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Abstract. The purpose of this paper is to introduce and investigate a new system of global fractional-order
interval implicit projection neural networks. An existence and uniqueness theorem of the equilibrium point
for the system of global fractional-order interval implicit projection neural networks is obtained under some
suitable assumptions. Moreover, Mittag-Leffler stability for the system of global fractional-order interval
implicit projection neural networks is also proved. Finally, two numerical examples are given to illustrate

the validity of our results.
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1 Introduction

This paper deals with a new system of global fractional-order interval implicit projection neural networks
(FIIPNN) in R™ x R™ as the following form:

§ Dalt) = Preyola(®) — p (Aa(t) + A%y (1)) — pal — (t), ¢ >0,
2(0) = 20 = (210,720, - - Tno) |,

6 DEY(t) = Prey(yenlw(t) — M (By(t) + B*x(t)) — \b] — y(t), ¢ >0,
y(0) = yo = (410, Y20, - - - , Ymo)

(1.1)

_‘

3

where a € (0,1), tho‘ is the Caputo fractional derivative, K1 : R™ — 25" and K, : R"™ — 28" are two point
to set mappings with nonempty, closed and convex values, P, (1)) and Pk, y(+)) are two implicit projection

operators, p > 0 and A\ > 0 are two constants, a = (a1, az,...,a,)" € R" and b = (b1,ba,...,b,) € R™
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are two vectors, and

Aec A= {(aij)an
A* € A% = { (ajj)nxm‘ﬁ <A <A e, a*y; <aj < EU},

ASAZTA, i, ay <a; <y},

BeBr= {(bij)mx.m ‘E <B<B,ie, bi; < bij Sgij}a
B e 57 = { ()

| B S BT SBE e, by <0 <P

Some special cases of (1.1) are as follows.

(i) If Ki(u) = Ky and Ka(v) = K for all (u,v) € R™ x R™, here Ky C R" and K, C R™ are two

nonempty, closed and convex subsets, then (1.1) reduces to the following problem:

6 Dia(t) = P, [a(t) — p (Az(t) + A*y(t) — pa] — (1), t >0,
ac(O) = Xy = (.Tlo,l'go, e ,xno)—r,

§ Dey(t) = Pre,[y(t) — X (By(t) + B*x(t)) — Ab] — y(t), t >0,
)T

(1.2)

y(0) = yo = (410, Y20, - - - » Ymo

)

which is the system of fractional-order generalized projection neural networks introduced and studied
by Wu et al. [1].

(i) fn=m A=A=A=B=B=B, A =A*=A*=0,B"=B*"=B*=0,a=b,p=\ 20 =%
and Kq(u) = Ko(u) = K for all u € R", here K C R" is a nonempty, closed and convex subset, then
(1.1) reduces to the following problem:

{ CDea(t) = Prla(t) — pAx(t) — pa] — 2(t), >0, 13)

xi(o):xiO; i:1325"'5n7

which is the global projection dynamical systems with fractional-order introduced and investigated by
Wu and Zou [2].

(i) fa=1,n=m A=A=A=B=B=B A*=A"=A*=0,B*=B*"=B*=0,a=0b, p= ),
xo = yo and Kj(u) = Ka(u) for all w € R™, then (1.1) reduces to the implicit projected dynamical

systems considered by Noor et al. [3].

We remark that for suitable choices of Ky, Ko, A, A*, B, B* and « in the formulation of (1.1), one
can obtain many problems of the fractional-order projection neural networks (dynamical systems) and the

implicit projection neural networks (dynamical systems) investigated in recent literature.

We note that the projection neural networks (dynamical systems) have been used to solve constrained
optimization problems, variational inequality problems, complementarity problems, dynamic traffic network
and interregional commodity movements and so on [4-20]. On the other hand, fractional order systems
have also been a hot research topic due to their application for control theory, mechanics and physics,
viscoelasticity materials, biology, electrical circuits, neural networks and so on (see, for example, [21-26]).
Nevertheless, in some practical world, it is necessary to consider some complex systems such as model

involving (1.1). In the following, we will present an example, which comes from [8].

Example 1.1. A network tatonnement model was introduced by Friesz et al. [8] to investigate dynamics
of network adjustments. In particular, we study a simple network model involving 5 arcs and 6 nodes (see,

Figure 1), which has a origin (node 1) and a destination (node 4) with three paths. Path p; is composed of



arcs a1 and ay4, path ps is composed of arcs as, asz and a4, path p3 is composed of arcs as and as. Here, we

follow the notations used in [1].

Figure 1: 5-arcs, 4-nodes traffic network.

Applying the network tatonnement model presented by Friesz et al. [8], we have

2O = k1 {Pry s [y () — p(Cay (p(t)) + Cay (Rip(£)) — uaa ()] — b, (1)},
Pr2® — b { Prcy o Thpa () = p(Cay (p(t)) + Cay (hip(£)) + Cay (hp () — ura(1))] — by (1)},
W@ — s { Prcy o[l () = p(Cay (p(1)) + Cag (hyp (1)) — u1a(£))] — by (1)}, (1.4)
Da®) = { Py, [ura(t) — Ahy <t>+hp<>+hp3<t> Tya(ura(t)))] — ura(t)},

hm( )—hgla hpz(o) =h

dhp, (t)

where p, A, k; (i = 1,2,3), n1 are positive constants, h, = (hy,, hp,, hp,) T, K1, (i = 1,2,3), K21 denote the
feasible constraints with fixed lower and upper bounds for flows h,, (i = 1,2,3) and cost u14, respectively,
that is,

Ki;={hy, € Rlc1: < hp, <24} (i =1,2,3),

K1 ={uis € R|dy <uyg <do}.

With the adjustment of flows and cost, it is difficult to maintain the same fixed bounds for constraint sets.
Thus, it is reasonable to assume that c¢; ; and ¢z ; are dependent on flows, d; and dy are dependent on travel
cost, that is, c¢1; and cp; are functions of hy, di and dy are functions of u14. Therefore, the constraint sets

can be rewritten as follows:
Kl,i(hp) - {Qi S R| Cl,i(hp) <0 < C2,i(hp)} (Z =1, 273),
Ko1(u14) = {v € R|di(u14) < v < da(u1a)}.

We assume that the cost functions of flow on arc a,, can be written as follows

Ca (hp(£)) =l = D Xampips (1), M =1,2,3,4,5
and the travel demand function can be written as

Ti4(u14(t)) =7 - u14(t),

where r, I, (m = 1,2, 3,4, 5) are real numbers, Xq,,p, = 1 if a,,, € p; and Xa,,p, = 0 otherwise. Unfortunately,
it is difficult to determine the precise values of these coefficients in practice, whereas it is easier to give certain

confidence intervals for these coefficients, namely, r < <7 and I, < l,, < I,



Moreover, as Example 1.1 of [1] indicates, this dynamic network has memory. We observe that, for the
problem with memory, it is more appropriate to use the fractional order model rather than integer one (see,
for instance, [22,23,25,26]). By the above discussion, we know that model (1.4) can be reformed as the

following fractional order form:

6 Dfhp, () = 51{ Prc, , (ny (1) [y (£) = p((11 + 1a) i, (1) + Lahp, (£) — ura(8))] — by, (1)},

§ Dy, () = K2 { Prc, o1y (2)) o (£) = p(Lahp, (8) + o Litipy (1) + Lahy, () — uaa(£))] — by, ()},

CDO‘ hps (1) = K3{ Prc, 5(n, (1)) [ps (t) — p(lahp, () + (I2 + I5)hp, (1) — u14(t))] — hp, (1)}, (1.5)
6 Dfura(t) = m{ Py, (ura () (14 (t) = Abp, (8) 4 by (£) + g (£) = runa(1))] — waa(t)},

hp, (0) = hgl, hp, (0) = th, hps (0) = hgs, u14(0) = uly, t >0,

Whereimglmglmandzgrgf

Clearly, if k; =1 (i = 1,2,3) and nm; = 1, then model (1.5) is a form of (1.1).

It is worth to mention that FIIPNN (1.1) is fascinating and important both as its equilibrium behavior
is depicted by the quasi variational inequality (QVT for short), and also because the equilibrium point set
of FIIPNN (1.1) coincides with the solution set to a QVI problem. It is well known that QVI problem is
an important generalization of the variational inequality problems (see, for example, [28-30]). Furthermore,
we note that FIIPNN (1.1) obtains the desired properties of both the fractional-order system and the QVI
within the same framework. Consequently, it is meaningful to investigate the equilibrium point of FIIPNN
(1.1) and the stability for FITPNN (1.1). The main purpose of this paper is to give some new conditions
to guarantee the existence and uniqueness of the equilibrium point for FIIPNN (1.1), and the new stability
result for FIIPNN (1.1) which improves some known stability results in [1,2].

The outline of this paper is as follows. Some definitions and known results are presented in Section
2. The existence and uniqueness concerned with the equilibrium point for FIIPNN (1.1) and the stability
results in connection with the FIIPNN (1.1) are showed in Section 3. Finally, two numerical examples to

demonstrate the main conclusions are given in Section 4.

2 Preliminaries

In this section, we first recall some known definitions and facts.

Following the definitions of [21,24,27], the Riemann-Liouville fractional integral with order o > 0 is

described as 1 ¢
Ifx(t) = = t—7m) ta(r)dr, t>t
tox( ) F( )/to( ) ,CC( ) ) > 1o,

where T'(+) is the gamma function, and the Caputo fractional derivative with order « € (0, 1) is described as

1 t
C na - - o N—a
o Diw(t) = T —a) /tU (t—7)" %' (r)dr, t>tp.

Moreover, the Mittag-Leffler function with two parameters o > 0 and 5 > 0 is defined by

oo k

z
E -\ .
0.6(2) gzof(ak+ﬂ)’ a>0 >0 z€C

For g =1, the one-parameter Mittag-Leffler function is shown as

e k
z
Ea(z) = ayl(z): E m, OZ>0, zeC.
k=0



In particular, F1(z) = e*.
Definition 2.1. Assume that K : R" — 2£" is a point to set mapping with nonempty, closed and convex
values. For any given x € R", the implicit projection operator P ;) : R" — K(x) is described as
P, = arg min —z|, € R".
K@) y] = argmin iy =2,y

Remark 2.1. In many applications [28-31], the point to set mapping K (z) can be given by the following

form:
K(z) = u(z) + K,
where K C R™ is a closed convex set, u(z) is a point to point mapping and the addition of a point v and a

set K is defined by v + K = {v + w|w € K}. In this case, the following relation holds
Definition 2.2. A vector (z*,3*) € R™ x R™ is called an equilibrium point of (1.1) if, for each A € Ay,
A* € A3, B € By and B* € Bj, the vector (z*, y*) satisfies the following relations:
Pr,(z+) [2* — p (Az* + A*y*) — pa] = x*,
Pry(y) ly" = A(By™ + B*z") = Ab] = ™.
Lemma 2.1. [10, Corollary 2.4] If K is a convex closed subset of a Hilbert space H, then the projection

Py is non-expansive, i.e.,
1P [u] = Pre[o]|| < [lu—=wll, Vu,veH.

Lemma 2.2. [32, Remark 3.8] Let G = [tg, +00) x 2. Assume that g : G — R™ is continuous such that it
fulfils the locally Lipschitz condition with respect to the second variable, where 2 C R™ is a domain. Then

there exists a unique solution z(¢) of the following initial-value problem

{ g)D?ac(t) =g(t,x), a € (0,1],

Definition 2.3. (Mittag-Leffler Stability [32]) If * is an equilibrium point of (2.1), then the solution of
(2.1) is called Mittag-Leffler stable if there exist two constants A > 0 and b > 0 such that

() = 2|l < [m (2(to) — 2*) Ba (=A(t — t0))]",
where m(0) = 0, m(z) > 0, and m(x) is locally Lipschitz on 2 € R".
Lemma 2.3. [33, Theorem 2] If z(¢) € C'([0, +0), R), then
DY ()< sgn(z(t))§ D& (t) (holding almost everywhere),
where 0 < a < 1 and z(t1) := lim,_,;+ z(s).

Lemma 2.4. [33, Theorem 1] For tg = 0, let V(¢,z(t)) : [0,4+00) X @ — R be a continuous function

satisfying the locally Lipschitzian condition with respect to the second variable such that
arlz(t)|* < V(t,z(t) < azlz(t)]|*,
Splv (tT,z (t7)) < —as|z(t)[|* (holding almost everywhere),
where V (t,z(t)) is piecewise continuous, lim,_,,;+ V (s, z(s)) exists for any ¢ € [0,400), @ C R" is a domain
containing the origin and V (¢, 2 (t7)) := lim,_,,+ V(s,2(s)), t >0, 8 € (0,1), o; (i =1,2,3), a and b are
positive constants. Then system (2.1) is Mittag-Leffler stable at the equilibrium point z* = 0. Moreover,

if all the assumptions are satisfied globally on R™, then system (2.1) is globally Mittag-Leffler stable at the

equilibrium point z* = 0.



3 Main results

From now on we make the following assumptions:

(Ay) For any x = (21,22,...,2,) € R" and y = (y1,¥2,---,Ym) ' € R™, Ki(z) and K»(y) are assumed to

be as follows

Ki(z) =u'(z) + K1, Ka(y) =u*(y) + Ko,
where .
u'(z) = (uj(z),us(z),. .. ,u,ll(x))T . ul(x) = Zhijxj, i=1,2,...,n,
T " .
and

K1:{ZE€R"|CLZ'SZL'Z'§CQJ, i:1,2,...,n}, ng{yGRm|dLj§yj§d21j, j:1,2,...

here hij; lji; Cl,iy C2,4, dl,j and d21j are all COHS‘E&D‘ES;
(Az) 1= Abj; > 15, j=1,2,---,m;

(A4) There exist constants p; >0 (¢ =1,2,...,n) and 7; >0 (j = 1,2,...,m) such that

0<1_ini_hii+|hii|+ E Z (Adﬂ—l—lhﬂ| +ZT])\b*jl<1 1=1,2,--- n,
J=Lj#

0<1*)\bjj*ljj+|ljj|+l 12:75T_;(b”+|lzi|)+z:1%pa*”<1’ j:1,2,~~~ ,m,
1=1,17#) 1=

where
aji = max {|pa; + hjl, |pag + hyil}, ety =max {|a*;], [a%;]}
and

gij :max{})\bij +l”| s |)\EU +l”}}, Z;;ji :max{|£ji| y }b_*ﬂ}} .

Clearly, under assumption (A;), an equivalent formulation of (1.1) can be rewritten as follows

tho‘:ci(t) = Pk, ,(x(t)) [xz(t) —p <Z1 a;;xi(t) + 21 a:-‘jyj(t)> - pail —x;(t), t >0,
j= j=

xz(o) = T40, 1= 1527"' , 1,

§ Dey;(t) = Prey, (wt)) {yj(t) - A <; bjiyi(t) + ; b§i$i(t)) - )\b;} —y;(t), t >0,

yj(o):y]07 j:1527"'7m7

where Q;; < a5 < ayj, a_*ij < afj < Fz’jv lei < bji < bjiv b_ < b* < b*]z;

Klal(‘r(t)) :Ug( +K11 th]x] +K1 1, 'L':1,2,...,TL7
and

Kz,j(y(t>>ZU(())+Kzg—zlﬂyz + Koy, j=1,2,...,m,

1=1

;m},

(3.1)



with
Kl,i:{zi €R|Cl,i Szz SCQ,’L}v 1= 1,2,...,TL, (34>

and
KQJ = {y] € R| dl,j S Yj S d2,j}a .7 = 1725 PRI (35)
3.1 Existence and uniqueness of the equilibrium point

This subsection will present an existence and uniqueness theorem concerned with the equilibrium point for

(1.1).

Theorem 3.1. Assume that all assumptions (A1)-(A4) are satisfied. Then FIIPNN (1.1) has a unique
equilibrium point for each A € A;, A* € A}, B € By and B* € Bj.

Proof. For any given A € Ay, A* € A}, B € By and B* € By, let T); : R* x R™ — R be given by

‘r *y n m
Tpi(x,y):mPKﬁi(z) ;—p Zau——i—Za 2 —pai|, V(r,y)€R"xR™, (3.6)

and T,(z,y) be given by
Tp(xvy) = (Tpl('rvy)aTPQ(xvy)a e aTPn(zay))T ) v (:C,y) S R"™ x Rm7 (37)

where
K (x) = up (@) + K4,

n
Zj T
E i = (p1, 25+ -+, i)

=1

J
and K7 ; is defined by (3.4).
Let
|| = Z |lzi|, Vo= (z1,2,...,2,)" € R™

For any given vectors (z',y') and (22,4?%) in R™ x R™, by (3.6), (3.7) and Remark 2.1, one has
T (%, 9) = T, (=", )|
= 21T (@ 0%) = Ty (2" 9")|
i=1

n m 2
I %—p Z 4 ; ) e
1
_J

i=1

j=1 J



2 1 2 n

n n m 2
Xr, — X, xXrs *
= E 1223 E hij . - . +PK1,i ,LL_Z o Z(paij +hzg § '_j — Pa;
° i =1 —

n
x
_PKlyi —+ — Z (paw + hz_] M Z pa’z]_ — pPa;

) =1 g
o 1?7 O i & Y7
< Zuz Zlhwl | Prs | = D (pawg + hg) 22 = paiyE = pa
L Hi 53 i
n 1 m 1
—P x_ll — h. * _J —
Ky 1L Z Pij + z_] Z Pa; . (38)
) =1 —

By assumptions (Ag) and (Ay4), it follows from Lemma 2.1 that

ZCQ n 2 m 2
PKlz _Z_Z(paij—i_hlj)_j_zpa?] ! — pPa;
223 — Hj —
J J
1 n 1'1 m 1
—Pg,, | =X - (pa;j ‘f’hw)_]_ —Zpa;}T—j_ — pa;
vo=1 Hi 53 J
2 n 2 m 2
xs €T %
< — = (paz] + hz]) - Zpazg_] — pPa;
M i3 Hi 53
. n om 1
- _Z_Z(pa1]+hij) _Zpa:]_]_paz
L —1
J J
-l & ;& v: -y
= — > (paij; + hij) L= pay—L—
i = M =1 Tj
n 22 — gl 22— gl m y? —yl
< Z |paij+hij|M+|1_Paii_hiilg+zp‘a;j‘M
j=Li K pi : 7
xi— T T — y; —y
< Z a”‘ ‘ ’ + (1 = pay; — hii) g + Zpa i M (3.9)
J=1,4#i Hi Hi =1 Tj
In light of (3.8) and (3.9), we have
2
HTp (w Y all
< (IR 21 N2
< | il +a”)| ‘+ (lhii] +1 = pay; — hi;) |~’Cz T;
Jj= 13751
n
ZZ—PG i |97 — ;|
=1 j=1
= > = (il + @ji) + |has| + 1= pag; — hai ¢ |07 — x|
i=1 | j=Lj#i "
m n ‘LL
2. ety -yl (3.10)
j

j=1i=1
Moreover, let T); : R™ x R™ — R be given by

Tyj(z,y) = 75 Pkz (y) [Z_] —A (Zb - *Zb ) ] , ¥V (z,y) € R" x R™, (3.11)
J

=1



and T (z,y) be given by
TA(.’L‘,y) = (TAl(ZC,y),TAQ(.’L',y), e ,T)\m(.’L',y))T ) v (ZC,y) € R" x Rm’

where
T 2,7
K2,j(y) =u; (y) + Ko j,

I Yi T
]z ) T = Tl;T27'-'aTm)

(3.12)

and K ; is defined by (3.5). Then as same as the proof of (3.10), by assumptions (Az) and (A4), it follows

from (3.11), (3.12), Remark 2.1 and Lemma 2.1 that

HT)\ (zQay ) ay || = Z |TA] 7y T)\j (Il,y1)|

< >8> %(|lij|+5ij)+|ljj|+1_)‘l_)jj_ljj i — ;|

j=1 | i=1,i#5 7

+ —/\b*jz‘l' |

Combining (3.10) and (3.13), one has

T (2%,9%) = T, (% y") [ + T (2%,9%) = T (&, 9

< Z{ B9 (hgil + @ji) + 1hidl +1 = pag; — s p |2 — 3|
i=1 | j=1,j#1 Hi
+ZZ& a~U ‘ya yJ"“ZZ )‘b*ﬂ’x —x‘

—
[

i=1 7,1]1

m
Jj=
m

Z Z —Z(|l”|+b”)+|l”|+1 )‘bjj*ljj ‘y?fyﬂ

Jj=1 | i=1,i#j T

. Zsi\w?—w%Hch ly; —vj
i=1 j=1

2 1 2 1
< w(fla® =2+l =)
where
R [t . 5. I N\p* .. . _ o h.. i —
¥ et
G= D Lyl + )+ Yy N+ hiil + 1= pag — hi, i = 1,2,
=gz 1 =1 M
and
i Ti 7 i .
Cj: Z T—(|lw|+b”) T—pa z]+|ljj|+1*)\bjj*ljj;]:172;---7m7
i=1,i#j 7 i=1 "7
with

nmax{ max §;, max CJ}

1<i<n 1<j<m

It follows from assumption (A4) that 0 < k < 1.

(3.13)

(3.14)

(3.15)

(3.16)

Let Ty : R" x R™ — R™ x R™ define by T,x(z,y) = (Tp(z,y), Ta(z,y)). For any € R" and y € R™, let
[[(x,9)|l1 = |||l + |lyl|. Then, it is well known that (R™ x R™,| - |1) is a Banach space. Now (3.14) implies



that

T (2%,97) = Toa (2", |
= (T @ y%) . Ia (0% 9%)) = (T, (+"97). Tx(xlvyl))H

T, (22,9%) =T, (2", y") || + | Tx («%, %) — ')l

< w(lle® =M+ v =)
= el — ()] 317)
Thus, (3.17) shows that T, is contractive and therefore there exists a unique (u*,v*) € R™ x R™ such that

Tpx (u*,v*) = (u*,v*), that is,

w*

[,L,LPKM () [ p(Z a”u; Z iz ) pai‘| =u, i=1,2,...,n,
=1
P

Z—) —)\bj} =vi, j=1,2,...,m,

=%

TjPK;-J(U*) |:f_—j - A (X:l bjir_i

*

foreach A € Ay, A* € A5, B € By and B* € Bj. Let z} :Z— (1=1,2,---,n)and yj = Z(j=1,2-,m).
J

7

Then, it is easy to see that

Pi, @) [#7 = p(Az™ + A*y") — pa] = 27,
{ P,y [y* — N (By* + B*x*) — \b] = y*
and so the proof is complete. O
Remark 3.1. We note that Theorem 3.1 is a generalization of Theorem 3.1 in [1].
Remark 3.2. From the definition of T, and (3.17), it is easy to check that
[T = 1) @.0) ~ T~ D @) < 0 | @27) - @) (@) (207 € RY x R,

where I is an identity mapping. Thus, we know that T, — I is a Lipschitzian mapping and so Lemma 2.2
shows that there exists a unique solution for FIIPNN (1.1) for any given A € Ay, A* € A}, B € By and
B* € Bj.

3.2 Global Mittag-Leffler stability

In this subsection, we will show that FIIPNN (1.1) is globally Mittag-Leffler stable under some mild condi-

tions.

Theorem 3.2. Assume that all the assumptions (Aj)-(A4) are satisfied. Then FIIPNN (1.1) is globally
Mittag-Leffler stable for each A € A;, A* € A}, B € By and B* € Bj.

Proof. For any given A € A;, A* € A}, B € By and B* € B}. According to Remark 3.2, we deduce that
FIIPNN (1.1) has a unique solution. Assume that

(zl(t)vyl(t)) = ((z%(t)vxé(t)v e 7$'}z(t))T ) (y%(t)vy%(t)a e ay}n(t))—r)
and
(22®,520) = (@30, 230), -+ 220) " (O30, am) ")

are two solutions of FIIPNN (1.1) with different initial values
T T
('Tl(o)’yl(o)) = ((w%(O),x%(O), ,.Z‘,}L(O)) ,(y%(()),y%(()),--- ,y,ln(())) )

10



and
(22(0),%(0)) = ((23(0),23(0), -, a2(0)) ", (430, 43(0), -+ w2, (0)) ).
respectively. Let

el(t) = a2(t) —al(t) (i =1,2,--- ,n), e(t) = (el(t),eh(t),--- ,eh(t))

and
6?(25) = y?(t) _yyl'(t) (j =1,2,--- ’m)’ 62(t) = (e%(t)aeg(t)a"' ae?n(t))—r'

In light of assumption (A;), it follows from (3.1) and Remark 2.1 that

6 Dyei (t)

= Pk, («2(t)) [ x; (Z aijzi(t) + Z a?jy?(t)) - Pai]
j=1
7PK1,i($l(t)) [zzl(t> -p (Z Qij ] + Z a”Ljyj ) - pai] - zl(t)

Jj=1

= u} (2°()) — e} (t) + Pr,,

zy(t) —p (Z aias(t) + Z ai}-yf(t)) — pa; — u! (502(15))]

(Z aijx;(t) + Z awyj ) —u} (zl(t))]

= Z hlje} (t) — 611 (t) + Pr., 1'12 (t) — Z (paij + hij)x Z Paz]y] — pPa;
j=1 j=1
,PKl,l le (t) Z (Pazj + hz] Zpa”yj Paz] . (3.18)
j=1 =1

Similarly, we can show that

C
0 Dtae?(t) = PK2,]‘

y?(t) 72 /\bﬂ+lﬂ yz Z/\ Ji z ‘|

=1
—Px,, y;(t)—zm: (Nbji + L) yk(t Z)\bﬂ zl(t) — \b; +Zzﬂe 2(1). (3.19)
i=1
Let ; >0 (i=1,2,...,n), 75, >0 (=1,2,...,m),
V(t, (e' (1), e*(1)) = zn;u lei (t)] + irj le3(t)] (3.20)
i= =

and .

) = 3w k)] (3:21)

11



Then, applying Lemmas 2.1 and 2.3 with assumptions (Az) and (A4), it follows from (3.18) and (3.21) that

IN

IN

and

IN

IN

Now from (3.22) a

CDOL‘/l (t+ 1 tJr

w; () —

Zﬂi { [%2(75)

- |:$zl (t) - Z paij + hij)
j=1

zuz{

Py, ; Z paij + hi;) x
Jj=1
- Z P + hz]
j=1

Z pai; + hij)e
Jj=1

Z,ulgDo"e ()| ) 6 Diei(t)

Z i sgn (

Zpaz]y] pa”L]

(t7))
Py, ;|2 HOR Z paij + hij)
j=1
p

Z QA + hzg

j=1

Z Pawy] pazl + Z hw J }
Z pa;yi(t pai]

(paij + hij)x

AM:

Il
-

J

Z pa;yi(t pai]

+Z|hz‘j| lej(1)| — ‘ezl(t)’}

— Pa;

Z pal;yi(t

Zpauyg pai] +2_ Ihiil e ()] - !e%(ﬂ!}
j=1

Z pazg g

0|+ il e} 6)] - \ew}

Z:u’l Z |hl.7| ‘ejl(t)’ + ezl(t) Z (palj + hl] Zpa’z] j
J=1,j7#i j=1
+Zm (1Pail = 1) e (1)] (3.22)
i=1
Z:U”L { |h’L]| |€ | + e'Ll(t) Z (pa”LJ + h"LJ Zpaz] ] }
i=1 j=1,5#1 J=1
Zuz{ (lhij| + |paij + hij|) ‘e ‘+|1(paii+hii)||ezl(t)|+zp|a:j||e?(t)‘}
=1 j=1,5#1 i
> { > i (higl + ) e (O] + i (1= pag; — ha) [el (8)] + > mipas; \ei(tﬂ}
i=1 | j=1,5#1 j=1
Z{ Z & |hjz|+ajz Mz}e }+(1pgiihii)ﬂi|e%(t)}}+zz pa gl }6
i=1 | j=t2i P i=1 j—1
Z{ 3 B (gl +@50) + 1 — pag; — by }Me }+ZZ L pa* ;i e3(t)] . (3.23)
i=1 | j=1,j#1 Hi Jj=11i=1 7
nd (3.23), one has
CDavl tt,e 1 Z { Z |hﬂ|+aﬂ)+1pgiihii}m‘e}(t)‘
i=1 =1,j#1



3

2 od g |50+ 3w (il = D]l 1)

+
M=

j=1i=1
n n lj/
= Z Z — |hJ1|+aJl + |hii| = pay; — hi; ui‘e}(t)‘
i=1 J:17J751
m n
1
+Z_ Z pai;Ti |e2(t))]. (3.24)
Jj=11i=1

Let .
2(1) = ZT]- le2(t)] . (3.25)

Then as same as the proof of (3.24), by Lemmas 2.1 and 2.3 with assumptions (As) and (A4), it follows from
(3.19) and (3.25) that

m

GOV (e (7)) <39 Do % (|lij| +5ij) 1Ll = Ay = 1j ¢ 7 |5 (1)

g=1 |i=1,i#5 J
+ZZ ]/\b*ﬂuz‘e

11]1

In light of (3.20), (3.24) and (3.26), one has
CDRV (1 (¢ (1) ¢ (€)= §DEVA (1.1 () + S DEVa (¢, (1))

(3.26)

< SN B (el 4 @) + sl — pag; — has p i e} (1)
i=1 | g=1j#i "
Z Z :_Z (|lw| + bw) + (1] — =Ll |€?(t)‘
7j=1 i=1,i#7] J
+ZZ& a~UT]’e ’+ZZ ])\b*ﬂ,ul‘e ‘

Il
-
.
Il
i
<L

11_]1

I
= o

%(VWH% +ZMJ)\b*jz (il = pag; — hai o pi lei (1)]
1

=1 \ j=1,j#i Jj=1
+Z Z 7-1 (|l”|+b”) %pt;w+|ljj| *)\bjjfljj Tj |€?(t>|
j=1 | i=1,i#j J i=1 7
= - {Z (1= &) i lei ()] + > (1= ¢) et
i=1 j=1

< =0 D e+ D 7led ()
i=1 j=1
= =0V (t (e'(1).€*(1))),
where & and (; are defined by (3.15) and (3.16), respectively, and

0= min{12‘i£n(1 —¢;), min (1 - QJ)}

1<j<m
According to Lemma 2.4, as same as the proof of Theorem 3 in [33], we can prove that (1.1) is globally
Mittag-Leffler stable for each A € A;, A* € A}, B € By and B* € Bj, i.e.,

1), () = (@7, ™) < V{0, (x(0),y(0)) - («",y")) Ea (=017)
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where (z*,y*) is an equilibrium point of (1.1), which completes the proof. O
Corollary 3.1. Assume that

(H1) 1 —pa; >0, i=1,2,-- ,n;

(H2) 1—Xbj; >0, j=1,2,---,m;

(H3) There exist constants p; >0 (i =1,2,...,n) and 7; > 0 (j = 1,2,...,m) such that

n m ~
0<17pgii+ Z “—?paji+2%)\b*ji<1,1:1,2,---,71,
k2 J:l K

j=t#i
m o~ n . .
0<1—=Abj; + > :—;)\bij—i— > ‘T‘—;pa*ij <1l,j=1,2,---,m,
i=1,i#j i=1
where
%i:nmx{Mﬁhﬁ%ﬂ}a &U::me{mzﬂaﬁﬂﬂ}
and

bij = max {[by | big |} 050 = mac {[b ] 575}

Then, the system of interval projection neural networks with fractional-order (1.2) is globally Mittag-Leffler
stable for each A € Ay, A* € A}, B € By and B* € Bj.

Remark 3.3. We note that Corollary 3.1 is an improved version of Theorem 4.1 in [1].

Corollary 3.2. Suppose that

n
1- Z M—].p|aji|f|1fpaii|>0, wi>0,1=12 ..., n.
j=lj#i

Then, the global fractional-order projective dynamical system (1.3) is globally Mittag-Leffler stable.
Remark 3.4. Tt is worth mentioning that Corollary 3.2 is an improved version of Theorem 4.1 (a) in [2].

Remark 3.5. Following the paper [34], we studied the a-exponential stability for the global fraction-order
projective dynamical system in [2] and for the system of fractional-order interval projection neural networks
in [1] without noticing the paper [35], in which the authors pointed out that the conclusion of a-exponential
stability introduced in [34] is invalid in the fractional system. Referring the papers [33,35-37], we would like
to point out that the conclusions of a-exponential stability in [1,2] should be replaced by the Mittag-Leffler
stability.

4 Numerical examples

This section gives two examples to demonstrate the main results presented in Section 3.

Example 4.1. Assume that @ = 0.8, p=0.3, A\ =02, a = (-7.1,4.2,-2.4)T b= (-3.5,1.2)T,

26 0.3 —0.3 29 05 0.3 —0.3 0.2
A=| —-05 34 —-01 |, A=]| —04 36 02 |, A*= 0.1 —-04 |,
0.2 06 2.1 0.4 08 25 —0.2 0.1

14



0.2 04

_ 3.5 04 _ 3.6 0.7
A*=1 03 —-03 |, B= , B= ;
—0.2 26 0.2 2.8

0.1 0.3

-04 0.1 -0.3 — 05 03 04

B—* = ) B* = )
05 —-02 0.6 0.7 =03 0.7
0.09 0.06 —0.03

—0.11 —0.03
(hij)gps = | —0.05 —0.17 008 |, (lij)y, = 008 009 |’
0.07 —0.06 0.11

Ki(z) = u'(2) + K1, () = (u (@), uz(2),u3(2)) " = (hij)gyy - (@1,22,23) ",

Ka(y) = u’(y) + Ko,  u?(y) = (@ (1), u3() " = (lij)gus - (v1,92) ",
Ki={zeR3<z <4, -15<25<—05,05< a3 <15},

and

Kr={yeR)15<y <25 ~25<y < -1}.

When p; = 7 =1 (i = 1,2,3, 5 = 1,2), we know that all the assumptions (A;)-(A4) are satisfied.
Therefore, it follows from Theorems 3.1 and 3.2 that FIIPNN (1.1) has a unique equilibrium point for each
A€ A, A* € A}, B € By and B* € By and (1.1) is globally Mittag-Leffler stable for each A € Aj,
A* € A%, B € By and B* € B}. Figure 2 shows the trajectories of (1.1) with the same initial value
2o = (8.6,—7.3,-5.2)7, yo = (6.7,-8.5)T when A = A, A* = A*, B=DB, B* = B* and A = 4, A* = A",
B = B, B* = B*, respectively.

T T T T T T T T T
‘+x1+x2+x3+yl+yz KX O X, B Dy, Ry,

Figure 2: The line ((acl, To, xg)T , (yl,yg)T) denotes the transient behavior of FIIPNN (1.1) when A = A,
A* = A*, B = B, B* = B*. The line ((z’l,xg,xg)T , (Y y’Q)T) denotes the transient behavior of FIIPNN

(1.1) when A = A, A* = A*, B = B, B* = B*.

Example 4.2. Let us consider the following fractional-order interval implicit projection neural network

{ § Dfa(t) = Pywwy+x, [2(t) — pAx(t) — pa] — x(t), >0, (4.1)

€T; (O)Z.I’io, i:1,2,
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where z(t) = (21(t),z2(t)) ", @ = 0.9, p = 0.25, u(z(t)) = (u1(2(t)), u2(z(?)) " = (hij)g,q - (@1(t),z2(2) ",

a = (74.8,0), A€ Ay,
37 -11 — (46 13 -0.2 0
A= ) A= ) hl = )
- < -1.8 3.1 ) <3.8 3.4) (is)aa ( 0 0.11 )

Ki={z=(21,20) € R?|0< 21 <25, 0<22<05}.

and

Clearly, if uy = 2 and po = 1, then

1= pars — hiy = 0.05 > 0,

1 — plins — hay = 0.04 > 0,

0 <1—pay, —hi+ bl 4 22 max{|pay [, [pl21 [} = 0.95 <1,
0<1—payy — haa + |haa| + Z—; max {|pa,5|, |paiz|} = 0.875 < 1.

This implies that all the assumptions (A)-(A4) are satisfied. Thus, by Theorems 3.1 and 3.2, we know that
neural network (4.1) has a unique equilibrium point for each A € A; and (4.1) is globally Mittag-Leffler
stable for each A € A;. Figure 3 shows the trajectories of (4.1) with the same initial value zo = (5.8, —4.2) T,
when A = A and A = A, respectively.

1k o] 4

0 2 4 6 8 10 12 14 16 18 20
time

Figure 3: The line (z1,25) ' denotes the transient behavior of (4.1) when A = A. The line (2}, 24) " denotes

the transient behavior of (4.1) when A = A.
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