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Abstract

In recent years, much research has been conducted on image super-resolution
(SR). To the best of our knowledge, however, few SR methods were concerned
with compressed images. The SR of compressed images is a challenging task
due to the complicated compression artifacts, while many images suffer from
them in practice. The intuitive solution for this difficult task is to decouple it
into two sequential but independent subproblems, i.e., compression artifacts
reduction (CAR) and SR. Nevertheless, some useful details may be removed
in CAR stage, which is contrary to the goal of SR and makes the SR stage
more challenging. In this paper, an end-to-end trainable deep convolutional
neural network is designed to perform SR on compressed images (CISRD-
CNN), which reduces compression artifacts and improves image resolution
jointly. Experiments on compressed images produced by JPEG (we take the
JPEG as an example in this paper) demonstrate that the proposed CISRD-
CNN yields state-of-the-art SR performance on commonly used test images
and imagesets. The results of CISRDCNN on real low quality web images are
also very impressive, with obvious quality enhancement. Further, we explore
the application of the proposed SR method in low bit-rate image coding,
leading to better rate-distortion performance than JPEG.
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1. Introduction

Single image super-resolution (SISR) refers to estimate a high-resolution
(HR) image from a single low-resolution (LR) observation, which is of great
significance to many image processing and analysis systems. However, the
SISR problem is very challenging duo to the ill-posed condition. In other
words, a LR image corresponds to a set of HR images, while most of them
are not expected. In general, the reconstructed HR image should be visually
pleasant and close to the real one as much as possible.

The SISR problem has been widely researched over the past 20 years and
plenty of algorithms have been proposed. Roughly speaking, interpolation-
based [1H9], reconstruction-based [10-20], and learning-based [21H43] algo-
rithms are the three main classes of SISR methods. Generally, the interpolation-
based super-resolution (SR) approaches estimate unknown HR pixels using
their neighborhoods (the known LR pixels) according to local structure prop-
erties. For the reconstruction-based methods, the observation model of LR
image and prior knowledge of HR image are integrated to formulate an en-
ergy function, and thus the SR task can be converted to an optimization
problem. The prior knowledge, which greatly affects SR performance, is
the research focus for this kind of methods. The commonly used priors in-
clude gradient [10-12], sparsity [I3HI5], nonlocal self-similarity [14-20], etc.
Many reconstruction-based SR methods use two or more priors to combine
their complementary properties. The pre-trained mapping between LR im-
ages and HR images is usually adopted to guide the SR process in learning-
based methods. According to the core of learning-based methods, it can
be roughly divided into the following five subclasses further, i.e., neighbor
embedding-based [21H23], example-based [24H27], sparse coding-based [28-
32], regression-based [33H36], and deep learning-based [37H43]. With fast
execution speed and outstanding restoration quality, deep learning-based
methods show great potential for SR problem. Meanwhile, some researchers
attempted to combine different kinds of SR methods, thus integrating their
merits [44), [45].

In some practical applications, such as mobile communication and in-
ternet, limited by storage capacity and transmission bandwidth, images and
videos are generally downsampled and compressed to reduce data volume. In
these cases, the observations usually suffer from both of the downsampling



and compression degradations, which makes the SR problem more difficult.
Although much research has been done on SISR problem and plenty of ef-
fective SISR methods have been proposed over the past few decades, few
methods were concerned with compressed images [46H51]. Roughly, there
are two kinds of frameworks for compressed images SR. Some researchers
converted this task to an optimization problem via compression process mod-
eling and prior knowledge regularization. In SRCDFOE [46], the compres-
sion distortion is seen as the spatially correlated Gaussian noise, and the
Markov random field and total variation are used to regularize the estimated
HR images. To realize decompression and SR simultaneously, the DCSR-
MOTYV [47] incorporates multi-order total variation model into JPEG image
acquisition model. For this type of methods, the main pain point is how
to realize the accurate modeling of compression process. In addition, it is
difficult to balance compression artifacts reduction (CAR) and details preser-
vation. Another commonly used strategy is to decompose this task into two
subproblems (i.e., CAR and SR) and use a cascading framework to address
them. For example, Xiong et al. [48] combined adaptive regularization and
learning-based SR to reduce compression noise and compensate details, re-
spectively. Kang et al. [49] proposed a sparse coding-based SR method for
compressed images, in which the patches with /without compression artifacts
are processed differently. Using a denoised training dataset, Lee et al. [50]
presented a dual-learning-based algorithm for compression noise reduction
and SR. More recently, Zhao et al. [5I] constructed a three-steps-process
framework for compressed images SR, which is composed of BM3D filtering-
based compression noise reduction, local encoding-based patch classification,
and mapping-based reconstruction. However, for most of this kind of algo-
rithms, the compression noise reduction and upsampling are treated as two
independent stages. Consequently, the resultant images of existing methods
are apt to still contain compression noise or be over smoothed. On the whole,
the research on SR of compressed images is lacking and there is still much
room for performance improvement.

The core issue of compressed images SR is how to reduce compression
noise and preserve details as much as possible when enhancing image res-
olution. On the one hand, it is hard to remove compression artifacts in
super-resolved images without a CAR or denoising stage. What is worse, the
compression noise in LR may be significantly magnified in HR. On the other
hand, the CAR and SR operations should not be separated as part of the
details removed in CAR stage are useful for SR. On the basis of the above



Fig. 1. Tlustration for JPEG compressed image SR on test image Zebra (SR factor: 2,
QF: 10). (a) Original image. (b) JPEG compressed LR image. (c) Result of Bicubic on
(b). (d) Result of CISRDCNN on (b). Obviously, our result (d) is more visually pleasant
than (b) and (c). Please zoom in to view details and make comparisons.

insights, an end-to-end trainable deep convolutional neural network (CNN)
is designed to perform SR on compressed images, and we name it CISRD-
CNN. The CISRDCNN takes the compressed LR image as input and outputs
the resultant HR image directly, without any preprocessing or postprocess-
ing stage. Fig. [1] gives an example of the result of CISRDCNN, and we can
see that our result is much more visually pleasant than the LR input and
the resultant image of Bicubic interpolation. The framework of the proposed
CISRDCNN is illustrated in Fig. [2, and our contributions in this work are
mainly in the following aspects:

e We propose a deep CNN-based SR framework for compressed images,
which reduces compression artifacts and enhances image resolution si-
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multaneously.

e To preserve the functions of different modules in CISRDCNN and
achieve joint optimization of CAR and SR, a special strategy is used
to train the proposed network, i.e., individual training and joint opti-
mization.

e Extensive experiments show that the proposed CISRDCNN achieves
outstanding SR performance on simulation experiments as well as the
test on real low quality web images.

e We explore the application of the proposed CISRDCNN in low bit-
rate image coding, and the experimental results demonstrate that it
can improve the rate-distortion performance of JPEG in a wide coding
bit-rate range.

e The proposed method can be easily extended to other compression
standards, such as JPEG 2000, H.264, HEVC, etc. In addition, this
work provides some insights on the SR of low quality LR images (e.g.,
noisy and blurry), and more attention would be attracted to concern
this kind of problems.

The rest of this paper is organized as follows. Section 2 briefly reviews
related works. Section 3 presents the proposed CISRDCNN. Extensive ex-
periments are shown in Section 4. Finally, Section 5 concludes this paper.

2. Related work

2.1. Problem formulation of compressed image SR

Let X and Y be HR and LR images, respectively. Then the conventional
SR problem can be formulated as

Y=HX+n (1)

where H represents the synthetic operator of downsampling and blurring,
and n denotes the additive noise. The aim of SR is to obtain a high quality
estimation of X from Y.
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Fig. 2. The flowchart of CISRDCNN. Top: the architecture of CISRDCNN. Bottom: the
illustration of reconstruction process.

In this work, we address the problem of compressed image SR. There-
fore, the compression process should be concerned. Let C be the composite
operator of compression and decompression, and thus the Eq. [1] is changed

to
Z = CHX (2)

where Z is the compressed LR image. Note that we neglect the additive noise
in this work as our focus is compression artifacts. Correspondingly, estimat-
ing X from the compressed LR observation Z is our goal. For convenience
and clarity of representation, we still let Y = HX, so we have Z = CY.
Hence, Y only suffers from blurring and downsampling, but Z suffers from
blurring, downsampling, and compression degradations. The compression
process would cause information lost, especially at high compression ratio.
Intuitively, it is much harder to recover X from Z than from Y. Therefore,
we try to use the intermediate observation Y to assist the reconstruction
process in the proposed CISRDCNN. Note that the intermediate observation
Y just exists in training phase, while the only input in testing phase is Z.
Many compression methods have been proposed for still images, never-
theless, JPEG still remains one of the most widely used standards. Hence,
in this work, we take the JPEG as an example to test the performance of the

proposed CISRDCNN.



2.2. Deep neural networks for image SR

Deep neural networks have been widely used to address image restoration
problems, including SR [37H43] 52, 53], denoising [52, 53], CAR [52-55],
deblurring [56], dehazing [57], etc. In this section, we review some relevant
deep neural networks-based SR methods.

In [37], Dong et al. proposed a CNN-based SR framework (SRCNN),
which is composed of three convolutional layers. The three layers realize
patch extraction, non-linear mapping, and reconstruction, respectively. The
SRCNN has drawn wide attention for its excellent performance and simple
network architecture. Later on, Dong et al. [40] presented an accelerated ver-
sion of SRCNN, which is named FSRCNN. The FSRCNN incorporates the
upsampling operation into the network and has a hourglass-shape structure,
thus achieving remarkable restoration quality and fast execution speed. By
contrast, the SRCNN and FSRCNN are relatively shallow. Kim et al. [41]
designed a 20-layer CNN (VDSR), which produces great performance en-
hancement over SRCNN. For more stable training and better performance,
residual-learning and gradient clipping are used in VDSR. More recently,
Zhang et al. [53] proposed a similar network (DnCNN), which combines more
advances on deep learning, including Residual Learning [58], batch normal-
ization [59], and Rectifier Linear Unit (ReLU) [60]. The DnCNN shows great
effectiveness in several general image denoising problems, including SR and
CAR. Overall, the deep neural networks-based SR methods always result in
compelling performance, and most of them are efficient in testing phase.

To the best of our knowledge, nevertheless, very few research has been
done on deep neural networks-based SR methods for compressed images.
The aim of this work is to propose an effective SR method for compressed
images using the considerable advances on deep CNN. We try to design a
deep network that realizes CAR and SR jointly.

2.3. Advances on deep neural networks

In recent years, many advances have been achieved on deep learning. In
the following, we introduce some representative achievements related to this
work, i.e., residual learning [58], batch normalization [59], and ReL.U [60].

2.3.1. Residual learning

In [58], He et al. firstly proposed the residual learning strategy to ad-
dress the performance degradation problem caused by the increase of net-
work depth. The main assumption of residual learning is that the learning of
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residual mapping is much easier than the original mapping. With the resid-
ual learning framework, deeper network can be designed and well trained,
thus achieving better performance. Actually, similar idea has also been used
in many learning-based SR methods, in which the residual image between
ground truth and initialization (generally, the interpolated image) is pre-
dicted, e.g., ScSR [29], ANR [33], and A+ [34].

2.3.2. Batch normalization

In order to ease the internal covariate shift, Ioffe et al. [59] presented
the batch normalization. Internal covariate shift refers to the change in the
distribution of each layer’s input, which slows down the training process and
makes it harder. To address this problem, Ioffe et al. proposed to normal-
ize layer inputs. More specifically, in each layer, a normalization step and
a scale and shift step are incorporated before the nonlinearity. To realize
batch normalization, two extra parameters are added per activation, and
these parameters can be learned in network training stage. The batch nor-
malization brings a lot of benefits, such as strong robustness to initialization,
fewer training steps, and better performance.

2.3.83. ReLU

ReLU is a commonly used activation function in deep neural networks,
which outputs 0 for non-positive inputs and retains positive inputs [60]. The
definition of ReL.U is:

x ifr>0
0 else

)= 3)

The ReL U alleviates the gradient vanishing problem to some extent, thus
making the training of deep neural networks easier.

For fast and stable training procedure and excellent restoration quality,
the proposed CISRDCNN integrates residual learning, batch normalization,
and ReLU. Unlike the DnCNN [53] that employs a single residual unit, the
CISRDCNN uses two residual units due to the fact that the input and output
of CISRDCNN are different in resolution. More details about CISRDCNN
will be introduced in Section 3.

3. The proposed CISRDCNN

In this section, we present the CISRDCNN in detail. As illustrated in Fig.
2} the proposed CISRDCNN consists of three modules: deblocking module
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(DBCNN), upsampling module (USCNN), and quality enhancement mod-
ule (QECNN). Firstly, the DBCNN removes compression artifacts in input
and generates a better input for USCNN. Secondly, the USCNN magnifies
its input to expected resolution, and thus no extra interpolation procedure
is needed. Finally, the QECNN is integrated to improve the quality of up-
sampled image further. Although the three modules have their respective
functions, they are not independent and the whole network is end-to-end
trainable. Overall, the differences between CISRDCNN and relevant CNN-
based SR methods (e.g., SRCNN [37], FSRCNN [40], VDSR [41], DnCNN
[53]) are mainly in the following aspects:

e The CISRDCNN is for compressed images, and thus compression noise
is taken into consideration carefully. Nevertheless, most of the learning-
based SR methods do not apply to noisy images.

e The CISRDCNN is composed of three functional modules, however, it
is end-to-end trainable. In this way, the functions of the three modules
can be preserved to some extent; meanwhile, the whole network can be
optimized to produce minimum prediction error.

e The CISRDCNN is trained in a particular way. It firstly trains the
three functional modules separately to achieve their respective goals,
then optimizes the whole network jointly with the fine-tuning strategy.

In CISRDCNN, these specific design and improvements for compressed
images enable more accurate estimation of the ground truth. In the following,
more details about the architecture and training strategy of CISRDCNN are
presented.

3.1. Network architecture

For the convenience of representation, the depths of DBCNN, USCNN,
and QECNN are denoted as K, K5, and K3, respectively.

3.1.1. DBCNN

The DBCNN is composed of two types of layers. The first K; — 1 convo-
lutional layers use 64 filters of size 3 x 3, and the batch normalization and
ReLU are placed behind these convolutional layers as [53]. The last layer
(the K;-th layer) generates the restored image using 1 filter of size 3 x 3.
Since the input and output of DBCNN are very similar, learning the residual
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Fig. 3. The flowchart of CISRDCNN training procedﬁre.

image is more suitable. Hence, we adopt residual learning strategy in this
module. More specifically, an identity connection is used to pass the input of
DBCNN to its output. Note that all of the batch normalization and ReLLU
are not presented in Fig. [2| for brevity.

3.1.2. USCNN

The first Ky — 1 convolutional layers of USCNN are the same, using 64
filters of size 3 x 3 and followed by batch normalization and ReLU. The last
layer is a deconvolutional layer, which performs upsampling operation. The

deconvolutional layer produces one upsampled image using 1 filter of size
9 x 9.

3.1.3. QECNN
The architecture of QECNN is similar to DBCNN. Therefore, we do not
introduce the QECNN in detail to avoid redundancy.

3.2. Network training strategy

Let {X{rain ytrain 7ZtrainA N he the training image pairs. As introduced
in Section 2.1, X! " denotes a HR sample, Y!"%" denotes the corresponding
LR sample that only suffers from blurring and downsampling, and Z!"*"
represents the compressed version of Y@,

As shown in Fig. (3| the training of CISRDCNN is mainly composed of
four steps. Firstly, the set {Z@™ YireinlN is used to train the deblocking
network DBCNN. As we adopt the residual learning strategy, our goal is
to learn a residual mapping fpp(Z*") that predicts the residual image
rian =ytrain _ Ztran - Consequently, the loss function of DBCNN is defined
as

1« 4 -
lpp(Opn) = 537 S\ fos(2iem; 0ps) — riEn|; (4)
=1
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where ©pp denotes the trainable parameter set in DBCNN, and rjp%7 =

Y;ﬁram _ Zfrm’n‘

Secondly, we train the upsampling network USCNN. Once the training of
DBCNN is finished, we can get the estimation of Y/%" (denoted as Y/im)
from its compressed observation Z!"". The training set for USCNN is
{ytrain, Xj@r}Y,. That is, USCNN aims to learn a function fus(Ytrain)
that maps Ytren to Xtrain - Formally, the loss function of USCNN is defined
as

lus(Ous) = NZHfUS (Y7 Ops) — Xir 2 ()

F

where Oy g denotes the trainable parameter set in USCNN.

Thirdly, we train the quality enhancement network QECNN. Similarly,
the HR version of Z"%" is estimated using the learned DBCNN and USCNN,
and the estimation is denoted as Xtrein, Correspondingly, the training set
for QECNN is {Xtrein XtreiniN — In QECNN, we also adopt the residual
learning, and thus the goal is to learn a residual mapping fo p(Xrain) that
predicts the residual image rgg" =X"*" — Xtrain . Hence, the loss function
of QECNN is defined as

(6)

2
loe(Oqr) = NZHfQ (X{™; ©qp) — ToHT .

train

where Oqp denotes the trainable parameter set in QECNN, and rgy7 =
Xgrain . X?ain'

Finally, the CISRDCNN is optimized in an end-to-end manner. The
learned parameters of DBCNN, USCNN, and QECNN are used to initialize
CISRDCNN firstly, and then we use the training sample set {ZI@, Xtrain} V|
to optimize the whole network with the fine-tuning strategy. The loss func-
tion for the end-to-end optimization procedure is defined as

ler(©cr) = IN Z ”fc Ztmm Ocr) — XfmmHi? (7)

where ©¢; denotes the trainable parameter set in CISRDCNN.
In CISRDCNN, the three modules are with specific functions, i.e., de-
blocking, upsampling, and quality enhancement. With the above training
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Fig. 4. Test iIﬁéééS (Set10), top to bottom: Butterﬂg (639 x 480),
House (256 x 256), Parrot (256 x 256), Woman (321 x 481), Circuit (694 x 502), Leaves
(256 x 256), Foreman (336 x272), Zebra (700 x 523), Peppers (496 x496), Ppt3 (529 x 656).

strategy, the goal of each module can be achieved, while the final joint opti-
mization procedure minimizes prediction error. On the other hand, training
a deep network directly is hard. Initializing the deep network with learned
parameters is beneficial to obtaining stable training procedure and fast con-
vergence speed. Note that for different compression quality factors (QFs),
the networks can also be trained from the learned model with the fine-tuning
strategy, rather than training from scratch.

4. Experimental results

The experimental settings are introduced firstly, and then extensive re-
sults are presented to verify the effectiveness of CISRDCNN in this section,
including the test on real low quality web images. In addition, we take the

low bit-rate coding as an example to show the application of the proposed
CISRDCNN.

4.1. Ezxperimental settings

Main parameters of CISRDCNN: in our implementation, we set K7 = 20,
K2 = ]_0, and Kg = 10.

Training data: following [41], the 291 imageset that consists of 200 images
from BSDS500 El and 91 images from Yang et al. [28)] is used to train CIS-
RDCNN. To increase the number of samples and improve SR performance,
we also adopt data augmentation techniques. To generate LR observations,

! Available: http://www.eecs.berkeley.edu/Research/Projects/CS /vision/
grouping/segbench .
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Table 1
PSNR (dB) scores of different methods on Set10 (SR factor: 2, QF: 10/20/30).

Test Images Butterfly House Parrot Woman  Clrcuit Leaves Foreman  Zebra Peppers Ppt3 Average

Quality Factor = 10

Bicubic 22.691 27.392 26.234 26.284 23.373 21.455 27.759 25.654 28.489 23.258 25.259

A+ [39) 23.182 27.915 26.642 27.046 23.832 21.905 28.801 26.375 29.333 23.159 25.819
FSRCNN [40] 23.908 28.676 27.214 27.522 24.636 22.974 29.302 26.784 29.809 24.577 26.540

VDSR [41]) 24.193 29.439 26.502 27.873 24.444 22.676 29.735 26.838 30.144 24.749 26.659
CONCOLOR-VDSR [ET1[61] 23.454 28.292 26.918 27.323 24.397 22.336 29.555 26.801 29.795 24.202 26.307
ARCNN-VDSR [41]/54] 24.115 28.388 27.153 27.526 24.586 23.222 29.602 26.668 29.846 24.748 26.585
SRCDFOE [46] 23.174 28.093 26.653 26.876 23.896 21.840 28.374 26.271 29.351 23.722 25.825
LJSRDB [49] 22.667 27.591 26.329 26.336 23.393 21.451 28.126 25.765 28.798 23.198 25.365
Proposed CISRDCNN 24.534 30.034 27.545 28.177 25.131 23.761 30.271 27.335 30.381 25.188 27.236

Quality Factor = 20

Bicubic 23.888 29.122 27.637 27.923 25.000 23.074 29.740 27.243 30.452 24.511 26.859
A+ [34) 24.570 29.888 27.971 28.796 25.708 23.894 31.072 28.192 31.411 24.891 27.639
FSRCNN [40] 25.374 30.528 28.589 29.219 26.433 24.907 31.642 28.479 31.705 26.203 28.308
VDSR [41] 25.491 31.292 28.164 29.450 26.167 24.844 31.865 28.366 31.966 26.387 28.399
CONCOLOR-VDSR 24.628 29.344 28.093 28.804 25.779 23.969 31.683 28.109 31.415 25.941 27.777
ARCNN-VDSR [41]1/54] 25.429 29.536 28.531 28.990 26.235 24.951 31.647 28.241 31.652 26.470 28.168
SRCDFOE [46] 24.423 29.809 27.976 28.509 25.515 23.588 30.343 27.819 31.141 25.194 27.432
LJSRDB [49] 23.858 28.991 27.615 27.832 24.686 22.777 29.922 27.148 30.427 24.455 26.771
Proposed CISRDCNN 25.931 31.652 28.983 30.026 26.947  26.102 32.246 28.951 32.194 27.179 29.021
Quality Factor = 30
Bicubic 24.508 29.660 28.510 28.807 25.738 23.962 30.724 28.132 31.355 25.130 27.653
A+ [34) 25.289 30.431 29.066 29.742 26.568 24.980 32.194 29.162 32.342 25.838 28.561
FSRCNN [40] 26.089 31.103 29.554 30.198 27.310 26.148 32.610 29.326 32.594 27.141 29.207
VDSR [41] 26.304 31.878 29.354 30.500 27.293 26.145 32.991 29.465 32.860 27.752 29.454
CONCOLOR-VDSR HT1[61] 25.316 29.992 29.085 29.630 26.455 24.972 32.405 28.975 32.252 27.091 28.617
ARCNN-VDSR [41]1/54] 26.257 29.816 29.518 30.221 27.048 26.080 32.586 29.376 32.663 27.637 29.120
SRCDFOE [46] 25.108 30.351 28.926 29.413 26.248 24.601 31.275 28.792 31.982 26.050 28.275
LJSRDB [49] 24.530 29.321 28.548 28.752 24.853 23.286 30.621 27.987 31.238 24.843 27.398
Proposed CISRDCNN 26.646 32.214 29.890 30.918 27.847  27.305 33.257  29.922 33.074 28.481 29.955

these HR images are downsampled using the imresize function (kernel: bicu-
bic, downsampling factor: 2) in Matlab firstly, and then the downsampled
images are compressed using JPEG.

Test images: Fig. {4 shows the ten test images (named Set10) used in our
experiment, which are widely used to evaluate SR methods in literature. For
color images, only the luminance components are processed.

Test datasets: four commonly used datasets in SR problem are used to
test the performance of different methods, including Set5 [22], Set14 [29],
B100 ™, and Urban100 [26].

Degradation model: for the simulation experiments, the original HR im-
age is downsampled using the imresize function (kernel: bicubic, downsam-
pling factor: 2) in Matlab firstly, and then the downsampled image is com-
pressed using JPEG with different QF's.
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Table 2
SSIM scores of different methods on Set10 (SR factor: 2, QF: 10/20/30).

Test Images Butterfly House Parrot Woman  Clrcuit Leaves Foreman  Zebra Peppers Ppt3 Average

Quality Factor = 10

Bicubic 0.6790 0.7499 0.7742 0.7684 0.6956 0.6680 0.7771 0.7996 0.7550 0.7876 0.7454

A+ [39) 0.7180 0.7870 0.8054 0.8098 0.7317 0.7172 0.8224 0.8342 0.7914 0.8231 0.7840
FSRCNN [40] 0.7437 0.8084 0.8250 0.8319 0.7694 0.7953 0.8450 0.8513 0.8081 0.8721 0.8150
VDSR [41] 0.7575 0.8232 0.8279 0.8406 0.7741 0.7976 0.8551 0.8562 0.8150 0.8831 0.8230
CONCOLOR-VDSR [ET1[61] 0.7422 0.8057 0.8255 0.8317 0.7705 0.7549 0.8486 0.8556 0.8118 0.8697 0.8116
ARCNN-VDSR [41]/54] 0.7494 0.8050 0.8278 0.8317 0.7678 0.8023 0.8477 0.8466 0.8089 0.8720 0.8159
SRCDFOE [46] 0.7213 0.7936 0.8102 0.8113 0.7404 0.7164 0.8191 0.8369 0.7971 0.8451 0.7891
LJSRDB [49] 0.6888 0.7706 0.7921 0.7827 0.7029 0.6728 0.8013 0.8204 0.7781 0.8039 0.7614
Proposed CISRDCNN 0.7699 0.8310 0.8410 0.8494 0.7937 0.8326 0.8640 0.8655 0.8222 0.8958 0.8365

Quality Factor = 20

Bicubic 0.7369 0.7999 0.8211 0.8178 0.7596 0.7404 0.8273 0.8479 0.8029 0.8299 0.7984
A+ [34) 0.7704 0.8263 0.8414 0.8500 0.7996 0.8059 0.8652 0.8718 0.8283 0.8748 0.8334
FSRCNN [40] 0.7916 0.8410 0.8547 0.8666 0.8234 0.8570 0.8818 0.8819 0.8380 0.9056 0.8542
VDSR [41] 0.8014 0.8478 0.8576 0.8735 0.8288 0.8676 0.8868 0.8856 0.8431 0.9202 0.8612
CONCOLOR-VDSR 0.7835 0.8301 0.8535 0.8634 0.8159 0.8166 0.8863 0.8815 0.8369 0.9036 0.8471
ARCNN-VDSR [41][54] 0.7902 0.8370 0.8548 0.8616 0.8186 0.8550 0.8795 0.8762 0.8365 0.9046 0.8514
SRCDFOE [46] 0.7694 0.8317 0.8427 0.8488 0.7980 0.7939 0.8582 0.8701 0.8280 0.8820 0.8323
LJSRDB [49] 0.7444 0.8164 0.8321 0.8265 0.7638 0.7409 0.8446 0.8562 0.8141 0.8433 0.8082
Proposed CISRDCNN 0.8135 0.8533 0.8678 0.8822  0.8429 0.8949 0.8937 0.8938 0.8476 0.9356 0.8725
Quality Factor = 30
Bicubic 0.7656 0.8200 0.8440 0.8440 0.7889 0.7792 0.8527 0.8698 0.8225 0.8539 0.8241
A+ [34) 0.7966 0.8416 0.8638 0.8715 0.8263 0.8441 0.8847 0.8896 0.8431 0.8973 0.8559
FSRCNN [40] 0.8135 0.8513 0.8749 0.8846 0.8468 0.8845 0.8953 0.8966 0.8501 0.9232 0.8721
VDSR [41] 0.8243 0.8574 0.8798 0.8929 0.8544 0.8965 0.9021 0.9023 0.8556 0.9404 0.8806
CONCOLOR-VDSR HT1[61] 0.8047 0.8507 0.8734 0.8823 0.8359 0.8505 0.8979 0.8960 0.8490 0.9257 0.8666
ARCNN-VDSR [41]1/54] 0.8165 0.8509 0.8748 0.8853 0.8412 0.8840 0.8948 0.8961 0.8504 0.9249 0.8719
SRCDFOE [46] 0.7946 0.8428 0.8625 0.8688 0.8216 0.8318 0.8756 0.8879 0.8411 0.9034 0.8530
LJSRDB [49] 0.7720 0.8269 0.8543 0.8538 0.7842 0.7745 0.8664 0.8738 0.8304 0.8673 0.8304
Proposed CISRDCNN 0.8327 0.8633 0.8853 0.8999 0.8638 0.9158 0.9081 0.9082 0.8588 0.9515 0.8887

Comparison baselines: the comparison baselines include Bicubic, A+ [34],
FSRCNN [40], VDSR [41], CONCOLOR-VDSR M1} 61], ARCNN-VDSR
[41, 54P, SRCDFOE [46], and LJSRDB [49]. For A+ [34], FSRCNN [40],
and VDSR [4]], we retrained their models according to our experimental
settings. The CONCOLOR-VDSR [41], 61] and ARCNN-VDSR [41, 54] are
cascading methods, which consist of the state-of-the-arts of deblocking and
SR methods. The SRCDFOE [46] and LJSRDB [49] are two SR algorithms
for JPEG compressed images.

Performance evaluation: resultant images of different methods are evalu-
ated objectively and subjectively. For the simulation experiments, the PSNR,

2ARCNN [54] and CONCOLOR [61] are typical and effective compression artifacts
reduction methods.
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Table 3
IFC scores of different methods on Set10 (SR factor: 2, QF: 10/20/30).

Test Images Butterfly House Parrot Woman  Clrcuit Leaves Foreman  Zebra Peppers Ppt3 Average

Quality Factor = 10

Bicubic 1.404 0.867 0.858 0.983 1.671 1.828 0.847 1.133 0.898 1.260 1.175
A+ [39) 1.684 0.996 1.052 1.208 1.932 2.162 1.060 1.400 1.092 1.363 1.395
FSRCNN [40] 1.887 1.138 1.164 1.329 2.178 2.554 1.170 1.546 1.227 1.660 1.585
VDSR [41] 2.048 1.262 1.206 1.427 2.222 2.565 1.268 1.601 1.312 1.729 1.664
CONCOLOR-VDSR [T][61] 2.115 1.268 1.298 1.401 2.222 2.555 1.345 1.626 1.310 1.716 1.686
ARCNN-VDSR [41]1/54] 1.982 1.183 1.211 1.347 2.183 2.676 1.229 1.540 1.247 1.696 1.629
SRCDFOE 1.688 1.007 1.040 1.161 1.878 2.034 0.996 1.361 1.104 1.413 1.368
LJSRDB [49] 1.478 0.903 0.922 1.024 1.699 1.888 0.920 1.253 0.968 1.276 1.233
Proposed CISRDCNN 2.268 1.413 1.395 1.552 2.464 3.070 1.430 1.763 1.435 1.901 1.869
Quality Factor = 20
Bicubic 2.030 1.248 1.284 1.437 2.374 2.572 1.298 1.640 1.355 1.719 1.696
A+ [34] 2.336 1.451 1.502 1.697 2.746 3.080 1.560 1.926 1.595 1.930 1.982
FSRCNN [40) 2.544 1.556 1.568 1.813 2.985 3.342 1.618 2.066 1.679 2.171 2.134
VDSR [47] 2.706 1.650 1.655 1.937 3.014 3.562 1.733 2.145 1.786 2.323 2.251
CONCOLOR-VDSR [11[6T] 2.710 1.627 1.683 1.873 2.889 3.320 1.831 2.085 1.725 2.279 2.202
ARCNN-VDSR [41][54] 2.562 1.533 1.564 1.770 2.907 3.340 1.620 2.020 1.653 2.206 2.118
SRCDFOE [46] 2.283 1.401 1.439 1.603 2.591 2.785 1.418 1.836 1.531 1.916 1.880
LJSRDB [49] 2.189 1.285 1.400 1.475 2.352 2.574 1.376 1.751 1.408 1.742 1.755
Proposed CISRDCNN 2.903 1.767 1.804 2.093 3.276 4.047 1.855 2.283 1.884 2.529 2.444
Quality Factor = 30
Bicubic 2.450 1.506 1.617 1.787 2.824 3.058 1.592 1.997 1.664 2.036 2.053
A+ [34) 2.751 1.728 1.853 2.046 3.196 3.609 1.864 2.276 1.912 2.296 2.353
FSRCNN 2.942 1.805 1.915 2.165 3.452 3.877 1.894 2.402 1.985 2.542 2.498
VDSR [41] 3.163 1.934 2.039 2.316 3.583 4.102 2.040 2.532 2.103 2.791 2.660
CONCOLOR-VDSR H11[61] 3.096 1.905 2.023 2.201 3.297 3.810 2.042 2.400 2.003 2.686 2.546
ARCNN-VDSR [41][54] 3.006 1.815 1.917 2.171 3.363 3.885 1.893 2.400 1.993 2.628 2.507
SRCDFOE [46] 2.683 1.655 1.754 1.944 3.038 3.289 1.687 2.174 1.814 2.277 2.232
LJSRDB [49] 2.599 1.484 1.727 1.819 2.664 2.958 1.633 2.043 1.666 1.996 2.059
Proposed CISRDCNN 3.310 2.032 2.155 2.434 3.751 4.559 2.130 2.609 2.189 2.915 2.808

SSIM [62], and IFC [63] are adopted to perform objective evaluation. For the
SR of real world compressed images, we use the no-reference quality metric
for SR proposed in [64] to evaluate results objectively.

4.2. Super-resolution results on synthetic LR images

4.2.1. Objective evaluation

Due to the limited space, we only present the objective scores of different
methods at QF = 10/20/30 in this subsection. It can be seen from the results
reported in Table [T} Table [2] and Table [3] that the CISRDCNN consistently
produces the highest PSNR /SSIM/IFC values. Overall, the VDSR [41] gener-
ates the second-best results. The FSRCNN [40] and ARCNN-VDSR [41], [54]
achieve similar performance, and both of them are slightly inferior to the
VDSR [41]. The A+ [34], CONCOLOR-VDSR [41], 61] and SRCDFOE [46]
are superior to Bicubic, but the gains are limited to some extent. Compared
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Fig. 5. Super-resolution results of Butterfly generated by different methods (SR factor: 2,
QF: 10). (a) Original image (PSNR (dB), SSIM, IFC). (b) Bicubic (22.691, 0.6790, 1.404).
(c) A+ [34] (23.182, 0.7180, 1.684). (d) FSRCNN [40] (23.908, 0.7437, 1.887). (e) VDSR
[41] (24.193, 0.7575, 2.048). (f) CONCOLOR-VDSR [41], [61] (23.454, 0.7422, 2.115).
(g) ARCNN-VDSR [41] [54] (24.115, 0.7494, 1.982). (h) SRCDFOE [46] (23.174, 0.7213,
1.688). (i) LJSRDB [49] (22.667, 0.6888, 1.478). (j) Proposed CISRDCNN (24.534,
0.7699, 2.268). Please zoom in to view details and make comparisons.

with Bicubic, the LISRDB [49] produces worse results in some cases. For
A+ [34], the severe compression noise in LR images causes significant perfor-
mance degradation as it is sensitive to noise. The SRCDFOE [46] and LJS-
RDB [49] are unified frameworks for JPEG compressed images, however, they
do not handle compression noise well. By contrast, more obvious improve-
ment is produced by the proposed CISRDCNN. For example, at QF = 10,
the CISRDCNN achieves average 1.977 dB/0.0911/0.694 PSNR/SSIM/IFC
gains over Bicubic, and 0.577 dB/0.0135/0.205 over VDSR [41]. Note that the
VDSR [41] is one of the state-of-the-art SR methods. Compared with the SR
methods for JPEG compressed images, i.e., the SRCDFOE [46] and LJSRDB
[49], the average PSNR/SSIM/IFC gains are up to 1.411 dB/0.0474/0.501
and 1.871 dB/0.0751/0.636, respectively. Similar results can be observed at
QF = 20 and QF = 30. In sum, the CISRDCNN achieves state-of-the-art
performance.

4.2.2. Subjective evaluation

Part of the resultant images are presented to compare visual quality. To
comprehensively show the performance of all methods, we deliberately illus-
trate the results at different QFs. Specifically, Fig. [5| shows the results of
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(8) (h) (i) 8)

Fig. 6. Super-resolution results of Ppt3 generated by different methods (SR factor: 2,
QF: 20). (a) Original image (PSNR (dB), SSIM, IFC). (b) Bicubic (24.511, 0.8299, 1.719).
(c) A+ [34] (24.891, 0.8748, 1.930). (d) FSRCNN [40] (26.203, 0.9056, 2.171). (e) VDSR
[41] (26.387, 0.9202, 2.323). (f) CONCOLOR-VDSR [41], [61] (25.941, 0.9036, 2.279).
(g) ARCNN-VDSR [41], 54] (26.470, 0.9046, 2.206). (h) SRCDFOE [46] (25.194, 0.8820,
1.916). (i) LISRDB [49] (24.455, 0.8433, 1.742). (j) Proposed CISRDCNN (27.179,
0.9356, 2.529). Please zoom in to view details and make comparisons.

Butterfly at QF = 10. Fig. [6] shows the results of Ppt3 at QF = 20. Fig.
[7 shows the results of House at QF = 30. For better view and compari-
son, two local regions are highlighted in each figure. The results of Bicubic,
A+ [34], FSRCNN [40], SRCDFOE [46], and LJSRDB [49] contain obvi-
ous artifacts, especially at low QFs. The VDSR [41], CONCOLOR-VDSR
[41], [61], ARCNN-VDSR [41] 54] can remove most of the compression arti-
facts, nevertheless, the results are blurred somewhat. Comparatively, the
results of CISRDCNN are more visually pleasant, with fewer artifacts and
clearer structures. For instance, the text in image Ppt3 (Fig. @ and the eave
in image House (Fig. @ In sum, benefitting from the strong ability of deep
CNN and the specific design for compressed images, the CISRDCNN realizes
joint optimization of compression noise reduction process and SR process,
thus leading to state-of-the-art performance.

The results in this subsection provide some insights for the further re-
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Fig. 7. Super-resolution results of House generated by different methods (SR factor: 2,
QF: 30). (a) Original image (PSNR (dB), SSIM, IFC). (b) Bicubic (29.660, 0.8200, 1.506).
(c) A+ [34] (30.431, 0.8416, 1.728). (d) FSRCNN [40] (31.103, 0.8513, 1.805). (e) VDSR
[41] (31.878, 0.8574, 1.934). (f) CONCOLOR-VDSR [41], [61] (29.992, 0.8507, 1.905).
(g) ARCNN-VDSR [41], 54] (29.816, 0.8509, 1.815). (h) SRCDFOE [46] (30.351, 0.8428,
1.655). (i) LISRDB [49] (29.321, 0.8269, 1.484). (j) Proposed CISRDCNN (32.214,
0.8633, 2.032). Please zoom in to view details and make comparisons.

search on compressed images SR. The comparison set in this experiment is
composed of different kinds of methods, including conventional SR method
(A+ [34], FSRCNN [40], VDSR [41]), cascading SR method (CONCOLOR-
VDSR [41}, 61], ARCNN-VDSR [41], [54] ), unified SR framework (SRCDFOE
[46], LJSRDB [49]), and joint optimized SR method (CISRDCNN). Accord-
ing to their performance, we can obtain the following conclusion: the CAR
stage is necessary, but it should not be independent of the SR stage. The
CAR stage is beneficial to reducing compression artifacts, however, it is hard
to control the degree of artifacts reduction. Therefore, joint optimization of
CAR and SR is significant. These insights may also apply to the SR of noisy
images and blurred images, which will be studied in our future work.

4.3. Robustness to quality factors

In this subsection, the robustness of CISRDCNN to compression QF's
is tested. To conduct this experiment, a series of CNN models are trained
at different QFs. Fig. [ presents the average PSNR gains of CISRDCNN
over Bicubic at different QFs on Set10. It can be observed that CISRDCNN
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Fig. 8. The average PSNR gain (dB) of the proposed CISRDCNN over Bicubic at different
QFs on Set10.
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achieves obvious PSNR gain in a wide range of QFs, even at low compression
ratio. Hence, the CISRDCNN is robust to QFs, and it applies to compressed
images in different quality.

4.4. Ezxperimental results on image datasets

In order to evaluate the stability and robustness of CISRDCNN on dif-
ferent kinds of images, we conduct experiments on four standard imagesets,
including Set5 [22], Set14 [29], B100 I and Urban100 [26]. For the images
in B100, we crop them to generate test images of size 256 x 256. Similarly,
the images in Urbanl00 are cropped to generate small test images of size
512 x 512. Due to the limited space, we only take QF = 10 as an example
in this experiment, and the Bicubic, VDSR [41], ARCNN-VDSR [41], 54],
and SRCDFOE [46] are selected as baselines. The average PSNR/SSIM/IFC
results are reported in Table [ It can be observed that the CISRDCNN
consistently outperforms all of the compared baselines.

We further draw the distributions of PSNR/SSIM/IFC gains of CISRD-
CNN over the baselines in Fig. [0} One can easily see that the CISRDCNN
outperforms competitors for most of the test images in the four commonly
used imagesets. The results shown in this subsection demonstrate the ro-
bustness and stability of CISRDCNN.

4.5. Empirical study on computational time

In this subsection, we compare the running time and PSNR of different
methods (QF = 10). This experiment is conducted on a desktop computer
(Win7, Inter Core i5 CPU 3.3GHz, 12G memory, Matlab 2014a 64bit) [] .
The running time and PSNR of each method are average values of all the

3The LJSRDB [49] is running on another computer as the code only can run in Matlab
32bit version, so we do not present the running time of this algorithm in Fig. @
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Table 4
Comparisons of average PSNR (dB)/SSIM/IFC scores on datasets (SR factor: 2, QF: 10).

DataSets Set5 Set14 B100 Urbanl100
PSNR (dB)
Bicubic 26.602 25.037 24.285 22.999
VDSR [41] 27.812 25.901 24.870 23.932
ARCNN-VDSR [41], 27.827 25.856 24.899 23.929
SRCDFOE 27.243 25.451 24.599 23.340
Proposed CISRDCNN 28.154 26.127 25.019 24.369
SSIM
Bicubic 0.7239 0.6433 0.5863 0.6224
VDSR [41] 0.7931 0.6853 0.6179 0.6859
ARCNN-VDSR [41], 0.7878 0.6803 0.6153 0.6774
SRCDFOE 0.7661 0.6663 0.6025 0.6512
Proposed CISRDCNN 0.8039 0.6926 0.6238 0.7043
IFC
Bicubic 1.036 0.989 0.817 1.142
VDSR [41] 1.421 1.263 0.988 1.542
ARCNN-VDSR [41], [54] 1.398 1.240 0.983 1.510
SRCDFOE 1.207 1.113 0.900 1.285
Proposed CISRDCNN 1.546 1.354 1.040 1.751
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Fig. 9. Distributions of PSNR (dB)/SSIM/IFC gains of CISRDCNN over the com-
pared methods, on all images in Set5 [22], Set14 [29], B100Z, and Urbanl00 [26] (SR
factor: 2, QF: 10). (a) Distribution of PSNR (dB) gain. (b) Distribution of SSIM gain.
(c)Distribution of IFC gain. The statistical steps for PSNR, (dB)/SSIM/IFC gains are set
to be 0.1/0.0025/0.025, respectively.

ten test images in Fig. [l As depicted in Fig. [10} the proposed CISRDCNN
achieves state-of-the-art performance with acceptable computational timeﬂ
In addition, the execution time of CISRDCNN can be greatly accelerated
with a powerful GPU.

It is important to note that we use the Matlab test code of FSRCNN (available:
http://mmlab.ie.cuhk.edu.hk/projects/FSRCNN.html), which is much slower the imple-
mentation used in [40].
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Running Time (s).

Table 5
No-reference image quality assessment on the SR results of low quality web images using
the evaluation metric for SR proposed in [64] (SR factor: 2).

Test Images Rose Child Anime
Bicubic 2.927 3.650 3.044
CISRDCNN 4.941 3.902 6.050

4.6. Super-resolution on real low quality web images

We further test the effectiveness of CISRDCNN on real low quality web
images, which usually suffer from downsampling and compression due to the
limited bandwidth and storage capacity. The test images used in this ex-
periment are downloaded from internet | As presented in Fig. we can
observe that the CISRDCNN achieves obvious perceptual quality enhance-
ment over the original images and the interpolation results of Bicubic, with
fewer artifacts and clearer structures.

Further, the no-reference image quality evaluation index for SR proposed
in [64] is used to quantitatively compare these resultant images, and the
scores are illustrated in Table o} It can be seen that the CISRDCNN gen-
erates higher values than Bicubic on all of the three test images, which also
indicates that the resultant images of CISRDCNN are of higher quality. The
results in this subsection verify that the proposed CISRDCNN is also appli-
cable to the compressed image in the real world.

4.7. Application in low bit-rate image coding

At low bit-rates, the existing compression methods (e.g., JPEG and JPEG
2000) always produce visually unpleasant compression artifacts. In this sub-

®Available: http://image.baidu.com| .
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(a) LR (Rose) (b) Bicubic (¢c) CISRDCNN

(g) LR (Anime) (h) Bicubic (i) CISRDCNN

Fig. 11. Super-resolution results of real low quality web images (SR factor: 2). The
first column [(a)(d)(g)]: real low quality web images. The second column [(b)(e)(h)]:
the results of Bicubic. The third column [(¢)(f)(i)]: the results of proposed CISRDCNN.
Please zoom in to view details and make comparisons.
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Fig. 12. The flowchart of CISRDCNN-based low bit-rate coding method.
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Fig. 13. Rate-distortion curves of JPEG and the proposed CISRDCNN-LBRC. (a) But-
terfly. (b) Woman. (c) Circuit. (d) Leaves. (e) Foreman. (f) Peppers.

section, we take the JPEG as an example to show how to use the proposed
CISRDCNN to construct a low bit-rate coding framework (CISRDCNN-
LBRC), thus enhancing the rate-distortion performance of JPEG. The start-
ing point is to reduce data volume but preserve main structure of the original
image via placing a downsampling operator before JPEG encoder. Corre-
spondingly, the CISRDCNN module is placed behind the JPEG decoder to
perform upsampling. As shown in Fig. the presented CISRDCNN-LBRC
consists of four parts: downsampling, JPEG encoder, JPEG decoder, and

CISRDCNN.
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(b) () (d) (e)

Fig. 14. Perceptual quality comparison of JPEG and the proposed CISRDCNN-LBRC
on Woman. (a) Original image (PSNR (dB)). (b) JPEG at 0.205 bpp (27.551). (c)
CISRDCNN-LBRC at 0.205 bpp (31.359). (d) JPEG at 0.388 bpp (32.377). (e)
CISRDCNN-LBRC at 0.383 bpp (33.710). Please zoom in to view details and make
comparisons.

Fig. 15. Perceptual quality comparison of JPEG and the proposed CISRDCNN-LBRC
on Circuit. (a) Original image (PSNR (dB)). (b) JPEG at 0.289 bpp (24.849). (c)
CISRDCNN-LBRC at 0.286 bpp (28.147). (d) JPEG at 0.579 bpp (28.728). (e)
CISRDCNN-LBRC at 0.561 bpp (30.089). Please zoom in to view details and make
comparisons.

Fig. 16. Perceptual quality comparison of JPEG and the proposed CISRDCNN-LBRC
on Leaves. (a) Original image (PSNR (dB)). (b) JPEG at 0.364 bpp (22.947). (c)
CISRDCNN-LBRC at 0.355 bpp (27.305). (d) JPEG at 0.840 bpp (28.840). (e)
CISRDCNN-LBRC at 0.821 bpp (31.105). Please zoom in to view details and make
comparisons.
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Fig. 17. Perceptual quality comparison of JPEG and the proposed CISRDCNN-LBRC
on Foreman. (a) Original image (PSNR (dB)). (b) JPEG at 0.203 bpp (28.415). (c)
CISRDCNN-LBRC at 0.200 bpp (33.550). (d) JPEG at 0.554 bpp (35.922). (e)
CISRDCNN-LBRC at 0.552 bpp (36.654). Please zoom in to view details and make
comparisons.

The test images Butterfly, Woman, Circuit, Leaves, Foreman, and Pep-
pers are selected as examples to test the effectiveness of CISRDCNN-LBRC.
Note that we use the luminance components of the six test images to con-
duct experiments in this subsection. For a fair comparison, the JPEG is
used as the baseline in this experiment. The rate-distortion curves of JPEG
and CISRDCNN-LBRC are presented in Figs. 13. It can be seen that the
rate-distortion performance CISRDCNN-LBRC is obviously superior to the
JPEG at low bit-rates. From another point of view, the CISRDCNN-LBRC
can save lots of coding bits.

To compare the perceptual quality of the decoded images, we show the
results of CISRDCNN-LBRC and JPEG at different bit-rates. Due to the
limited space, only the results of Woman, Circuit, Leaves, and Foreman are
presented in Fig. [I4]to Fig. [I7] We can observe that the CISRDCNN-LBRC
generates fewer artifacts and preserves main structures better. For instance,
the fingers in image Woman (Fig. and the collar in image Foreman
(Fig. [L7). Overall, the CISRDCNN-LBRC performs better than JPEG at
low bit-rates in terms of both objective and subjective evaluation.

5. Conclusion

In this paper we propose a SR algorithm for compressed images. Unlike
the existing SR methods for compressed images, we treat this task as two
relevant subproblems, i.e., CAR and SR. Further, a deep network is designed
to realize joint optimization of the two subproblems. We take the compres-
sion standard JPEG as an example to test the effectiveness of the proposed
CISRDCNN, and experiments on both synthetic images and real low qual-
ity web images show that it produces state-of-the-art SR results. Moreover,
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we show the application of the proposed SR method in low bit-rate image
coding, which improves the rate-distortion performance of JPEG. Intuitively,
the proposed SR method and the low bit-rate coding framework can be easily
extended to other image and video compression standards, e.g., JPEG 2000,
H.264, and HEVC. In addition, this work provides some insights on the SR
of low quality LR images (e.g., noisy and blurry), which will attract other
researchers to concern this kind of problems.

However, due to the high complexity of training process and the lake of
high performance computing devices, the parameters of the proposed frame-
work are not well optimized, such as the number of layers and filters, the size
of kernels, etc. In future, we will study on the settings of main parameters,
which may lead to better performance and lower complexity.
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