wiener index” – the
sum of the shortest-path distances (which can be travel time, travel cost,
etc.) between all pairs of nodes. An effective network is characterized by a
low value of the Wiener index as, then, distances between nodes are small in
average.

The impact of a node of interest on the global network accessibility mea-
sure – the derived node criticality – is then quantified by evaluating the
marginal loss in global accessibility when the node of interest is not oper-
ating, i.e., has simply been removed. This measure therefore reports how
critical the node is, relative to the entire graph. To evaluate the criticality
of a particular node j in a fixed graph G, the difference between the global
criticality after deleting this node j, cr(G \ j), and the initial global network
criticality, cr(G), is computed,

crj = cr(G \ j)− cr(G) (8)

This node criticality will be computed on several well-known global criti-
cality measures which are described now. We could also normalize the quan-
tity when it corresponds to a sum over all pairs of nodes by something like
cr(G)/(n(n−1))−cr(G\ i)/((n−1)(n−2)). However, this would not change
the ranking of the nodes as the first term is a constant.

• The Wiener index (WIE) is defined as the sum of the shortest-path
distances between all node pairs (see, e.g., [8]),

WIE(G) =
1

2

n
∑

i=1

n
∑

j=1

∆
SP
ij (9)

where ∆
SP
ij is the shortest-path distance. The underlying idea is that if

the sum of the distances between every node pairs is small, the network
is more likely to be well-connected.

• The Kirchhoff index (KIR) is similar to the Wiener index but uses
the resistance distance (the effective resistance, proportional to the
commute-time distance based on a random walk on the graph) [25],
instead of the shortest path distance, and has been recently used by
Tizghadam and al. in network theory for quantifying the robustness of
a communication network [7]. It can be easily computed by

KIR(G) =
1

2

n
∑

i=1

n
∑

j=1

∆
ER
ij (10)
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where ∆
ER
ij is now the effective resistance between i and j. The idea is

thus the same as for WIE, but with a different concept of distance.

• The Kemeny index (KEM) represents the expected number of steps
needed by a random walker for reaching an arbitrary node from some
arbitrary starting node [26], when the starting and ending nodes are
selected according to the equilibrium distribution of the Markov chain.
Indeed, for an irreducible, aperiodic, Markov chain, it is known (see,
e.g., [27]) that the stationary distribution exists and is independent of
the initial state i. More precisely, the Kemeny index is

KEM(G) =

n
∑

i=1

πi

n
∑

j=1

πjmij =

n
∑

j=1

πjmij (11)

where mij is the average first-passage time between node i and node j
and π is the stationary distribution. Equation (11) holds because it can
be shown that the quantity

∑n

j=1 πjmij is independent of the starting
node i [28]. This index measures the relative accessibility of all pairs of
nodes, putting more weight on the long-term frequently visited nodes
according to the stationary distribution.

• The Shield value (SHV) has recently been introduced [29]:

SHV(G) = λ1 (12)

where λ1 is the dominant eigenvalue of the adjacency matrix A. It is
closely related to the loop capacity and the path capacity of the graph,
that is, the number of loops and paths of finite length. The higher λ1,
the more loops and long path in the graph. As for Estrada’s centrality,
the underlying idea is that if a graph has many such loops and paths
then it is more likely to be well connected. The more the deletion of
a node lowers this value, the less the graph becomes connected, and
therefore the larger its criticality value.

4. The Proposed BoP Criticality

We now derive a new node criticality measure called the bag-of-paths
criticality (BPC). It is based on computing the effect of a node removal in
a bag-of-paths model (BoP). This framework was recently introduced in [10]

10



(see also [30] for a related work) for computing distances on graphs, and
used for semi-supervised classification tasks in [10, 11]. In order to make the
paper as self-contained as possible, we briefly review this framework first in
this section. Finally, an illustrative example is shown in Subsection 4.4.

4.1. The bag-of-paths model

The BoP framework is based on the probability of drawing a path i j
starting at a node i and ending in a node j from a virtual bag containing all
possible paths in the network [10]. Let us define Pij as the set of all paths
connecting node i to node j, including loops. We further define the set of all
paths through the network as P =

⋃n

i,j=1Pij .
The potentially infinite set of paths in the graph is enumerated and a

probability distribution is assigned to the set of individual paths P, consid-
ered independently. This probability distribution on the set P represents the
probability of drawing a path ℘ ∈ P from the bag, and is defined as the
probability distribution P(·) minimizing the total expected cost along path
℘, E [c̃(℘)], among all the distributions having a fixed relative entropy J0 with
respect to a reference distribution, for instance the natural random walk on
the graph (defined by Equation (2)). The quantity c̃(℘) is the cumulated
cost along path ℘.

This choice naturally defines a probability distribution on the set of paths
such that “long” (high cost) paths occur with a low probability while “short”
(low cost) paths occur with a high probability. In other words, we are seeking
path probabilities, P(℘), ℘ ∈ P, minimizing the total expected cost subject
to a constant relative entropy constraint,

{P(℘)}
minimize

∑

℘∈P

P(℘) c̃(℘)

subject to
∑

℘∈P P(℘) ln(P(℘)/π̃ref(℘)) = J0
∑

℘∈P P(℘) = 1

(13)

where π̃ref represents the probability of following the path ℘ when walking
according to the natural random walk reference distribution. In other words,
π̃ref is the product of the transition probabilities prefij along the path ℘ – the
likelihood of the path. Here, J0 > 0 is provided a priori by the user, according
to the desired degree of randomness, or exploration, he is willing to concede.

As well-known (see, e.g., ADD REF,[10, 30, 31] for details), this prob-
lem is similar to a standard maximum entropy one and can be solved by
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introducing the following Lagrange function

L =
∑

℘∈P

P(℘)c̃(℘) + λ

[

∑

℘∈P

P(℘) ln

(

P(℘)

π̃ref(℘)

)

− J0

]

+ µ

[

∑

℘∈P

P(℘)− 1

]

and optimizing over the set of path probabilities {P(℘)}℘∈P (partial deriva-
tives set to zero). The Lagrange parameters are then deduced after imposing
the constraints.

The result of the minimization of (13) is a Gibbs-Boltzmann probability
distribution:

P(℘) =
π̃ref(℘) exp [−θc̃(℘)]

∑

℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(14)

where θ = 1/T plays the role of an inverse temperature and exp is the
elementwise exponential. As expected, short paths ℘ (having a low c̃(℘)) are
favoured in that they have a larger probability of being chosen. Moreover,
from Equation (14), we clearly observe that when θ → 0+, paths probabilities
reduce to the probabilities generated by the natural random walk on the
graph. In this case, J0 → 0 and paths are chosen according to their likelihood
in a natural random walk. On the other hand, when θ is large, the probability
distribution defined by Equation (14) is biased towards short paths (shortest
ones are more likely). Notice that, in the sequel, it will be assumed that the
user provides the value of the parameter θ instead of J0, with θ > 0.

The bag-of-paths probability [10], P(s = i, e = j), is an important quan-
tity defined on the set of (starting, ending) nodes of the paths. It corresponds
to the probability of drawing a path starting in node i and ending in node j
from the virtual bag-of-paths:

P(s = i, e = j) =

∑

℘∈Pij

π̃ref(℘) exp[−θc̃(℘)]

∑

℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
(15)

where Pij is the set of paths connecting the starting node i to the ending
node j.

In [10], it is shown that this probability can be computed in matrix form
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by

P(s = i, e = j) =
zij

n
∑

i′,j′=1

zi′j′

, with Z = (I−W)−1 (16)

where zij is the element i, j of matrix Z, called the fundamental matrix and

W = Pref ◦ exp[−θC] (17)

with ◦ being the elementwise (Hadamard) product.
Notice that P(s = i, e = j) is not symmetric. These probabilities quantify

the relative accessibility between the nodes and it was shown that minus their
logarithm, − log P(s = i, e = j), defines a useful distance measure between
nodes [10]. By construction this probability is high when the two nodes i and
j are highly connected (there are many terms in the numerator of Equation
(15)) by low-cost paths (each term of the numerator is large). In other words,
it accurately captures the intuitive notion of relative accessibility. These BoP
probabilities will serve as a basis for defining the BoP criticality.

Note that the BoP probabilities can also be used to define some between-
ness measures [24] which are related to well-known centrality/betweenness
measures in some sense: if θ → ∞ the betweenness tends to be highly cor-
related with Freeman’s betweenness [2] (only shortest paths are considered),
while if θ → 0+, the betweenness tends to be highly correlated with New-
man’s betweenness [3] (based on a natural random walk).

4.2. The BoP criticality: basic, standard, case (BPC)

We will now derive a closed-form formula for computing these probabili-
ties when an intermediate node j is deleted from the graph. Then, our BoP
criticality measure for node j will be the relative entropy (or Kullback-Leibler
divergence) between the bag-of-paths probabilities – the relative accessibility
– before and after removing node j from G. It therefore quantifies to which
extend the relative accessibility is affected by the deletion of node j.

The intuition is the following. The bag-of-paths criticality quantifies the
global impact of a node deletion on the total relative accessibility of the nodes
in the network

• by computing this accessibility before and after node deletion,

• and then by computing their difference by means of the Kullback-
Leibler divergence.
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• This difference computes the loss in accessibility when deleting each
node in turn.

Thus, a critical node is a node whose deletion greatly affects the relative
accessibility between the nodes. This criticality measure will be referred as
BPC.

First, let us introduce some new notation. In Equation (16), zik will be
denoted as zik(A) and Z as Z(A) since they are based on matrix A. Then,
Z(−j)(A) is Z based on A (the original graph), but where the jth column

and the jth row of Z have been removed, and z
(−j)
ik (A) with i 6= j and k 6= j

is its i, k element.
We further define P

(−j)
ik (A) = P(−j)(s = i, e = k) based on the elements

of Z(−j)(A),

P
(−j)
ik (A) =

z
(−j)
ik (A)

n
∑

i′,k′=1
i′,k′ 6=j

z
(−j)
i′k′ (A)

, with i, k 6= j (18)

which corresponds to the BoP probabilities (see Equation (16)) based on the
whole original graph (A), but where the support of the probability distribu-
tion is reduced to the set of nodes different from j – we do not consider node
j as potential source or destination node.

It is important not to confuse Z(−j)(A) with Z(A(−j)), which is Z based
this time on A(−j), where the jth column and the jth row of A have been
removed (the graph with node j deleted). Thus the zik(A

(−j)) with i 6= j
and k 6= j are the elements of Z(A(−j)). Notice that Z(−j)(A) and Z(A(−j))
have the same size; both are (n − 1)× (n − 1) square matrices (node j has
been removed in both cases).

Furthermore, to compute Z(A(−j)), let us now calculate the impact of the
deletion of node j on the fundamental matrix Z, based on A(−j). In order
to investigate the deletion of node j, the jth row of matrix W will be set
to zero – we cannot escape from j any more (this is similar to set the jth
row of matrix A to zero). This aims at transforming node j into a killing,
absorbing, node. The result is that all paths from i to k passing through
node j (with i, k 6= j) are eliminated from the set of paths Pik. We therefore
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define P(s = i, e = k|{s, e} 6= j) based on A(−j) as

Pik(A
(−j)) =

zik(A
(−j))

n
∑

i′,k′=1
i′,k′ 6=j

zi′k′(A
(−j))

, with i, k 6= j (19)

Finally, the bag-of-paths criticality (BPC) is the Kullback-Leibler di-
vergence between the bag-of-paths probabilities, quantifying relative acces-
sibilities, before and after node removal,

crj =
n
∑

i,k=1
i,k 6=j

P
(−j)
ik (A) log

(

P
(−j)
ik (A)

Pik(A(−j))

)

(20)

Note that computing the bag-of-paths criticality for all the n nodes has a
time complexity of about O(n3 + n(n − 1)3). The first term corresponds to
the evaluation of P(−j)(A) (which requires a matrix inversion) and the second
term to n evaluations of P(A(−j)) (inversion of nmatrices, after deleting node
j). This leads to an overall O(n4) time complexity.

4.3. The BoP criticality: faster approximation (BPCf)

In this subsection, we will modify the bag-of-paths criticality to obtain a
O(n3) time complexity instead of O(n4). It relies on the efficient approxima-
tion of the entries of Z(−j) in terms of the fundamental matrix Z = (I−W)−1.
This version will be referred as BPCf.

Let us first define

• zcj = colj(Z) = Zej and zrj = rowj(Z) = eTj Z

• wc
j = colj(W) = Wej and wr

j = rowj(W) = eTj W

where colj and rowj are respectively the jth column (a column vector) and
the jth row (a row vector) of the matrix.

Now, turning node j into a killing, absorbing, node (no outgoing link from
this node) can be achieved by defining a new matrixW(−j) = W−ejw

r
j since

W is a Hadamard product between Pref and C. Doing so, row j is set to
zero, meaning that node j cannot be an intermediate node anymore. This
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corresponds to a rank-one matrix update. We will now show that we obtain
an extremely simple formula for the update of the fundamental matrix:

Z(W(−j)) = (I−W(−j))−1 = Z−
zcjz

r
j

zjj
(21)

where only the entries i, k 6= j of Z(W(−j)) are meaningful. Recall that zcj is
a column vector while zrj is a row vector.

Indeed, this results from a simple application of the Sherman-Morrison
formula (see, e.g., [32, 33, 34]) for the inverse of a rank-one update of a
matrix: if c and d are column vectors,

(B+ cdT)−1 = B−1 −
B−1cdTB−1

1 + dTB−1c
(22)

Now, from W(−j) = W− ejw
r
j , we have (I−W(−j)) = (I−W) + ejw

r
j . By

setting B−1 = Z, B = (I−W), c = ej and d = (wr
j)

T in Equation (22), we
obtain

Z(W(−j)) = (I−W(−j))−1 = Z−
Zejw

r
jZ

1 +wr
jZej

(23)

Let us first compute the term wr
jZ appearing both in the numerator

and the denominator of the previous Equation (23). Since Z = (I −W)−1,
(I−W)Z = I, and thus

wr
jZ = ((wr

j)
T − ej + ej)

TZ

= −(ej − (wr
j)

T)TZ+ eTj Z

= −eTj + zrj = zrj − eTj (24)

From Equation (24), the denominator of the second term in the right-
hand side of Equation (23) is

1 +wr
jZej = 1 +

(

zrj − eTj
)

ej = zrjej = zjj (25)

Moreover, also from (24), the numerator of the second term in the right-
hand side of Equation (23) is

Zejw
r
jZ = zcj

(

zrj − eTj
)

(26)
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We substitute the results (25) and (26) in the denominator and the nu-
merator of Equation (23), providing

Z(W(−j)) = Z−
zcj
(

zrj − eTj
)

zjj
(27)

However, row and column j should neither be taken into account, nor
used, and can therefore be put to zero. Indeed, since the last term of the
numerator in Equation (27), zcje

T
j , only updates the jth column, it can safely

be ignored (this column j is useless and will never be used), resulting in
redefining the quantity as

Z(W(−j)) = (I−W(−j))−1 = Z−
zcjz

r
j

zjj

and now the jth row as well as the jth column of Z(W(−j)) are equal to zero.
Indeed, elementwise, this last equation reads zik(W

(−j)) = zik − zijzjk/zjj,
which is equal to zero both when i = j and k = j. We therefore obtain
exactly Equation (21). Thus, the fundamental matrix Z needs to be inverted
only once and the elements zik(A

(−j)) in Equation (19) are approximated by
zik(W

(−j)).
The resulting matrix has a jth row as well as a jth column equal to zero

and it can be shown that each element zik(W
(−j)) of Z(W(−j)) corresponds

to
zik(W

(−j)) =
∑

℘∈P
(−j)
ik

π̃ref(℘) exp [−θc(℘)] (28)

where P
(−j)
ik is the set of paths avoiding node j.

It should be noted that this procedure only computes an approximation
of the BoP probabilities Pik(A

(−j)) (defined in Equation (19)) when remov-
ing an intermediate node j. Indeed, for computing the exact probabilities
on the graph G \ j, the natural random walk transition probabilities (the
reference probability matrix Pref) should also be updated, as the edges en-
tering node j cannot be followed any more. In our procedure, these reference
probabilities are not updated, causing some (usually small) disturbance in
comparison with explicitly deleting the node j and recomputing the probabil-
ities (including transition probabilities) from this new graph G \ j. Relative
performances of the exact BoP criticality and the approximated criticality
will be investigated in the experiments.
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Note that the expression could be adapted to exactly reflect node deletion,
but the update formula becomes much more complex and we did not observe
any significant difference between the two approaches in our experiments (see
the next section).

One way to render the procedure exact would be to instead minimize
expected cost subject to a fixed entropy constraint, instead of the Kullback-
Leibler divergence in Equation (13). This results in redefining the W matrix
as

W = exp[−θC] (29)

instead of (17). This solves the problem of the Pref update since this tran-
sition matrix does not appear any more. However, experiments showed that
this choice performs slightly worse (therefore not reported in the paper) than
the approximate update introduced in this section.

The algorithm is detailed in Algorithm 1, where the probabilities P
(−j)
ik (A)

and Pik(A
(−j)) (approximated by Pik(W

(−j))) are respectively gathered in
matrices Π and Π(−j).

An elementary study of the empirical time complexity of the two versions
BPC and BPCf is reported in Figure 1. Recall that the overall complexity for
BPC is O(n4) and O(n3) for BPCf. For a 3000-nodes graph, the saving factor
is greater than 10. Notice that no sparse, approximate, or optimized, imple-
mentation were used in the study. The CPU is a simple Intel(R) Core(TM)
i5-4310 at 2.00 GHz with 8 Go RAM and the programming language is Mat-
lab.

4.4. Illustrative example

A small toy graph, depicted on Figure 2, is now used as an illustrative
example. This graph has six nodes: the (rounded) BPC value for each node
is 6.3, 8.5, 5.5, 6.2, 7.1, 6.3, respectively. It corresponds to the node ranking
2, 5, 6, 1, 4, 3 (where the largest score defines the most critical node), which
seems legit. The WIE criticality succeeds to identify node 2 as the most
critical, but the second node in the ranking is node 3, which looks counter-
intuitive.

5. Experimental comparisons

In this section, the bag-of-paths criticalities (both the exact one (BPC)
and the fast approximate one (BPCf)) and the other centrality measures
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Algorithm 1 Computing the bag of hitting paths criticality of G.

Input:

– A graph G containing n nodes.
– The n× n adjacency matrix A associated to G, containing affinities.
– The n× n cost matrix C associated to G (usually, the costs are the inverse
of the affinities, but other choices are possible).
– The inverse temperature parameter θ.

Output:

– The n × 1 bag-of-paths criticality vector cr containing the change in the
probability distribution of picking a path starting in node i and ending in
node j when a node is deleted.

1. D ← Diag(Ae) ⊲ the row-normalization matrix; e is a column vector full
of 1s

2. Pref ← D−1A ⊲ the reference transition probabilities matrix
3. W← Pref ◦ exp [−θC] ⊲ elementwise exponential and multiplication ◦
4. Z← (I−W)−1 ⊲ the fundamental matrix
5. for j = 1 to n do ⊲ compute criticality for each node j
6. zrj ← eTj Z and zcj ← Zej ⊲ copy row j and column j of Z

7. Z′ ← Z− ejz
r
j − zcje

T
j + zjjeje

T
j ⊲ set row j and column j of Z to 0 for

disregarding paths starting and ending in j, but still passing through j

8. Π←
Z′

eTZ′e
⊲ normalize in order to obtain the bag-of-paths probability

matrix whose support is now V \ j

9. Z(−j) ← Z−
zcjz

r
j

zjj
⊲ update of matrix Z when removing row j from W

10. Π(−j) ←
Z(−j)

eTZ(−j)e
⊲ normalize in order to obtain the corresponding

bag-of-paths probabilities after deletion of row j of W
11. Remove both row j and column j from Π and Π(−j)

12. π ← vec(Π) and π
(−j) ← vec(Π(−j)) ⊲ stack probabilities into column

vectors by using the vec operator
13. crj ← (π(−j))T log(π(−j) ÷ π) ⊲ compute Kullback-Leibler divergence

with ÷ being the elementwise division. It is assumed that 0 log 0 = 0 and
0 log(0/0) = 0

14. end for

15. return cr

introduced in Section 3 are computed (see Table 1 for a reminder) on the
two types of graphs described in subsection 5.1. To do so, we followed a
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Figure 1: Empirical complexity analysis. The overall complexity for BPC is O(n4) (a ma-
trix inversion per node) and for BPCf O(n3) (only one matrix inversion plus fast updates).
Notice that for a 3000-nodes graph, the saving factor is larger than 10. The CPU is a
simple Intel(R) Core(TM) i5-4310 at 2.00 GHz with 8 Go RAM and the programming
language is Matlab. No sparse, approximate, or optimized implementation were used so
that a matrix inversion typically takes a second for a network of 3000 nodes.

common methodology [14, 15, 35, 36, 37] described in subsection 5.2 and we
report first a simple correlation analysis between rankings in subsection 5.3.
Then, results are compared and discussed in subsection 5.4.

5.1. Datasets

We used two well-known graph generators [38, 39] to build a set of 200
graphs: 100 are generated using Erdős-Rényi’s model and an additional 100
using Albert-Barabási’s model. Each of these models has different variants;
the one we used is described below. The number of nodes is set randomly
for each graph between 5 and 500.

• Erdős-Rényi (ER) Graph Generator [39]. This model is also
called the Poisson random graph generator because it generates a ran-
dom graph with a Poisson node degree distribution. This type of graph
is often used to study theoretical properties and behavior of networks
[40]. A parameter p ∈ ]0, 1] is required. The model first generates
an upper triangular random matrix (zeros on diagonal), then, for each
entry of the matrix, it puts a 0 if the entry is smaller than p, and 1
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Figure 2: A small toy graph. The (rounded) BPC value for each node is 6.3, 8.5, 5.5, 6.2,
7.1, 6.3, respectively. It corresponds to the node ranking 2, 5, 6, 1, 4, 3, which seems legit.
Conversely, WIE succeeds to identify node 2 as the most critical, but the second node in
the ranking is node 3, which looks counter-intuitive.

otherwise. Then the matrix is symmetrized using A+AT. For our ex-
periments, p was set to a random value for each graph, with p ∈ ]0, 1/2].

• Albert-Barabási (AB) Graph Generator [38]. The model gener-
ates a random graph with a power law degree distribution. This kind
of network is often observed in natural and human-generated systems,
including the world wide web, citation networks, and social networks
[40]. An integer parameter m is required. The model begins with an
initial connected network of m+ 1 nodes. Then, new nodes are added
to the network, one at a time. Each new node is connected to m exist-
ing nodes with a probability that is proportional to the current degree
of each node. The procedure stops when the desired number of nodes
is reached. Heavily linked nodes (“hubs”) tend to quickly accumulate
even more links: the new nodes have a “preference” to attach them-
selves to these already heavily linked nodes. For our experiments, p
was set to a random value for each graph with m ∈ {1, 2, 3, 4, 5, 6}.
Many “natural” networks in real life behave like AB graphs (see for
example [14] and citations inside).
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Table 1: List of all measures compared in this study, together with their type, acronym and
parameter. If a measure depends on a parameter, tested values as well as the most frequent
value (mode) are reported. Notice that Shortest Path and Random Walk Betweenness al-
gorithms are fast, optimized, versions. The other algorithms were implemented in Matlab,
as described in Section 3. Further notice that the Matlab implementation of the matrix
exponential is very efficient (it is used in Estrada’s node betweenness).

Name Type Acronym Description Param. Tested values Mode Time

Baseline - BL Subsection 5.2 none - - < 10−3s

Edge Connectivity Node Betw. EC See Eq. 3 none - - < 10−3s

Shortest Path Betweenness Node Betw. SPB See Eq. 4 none - - 0.8s
Random Walk Betweenness Node Betw. RWB Subsection 3.1 none - - 1s
Estrada Index Node Betw. EST See Eq. 5 none - - 0.6s
Wehmuth’s K Node Crit. WK See Eq. 6 h [1,2,3,4,5,6] 1 (28%) 342s
Klein Index Node Crit. KLE See Eq. 7 none - - 1634s
Wiener Index Graph Crit. WIE See Eq. 9 none - - 375s
Kirchhoff Index Graph Crit. KIR See Eq. 10 none - - 884s
Kemeny Index Graph Crit. KEM See Eq. 11 none - - 1000s
Shield Value Graph Crit. SHV See Eq. 12 none - - 182s

Bag-of-Paths criticality (fast version) Node Crit. BPCf See Eq. 20 θ 10[−6,−3,−2,−1,0,1] 10 (44%) 42s

Bag-of-Paths criticality (standard version) Node Crit. BPC See Eq. 21 θ 10[−6,−3,−2,−1,0,1] 1 (39%) 205s

5.2. Disconnection strategies

To study the performances of the different centrality/criticality measures,
we simulate the effect of network attacks consisting in deleting its nodes
sequentially in the order provided by the measure – the most critical nodes
being deleted first. This is a natural way of assessing node criticality [14,
15]. We then record, for each network and each measure, the results of
this sequential node deletion by measuring its gradual impact on network
connectivity. A good criticality measure hurts most the network by, e.g.,
disconnecting it in several connected components, each preferably having an
equal size – a balanced partition.

In practice, we first compute a criticality ranking of all nodes accord-
ing to each different centrality/criticality measure introduced in the previous
section. This ranking can be achieved in two different way: (1) it is com-
puted once for all from the whole graph G (one single ranking), or (2) it
is re-computed after each node deletion. With this last option, the cen-
trality/criticality measures must be re-computed n− 1 times which is time-
consuming. We therefore decided to update the ranking only 100 times in
total (except, obviously, for graphs with n < 100 nodes). This last option
will be referred to as 100-rankings.

Recall that, to evaluate the criticality of a node j with respect to a global
graph criticality measure, the difference between the graph criticality of G\j
and the global graph G criticality is computed (see Equation (8)).
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Table 2: Results obtained with the disconnection strategies described in Subsection 5.2.
The Friedman/Nemenyi ranking over 100 graphs (AB and ER), according to two discon-
nection strategies (single ranking and 100-ranking), is presented, together with the mean
± standard deviation of the obtained RBCC area under the curve (AUC). Concerning the
ranking, the Critical Difference is equal to 1.82, meaning that a measure is significantly
better than another if their rank difference is larger than this amount. For the ranking,
the larger is the better whereas, for AUC, smaller is better. In each column, the methods
in bold are the best ones or are not significantly different from the overall best one.

100 AB graphs: single ranking 100 ER graphs: single ranking 100 AB graphs: 100-ranking 100 ER graphs: 100-ranking
measure ranking AUC measure ranking AUC measure ranking AUC measure ranking AUC
BPC 11.750 0.3092 ±0.163 BPC 12.355 0.8634 ±0.180 BPCf 11.640 0.3174 ±0.155 BPC 12.555 0.7936 ±0.161

BPCf 11.285 0.3103 ±0.164 BPCf 10.250 0.8773 ±0.182 BPC 11.370 0.3185 ±0.156 BPCf 11.270 0.8063 ±0.163

RWB 10.425 0.3158 ±0.167 SPB 9.590 0.8851 ±0.167 WK 10.375 0.3249 ±0.159 RWB 9.095 0.8186 ±0.160
KIR 9.435 0.4550 ±0.255 RWB 9.365 0.8827 ±0.175 EC 8.645 0.3392 ±0.162 KIR 8.630 0.8405 ±0.138
WK 8.805 0.3246 ±0.175 KIR 8.575 0.8954 ±0.150 RWB 8.475 0.3427 ±0.162 WK 8.275 0.8215 ±0.163
SPB 8.205 0.3283 ±0.172 WK 7.550 0.8937 ±0.168 EST 8.090 0.3423 ±0.167 SPB 7.955 0.8258 ±0.156
EC 7.815 0.3276 ±0.176 EC 7.290 0.8959 ±0.165 SPB 7.510 0.3523 ±0.164 EC 7.730 0.8272 ±0.159
KLE 6.940 0.3577 ±0.208 WIE 6.610 0.9112 ±0.131 KLE 5.945 0.3740 ±0.182 KEM 6.280 0.8467 ±0.143
WIE 4.385 0.5188 ±0.242 KEM 5.665 0.9092 ±0.145 KIR 5.290 0.5232 ±0.238 WIE 5.530 0.8719 ±0.112
KEM 4.260 0.5226 ±0.246 EST 4.230 0.9113 ±0.156 KEM 5.230 0.5172 ±0.228 EST 5.410 0.8396 ±0.156
EST 3.620 0.4666 ±0.224 SHV 3.780 0.9207 ±0.129 SHV 4.005 0.4179 ±0.169 SHV 3.730 0.8640 ±0.134
SHV 2.585 0.5035 ±0.185 BL 3.015 0.9366 ±0.104 WIE 2.635 0.5995 ±0.232 KLE 2.790 0.8771 ±0.150
BL 1.490 0.7078 ±0.193 KLE 2.725 0.9273 ±0.134 BL 1.795 0.6380 ±0.194 BL 1.910 0.8986 ±0.120

Once those node rankings have been computed for each measure, the
simulated attack can start. Nodes are deleted in decreasing order of crit-
icality. After each node deletion, the Biggest Connected Component size
(BCC), i.e., the number of nodes contained in the largest connected com-
ponent, is recorded [14, 15]. The smaller this value, the more effective the
attack and thus the more effective the criticality index (see Figure 3 for an
example). This performance measure quantifies to which extend the network
is decomposed in several balanced parts (no “giant” component is left). If,
for example, the node deletion strategy (the criticality ranking) is very inef-
ficient, and it never disconnects the network, the BCC only decreases by one
unit at a time. On the contrary, if it cuts the network into two equally sized
parts, the BCC is divided by two, which corresponds to a large decrease.

By further normalizing with respect to the size of the graph, that is,
dividing BCC by the current number of nodes, we get the Relative Biggest
Connected Component size (RBCC) which will be the performance indicator
used in the experiments. It is then possible to draw a plot of RBCC versus the
number of deleted nodes (1, 2, 3, . . . , n) [14, 15]. Then, to summarize those
plots, we sum up the Area Under the Curve (AUC). The smaller this AUC,
the better the method since the deletion of the most critical nodes (according
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Table 3: Another perspective on the results obtained with the disconnection strategies
described in Subsection 5.2. The Friedman/Nemenyi ranking over 100 graphs (AB or
ER) is presented, together with the mean ± standard deviation of the RBBC area under
the curve (AUC). Here, both strategies (single ranking and 100-ranking) are analyzed
together. Concerning the ranking, the Critical Difference is equal to 3.97, meaning that
a measure is significantly better than another if their rank difference is larger than this
amount. For the ranking, the larger is the better while for AUC, the smaller is the better.
In each column, the methods in bold are the best ones or are not significantly different
from the overall best one.

100 AB graphs 100 ER graphs
measure ranking AUC measure ranking AUC
1-BPC 23.185 0.30923 ±0.16319 100-BPC 25.190 0.79360 ±0.16064
1-BPCf 22.575 0.31030 ±0.16351 100-BPCf 23.955 0.80633 ±0.16343
1-RWB 21.045 0.31579 ±0.16704 100-RWB 21.660 0.81857 ±0.15963
100-BPCf 20.355 0.31740 ±0.15509 100-WK 20.880 0.82151 ±0.16311
100-BPC 20.075 0.31847 ±0.15584 100-KIR 20.440 0.84045 ±0.13762
1-WK 18.875 0.32461 ±0.17465 100-SPB 20.250 0.82587 ±0.15663
1-KIR 18.565 0.45500 ±0.25486 100-EC 20.200 0.82723 ±0.15883
100-WK 18.235 0.32488 ±0.15874 100-KEM 18.275 0.84668 ±0.14274
1-SPB 17.665 0.32831 ±0.17209 100-EST 17.790 0.83957 ±0.15614
1-EC 17.585 0.32764 ±0.17627 100-WIE 16.420 0.87185 ±0.11230
100-EC 15.525 0.33924 ±0.16238 100-SHV 15.375 0.86398 ±0.13363
100-RWB 15.120 0.34273 ±0.16239 1-BPC 14.855 0.86344 ±0.18018
100-EST 14.890 0.34227 ±0.16667 100-KLE 13.595 0.87705 ±0.15034
1-KLE 14.780 0.35771 ±0.20768 1-BPCf 12.160 0.87733 ±0.18177
100-SPB 13.395 0.35227 ±0.16436 100-BL 11.245 0.89857 ±0.11965
100-KLE 10.675 0.37401 ±0.18217 1-SPB 11.120 0.88511 ±0.16666
100-KIR 10.085 0.52323 ±0.23805 1-RWB 11.005 0.88265 ±0.17446
100-KEM 10.065 0.51721 ±0.22753 1-KIR 9.655 0.89537 ±0.15000
1-WIE 8.685 0.51884 ±0.24191 1-WK 8.900 0.89371 ±0.16805
1-KEM 8.470 0.52258 ±0.24621 1-EC 8.470 0.89593 ±0.16539
100-SHV 7.905 0.41789 ±0.16913 1-WIE 7.290 0.91115 ±0.13097
1-EST 7.300 0.46664 ±0.22439 1-KEM 6.405 0.90924 ±0.14499
100-WIE 5.600 0.59947 ±0.23205 1-EST 5.040 0.91128 ±0.15548
1-SHV 4.815 0.50353 ±0.18480 1-SHV 4.390 0.92066 ±0.12886
100-BL 3.190 0.63796 ±0.19396 1-BL 3.300 0.93658 ±0.10436
1-BL 2.340 0.70782 ±0.19250 1-KLE 3.135 0.92732 ±0.13371

to the ranking) quickly disconnects the network into balanced components,
leading to smaller RBCC (see the illustrative example in Figure 3).

Finally, we report our results as follows: we perform a Friedman/Nemenyi
test [41] and, in addition, we also compute the mean and the standard devi-
ation of the AUC across all of the AB and ER generated graphs, providing
more detailed results. Results can be found on Table 2; the higher the rank-
ing, the better the measure.

If a parameter is present, it is tuned as follows: for each graph, a range of
values is tested and the best one is chosen for the disconnection experiment
(the size of the graph can influence the parameter choice). This reflects the
case of a real attack (we assume that the attacker has access to the network
structure and can test the effect of different parameters). Parameters could
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Table 4: Selected parameters for the disconnection strategies described in Subsection 5.2.
Note that only WK, BPCf and BPC need a parameter to be tuned. Bold values show the
maximum per task and per measure.

100 AB graphs: 100 ER graphs: 100 AB graphs: 100 ER graphs: sum over
measure parameter value single ranking single ranking 100-ranking 100-ranking the 4 tasks

WK

h = 1 28 15 52 14 111

h = 2 7 68 6 7 87
h = 3 27 15 8 23 70
h = 4 27 0 9 26 60
h = 5 8 2 13 16 40
h = 6 3 0 12 14 32

BPCf

θ = 10−6 6 24 29 10 61
θ = 0.001 6 0 9 3 18
θ = 0.01 6 1 12 5 24
θ = 0.1 8 2 19 14 44
θ = 1 18 6 22 29 76
θ = 10 56 67 9 39 177

BPC

θ = 10−6 16 21 8 15 60
θ = 0.001 6 1 4 4 14
θ = 0.01 17 3 2 1 23
θ = 0.1 24 8 17 18 66
θ = 1 12 52 49 45 156

θ = 10 25 15 20 17 81

be tuned again after each node deletion, but it would be too computationally
intensive, so we did not investigate this approach. For information, best
values of parameters h and θ are reported on Table 4.

For comparison, we also consider the case where nodes are simply removed
at random and independently (BL for baseline). It corresponds to a random
“failure” random or “attack”, which has been studied theoretically in the
literature (see [14] for an example).

5.3. Preliminary exploration: correlation analysis

The different centrality/criticality measures were first compared by com-
puting two Kendall’s correlation tests between each ranking. This is reported
on Table 5 for both a small and a larger value of the parameters of our cen-
trality/criticality measures: θ (BPCf and BPC) and h (WK). The small θ
and h were set to 10−6 and 1, respectively, while the larger θ and h were
10 and 6. To summarize and to make things more visual, dendrograms were
built above with a Ward hierarchical clustering ADD REF based on Kendall’s
correlation matrices (Figure 4).

5.4. Results and discussion

First, notice that, when performing a Friedman/Nemenyi test comparing
different rankings provided by the methods, the critical difference is equal
to 1.82, meaning that a measure is considered as significantly better than
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Table 5: Mean Kendall’s correlation between selected measures over our 200 graphs. Above
the main diagonal: with larger θ and h. Below the main diagonal: small θ and h.

EC SPB SHV WK BPCf WIE KIR KLE EST BL KEM RWB BPC
EC 1.0000 0.8784 0.7352 0.9745 0.8525 0.7088 0.7562 0.3452 0.7761 -0.0030 0.6848 0.8895 0.7637
SPB 0.8784 1.0000 0.6367 0.8555 0.8169 0.6666 0.7365 0.3987 0.6732 -0.0047 0.6420 0.8790 0.7652
SHV 0.7352 0.6367 1.0000 0.7523 0.5391 0.7678 0.5992 0.1036 0.9476 -0.0072 0.7074 0.6008 0.4898
WK 0.3392 0.3116 0.0958 1.0000 0.8153 0.7470 0.7929 0.3286 0.7850 -0.0033 0.7206 0.8766 0.7377
BPCf 0.9231 0.8579 0.6607 0.2959 1.0000 0.5761 0.7689 0.4441 0.5600 -0.0022 0.5345 0.8695 0.8863
WIE 0.7088 0.6666 0.7678 0.0744 0.6873 1.0000 0.7821 0.1380 0.7559 -0.0073 0.8380 0.6384 0.5694
KIR 0.7562 0.7365 0.5992 0.1620 0.8185 0.7821 1.0000 0.3303 0.5923 -0.0066 0.7345 0.8055 0.7585
KLE 0.3452 0.3987 0.1036 0.3325 0.3747 0.1380 0.3303 1.0000 0.1314 0.0060 0.1075 0.4055 0.4675
EST 0.7761 0.6732 0.9476 0.1340 0.6864 0.7559 0.5923 0.1314 1.0000 -0.0032 0.6956 0.6350 0.5030
BL 0.0058 0.0047 0.0037 0.0003 0.0058 -0.0016 -0.0000 0.0100 0.0033 1.0000 -0.0057 -0.0050 -0.0064
KEM 0.6848 0.6420 0.7074 0.0847 0.6671 0.8380 0.7345 0.1075 0.6956 -0.0005 1.0000 0.6292 0.5038
RWB 0.8895 0.8790 0.6008 0.2945 0.9093 0.6384 0.8055 0.4055 0.6350 0.0068 0.6292 1.0000 0.7959
BPC 0.7566 0.7575 0.4538 0.3078 0.7480 0.4820 0.6818 0.5083 0.4753 0.0097 0.4451 0.7872 1.0000
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Figure 3: Example of Biggest Connected Component size recorded when nodes are removed
following criticality rankings. The network is an Albert-Barabási (AB) 60-nodes graph.
The two criticality rankings are BPC (lower curve) and BL (upper curve) and are computed
once before starting to remove nodes. The BPC ranking is more efficient in detecting the
critical nodes, as their removal quickly disconnects the network.

another if its rank is larger by more than this amount. For three of the
four considered tasks (for both disconnection strategies, single ranking and
100-rankings, on Albert-Barabási (AB) graphs and 100-rankings on Erdős-
Rényi (ER) graphs but not for single ranking on ER graphs), the Fried-
man/Nemenyi test [41] cannot conclude that our proposed model (BPC) is
better than its approximation, BPCf, and vice versa (Table 3). For the rank-
ing with ER graphs the rankings are significantly different but still close in
comparison to other criticalities. It means that the considered approximation
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Figure 4: Ward dendrograms of studied criticality measures. Distances are based on
Kendall’s correlation of Table 5. The smaller the height (Y-axis) of joining branches,
the closer the measures. As BPCf, BPC and WK depend on a parameter, two cases are
considered: a larger value of the parameters and a smaller value. The small θ and h are
10−6 and 1, respectively, while the larger θ and h are 10 and 6.

seems reasonable, at least on the studied datasets.
We also observe from the same test (Table 3) that BPC is significantly

better than all the other tested measures on ER graphs. On AB graphs,
it cannot be concluded that BPC is significantly better than RWB in the
case where only one ranking is performed (single ranking). This is probably
related to the fact that BPC is based on random walks, as RWB. Moreover,
if an updated ranking is used instead (100-rankings), then BPC is not sig-
nificantly better than WK – while still obtaining better performances. We
conclude that the introduced criticality measures (BPC and BPCf) perform
well in all contexts as they always perform better (and, most of the time,
significantly better) than the competing measures. However, this advantage
is not always statistically significant when compared to RWB (single ranking
on AB graphs) and WK (100-rankings on AB graphs).

Besides this, we often find the RWB, KIR, WK and SPB measures in the
top-5 (Table 3). Notice that the EC (the degree) is quite efficient combined
with multiple ranking on AB graphs, given its simplicity. At the bottom of
the rankings, KLE, WIE, KEM, EST, and SHV often appear to be even less
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effective than EC. Since EC is a really obvious measure that can be easily
computed, it would certainly be interesting to use EC instead of other, more
sophisticated, measures in many settings. EC is quite efficient on AB graphs,
if recomputed after each node deletion. It can also be noted that KLE is not
performing well on ER graphs (it can even be worse than the random baseline
BL, but its mean AUC is still better). We unfortunately do not have a clear
explanation of why this is the case.

It is also interesting to identify the most chosen θ and h parameter from
Table 4. For h, it depends on to task to fulfill but the best h value is usually
small (1 to 4), and for θ it is better to take a value between 1 and 10. Notice
that BPCf still exhibits the best mean rank when its parameter is fixed
(results not presented here; see the discussion at the end of this section).

From Table 5, it is clear that WK’s correlation with the other measures
varies a lot depending of the h value. On the other hand, BPC’s and BPCf’s
correlation with the other measures are less dependent of θ. Notice that
it is expected that those measures should be highly correlated with RWB
and EC when θ is small and with SPB when θ is large, as the bag-of-paths
betweenness does [24]. However, we observe that the criticality measures
BPC and BPCf are still more correlated with RWB when θ = 10.

In Figure 4, we once more notice that the behaviour of WK is strongly
dependent of h. It turns out that with small h, its behavior is similar to KLE.
When h is larger, the neighborhood is more and more likely to be close to
the whole graph, therefore more and more correlated to EC. As from Table
5, BPC’s and BPCf’s behavior are less sensitive to θ.

From visual inspection of Figure 4, we can identify different clusters of
measures:

• WIE, KEM, SHV and EST form a cluster. This is a bit surprising as
these measures are based on different properties of the graph, but still
provide relatively similar results. Indeed, WIE is based on shortest
paths, KEM is based on random walks, SHV is based on an eigenvalue
of A and EST on paths of different lengths.

• SPB, RWB, KIR, EC, BPCf, BPC are part of another cluster. The
same observation can be made. If RWB, BPCf and BPC are based on
random walks, SPB is based on shortest path and KIR is based on the
spectrum of the Laplacian matrix. Notice that SPB, RWB, KIR, BPCf
and BPC tend to show good performances on Tables 2 and 3.
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• KLE looks apart, but is correlated to WK when h is small.

• Finally, notice that the random baseline BL is the last merged measure
in the two cases, which looks natural.

Before closing the discussion, let us comment on the presence of parame-
ters. At first sight, it seems unfair to compare measures depending on a pa-
rameter (WH, BPC and BPCf) against measures free of parameter. Recall,
however, that the attacker can adapt its behavior to the network structure,
so that a parameter monitoring the smoothing scale can be considered as
an advantage. Moreover, let us recall two facts about the parameter θ of
BPC and BPCf. First, measures are not very sensitive to the parameter and,
second, its optimal value (according to our experiments) is often close to 1
or 10. Therefore, it seems that we could also just fix this parameter. By the
way, we reproduced the experiments by setting θ = 1 and it turns out that
BPC was still the best measure for three disconnection strategies while the
BPCf was the best for the last one (experiments not reported here).

Finally, methods can be sorted (the first been the best one) using Borda
score ranking [42]:

• If node ranking is updated after each node deletion, independently of
the graph type: BPC, BPCf, RWB, WF, EC, SPB/KIR, EST, KEM,
KLE, WIE, SHV.

• If node ranking is not updated after each node deletion, independently
of the graph type: BPC, BPCf, RWB, KIR, SPB, WK, EC, KLE,
KEM, WIE EST, SHV.

• Finally, independently of the graph type and update factor: BPC,
BPCf, RWB, KIR, SPB, WK, EC, KLE, KEM, WIE EST, SHV.

These ranking are in concordance with the rest of this Section.

6. Conclusion

This paper investigated centrality/criticality measures on graphs through
a node disconnection analysis and introduced a new criticality measure based
on a bag-of-paths framework and its variant: the bag-of-paths criticality and
its fast, approximate, version.
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Comparisons based on node disconnection simulations performed on a
large number of generated graphs show that those two bag-of-paths critical-
ity methods outperform the other considered centrality/criticality measures.
Friedman/Nemenyi tests confirm this fact statistically in almost all cases.

Of course the node disconnection analysis is only a proxy to determine
if our criticalities are able to identify “critical” nodes. Our future work will
mainly focus on testing the proposed measures on other tasks and to consider
other strategies, such as disconnecting groups of nodes instead of one single
node at each time.

Finally, a simple correlation analysis of those measure allowed to identify
coherent groups, namely the WIE, KEM, SHV and EST versus the SPB,
RWB, KIR, EC, BPCf and BPC (see Table 1 for acronyms). It was also
shown that the choice of the θ parameter does not impact much the behavior
of our two proposed criticality measures.
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[24] I. Kivimäki, B. Lebichot, J. Saramaki, M. Saerens, Two betweenness
centrality measures based on randomized shortest paths, Scientific Re-
ports 6, Article number: 19668.

[25] D. J. Klein, M. Randic, Resistance distance, Journal of Mathematical
Chemistry 12 (1) (1993) 81–95.

[26] J. G. Kemeny, J. L. Snell, A. Knapp, Denumerable Markov chains,
Springer-Verlag, 1976.

[27] J. R. Norris, Markov chains, Cambridge University Press, 1997.

[28] P. G. Doyle, The Kemeny constant of a markov chain, Unpublished
manuscript available at http://www.math.dartmouth.edu/ doyle (2009)
1–10.

32



[29] H. Tong, B. A. Prakash, C. Tsourakakis, T. Eliassi-Rad, C. Faloutsos,
D. H. Chau, On the vulnerability of large graphs, in: Proceedings of the
2010 IEEE International Conference on Data Mining (ICDM ’10), 2010,
pp. 1091–1096.

[30] A. Mantrach, L. Yen, J. Callut, K. Francoise, M. Shimbo, M. Saerens,
The sum-over-paths covariance kernel: a novel covariance between nodes
of a directed graph, IEEE Transactions on Pattern Analysis and Machine
Intelligence 32 (6) (2010) 1112–1126.

[31] M. Saerens, Y. Achbany, F. Fouss, L. Yen, Randomized shortest-path
problems: Two related models, Neural Computation 21 (8) (2009) 2363–
2404.

[32] G. H. Golub, C. F. V. Loan, Matrix computations, 3th Ed., The Johns
Hopkins University Press, 1996.

[33] C. D. Meyer, Matrix analysis and applied linear algebra, SIAM, 2000.

[34] G. Seber, A matrix handbook for statisticians, Wiley, 2008.

[35] E. Estrada, Network robustness to targeted attacks. the interplay of
expansibility and degree distribution, The European Physical Journal B
- Condensed Matter and Complex Systems 52 (4) (2006) 563–574.

[36] I. Petreska, I. Tomovski, E. Tenreiro, L. Kocarev, F. Bono, K. Pol-
jansek, Application of modal analysis in assessing attack vulnerability
of complex networks, Communications in Nonlinear Science and Numer-
ical Simulation 15 (4) (2010) 1008–1018.

[37] A. Santiago, R. M. Benito, Robustness of heterogeneous complex net-
works, Physica A: Statistical Mechanics and its Applications 338 (2009)
2234–2242.

[38] A.-L. Barabasi, R. Albert, Emergence of scaling in random networks,
Science 286 (5439) (1999) 509–512.

[39] B. Bollobas, Random graphs, Cambridge University Press, 2001.

[40] M. Newman, Networks: an introduction, Oxford University Press, 2010.

33
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