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Abstract

In dynamic surface control (DSC) methods, the control gain functions of systems are always assumed to be
bounded, which is a restrictive assumption. This work proposes a novel DSC approach for an extended class of
strict-feedback nonlinear systems whose control gain functions are continuous and possibly unbounded. Appropriate
compact sets are constructed in such a way that the trajectories of the closed-loop system do not leave these sets, there-
fore, in these sets, maximums and minimums values of the continuous control gain functions are well defined even if
the control gain functions are possibly unbounded. By using Lyapunov theory and invariant set theory, semi-globally
uniformly ultimately boundedness is analytically proved: all the signals of closed-loop system will always stay in
these compact sets, while the tracking error is shown to converge to a residual set that can be made as small as desired
by adjusting design parameters appropriately. Finally, the effectiveness of the designed method is demonstrated via
two examples.

Keywords: Dynamic surface control, Adaptive neural control, Robust control, Invariant set theory

1. Introduction

Recent years have witnessed a great amount of re-
search in approximation-based adaptive control for non-
linear uncertain systems due to both the practical need
and theoretical challenges [1-15]. In these works, neu-
ral networks (NNs) or fuzzy-logic systems (FLS) are
typically used to approximate nonlinear functions with
little knowledge of system to be controlled, which has
effectively removed the restrictive matching conditions
for system uncertainties. In addition, as a breakthrough
in the nonlinear control area, the adaptive backstep-
ping approach has been extensively employed to ob-
tain global stability for many classes of nonlinear sys-
tems with the help of neural networks or fuzzy sys-
tems [16-21]. However, because of the employment

of the backstepping technique, the aforementioned ap-
proaches suffer from the problem of ”explosion of com-
plexity”, which is caused by repeated differentiations of
the virtual control law designed at each step and seri-
ously limits the application of conventional backstep-
ping schemes. As a consequence, more recently, the
dynamic surface control (DSC) technique has been cre-
atively proposed to avoid this problem effectively by
introducing a first-order low-pass filter at each step of
the conventional backstepping design procedure. With
the help of the DSC technique, NN-based adaptive
backstepping control approaches have been successfully
constructed for a large class of nonlinear systems, with
excellent control performance [22-26]. Therefore, the
DSC technique has become an established powerful tool
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in the field of adaptive control for nonlinear systems [25,
27-33]. For example, by combining DSC and minimal
learning parameter (MLP) techniques, in [25], a RBF
NN-based robust adaptive tracking control algorithm is
proposed for a class of strict-feedback SISO nonlinear
systems. Moreover, In [34], an adaptive neural control
scheme is presented for a wide class of perturbed strict-
feedback nonlinear time-delay systems with unknown
virtual control coefficients using Lyapunov-Krasovskii
functions to overcome the possible controller singular-
ity problem and so on.

However, it should be pointed out that, for the DSC
technique to work, the control gain functions have al-
ways been assumed to be bounded, some efforts have
been made in order to remove this restrictive assump-
tion such as in [31, 35] which use alternative techniques
than DSC, however, to the best of the authors’ knowl-
edge, the restrictive assumption of bounded control gain
functions is required in all existing DSC-based schemes.
The restriction arises from the fact that the upper and
lower constants bounds of control gain functions may
be difficult to acquire in some practical systems, or even
nonexistent [36], which motivates us to explore new
methods to overcome this limitation of DSC technique.

Overcoming this limitation is challenging, due to the
fact that neural networks approximation errors will in-
evitably occur while using NNs to approximate un-
known continuous functions on a compact set, this,
combined with external disturbances, may degrade sys-
tem performance, or even lead to instability of closed-
loop system [37, 38]. We need to develop a design tech-
nique that guarantees that the trajectories of closed-loop
systems do not leave appropriate compact sets.

The main contributions of this work are as follows.
1) Compared with previous literatures on DSC tech-

nique, we allow the control gain functions to be possibly
unbounded. Only the sign of the control gain functions
is assumed to be known.

2) To handle this larger class of nonlinear systems,
appropriate compact sets are constructed. By using Lya-
punov theory and invariant set theory, the closed-loop
trajectories are guaranteed not to leave the compact sets
so that we can handle continuous control gain functions
which are bounded on compact sets. Consequently, the
restrictive assumption has been removed, and the ap-
plication range of the DSC technique is drastically en-
larged.

3) Finally, it is analytically proved that all the closed-
loop signals are semi-globally uniformly ultimately
bounded (SGUUB) while the tracking error is shown to
converge to a residual set that can be made as small as
desired by adjusting design parameters appropriately.

The rest of this paper is organized as follows. Sec-
tion 2 gives the problem formulation and preliminaries.
The adaptive DSC scheme design and stability analysis
are presented in Section 3 and Section 4, respectively.
In Section 5, simulation studies are performed to show
the effectiveness of the proposed scheme. Finally, the
Section 6 concludes the work.

2. Problem statement and preliminaries

2.1. Problem formulation

Consider a class of uncertain SISO strict-feedback
nonlinear dynamic systems of the following form[25]:

ẋi = fi(x̄i) + gi(x̄i)xi+1 + ∆i(x, t), 1 ≤ i ≤ n − 1
ẋn = fn(x) + gn(x)u + ∆n(x, t)
y = x1

(1)
where x̄i = [x1, x2, ..., xi]T ∈ Ri and x =

[x1, x2, ..., xn]T ∈ Rn are the system state variables;
u, y ∈ R are the system input and output, respectively.
The functions fi(·) are unknown continuous functions
with fi(0) = 0. gi(·) are unknown continuous control
gain functions and ∆i(x, t) denote unknown external dis-
turbances with i = 1, 2, . . . , n.

The control objective of this study is to construct
a DSC-based robust adaptive NN tracking controller
u such that the system output y follows the desired
trajectory yd, the output tracking error can be ren-
dered arbitrary small and all the signals in the closed-
loop systems (1) are semi-globally uniformly ultimately
bounded (SGUUB) in the presence of external distur-
bances.

Before proceeding to the adaptive neural control de-
sign of system (1), we make the following Assumptions
and Lemmas.
Assumption 1: The signs of unknown control-gain
functions gi(·) are known. Without losing generality, it
is further assumed that gi(x̄i) > 0 for i = 1, 2, . . . , n.
Remark 1: It should be pointed out that in all the ex-
isting schemes based on DSC technique, e.g. [25,27-
33], the control-gain functions gi(x̄i), i = 1, 2, . . . , n are
assumed to satisfy 0 < gi,m ≤ |gi(x̄i)| ≤ ḡi,M with
ḡi,M > 0 and gi,m > 0 being known constants. This
assumption is sufficient for controllability of system
(1) [25,31,33]. However, in practice, the assumption
0 < gi,m ≤ |gi(x̄i)| ≤ ḡi,M is too restrictive since it may be
difficult or even impossible to have prior knowledge of
gi(x̄i). Moreover, the upper bound ḡi,M and lower bound
gi,m of gi(x̄i) may be nonexistent: for example, suppose
the control-gain functions gi(x̄i), i = 1, 2, . . . , n have the
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following form
gi(x̄i) = exi (2)

The assumption 0 < gi,m ≤ |gi(x̄i)| ≤ ḡi,M does not
hold since ḡi,M and gi,m do not exist: nevertheless, the
system is controllable and Assumption 1 holds since
gi(x̄i) > 0.
Assumption 2 [4]: The reference signal yd(t) is
a sufficiently smooth function of t, and there ex-
ists a positive constant B0 such that Π0 :={[

yd, ẏd, ÿd
]T

∣∣∣(yd)2 + (ẏd)2 + (ÿd)2 ≤ B0

}
, where Π0 is a

compact set.
Assumption 3 [25]: For ∀t > 0, ∆i (x, t) are bounded,
that is, there exist unknown positive constants ∆∗i such
that |∆i (x, t)| ≤ ∆∗i , i = 1, 2, . . . , n.

The following Lemmas will be functional to the DSC
design
Lemma 1 [39]: Consider the dynamic system of the
following form

Ż(t) = −aZ(t) + bv(t), Z(t) ∈ R (3)

where a and b are positive constants and v(t) is a positive
function. Then, for any given bounded initial condition
Z(t0) ≥ 0, then Z(t) ≥ 0 for all ∀t ≥ 0.
Lemma 2 [40]: For any q ∈ R and ς > 0,the hyperbolic
tangent function fulfills

0 ≤ |q| − q tanh (q/ς) ≤ 0.2785ς (4)

Lemma 3 [41]: (Young’s inequality with ε) For any
(x, y) ∈ R2, the following inequality holds

xy ≤
ε2

p
|x|2 +

1
qε2 |y|

2 (5)

where ε > 0, q > 1, p > 1 and (p − 1)(q − 1) = 1.
2.2. RBF neural network approximation

In this note, the radial basis function neural network
(RBF NN) is considered to be applied to approximate
the unknown continuous function h(Z) : Rn → R as
follows

h(Z) = ΘT ψ(Z) (6)

where Z ∈ ΠZ ⊂ Rn is the input vector to the basis
function; Θ = [Θ1,Θ2, ...,Θl]T ∈ Rl is the weight vector
with l being the number of basic functions. The basic
functions ψ(Z) = [ψ1(Z), ..., ψn(Z)]T ∈ Rl are chosen to
be Gaussian functions of the following form

ψi(Z) = exp
−(Z − µi)T (Z − µi)

σ2
i

 , i = 1, 2, ...., l (7)

where µi ∈ Rl and σi ∈ R are the center and the width of
the Gaussian function, respectively.

It has been proved that any continuous function can
be approximated by a neural network as in (7) with any
desired accuracy over a compact set ΠZ ⊂ Rn provided
that we select enough neural network nodes. The best
approximation is denoted with

hnn(Z) = Θ∗T ψ(Z) + ε (Z) , ∀Z ∈ ΠZ ⊂ Rn (8)

where Θ∗ is the ideal constant weight vector, and ε(Z) is
the approximation error which satisfies ‖ε(Z)‖ ≤ ε∗ with
ε∗ > 0 being an unknown constant. It should be noticed
that the optimal weight vector Θ∗ is an ‘artificial’ vector
required only for analysis purpose which satisfies

Θ∗ := arg min
Θ∈Rl

{
sup
Z∈ΠZ

|hnn(Z) − ΘT ψ(Z)|
}

(9)

For compactness, let ε denote ε(Z), ‖x‖ and ‖A‖ de-
note the 2-norm of vector x and matrix A, respectively.

3. Adaptive neural controller methodology

In this section, we will develop a RBF NN-based ro-
bust adaptive tracking control scheme for system (1) us-
ing the DSC technique and invariant set theory. The
specific procedure of the controller design is given as
follows:

Step 1: To begin the design, define the output tracking
error z1 = x1 − r. From (1), the time derivative of z1 is

ż1 = f1(x1) + g1(x1)x2 + ∆1(x, t) − ṙ (10)

Since the continuous function f1(x1) is unknown, a
RBF NN is used to approximate f1(x1) as follows

f1(x1) = Θ∗T1 ψ1(x1) + ε1 , x1 ∈ Πx (11)

where ε1 is the approximation error satisfying |ε1| ≤ ε
∗
1

with ε∗1 > 0 being an unknown constant.
Substituting (11) into (10), one has

ż1 = Θ∗T1 ψ1(x1) + g1(x1)x2 + ∆1(x, t) + ε1 − ṙ (12)

To consider the stabilization of subsystem (10),
choose the following quadratic function as

Vz1 =
1
2

z2
1 (13)

Using (12), the time derivative of Vz1 is

V̇z1 = z1

(
Θ∗T1 ψ1(x1) + ε1 + g1(x1)x2 + ∆1(x, t) − ṙ

)
(14)

Define a compact set Πz1 :=
{
z1

∣∣∣Vz1 ≤ p
}
, with p be-

ing a positive design constant. In the compact set Πz1 ,
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the following Lemma 4 holds for control-gain function
g1(x1) of subsystem (10).
Lemma 4 : The unknown continuous function g1(x1)
has a maximum and a minimum over compact set Πz1 ×

Π0, namely, there exist positive constants g1,m and ḡ1,M
such that g1,m = min

Πz1×Π0
g1(x1) and ḡ1,M = max

Πz1×Π0
g1(x1).

Proof : Note that z1 = x1 − r and x1 = z1 + r, so that
the continuous function g1(x1) can be rewritten as

g1(x1) = µ1(z1, r) (15)

where µ1(z1, r) is a continuous function of z1 and r, and
Πz1 ×Π0 is a compact set since Πz1 and Π0 are also com-
pact sets. Furthermore, it is seen from (15) that all the
variables of µ1(z1, r) lie in the compact set Πz1 × Π0.
Therefore, µ1(z1, r) has a maximum ḡ1,M and a mini-
mum g1,m in the compact set Πz1 × Π0. Consequently,
we have

0 < g1,m ≤ g1(x1) ≤ ḡ1,M , x1 ∈ Πz1 × Π0 (16)

Choose a virtual controller α1 for x2 in (12) and pa-
rameters adaptation laws as follows

α1 = −c1z1 −
ϑ̂1z1

2b2
1

ψT
1 (x1)ψ1(x1)

−δ̂1 tanh
(

z1

υ1

)
− ξ1ṙ tanh

(
z1ṙ
υ1

) (17)

˙̂ϑ1 =
ρ1z2

1

2b2
1

ψT
1 (x1)ψ1(x1) − σ1ρ1ϑ̂1 (18)

˙̂δ1 = β1z1 tanh
(

z1

υ1

)
− σ1β1δ̂1 (19)

where c1 > 0, b1 > 0, υ1 > 0, ξ1 ≥ g−1
1,m, ρ1 > 0, σ1 > 0

and β1 > 0 are design parameters. ϑ̂1 and δ̂1 are es-
timates of the unknown constants ϑ1 = g−1

1,m

∥∥∥Θ∗1∥∥∥2
and

δ1 = g−1
1,m

(
ε∗1 + ∆∗1

)
, respectively.

Remark 2: Note that (18) and (19) satisfy the condi-
tions of Lemma 1, therefore, by choosing ϑ̂1(0) ≥ 0 and
δ̂1(0) ≥ 0, we have ϑ̂1(t) ≥ 0 and δ̂1(t) ≥ 0 for ∀t ≥ 0.
Furthermore, since the initial conditions of ϑ̂1(0) and
δ̂1(0) are design parameters, we choose the initial con-
ditions δ̂1(0) = ϑ̂1(0) = 0 in this paper.

To avoid repeatedly differentiating α1, which leads
to the so called “explosion of complexity”, in the next
steps, the DSC technique originally presented in [26] is
exploited here. Introduce a first-order filter and let α1
pass through it with time constant τ2 so as to obtain α2, f
as

τ2α̇2, f + α2, f = α1, α2, f (0) = α1(0) (20)

Define the output error of this filter as y2 = α2, f − α1,
which yields α̇2, f = −y2/τ2 and

ẏ2 = −
y2

τ2
+

[
−
∂α1

∂z1
ż1 −

∂α1

∂ϑ̂1

˙̂ϑ1 −
∂α1

∂δ̂1

˙̂δ1 −
∂α1

∂ṙ
r̈
]

= −
y2

τ2
+ χ2

(
z1, z2, y2, ϑ̂1, δ̂1, r, ṙ, r̈

)
(21)

where χ2(·) is a continuous function and it will be em-
ployed in the stability analysis later.

By noting that x2 = z2 + α2, f and y2 = α2, f − α1, one
has

x2 = z2 + y2 + α1 (22)

Substituting (22) into (14), we have

V̇z1 = z1(Θ∗T1 ψ1(x1) + ε1 + g1(x1)(z2 + y2 + α1)
+∆1(x, t) − ṙ)

(23)

Applying Lemma 3 yields

z1Θ∗T1 ψ1(x1) ≤
z2

1

∥∥∥Θ∗1∥∥∥2

2b2
1

ψT
1 (x1)ψ1(x1) +

b2
1

2
(24)

According to Assumption 3, |ε1| ≤ ε
∗
1 and using (24),

we can rewrite (23) as

V̇z1 ≤z1z2g1(x1) + z1g1(x1)y2 + z1g1(x1)α1 − z1ṙ

+
z2

1

∥∥∥Θ∗1∥∥∥2

2b2
1

ψT
1 (x1)ψ1(x1) + |z1|

(
ε∗1 + ∆∗1

)
+

b2
1

2

(25)

Substituting the virtual controller α1 into (25) and uti-
lizing (16) and ξ1g1,m ≥ 1, we have

V̇z1 ≤z1z2g1(x1) + z1g1(x1)y2 − c1g1,mz2
1

−
ϑ̂1z2

1g1,m

2b2
1

ψT
1 (x1)ψ1(x1) − z1g1,mδ̂1 tanh

(
z1

υ1

)

−z1ṙ tanh
(

z1ṙ
υ1

)
+

z2
1

∥∥∥Θ∗1∥∥∥2

2b2
1

ψT
1 (x1)ψ1(x1)

+ |z1|
(
ε∗1 + ∆∗1

)
− z1ṙ +

b2
1

2

(26)

Noting ϑ1 = g−1
1,m

∥∥∥Θ∗1∥∥∥2
and δ1 = g−1

1,m

(
ε∗1 + ∆∗1

)
, we

can obtain

−
ϑ̂1z2

1g1,m

2b2
1

ψT
1 (x1)ψ1(x1) =

ϑ̃1z2
1g1,m

2b2
1

ψT
1 (x1)ψ1(x1)

−
z2

1

∥∥∥Θ∗1∥∥∥2

2b2
1

ψT
1 (x1)ψ1(x1)

(27)
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−z1g1,mδ̂1 tanh
(

z1

υ1

)
= − z1

(
ε∗1 + ∆∗1

)
tanh

(
z1

υ1

)
+z1g1,mδ̃1 tanh

(
z1

υ1

) (28)

According to (27), (28) and Lemma 2, we can rewrite
(26) as follows

V̇z1 ≤ − c1g1,mz2
1 + z1z2g1(x1) + z1g1(x1)y2

+
ϑ̃1z2

1g1,m

2b2
1

ψT
1 (x1)ψ1(x1) + a1

+z1g1,mδ̃1 tanh
(

z1

υ1

) (29)

where a1 = 0.2785υ1(ε∗1 + ∆∗1 + 1) +
b2

1
2

Define the Lyapunov function candidate

V1 = Vz1 +
g1,mδ̃

2
1

2β1
+

g1,mϑ̃
2
1

2ρ1
+

1
2

y2
2 (30)

where δ̃1 = δ1 − δ̂1 and ϑ̃1 = ϑ1 − ϑ̂1 are the estimation
errors of δ1 and ϑ1, respectively.

It follows from (21) and (29) that the time derivative
of V1 is

V̇1 ≤ − c1g1,mz2
1 + z1z2g1(x1) + z1g1(x1)y2 −

y2
2

τ2

−
g1,mδ̃1

β1

[
˙̂δ1 − β1z1 tanh

(
z1

υ1

)]
+ |y2| |χ2(·)|

−
g1,mϑ̃1

ρ1

 ˙̂ϑ1 −
ρ1z2

1

2b2
1

ψT
1 (x1)ψ1(x1)

 + a1

(31)

Substituting parameters adaptation laws (18) and (19)
into (31), we obtain

V̇1 ≤ − c1g1,mz2
1 + z1z2g1(x1) + z1g1(x1)y2

+σ1g1,mδ̃1δ̂1 −
y2

2

τ2
+ σ1g1,mδ̃1δ̂1

+ |y2| |χ2(·)| + a1

(32)

Step i (2 ≤ i ≤ n − 1): A similar procedure is re-
cursively employed for each step i, i = 2, 3, . . . , n − 1.
Define zi = xi − αi, f . The time derivative of zi is

żi = fi(x̄i) + gi(x̄i)xi+1 + ∆i(x, t) − α̇i, f (33)

Similar to Step 1, a RBF NN is used to approximate
the unknown continuous functions fi(x̄i) as follows

fi(x̄i) = Θ∗Ti ψi(x̄i) + εi , xi ∈ Πx (34)

where εi is the approximation error satisfying |εi| ≤ ε
∗
i

with ε∗i > 0 being an unknown constant.
Consider the i-th subsystem quadratic function

Vzi =
1
2

z2
i (35)

It follows from (33) and (34) that the time derivative
of Vzi is

V̇zi = zi

(
Θ∗Ti ψi(x̄i) + εi + gi(x̄i)xi+1 + ∆i(x, t) − α̇i, f

)
(36)

Design the virtual controller αi for xi+1 in (36) and
the adaptations laws of the i -th subsystem as follows

αi = − cizi −
ϑ̂izi

2bi
ψT

i (x̄i)ψi(x̄i)

−δ̂i tanh
(

zi

υi

)
− ξi

yi

τi
tanh

(
ziyi

τiυi

) (37)

˙̂ϑi =
ρiz2

i

2b2
i

ψT
i (x̄i)ψi(x̄i) − σiρiϑ̂i (38)

˙̂δi = βizi tanh
(

zi

υi

)
− σiβiδ̂i (39)

where ci > 0, bi > 0, υi > 0, ξi ≥ g−1
i,m, ρi > 0, σi > 0

and βi > 0 (i = 2, 3, . . . , n) are design parameters.
ϑ̂i and δ̂i are estimates of the unknown constants ϑi =

g−1
i,m

∥∥∥Θ∗i ∥∥∥2
and δi = g−1

i,m

(
ε∗i + ∆∗i

)
, respectively. Similar

to Remark 2, it can be noticed that we have ϑ̂i(t) ≥ 0
and δ̂i(t) ≥ 0 for ∀t ≥ 0 by appropriately choosing the
initial values δ̂i(0) = ϑ̂i(0) = 0

Let the virtual controller αi pass through a first-order
filter to obtain the output αi+1, f as follows

τi+1α̇i+1, f + αi+1, f = αi, αi+1, f (0) = αi(0) (40)

Define yi+1 = αi+1, f − αi, which yields α̇i+1, f =

−yi+1/τi+1 and

ẏi+1 = −
yi+1

τi+1
+ χi+1

(
z̄i+1, ȳi+1,

¯̂ϑi,
¯̂δi, r, ṙ, r̈

)
(41)

where z̄i+1 = [z1, z2, · · · , zi+1]T , ȳi+1 =
[
y2, · · · , yi+1

]T ,
¯̂ϑi =

[
ϑ̂1, ϑ̂2, · · · , ϑ̂i

]T
, ¯̂δi =

[
δ̂1, δ̂2, · · · , δ̂i

]T
and χi+1(·)

is a continuous function.
From xi = zi + αi, f and yi = αi, f − αi−1, we have

xi = zi + yi + αi−1 (42)

In view of (37), we know that the virtual control αi−1
is a continuous function with respect to zi−1, δ̂i−1, yi−1,
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and ϑ̂i−1. Therefore, xi is a continuous function of zi, yi,
δ̂i−1 and ϑ̂i−1. From x1 = z1 + r and (42), it follows that
the control gain functions gi(x̄i) can be expressed in the
following form

gi(x̄i) = µi

(
z̄i, ȳi,

¯̂δi−1,
¯̂ϑi−1, r

)
(43)

where µi (·) is a continuous function.
Define the following compact sets

Πi :={[z̄T
i , ȳ

T
i ,

¯̂ϑT
i−1,

¯̂δT
i−1]T |z2

i

+
∑i−1

j=1
(z2

j + y2
j+1 +

g j,mδ̃
2
j

β j
+

g j,mϑ̂
2
j

ρ j
≤ 2p)}

(44)

where p is the same positive design constant after (14).
Lemma 5: The unknown continuous functions gi(x̄i)
have a maximum and a minimum in compact set Π0×Πi,
namely, there exist positive constants ḡi,M and gi,m such
that ḡi,M = max

Π0×Πi

gi(x̄i) and gi,m = min
Π0×Πi

gi(x̄i)

Proof : It follows from (43) and (44) that all the vari-
ables of µi(·) are included in the compact set Πi × Π0,
thus, the continuous functions µi(·) have a maximum
and a minimum in the compact set Π0 ×Πi. Meanwhile,
in view of (43), we know that gi(x̄i) have a maximum
and a minimum on the compact set Π0 × Πi, namely,
Lemma 5 holds, and the following inequality holds on
Π0 × Πi

0 < gi,m ≤ gi(x̄i) ≤ ḡi,M , xi ∈ Πi × Π0 (45)

Choose the Lyapunov function candidate

Vi = Vzi +
gi,mδ̃

2
i

2βi
+

gi,mϑ̃
2
i

2ρi
+

1
2

y2
i+1 (46)

where δ̃i = δi − δ̂i and ϑ̃i = ϑi − ϑ̂i

According to (36) and (41), and note xi+1 = zi+1 +

yi+1 + αi, we obtain the time derivative of Vi as

V̇i ≤zizi+1gi(x̄i) + zigi(x̄i)yi+1 + zigi(x̄i)αi

+ |zi| (εi + ∆i) +
z2

i ‖Θi‖
2

2bi
ψT

i (x̄i)ψi(x̄i)

−ziα̇i, f −
gi,mδ̃i

βi

˙̂δi −
gi,mϑ̃i

ρi

˙̂ϑi

−
y2

i+1

τi+1
+ |yi+1| |χi+1(·)| +

b2
i

2

(47)

Substituting (37), (38) and (39) into (47), and follow-
ing the same way as step 1, one has

V̇i ≤ − cigi,mz2
i + zizi+1gi(x̄i) + zigi(x̄i)yi+1 −

y2
i+1

τi+1

+gi,mσiϑ̃iϑ̂i + gi,mσiδ̃iδ̂i + |yi+1| |χi+1(·)| + a2

(48)

where a2 = 0.2785υi

(
ε∗i + ∆∗i + 1

)
+

b2
i

2 .
Step n: Define zn = xn − αn, f , whose time derivative

along (1) is

żn = fn(x) + gn(x)u + ∆n(x, t) − α̇n, f (49)

To consider the stabilization of the n-th subsystem,
choose the following quadratic function

Vzn =
1
2

z2
n (50)

Then time derivative of (50) along (49) is

V̇zn = zn

[
fn(x) + gn(x)u + ∆n(x, t) − α̇n, f

]
(51)

Similarly to the previous steps, we apply a RBF NN
to approximate the unknown continuous function fn(x̄n)
as follows

fn(x) = Θ∗Tn ψn(x) + εn, ∀x ∈ Πx (52)

where |εn| ≤ ε
∗
n with ε∗n > 0 being a constant.

From (52), we can rewrite (51) as follows

V̇zn = zn

[
Θ∗Tn ψn(x) + εn + gn(x)u + ∆n(x, t) − α̇n, f

]
(53)

Similar to step i, the continuous function gn(x) can be
expressed in the following form

gn(x) = µn

(
z̄n, ȳn,

¯̂ϑn−1,
¯̂δn−1, r

)
(54)

where µn (·) is a continuous function.
Define the following compact set

Πn :={[z̄T
n , ȳ

T
n ,

¯̂ϑT
n−1,

¯̂δT
n−1]T |z2

n

+
∑n−1

j=1
(z2

j + y2
j+1 +

g j,mδ̃
2
j

β j
+

g j,mϑ̃
2
j

ρ j
) ≤ 2p}

(55)

It should be noted that all the variables of µn (·) are
included in the compact set Πn ×Π0, that is, the contin-
uous function µn (·) has a maximum ḡn,M = max

Πn×Π0
gn(x)

and a minimum gn,m = min
Πn×Π0

gn(x) such that

0 < gn,m ≤ gn(x) ≤ ḡn,M (56)

Design the actual control law u as

u = −cnzn −
ϑ̂nzn

2b2
n
ψT

n (x)ψn(x) − δ̂n tanh
(

zn

υn

)
−ξn

yn

τn
tanh

(
znyn

τnυn

) (57)
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with the corresponding adaptation laws determined as

˙̂ϑn =
ρnz2

n

2b2
n
ψT

n (x)ψn(x) − σnρnϑ̂n (58)

˙̂δn = βnzn tanh
(

zn

υn

)
− σnβnδ̂n (59)

where cn > 0, bn > 0, υn > 0, ξn ≥ g−1
n,m, ρn > 0, σn > 0

and βn > 0 are design parameters. ϑ̂n and δ̂n are the
estimates of the unknown constants ϑn = g−1

n,m

∥∥∥Θ∗n∥∥∥2

and δn = g−1
n,m(ε∗n + ∆∗n), respectively. By recalling

Lemma 1, we have δ̂n(t) ≥ 0 and ϑ̂n(t) ≥ 0 after
choosing δn(t) = 0 and ϑn(t) = 0

Design the Lyapunov function candidate of the fol-
lowing form

Vn = Vzn +
gn,mδ̃

2
n

2βn
+

gn,mϑ̃
2
n

2ρn
(60)

where δ̃n = δn − δ̂n and ϑ̃n = ϑn − ϑ̂n

Then, with the help of (53), the time derivative of Vn

can be expressed as

V̇n = zn

(
Θ∗Tn ψn(x) + εn + gn(x)u + ∆n(x, t) − α̇n, f

)
−

gn,mδ̃n

βn

˙̂δn −
gn,mϑ̃n

ρn

˙̂ϑn

(61)

Substituting the actual control law (57) into (61) and
following the same way as the former steps, we have

V̇n ≤ − cngn,mz2
n −

gn,mδ̃n

βn

[
˙̂δn − βnzn tanh

(
zn

υn

)]
−

gn,mϑ̃n

ρn

[
˙̂ϑn −

ρnz2
n

2b2
n
ψT

n (x)ψn(x)
]

+ a3

(62)

where a3 = 0.2785υn
(
ε∗n + ∆∗n + 1

)
+

b2
n

2
The substitution of adaptation laws (58) and (59) into

(62) finally yields

V̇n ≤ −cngn,mz2
n + gn,mσnϑ̃nϑ̂n + gn,mσnδ̃nδ̂n + a3 (63)

4. Stability analysis

The main stability result of the proposed approach is
summarized in the following theorem 1.

Choose the Lyapunov function as follows

V = V1 + V2 · · ·Vn =

n∑
i=1

Vi (64)

with

Vi =
z2

i

2
+

gi,mδ̃
2
i

2βi
+

gi,mϑ̃
2
i

2ρi
+

y2
i+1

2
, (i = 1, . . . , n − 1)

Vn =
1
2

z2
n +

gn,mδ̃
2
n

2βn
+

gn,mϑ̃
2
n

2ρn
(65)

Theorem 1: Consider the strict feedback nonlinear sys-
tem (1), and let Assumptions 1∼3 hold. Consider the
control design given by the virtual control laws (17) and
(37), filters (20) and (40), actual control law (57) and
adaptation laws (18), (19), (38), (39) and (58), (59). For
any p > 0, and bounded initial conditions satisfying
δ̂(t) ≥ 0, ϑ̂(t) ≥ 0, and V(0) ≤ p, there exist design
parameters ci, bi, υi, ξi, ρi, σi, τi and βi such that

1) The compact set Πn×Π0 is an invariant set, namely,
V(t) ≤ p for ∀t > 0, and hence all the closed-loop sig-
nals are semi-globally uniformly ultimately bounded;

2) The output tracking error z1 satisfies lim
t→∞
|z1| ≤

√
2Λ, where Λ > 0 is a constant depending on the de-

sign parameters.
Proof : In view of (32), (48) and (63), the time deriva-

tive of V is

V̇ ≤ −
n∑

i=1

cigi,mz2
i +

n−1∑
i=1

ḡi,M (|zi+1| + |yi+1|) |zi|

−
1
2

n∑
i=1

σigi,m

(
δ̃2

i + ϑ̃2
i

)
+

1
2

n∑
i=1

σigi,m

(
δ2

i + ϑ2
i

)
+

n∑
i=1

b2
i

2
+ 0.2785υi

(
ε∗i + ∆∗i + 1

)
+

n−1∑
i=1

− y2
i+1

τi+1
+ |yi+1χi+1 (·)|


(66)

By completion of squares, we have

|yi+1χi+1 (·)| ≤
y2

i+1χ
2
i+1 (·)

2d1
+

d1

2

ḡi,M |zi| |yi+1| ≤
ḡ2

i,My2
i+1d2

2
+

z2
i

2d2

ḡi,M |zi| |zi+1| ≤
ḡi,Mz2

i

2
+

ḡi,Mz2
i+1

2

where d1 > 0 and d2 > 0 are unknown constants. Thus,
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we can rewrite (66) as

V̇ ≤ −
n∑

i=1

cigi,mz2
i −

1
2

n∑
i=1

σigi,m

(
δ̃2

i + ϑ̃2
i

)
+

n−1∑
i=1

− y2
i+1

τi+1
+

y2
i+1χ

2
i+1 (·)

2d1
+

ḡ2
i,My2

i+1d2

2


+

1
2

n−1∑
i=1

ḡi,M

(
z2

i + z2
i+1

)
+

n∑
i=1

z2
i

2d2
+ a4

(67)

where a4 =
n∑

i=1

(
b2

i
2 + 0.2785υi

(
ε∗i + ∆∗i + 1

))
+

(n−1)d1
2 +

1
2

n∑
i=1
σigi,m

(
ϑ2

i + δ2
i

)
Then, let us briefly investigate the characteristics of

the continuous functions χi+1 (·) , i = 1, 2, . . . , n − 1,
defined in (21) and (41). According to the expression
of the compact set Πi, i = 2, ..., n, it can be noticed
that all the variables of the continuous functions χi+1 (·)
are included in the compact set Πi+1 × Π0. Conse-
quently, χi+1 (·) has a maximum Di+1 over Πi+1 × Π0,
i = 1, 2, . . . , n − 1

Then, let 1/τi+1 ≥ D2
i+1

/
(2d1) + ḡ2

i,Md2

/
2 + λ1 with λ1

being a positive constant. Hence we have

−
y2

i+1

τi+1
+

y2
i+1χ

2
i+1 (·)

2d1
+

ḡ2
i,My2

i+1d2

2
≤ − λ1y2

i+1
(68)

Substituting (68) into (67) and letting
ci ≥ g−1

i,m (ḡMax + 1/(2d2) + λ1) with ḡMax =

max{ḡ1,M , ḡ2,M , . . . , ḡn,M}. Then, we can further
rewrite (67) as

V̇ ≤ −ωV + a4 (69)

where

ω = min {2λ1, βiσi, ρiσi} (70)

It can be seen from (70) that a4/ω can be made arbi-
trarily small by reducing σi, υi and bi , and meanwhile
increasing λ1, βi and ρi. It is always possible to make
a4/ω ≤ p by choosing the design parameters appropri-
ately. Then, in view of (69), we have that V̇ ≤ 0 holds
for V = p: consequently, the compact set Πn × Π0 is
an invariant set and all signals of closed-loop system
are SGUUB. Therefore, property (1) of Theorem 1 is
proved.

Multiplying (69) by eωt and integrating over [0, t]
yields

V(t) ≤ [V(0) − Λ] e−ωt + Λ (71)

with Λ = a4/ω being a positive constant.
Thus, we can further have

lim
t→∞
|z1| ≤ lim

t→∞

√
2V ≤

√
2Λ (72)

This completes the proof of Theorem 1.
Remark 3: It is worth mentioning that (45) is only sat-
isfied on Πi × Π0, and we do not assume gi(x̄i) to be
bounded: we relax this assumption by making use of
the fact that the continuous functions gi(x̄i) are bounded
on the compact set Πi × Π0. In addition, gi,m and ḡi,M

may be unknown and are only used in the stability anal-
ysis.
Remark 4: It should be noted that all of the above
stability analysis are achieved based on (16), (45) and
(56). Specifically speaking, (16) only holds for Πz1×Π0,
(45) only holds for Πi × Π0, (i = 2, ..., n − 1), and (56)
only holds for Πn × Π0. It is also worth noting that
Πn ⊂ Πn−1 × R4 ⊂ · · · ⊂ Π3 × R4(n−3) ⊂ Π2 × R4(n−2) ⊂

Πz1 ×R4(n−1), as a result, (16), (45) and (56) are satisfied
on the compact set Πn × Π0, and all the state variables
stay inside of the compact set Πn ×Π0 all the time since
Πn ×Π0 is an invariant set which has been proved in the
former steps.

5. Simulation results

In this section, a practical example and a numerical
example are given to illustrate the effectiveness of the
proposed method in this paper.
Example 1: Consider the dynamics of a one-link ma-
nipulator actuated by a brush dc (BDC) motor described
as follows[25]:{

Dq̈ + Bq̇ + N sin(q) = I + ∆I

Mİ = −HI − Kmq̇ + V (73)

where q, q̇ and q̈ are the link angular position, veloc-
ity, and acceleration, respectively. I denotes the motor
current; ∆I is the current disturbance; V represents the
input control voltage. The parameters values with ap-
propriate units are given in [42] by D = 1, B = 1,
M = 0.05, H = 0.5, N = 10, and Km = 10. Let
the torque disturbance to be ∆I = 0.2x1 sin(x2x3) with
x1 = q, x2 = q̇ and x3 = I. Define the desired reference
signal yd = (π/2) sin(t)

(
1 − e−0.1t2

)
Therefore, system (73) can be expressed in the fol-

lowing form
ẋ1 = x2
ẋ2 = (−10 sin (x1) − x2) + x3 + 0.2x1 sin (x2x3)
ẋ3 = −10x2 − 10x3 + 20u
y = x1



M.L. Lv et al. / Neurocomputing (2017) 1–13 9

According to Theorem 1, we choose virtual con-
trollers and actual control law as follows

α1 = −3z1 −
ϑ̂1z1

2 × 0.22ψ
T
1 (x1)ψ1(x1)

−δ̂1 tanh (z1) − 0.5q̇d tanh (z1q̇d)

α2 = −z2 −
ϑ̂2z2

2 × 0.22ψ
T
2 (x̄2)ψ2(x̄2)

−δ̂2 tanh (z2) − 5
y2

0.01
tanh

( z2y2

0.01

)
u = −2z3 −

ϑ̂3z3

2 × 0.22ψ
T
3 (x̄3)ψ3(x̄3)

−δ̂3 tanh (z3) − 0.05
y3

0.01
tanh

( z3y3

0.01

)
where z1 = x1 − r, z2 = x2 − α2, f and z3 = x3 − α3, f ,

and the remaining design parameters are set as: ρ1 =

ρ2 = 1 ρ3 = 1.5, σ1 = σ2 = σ3 = 0.5 β1 = 5
and β2 = β3 = 1. Let the initial conditions for
[x1(0), x2(0), x3(0)]T = [0, 0, 0]T , ϑ̂1(0) = ϑ̂2(0) =

ϑ̂3(0) = δ̂1(0) = δ̂2(0) = δ̂3(0) = 0. Accordingly,
the centers and widths are chosen on a regular lattice in
the respective compact set. Specifically, neural network
ΘT

2 ψ2(x̄2) contains 9 nodes with centers evenly spaced
in the interval [−4, 4] × [−4, 4], width equals to 2, and
the RBF NN for f3(x̄3) contains 11 nodes with centers
evenly spaced in [−10, 10] × [−10, 10] × [−10, 10] and
width is 2 as well. The simulation results are shown as
Figs.1∼5.
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Figure 1: Angular position y and reference signal yd
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Figure 2: Angular velocity x2 and current x3
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Figure 4: The curve of control input u
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Figure 5: Curves of adaptation parameters δ̂1, δ̂2, δ̂3, ϑ̂1,
ϑ̂2 and ϑ̂3

It can be easily known from Fig.1 that the one-link
robot angular position y can follow the reference signal
yd very well and fairly good tracking performance has
been achieved using the proposed scheme. The motor
control input current I(t) and angular velocity q̇ are de-
scribed in Fig.2. Fig.3 is given to explain phase portrait
of z1, z2 and z3, and control input voltage is presented in
Fig.4. In addition, the response curves of adaptive pa-
rameters δ̂1, δ̂2 and δ̂3, and ϑ̂1, ϑ̂2 and ϑ̂3 are depicted
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in Fig. 5. It should be noted that only 2 adaptive pa-
rameters are needed for each subsystem in our paper by
utilizing MLP technique, which reduces the number of
adaptive parameters drastically.
Example 2: To further validate the applicability of the
proposed method, Consider the following second-order
uncertain nonlinear system[43]:

ẋ1 = x1e−0.5x1 +
(
1 + e−0.1x2

1

)
x2 + d1 (x, t)

ẋ2 = x1x2
2 + (3 + cos (x1x2)) u + d2 (x, t)

y = x1

(74)

where d1 (x, t) = 0.5 sin (x2) cos (t) and d2 (x, t) =

0.5
(
x2

1 + x2
2

)
sin (x2). We assume the reference signal

yd = 0.5(sin(t) + sin(0.5t)).
Based on Theorem 1, the virtual control law and ac-

tual control law are designed as follows:

α1 = −10z1 −
ϑ̂1z1

2 × 0.252ψ
T
1 (x1)ψ1(x1)

−δ̂1 tanh (z1) − 2ẏd tanh (z1ẏd)

u = −4z2 −
ϑ̂2z2

2 × 0.252ψ
T
2 (x̄2)ψ2(x̄2)

−δ̂2 tanh (z2) −
2y2

0.01
tanh

( z2y2

0.01

)
where z1 = x1 − yd and z2 = x2 − α2, f . The remain-
ing design parameters of the simulation are taken as:
ρ1 = ρ2 = 1, σ1 = σ2 = 0.5, β1 = 1 and β2 = 2. Let
the initial conditions for [x1(0), x2(0)]T = [0.5, 0]T and
ϑ̂1(0) = ϑ̂2(0) = δ̂1(0) = δ̂2(0) = 0, respectively. The
parameters of RBF NNs are the same as Example 1. It
is worth mentioning that, for comparison later, the sys-
tem output tracking responses of the proposed approach
(scheme 1) and the robust adaptive fuzzy controller of
[43] (scheme 2) are both investigated to further validate
the effectiveness of the proposed method. The simula-
tion results are shown in the following Figs. 6∼10.
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Figure 6: System output y of two schemes
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Figure 7: Tracking errors of two schemes
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The output responses under two methods are depicted
in Figs. 6 and 7. Moreover, the bounds of control in-
put u and variables x2 and α2, f are presented in Figs.
8 and 9, respectively. In addition, the responses curves
of adaptive parameters δ̂1, δ̂2, ϑ̂1 and ϑ̂2 are depicted
in Fig.10. It can be obviously observed from Figs. 6
and 7 that the proposed controller can track the refer-
ence signal as well as the robust adaptive fuzzy con-
troller (scheme 2), and the output y and state x2 converge
rapidly to the reference signals yd and α2, f , respectively.
What’s more, the tracking error of scheme 1 is smaller
than scheme 2, which implies that our scheme has a bet-
ter tracking performance in the presence of system non-
linear functions and external disturbances.

To further investigate the influence of different design
parameters in the dynamic response of the system, three
cases with three sets of design parameters are consid-
ered.

Case 1: σ1 = σ2 = 0.5, b1 = b2 = 0.35, υ1 = υ2 = 1;
c1 = 10, c2 = 1, β1 = β2 = 1, ρ1 = ρ2 = 2, τ2 = 0.01,
ξ1 = ξ2 = 2.

Case 2: σ1 = σ2 = 0.35, b1 = b2 = 0.2, υ1 = υ2 =

0.75; c1 = 10, c2 = 2.5, β1 = β2 = 2, ρ1 = ρ2 = 3,
τ2 = 0.01, ξ1 = ξ2 = 2.

Case 3: σ1 = σ2 = 0.2, b1 = b2 = 0.05, υ1 = υ2 =

0.5; c1 = 10, c2 = 3.5, β1 = β2 = 3, ρ1 = ρ2 = 4,
τ2 = 0.01, ξ1 = ξ2 = 2.
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Figure 11: Output y under 3 cases
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Figure 12: Tracking errors under 3 cases

Based on the closed-loop control system of Example
2, we simulate under the above three cases. And the
remaining parameters remain unchanged. The system
output responses of three sets of different design param-
eters are illustrated in Figs.11 and 12, and the simula-
tion results imply that the tracking errors can be made
small by reducing σi, bi and υi, and meanwhile increas-
ing ci, βi and ρi, which validates the effectiveness of the
method of adjusting parameters.
Remark 5: The design parameters have various influ-
ences on the performance of the proposed scheme. In
particular, the adaptation gains ρi and βi in (38) and (39)
are employed to tune the convergence rate of the adapta-
tion process, and higher adaptation gains can make the
convergence rate faster. In addition, the design parame-
ters bi and υi can also affect the convergence rate of the
adaptation process and smaller bi and υi can contribute
to a faster convergence rate as well. Besides, the small
positive constant σi is a σ-modification factor that can
enhance the stability of (18), (19), (38), (39), (58) and
(59) in the presence of disturbances and approximation
errors. The design parameter ξi ≥ g−1

i,m, does not affect
the size of tracking error z1, and we can tune its value
from trial simulations since the positive constant gi,m is
unknown.

6. Conclusion

A novel adaptive neural control scheme based on
DSC has been proposed for a more general class of
uncertain strict-feedback nonlinear system. In particu-
lar, the assumption that the control gain functions must
be bounded has been relaxed by assuming continuous
(possibly unbounded) control gain functions, which are
bounded on compact set. This significantly relaxes a
severe limitation of DSC technique. Fundamental to
achieving this relaxation was the construction of an in-
variant set that guarantees that the closed-loop trajecto-
ries do not leave appropriate compact sets. The stability
of the closed-loop system has been rigorously proved
by Lyapunov analysis and invariant set theory, while the
tracking error has been shown to converge to a residual
set that can be made as small as desired by adjusting de-
sign parameters appropriately. Finally, the performance
of the proposed approach has been verified through two
simulation examples.
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