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Abstract: Although research on detection of saliency and visual attention has been active over recent years, most of the existing work focuses 

on still image rather than video based saliency. In this paper, a deep learning based hybrid spatiotemporal saliency feature extraction framework 

is proposed for saliency detection from video footages. The deep learning model is used for the extraction of high-level features from raw video 

data, and they are then integrated with other high-level features. The deep learning network has been found extremely effective for extracting 

hidden features than that of conventional handcrafted methodology. The effectiveness for using hybrid high-level features for saliency detection 

in video is demonstrated in this work. Rather than using only one static image, the proposed deep learning model take several consecutive frames 

as input and both the spatial and temporal characteristics are considered when computing saliency maps. The efficacy of the proposed hybrid 

feature framework is evaluated by five databases with human gaze complex scenes. Experimental results show that the proposed model 

outperforms five other state-of-the-art video saliency detection approaches. In addition, the proposed framework is found useful for other video 

content based applications such as video highlights. As a result, a large movie clip dataset together with labeled video highlights is generated. 

Keywords: spatiotemporal saliency detection, Human gaze, convolutional neural networks, visual dispersion, movie highlight extraction. 

1. Introduction

Visual saliency has been an important and popular research in image processing for decades with a sole purpose to mimic 

biological visual perception for machine vision applications. Substantial interests in the field as evidenced by the vast volume of 

publications, such as application of saliency concept for image/video compression and recognition[1]-[6], automatic image 

cropping[7], non-photorealistic rendering[8], adaptive image display on small devices[9], movie summarization[10], shot 

detection [11], human-robot interaction[12], and detection of multi-class geospatial targets[13][14] have been reported in the last 

two decades.  

Historically, saliency detection research was first initiated by Treismanand Gelade in 1980[15] who proposed the “Feature 

Integration Theory”, which illustrated how visual attention was attracted by features in the imagery. Itti and Koch‟s model 

triggered strong interests in this field of research, including the use of low-level features to map the saliency regions/objects in the 

image scene[16]. He et al[17] proposed a biologically inspired saliency model using high-level object and contextual features for 

saliency detection based on Judd‟s concept [18]. Further extension of research along this line was reported by Goferman et al [19] 

who emphasized that four important factors, including local low-level features, global consideration, visual organization and 

high-level factors could affect saliency detections strongly. The methodology for feature extractions has also been improved. 

Despite of intensive research in the image based saliency detection, video saliency has not been addressed until recent years. In 

fact, video saliency is quite different from that of still images, mainly because of the very limited frame-to-frame interval time for 

the observers‟ attention to be drawn by features in the scene. Although there are extensions from the image-based saliency models 

for the video stream such as the temporal intensity and orientation contrasts as dynamic features[20][21], better frame work is 

needed for more efficient saliency detection from video footage. 

While most work in the field has been focusing on low level features, human attention prediction is considered to be dominated 

by some high-level features, such as objects, actions and events. Rudoy et al[22] employed viewer‟s gazing direction and also to 

use their actions as cue to locate the saliency features, as opposed to the conventional image based pixel feature extraction method. 

Han et al.[23] proposed that meaningful objects were important to saliency detection. Based on visual attention and eye movement 

data, a video saliency detection model was trained and it was found to outperform all other state-of-the-art algorithms.  

On one hand, conventional handcrafted features have proven their success in existing approaches and applications. On the other 

hand, deep learning networks has shown their great potential in computer vision such as coping with human perception especially 

for large-scale data and more complicated problems. It is our intension here to combine all of these approaches together to address 

the challenges for video saliency detection. Some papers [24][25] report that it is effective to combine deep learning based features 

and handcrafted features for saliency detection. However these methods use only single image and do not consider temporal 
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information in video. Wenguang et al [26] captures spatial and temporal saliency via fully convolutional networks (FCNs) from 

frame pairs, but only using a frame pairs is not enough to fit the visual staying phenomenon for watching videos. Different with the 

mentioned works above, we proposed a novel deep learning and handcraft features hybrid framework for spatial dynamic attention 

of video by using consecutive 7 frames as input. 

This paper focuses on eye fixation prediction task of video streams. A deep learning based combined feature framework is 

proposed to predict the spatial and temporal saliency regions and visual dispersion amongst video sequences. The features are 

extracted via an effective deep learning model, and they are then integrated with other handcrafted features. The effectiveness of 

these combined high-level features for saliency detection from video stream is assessed using five publicly available eye gazing 

datasets. In addition, a clip-vote dataset with about 596 movie clips and votes from 70 observers has also been employed to validate 

the applicability of the proposed approach for highlight extraction from movie streams.  

Although research on saliency detection and visual attention have been receiving increasing attention in recent years, most of 

existing work focuses on still image rather than video based saliency detection. In this paper we proposed a deep learning based 

hybrid spatiotemporal feature framework for saliency prediction from video streams, and the main contributions of the present 

work can be summarized as follows: 

 A hybrid feature framework is proposed for saliency detection in video. Low-level features extracted from convolutional 

neural networks are found more effective than other commonly used handcrafted features such as intensity, color, 

orientation, and texture for saliency detection. The integration of high-level features with the low-level one, as well as the 

use of a customized classifier rather than that in CNN, are found very useful supplement to our framework. The performance 

of this hybrid feature framework is validated by five video datasets. 

 A CNN based feature hybrid method has been proposed for the spatial saliency detection using 7consecutive raw frames.  

 A 3D CNN with high level object features, scene complexity feature and a cluster weighted model have been employed for 

temporal dynamic attention detection.  

 In addition, based on the proposed TDA model, a movie clip dataset is constructed with subjective ranking of highlight 

levels. To the best of our knowledge, this is the first of such datasets to be made in this field. This data set may be useful for 

semantic video analysis as it is shown in this work. 

 According to experimental results, we have shown that this hybrid feature framework outperform five state-of-the-art 

methods for the saliency detections from five public eye fixation databases. 

The remaining paper is organized as follows. Section 2 overviewed the related works. Section 3 provides an overview of the 

proposed approach, including definition of spatiotemporal attention and ground truth determination. In Section 4 and 5 the spatial 

dynamic attention model and temporal dynamic attention model are discussed, respectively, along with details in terms of feature 

extraction. Section 6 presents the experimental results and discussions on five publicly available datasets. In Section 7, experiments 

on our constructed movie clip database are reported. Finally, some concluding remarks are drawn in Section 8. 

 

2. Related work 
Saliency detection models in general can be categorized into visual attention prediction and saliency object detection. In this 

paper, we propose a deep learning framework for predicting eye fixation locations where a human observer may fixate[27][28][29]. 

Itti and Koch use low-level features to map the saliency regions/objects in the image scene[16]. Koch and Ullman [28] introduced 

a feed-forward bottom up model to combine features in the form of a saliency map to represent the most visually attractive region 

across the whole scene. Then a number of studies extended the concept and applied it for still image applications[30][31][32]. The 

idea is then further expanded by Itti et al[20] who proposed a rather influential saliency based visual attention model for rapid scene 

analysis in 1998. Recent work by Zhang et al[33] showed that simple, but effective, saliency detection could be achieved through 

the entropy of images in both RGB and LAB color spaces. Other work by Han et al[34] also demonstrated the effectiveness of 

sparse coding representations for saliency detection from still images. Details of other variety of approaches can be found in a 

recent survey by Itti‟s group[35]. 

For video Visual attention prediction, Quite different from that of the still image extended saliency model had been the 

bottom-up spatiotemporal methodology, which integrated the static and dynamic saliencies as proposed by Marat et al[11] for 

video application. Kim et al[36] extended the image based center-surround method for video stream by adding another temporal 

dimension. Hou and Zhang[37]proposed a spectral residual saliency model based on the similarity implied redundancies amongst 

image frames. In Guo et al[38],a saliency map was obtained when the amplitude spectrum of the quaternion transformed video 

frame remained at nonzero constant value. In Cui et al [39], a temporal spectral analysis method was proposed for fast motion 

saliency detection in video. Hou and Zhang [40] proposed to assess the entropy of features using incremental coding length (ICL). 

The dynamic and static saliency was computed by selecting features with longer code length increment value. Zhang D. et al [41] 

proposes an unsupervised event saliency revealing framework by extracts features from multiple modalities to represent each shot 

in the given video collection. Wang W. et al [42] use a novel spatiotemporal saliency detection method to estimate salient regions 

in videos based on the gradient flow field and energy optimization. What‟s more, co-saliency detection has received tremendous 

research interest in recent years, [43][44][45] was all proposed a new framework for Co-saliency Detection and achieve satisfy 

results.  

Deep learning models such as convolutional neural networks (CNN) and fully convolutional networks (FCN) has successfully 

used in computer vision and now it received more and more attentions in the visual attention prediction. But some methods 



[46][47][48] give up the temporal features which is very important in video, only use the single video frame and the deep learning 

models and other works  [49][50]use the combining deep learning based features and handcrafted features in saliency detection. So 

the previous work did not apply to visual attention prediction. In [51], two stream convolutional networks for learning 

complementary information was used for dynamic attention prediction and video object segmentation. However, these methods 

train their models on multi-frame which causes heavy computational burden. W Wang et al [52] use the FCN to capture the spatial 

and temporal saliency information in Video salient object detection. A CNNs Based RGB-D Saliency Detection via Cross-View 

Transfer and Multi-View Fusion was proposed by J. Han et al [53]. 

 

3. Overview of the proposed approach 
 

3.1. Introduction of spatiotemporal dynamic attention 

 

In recent years, saliency detection from static images has been intensively investigated. Deduced from several image cues, 

Kochand Ullman[28] introduced the concept of saliency map to represent the conspicuousness regions of images. By using eye ball 

tracking devices to capture the viewer‟s most attended region of interest when people looking at specified images, several eye 

fixation datasets have been constructed, which have facilitated a number of methods for supervised-learning based image saliency 

detection [54]-[63]. However, the work on the behaviors of viewers‟ attention when they are watching video remains rare.  

Unlike image saliency which only distributes in the spatial domain, video saliency can be distributed in both spatial and temporal 

dimensions. In other words, there are two kinds of visual attentions that are needed to address for video saliency detection, i.e. 

spatial and temporal distributions of audience‟s dynamic attention. They are respectively defined as spatial dynamic attention 

(SDA) and temporal dynamic attention (TDA). 

SDA shares the same meaning with the saliency map used in the (still) image saliency [20]. For each video, a pixel-wise SDA 

value ranged within [0-1] is determined. A pixel with a larger SDA value meaning it is more likely to be gazed at. Therefore, SDA 

can be used to indicate the spatial intrinsic consistency when different observers are watching the same video.  

TDA also has a value ranged within [0-1] yet it is frame based, which indicates the variation of human‟s attention on a 

continuous frame sequence as it is determined by using a temporal window of consecutive frames. This means that TDA is a 

measure of inter-observer agreement in the temporal domain. The assumption here is that a frame with larger inter-observer 

agreement, which corresponds to a higher TDA value, is considered more salient than those with low TDA values. Promising 

results using TDA for the detection of video highlights in movies are also reported in Section 7. 

In this paper SDA is designed to be calculated pixel by pixel. TDA is estimated by using frame sequence and each frame is 

assigned a TDA value, its ground truth can also be deduced from the eye fixation database. Similar definitions can be found in Jiang 

et al [64], which use dynamic attention value for each frame to calculate Visual Attention Index (VAI). In Han et al [23], spatial and 

temporal visual attention (SVA/TVA) values are determined by using object based visual features. 

 

 
Fig.1. Feature Hybrid Deep Learning Based Framework for spatiotemporal saliency extraction. 

 

As visual cues are not the only factor that influence human‟s attention [65], a more thorough framework is preferred to meet the 

biological plausibility of visual computation in determining SDA and TDA from videos. This framework should be flexible and 

include different kinds of heterogeneous features. With the employment of deep neural network, the proposed framework enables 

such flexibility to allow new features to be easily included rather than using only visual cues as in existing work within the 

community. 

 



Fig. 2. One sample frame extracted from the movie „Gladiator‟ when the evil King was verballyinfuriating the General (left) and results of predicting attention from 

the proposed method (right) to indicate that observers were in fact attracted by his facial expression. 

 

To some extent, the proposed video saliency framework is similar to video highlight extraction as there is potential to use 

detected saliency attention to promote the extraction of video highlights. However, there are some differences between them as 

explained in an example below. As shown in Fig. 2, a frame from the movie „Gladiator‟ is extracted when the evil King was 

verbally infuriating the General. According to the highlight extraction algorithm in [66], the highlight degree of this part is low due 

to the accumulated stimulus of slow motion and low sound energy. On the contrary the eye fixation was concentrating on their 

faces, which actually demonstrated that observers were attracted by this part. 

 

3.2. Computation of ground truth 

 

To train the model and assess the performance, ground truth maps for human spatiotemporal dynamic attention are needed. 

Although there are no such databases of human attention, motivated by the findings that observer‟s attention and eye movement are 

highly correlated[67], some indirect ground truth can be derived from a large collection of human-eye gazing data. The 

computation of ground truth has been introduced in [23], where the spatiotemporal gaze density is generated using three 

human-eye gazing database, the VAGBA dataset [54], The Lübeck INB Dataset[55] and the IVB database [56]. For simplicity and 

consistent experimental comparison, the same ground truth computation method is adopted in our paper. In addition to the three 

datasets above, another two datasets, CRCNS[57] and DIEM (Dynamic Image and Eye Movement)[58]), are also used. This is 

because the lengths of these video streams are longer and their scenes are more complicated and the detailed description of these 

datasets is given in Section 6 (see in Table 1). 

For each video in a given dataset, a 3D Gaussian model is used to estimate the probability of a pixel to be fixated in the 

spatiotemporal fixation map S[27]. As defined below, the ground truth value of SDA can be calculated by: 
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 To calculate the TDA ground truth value which can evaluate the similarity of eye fixed of these observers in each frame, a“leave 

one out” method is adopted. Each time the spatial fixation map of all observers except one is computed similar as the SDA. We 

extract the top 25% points in this fixation map which have the highest probability of being fixed. And then compute the percentage 

of the visual fixations of the remaining observer that fall within those areas. If the remaining observer also looks at those areas, the 

TDA value will be 1. This process is iterated for all observers and can be defined by 
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Here
p

k
g is all the gazing points of the

thp  remaining observer in frame k ,  is a threshold function to keep the top 25% fixated 

probability points in the spatial fixation map ps
K

| , which is calculated from all observers except the
thp  remaining observer, the 

 is a function for calculating the percentage of the visual fixations of the remaining observer that fall within saliency parts of the 

threshold spatial fixation density map. means this process is iterated for all observers. 

 



 
Fig. 3.The proposed feature hybrid spatiotemporal CNN model for the computation of SDA. (a) The architecture of the CNN model for single frame. 

 (b) The feature hybrid framework for SDA with consecutive 7 frames as input. 
 

In addition, a new clip-based video dataset is built to explorefurther applicationsof the proposed TDA model, such as video 

summarization[68] and highlight extraction[66]. For each of the video clip in the dataset, there are 70 subjects‟ selections, 

representing as 0/1 to indicate its attractiveness to the viewer. The TDA values are then combined with subjects‟ score and taken as 

features to train a SVM. Relevant technical detail and experimental results are discussed in Section 7.  

 

4. SDA deep learning 

 
Based on the previously introduced spatiotemporal dynamic attention framework, a SDA predicting model is proposed in this 

section and detailed as follows. 

 

4.1. 2D CNN based feature extraction 

 

For most existing saliency detection approaches as found in [16][20][69]-[73], they all suffer from one big drawback where their 

classifiers are reliedon complex handcrafted features computed from the raw inputs. They may work well for biologically 

motivated low-level features such as intensity, color, orientation and texture. In real-world scenarios, however, it is not known 

which features are really important for achieving the task at hand asthe choice of features is highly goal-dependent. This has 

inevitably limited their generalization ability for dealing with complicated cases, such as video characterized by having wide 

variety of themes.  

In recent years, deep learning models[74]-[78] have been proposed to learn hierarchy of features by building maps from 

low-level features to high-levelones. Applications of deep neural networks based systems have shown very competitive 

performance with respected to many other classifiers in many fields; such as human action recognition[79][80][81], tracking[82], 

nature language processing[83], audio processing[84], segmentation [85], and denoising[86]. The ImageNet database has been 

established to provide a comprehensive basis for image classification and object recognition research[87][88][89]. However, those 

image based methods cannot be directly applied for video saliency detection due to the lack of temporal information and dynamic 

attention model. For predicting of dynamic human attentions in videos, eye gazing video datasets have beenused in this paper for 

training the spatiotemporal video saliency model.  

A 2D CNN architecture can be constructed by stacking multiple layers of convolution and subsampling in an alternating pattern. 

Each convolutional layer is used to extract features from a local neighborhood of the feature maps in the previous layer. As defined 

in Eq. (1), the value of a unit at position ),( yx  in the
thj feature map in the thi  layer can be calculated by 
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where )tanh( represents the hyperbolic tangent function;
i
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the convolutional kernel and
ij

b  represents the bias for the current feature map. At the training stage, all the parameters are 



optimizedthrough back-propagation (BP) algorithm. As for the max-pooling layers, their purpose is to achieve spatial invariance 

by reducing the resolution of the feature maps[90]. Meanwhile, max-pooling reduces the computational complexity of upper layers 

by selecting superior invariant features. 

The architecture of Convolution Network resembles the VGG-M model [91] and static saliency model [92]. Static spatial 

saliency mapis obtained from single frame which does not contain temporal information[93]. The convolution network for single 

frame (Figure 2(a)) can be summarized as input layer (640×480×3)->convolution layer 1 (7×7×96)->local response 

normalization->max pooling layer 1 (3×3 stride 2)->convolution layer 2 (5×5×256) ->max pooling 2 (3×3 stride 2)->convolution 

layer 3 (3×3×512)-> convolution layer 4 (5×5×512)-> convolution layer 5 (5×5×512)-> convolution layer 6 (7×7×256)-> 

convolution layer 7 (11×11×128)-> convolution layer 8 (13×13×1)->deconvolution layer 1 (8×8×1 stride 4). That is, the input is a 

single frame, and last layer is deconvolution aims to produce a saliency map which are the same size as the input. In all convolution 

layers, the stride was set to 1. And all convolution layers except the last one are followed by a rectified linear unit non-linearity 

(ReLU) layer. The convolution network composed of 10 weight layer, and transfer learning was used in the first 3 convolution 

layers to initialize the weights with the pre-trained weights from the VGG-CNN-M network in [91]. The remaining weights were 

initialized randomly using the strategy in [94]. 

 

4.2. High-level features: object features 

 

Human attentions, is mainly driven by objects, as validated in a number of previous works[95][96][97][98]. Some examples are 

given in Fig. 4, which shows that the eye gazing positions are always focused on the objects in a scene, such as pedestrian and 

human faces. It is further found that human attention can be biased toward objects and move with objects[22]. As a result, it is 

natural to assume that the region around objects may be more attractive to be gazed at. 

Inspired by the object-biased attractiveness of human attention, Han et al [23] extended the object bank method [99] to compute 

a response map for each video frame. In total there are 177 kinds of objects, and each has a specific trained detector. In this paper, 

the same object detection method in [23] is used. Based on the fact that pedestrian attracts more attention than other objects, a 

specific pedestrian detection algorithm [100] has been adopted in this work.  

 
Fig. 4.Examples show how objects affect human dynamic attention in videos. 

 

4.3. Experimental setup for determining SDA 

 

In our experiments for SDA, five video datasets are employed. All the frames are resizedto 640×480×3 pixels. In order to train 

an optimizing convolution network for single frame image model, Caffe framework [101] is used in the model, and Stochastic 

Gradient Descent (SGD) with the Euclidean loss distance is used between the predicted saliency maps of the single frame with the 

ground truth maps. All obtained saliency values of single frame are normalized to [0, 1]. For the network, we trained over 200K 

iterations and set the initial learning rate to 10
-7

, the momentum to 0.9 and the weight decay to 0.0005. Validation training is used in 

this model. For the training dataset, 80% videos are used for training and the rest for validation. 

During the training process, the proposed CNN model for single frameis firstly pre-trained with labeled saliency maps. The 

pre-trained CNN is then used for feature extraction in SDA framework. In the framework, consecutive 7 frames are using as input 

(Figure 2(b)), noted as frame i to frame i-6. Each frame‟s spatial saliency map is obtained by using the pre-trainedCNN. At each 

pixel location of the output saliency map, 3×3 pixels are concatenated as feature vector. So we obtained 9×7=63 dimensional 

feature vector for each pixel location from all the 7 saliency maps. Then the output vector is integrated with 177 dimensional object 

feature vector, and does a regression by SVM. The finally feature vector for each pixel is an integrated feature with 240 dimensions. 

For regression purpose, a linear SVM is adopted for its simplicity and effectiveness[23][102]. A five-fold cross-validation is 

employed to optimize theparameters. 



 

5. TDA deep learning 
 

In this section, we will explain how to predict temporal dynamic attention by using the proposed framework. It is well-known 

that the visual gazinglocations of viewers are not always constant when they are watching video. The distribution of visual gazing 

location can be very dispersive particularly when the video/scene is not very interesting. However, the viewer‟s gazingtends to be 

focused atthe same place whenan interesting event was happening. This phenomenon is known as visual dispersion for still 

images[103] or temporal visual attention for videos [23]. Examples of visual dispersionare given in Fig. 5 to illustrate the concept. 

Based on our proposed framework, the visual dispersion is calculated foreach frame of the eye gazing dataset (see in Section 4.2). 

Using the value of visual dispersion as the ground truth of the TDA,the proposed features are mapped to visual dispersion as 

detailed below.  

 
Fig. 5. Examples of visual dispersion when there is no region of interest (left) or there is a region of interest, the ball, where the eye fixation is focused upon. 

 

5.1. 3D CNN filter 

 

Extraction of spatial and temporal features from multiple contiguous frames is commonly performed for the analysis and 

understanding of video[79][104][105][106]. In our framework, a 3D CNN architectureis proposed for spatiotemporal feature 

extraction from the raw video data. In the proposed 3D CNN architecture, a 3D kernel is applied to a cuboid formed by stacking 

multiple contiguous frames together, similar to that as suggested in[79][81]. 

 

 
Fig.6. The 3D CNN architecture used in the proposed framework forthe extraction of TDAfeature. 

 

As an extension to Eq. (3), the value of a unit at position ),,( zyx  on the
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where the variables were as same as Equation (3). 
An overview of our proposed 3D CNN architecture is illustrated in Fig. 6 and the workflow issummarized as follow: 

i. Use the original frame size and take 7 contiguous frames as a group as input for the 3D CNN; 

ii. Filtered data maps are obtained from the 1
st 

convolutional layer, which contains 16 convolution kernels with filters size 7 × 

7× 3 giving 16 feature maps as the first layer output ; 

iii. Features maps are obtained by max pooling of the 16 filtered data maps using 8 × 8 max pooling; 

iv. The 2
nd 

convolutional layer has a set of 32 3D convolutional kernels with filters size 7×6×3 and outputs 32 feature maps; 

v. Features maps are then processed by another max pooling of 6 × 6 subsampling step. 

vi. Eventually a full connection is applied with a 128D feature vector extracted as output. 

 



Algorithm 1: 3D CNN architecture 

Input: 7 contiguous frames 

Output: a 128D feature vector 

1: Function : 3D CNN 

2:     16 convolution kernels with filters size 7 × 7× 3 to calculated with the input 

to get the filtered data maps; 

3:     8 × 8 max pooling was used to calculated the features maps; 

4:   32 convolutional kernels with filters size 7×6×3 to calculated with the 

features maps; 

5:     6 × 6 max pooling was used to calculated the features maps; 

6:     a full connection was apply in the features maps; 

7:  End function 

 

Note that at the training stage, all the parameters are optimized through back-propagation (BP) network. 

 

Fig. 7. Visual dispersion is affected by scene complexity which is measuring by using image sub-region segmentation. 

 

5.2. High-level features: object features 

 

The high-level image representation used in the proposed model is object based features[99] (see in Section 4.2), which is 

employed to determine the TDA feature below. By using the 177 object feature maps extracted from each frame in the SDA stage, 

every object feature map is translated to a likelihood value within [0,1], thusa 177 dimensional feature vector is derived from each 

frame. More details about the mapping process can be referred to [99]. Each element in the vector representsthe 

possibility/likelihood whether the corresponding object is contained in this frame. 

Although in our opinion this object feature works on the computation of TDA, there is still room for further improvement 

especially in the consideration of contextual information. One example here is the object of a football in the context of soccer game, 

which can be very attractive when it is rolling towards the goal post. However, it becomes much less attractive if the ball rolls out 

of the field. As a result, it is essential to address the contrast or relationship between the objects in the high-level semanticspace. 

 

5.3. High-level features: scene complexity response 



Another high-level feature we proposed in this paper is the scene complexity response, which is motivated by the fact that 

human‟s attention can vary dramatically as according to the complexity of the scenes being observed. The amount of visual 

information as well as the visualclutter in a picture may contribute to the variability of observers‟ attention [107]. 

As shown in Fig. 7 the distribution of gazing position in the first scene is more disperse, simply because of the more clutter in the 

first scenethan the second. From the neurobiological point of view, this phenomenonstems from the co-functioning of two 

mechanisms in our human visual system (HVS), i.e. bottom-up and top-down mechanism [43][108]. Although the bottom-up 

mechanism occurs first, the top-down mechanism plays a more dominant role when they work together. 

However, the above is true only if when the scene is static. For videos, it is believed that the two mechanisms dominate the 

attention alternately, depending on the complexity of the scene[107].When the scene complexity is low to medium, high-level 

features such as object attribution, content and event etc. affect observer‟s attention the most. Once the video scene turns to be too 

complicated, e.g. with too many objects, too much cluttering and/or too fast motion etc., the effect of the top-down mechanism is 

found reduced whilst the bottom-up mechanism becomes dominant. One possible explanation is that conventional image based 

features cannot be accurately extracted from complicated scenes. As a result, the top-down mechanism fails to work. As shown in 

Fig. 7, the first row is a frame of scenecontains many objects and the corresponding heat map indicates that the eye fixation is 

dispersive. The second row is a scene of football game, where the eye fixation is focused on the main object of the ball. 

To assess the visual complexity in frames, we firstly scale the frame to a size of 256 256. Then a color mean shift segmentation 

and region fusion method[103] is employed to segment the image into sub-regions. If the image is too clutter the number of 

sub-regions will be large and vice versa. Finally, the number of sub-regions is normalized by dividing a maximal value. Fig. 7 

shows two scenes and their eye fixation map and sub-region segmentation map. Thenumber of sub-regions of the segmented 

picture is also given. The calculation of this feature for the TDA is defined as following: 

Max

k
kF

HI

)(
)(


            (6) 

Here the function  refers to the color mean-shift segmentation and region fusion method in [103]. 

 

 

 

 

 

TABLE 2 

AUCs of various models for the prediction of eye movements on five eye tracking datasets. 
 

Ours Ours+Center OBJ[23] GBVS[16] MLSN[111] MCDL[112] STAD[113] SAG[114] TNSR[45] 

AUC in IVB 0.7993 0.8140 0.7895 0.7605 0.7888 0.7879 0.7698 0.7906 0.8015 

AUC in CRCNS 0.7128 0.7237 0.6837 0.6653 0.6807 0.6931 0.6571 0.7017 0.7086 

AUC in DIEM 0.7434 0.7461 0.6957 0.6746 0.7191 0.7094 0.6652 0.7359 0.7261 

AUC in INB 0.8562 0.8646 0.8266 0.8062 0.8305 0.8482 0.8133 0.8481 0.8353 

AUC in VAGBA 0.8391 0.8475 0.8215 0.8121 0.8233 0.8336 0.8117 0.8347 0.8294 

 

TABLE 1 

DETAILED DESCRIPTION OF 5 EYE FIXATION DATABASES 

Name Video 

Number 

Observers 

Number 

Resolution Duration Description Shot Cut Camera 

CRCNS-MTV 50 8 640*480 2-118Seconds Nature Scene, Interview, Ad, 

Sport, Street, TV Game 

Yes ( for its 

MTV data) 

Dynamic & 

Static 

DIEM 84 50 720*576-1280*720 120-180 Seconds TV, News, Sport, Music, 

Movie, People, Animal, Ad, 

Yes Dynamic & 

Static 

IVB[23] 12 15 352*238 6-12Seconds Nature Scene, Interview, Ad, 

Sport, Street 

No Dynamic 

VAGBA[23] 50 14 1920*1280 10 Seconds Outdoor & Indoor No Static 

INB[23] 18 54 1280*720 20 Seconds Nature Scene No Static 

 



 
 

Fig.8. ROC curves of various SDA models for eye movement prediction in five eye tracking datasets: CRCNS, DIEM, Lubeck INB, IVB and VAGBA. 

 

 
 

Fig. 9.Precision-Recall curves of the various SDA models for the prediction of eye movements on five eye tracking benchmarks. 

 

5.4. Experimental setup for determining TDA 

Given a combined feature set (including 3D CNN features, object based features and scene complexity features) extracted from 

each frame in a video set as well as the frame-based ground truth TDA value which is normalized within [0, 1], the task in 



determining TDA value for each frame can be regarded as a regression problem. Specifically, the ratio of training and testing 

videos is set as 2:1. To suppress the onset effect where the central bias is the strongest, the frames within the first 1.5s are discarded. 

A 7-frame temporal window is then used to form a 3-D feature volume and feed into the 3D CNN for feature extraction, also the 

object feature and scene complexity response feature are calculated per frame. 

The TDA value per frame is the measure of inter-observer agreement for one fixed frame. A higher TDA value of a frame means 

more attention consistency of viewers on the current time of video, vice-versa. 

 For the classifier selection, the cluster weighted model (CWM) [109] is adopted to predict the TDA value for each frame. CWM 

is a generalization of Gaussian mixture models, which can achieve more accurate linear regression results than simple linear 

models. The source code of CWM can be downloaded from the web of [110]. 

Let a CWM contain N clusters in a feature space and each cluster is associated with a linear regression function. To do a 

mapping from the feature space to an output value (TDA in this paper), all the regression functions are mixed. The mixture 

proportions are determined by the CWM‟s mixture coefficients and the conditional probability of sample‟s features which satisfies 

the Gaussian distribution when representing each cluster
i

c , where i=1,…, N. As a result, the joint probability density of a frame 

TDA rating
j

r  and the frame feature vector
j

f is decided by: 

 


N

i ijjiiijj
cfrpcfpcpfrp

1
),|()|()(),(     (7) 
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i

cp is the weight for the cluster
i

c . )|(
ii

cfp is the probability reflecting the influence of the cluster
i

c  in the feature space, 

and ),|(
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cfrp models the output distribution of the cluster. They can be formulated as the multivariate Gaussian with mean 
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and covariance matrix i . 
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Where 
*

j
f indicates the original feature vector 

j
f with a 1 concatenated to its end. We have obtained the feature

j
f  of the jth frame, 

then the estimated rating which should minimizes expected squared error under the model is 
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For the model‟s parameter set },,,),({  iiii
wiucp  , it can be determined using the expectation-maximization (EM) method as 

detailed in [109][110]. In the initialization process, )(
i

cp is set to a uniform distribution, 
2

i
  and i are initialized to be the 

variances of the TDA values and features of the training frames, respectively. 
i

u is estimated by randomly selected feature vectors 

from the training dataset, and 
i

w is set to zero. For a given number of clusters, to avoid the local minima, the EM procedure is 

repeated for 30 times and the result with the maximum log likelihood isused. In addition, the optimal number of clusters is 

determined by minimizing the total mean-squared error in a five-fold cross validation. 

 

6. Learning and experimental results 
 

To verify the effectiveness of the proposed models for SDA/TDA computation, intensive experiments were performed on five 

datasets, including VAGBA [54], Lübeck INB [55], IVB [56], CRCNS [57] and DIEM [58]. All of these five eye fixation datasets 

can be downloaded from the Internet. The main contents of these datasets are summarized and compared in Table 1, where three of 

them (IVB, VAGBA and Lübeck INB) had been used in [23]. There as on to consider two more eye tracking datasets in our 

experiments is that they have extra length, dynamic camera, additional scene categories, and contained shot cut within the 

sequences, especially for CRCNS (MTV data) and DIEM. 



 
Fig. 10. Results of saliency maps extracted from GBVS [16], OBJ [23], MLSN[111], MCDL[112], STAD[113], SAG[114], TMSR[45] and the 

proposed method in comparison of the ground truth. 

 

 

6.1. Evaluation criteria and benchmarking approaches 

 

For the evaluation of the proposed SDA (spatial dynamic attention) and TDA (temporal dynamic attention) models, two widely 

used metrics are used for quantitative performance assessment, including Receiver Operation Characteristics (ROC) with 

area-under-curve (AUC) and Precision versus Recall (P-R) Curve. For benchmarking purpose seven state of the art 

approaches[16][23][111][112][113][114][45] which have been shown almost the best performance on public datasets are selected. 

For these five benchmarking methods, the default parameters and the same datasets are used for training, testing and comparison 

with our proposed approach. 

Among these seven benchmarking approaches, the first is the bottom-up visual saliency model from Harel et al. [16], in which 

feature maps are constructed based on Itti's method [20] and followed by normalization using a fully connected graph built over all 

grid locations of each feature (abbr. GBVS in the following part). The second is object-based spatial visual model from Han et 

al.[23] (abbr. OBJ in the following part), where object features are mapped to human eye fixation density via learning. 

Experimental results show that OBJ method is more robust than traditional methods that use contrast-based features, such as those 

in [115][116][117]. The third method (abbr. MLSN) proposed a multi-layer sparse network to learn low, mid and high level 

features from natural images. The fourth method (abbr. MCDL) use a multi-context deep learning framework for saliency object 

detection. Both global context and local context are taken in account. The fifth method (abbr. STAD) proposed a dynamic 

consistent spatiotemporal attention model by considering objects and motions in video. The sixth method (abbr. SAG) proposed a 

saliency-aware geodesic video object segmentation. The last method (addr. TMSR) proposed a novel approach based on two-stage 

multi-view spectral rotation co-clustering for co-saliency detection. 

Since there is a strong bias to the center of the image for human fixations [18][118], we also model this center bias in our SDA 

model by calculating the distance from current pixel to the center of the frame in the process of training and predicting. This forms 

a one dimensional vector and is denoted as center feature in this paper, which is also concatenated to the SDA feature set for 

evaluation. 

In addition, Pearson correlation coefficients[119] between the predicted TDA and the ground truth are also used in assessing the 

performance of the proposed TDA model.  

 

6.2. SDA results from ROC analysis 

 

For each SDA calculation method, the results are evaluated using the average receiver operating characteristic (ROC) and AUC 

analysis, which are shown in Fig. 8 and Table 2 for comparison. The ROC curve is plotted as the False Positive Rate vs. Hit Rate, 



which is used to compare the performance of the proposed SDA regression model with other approaches. The moving threshold 

range is [1, 0] with a step 0.1. The AUC is calculated as the area under the ROC curve to demonstrate the overall performance of a 

given saliency model. As can be seen, the proposed SDA model with Center feature produces the best results. Even without using 

the Centre feature, SDA is still found to outperform most others in all the five datasets. The MCDL method shows almost the same 

performance with the proposed method but it needs more computation cost to train multi deep learning frameworks. 

To compare the quality of different saliency maps obtained by SDA methods, the P-R curves are illustratedin Fig. 9. In general, 

the proposed SDA model generates the best results over the five datasets, though OBJ method yields slightly better results in the 

IVB dataset when the recall value is between 0.14 and 0.44. 

In addition, saliency maps extracted from different methods are also visually compared in Fig. 10, where the distribution of 

predicted eye fixation positions is used to generate the heat map. In most situations our predicted saliency maps match with the 

ground truth the best. For example, in the third row of „gamecube02‟ from the CRCNS dataset, our result is focusing on the main 

saliency object around the screen center as defined in the ground truth. Moreover, our model shows less attention to the text and 

sign at two corners on the top than other methods, which validates the efficacy of the proposed features. There are some 

weaknesses of our model, as in the second row, we have detected too many saliency regions, though the main object has been 

accurately identified.  

  

 
Fig. 11.Comparison of the Earth Mover‟s Distance (lower is better) between the predicted TDA which are random selected and ground truth in IVB, CRCNS and 

VAGBA datasets by using proposed method and others including 2D CNN as a baseline of the comparision, OBJ, 3D CNN, 3D CNN+ Scene Complexity,3D 

CNN+OBJ and TDA. 

 



6.3. The Earth Mover’s distance analysis for TDA 

 

In addition to the high level features assessed above, the Earth Mover‟s Distance [120] between the randomly selected TDA and 

the ground truth are computed. To compute the TDA, the ratio of training and testing data is set as 2:1 in each dataset and relevant 

results are reported in Fig. 11 for comparison.Three datasets, IVB, CRCNS and VAGBA are used for comparisonas they 

respectively have low, medium and high spatial resolutions for testing. As can be seen, in all the three datasets the proposed TDA 

model consistently outperforms theothers, though the average EMD from the several approaches are not satisfied and can be further 

improved upon. Due to the large number of objects contained in the video scene, object detection becomes a hard task in this 

context. As a result, how to address this difficulty for improving feature extraction and CNN architecture design is worth for future 

investigation. 
 

6.4. The Earth Mover’s distance evaluation for SDA 

 

To evaluate the proposed method more sufficiently, the Earth Mover‟s Distance (EMD)[120] is employed here. The EMD is a 

measure of the distance between two multi-dimensional distributions. Relevant SDA results are reported in Table 3 for comparison. 

Furthermore, the histogram intersection similarity is computed between the normalized saliency map and the ground truth. 

Relevant SDA results are reported in Table 4. 

According to the EMD results, the proposed method performs better than others in most cases. 

 

6.5. Further discussions of the proposed framework  

 

In this paper, we propose a deep learning based feature hybrid framework for video saliency detection. The feature extraction by 

the deep learning network plays the most important role in this work for saliency detection, which is further improved by 

concatenating some high-level global features. Rather than putting all the hand-tuned features as an input layer to a deep learning 

network, they are combined with the output of the pre-trained deep learning net work for easy implementation and highly flexibility 

to adapt heterogeneous architecture features. For example, a video clip with high sound energy may indicate some exciting 

elements that draw more viewers‟ attention. Thus the sound feature can be taken into account to dynamically optimize the saliency 

area and consistency of attention in a frame. It is feasible in the proposed framework to concatenate the sound energy feature to 

other extracted features. As a result, our design is more flexible and better compatible with heterogeneous architecture features. 

Another reason that the hand-tuned high-level features are not taken as input to CNN is the extremely high computation cost on 

the five video databases for training. Although the deep learning networks have been significantly improved comparing with the 

original artificial neural networks model, it still needs considerable computational cost for training and tuning, especially for videos. 

It takes about 5 days to train the deep learning network even with a high performance personal computer. More input data means 

more training time is needed. Though possibly the high-level feature maps may improve the results from the deep learning network, 

TABLE 3 

EMD results of SDA on five eye tracking datasets (smaller is better). 

 Ours Ours+Center OBJ GBVS MLSN MCDL STAD SAG TMSR 

EMD in IVB 0.4988 0.4735 0.5734 0.6870 0.5100 0.5611 0.6608 0.5069 0.4905 

EMD in CRCNS 0.6508 0.6231 0.6908 0.7125 0.6695 0.6453 0.7270 0.6515 0.6415 

EMD in DIEM 0.6203 0.6117 0.6861 0.6883 0.6352 0.6662 0.7093 0.6313 0.6455 

EMD in INB 0.3751 0.3666 0.3930 0.4714 0.4394 0.3833 0.4503 0.4016 0.4123 

EMD in VAGBA 0.4013 0.3843 0.4213 0.4505 0.4337 0.3966 0.4782 0.4033 0.4081 

 
TABLE 4 

Histogram intersection results of SDA on five eye tracking datasets (higher is better). 

 Ours Ours+Center OBJ GBVS MLSN MCDL STAD SAG TMSR 

HI in IVB 0.7534 0.7619 0.7476 0.7381 0.7237 0.7059 0.7381 0.7305 0.7488 

HI in CRCNS 0.5773 0.6118 0.5504 0.5821 0.5483 0.5534 0.5798 0.5769 0.5823 

HI in DIEM 0.6121 0.6359 0.5714 0.5878 0.5582 0.6039 0.5718 0.6183 0.6033 

HI in INB 0.8371 0.8586 0.7964 0.8007 0.7697 0.8145 0.8237 0.8251 0.8173 

HI in VAGBA 0.8132 0.8408 0.7824 0.7745 0.8057 0.7897 0.7682 0.7957 0.7756 

 



we still need the balance between efficiency and efficacy. Actually, the proposed method is still competitive with state of the art 

methods, such as [112], where a similar deep CNN is used with joint global features and local features. As compared in Table 2, the 

proposed approach has not sacrificed the accuracy yet provides great flexibility to be further improved by considering more 

discriminative features, no matter they are homogeneous or heterogeneous. 

The features used in this paper have shown their efficacy for video saliency detection, however motion based features have been 

excluded. This is due to the lack of stability of the extracted motion vectors, especially when there is clutter in the background, 

camera motion and multiple objects moving at the same time. Inaccurate motion features lead to unsatisfied saliency detection. 

Although there has been work on motion based video object extraction [121], it fails to work for quite a few videos in our datasets. 

This will be further investigated as we believe that accurate extraction of video objects and their motion vectors is of great 

importance for content understanding and saliency detection in videos.  

For the choice of deep learning networks, CNN is employed as it has been successfully applied in a wide range of applications 

including, but not limited to, handwriting digital recognition, image classification, object recognition and speech 

recognition[79]-[89]. Considering the temporal window (frame buffer) requested for properly determining the temporal attention 

model, the long-short term memory networks (LSTMs) [122]may be potentially used for its strong ability in modeling sequential 

data, such as sound and text. However, in our problem the input is 2D frame sequence which is hardly to be processed in parallel for 

LSTMs. In [123] four LSTMs are employed to process an image along four different directions, where the results are found 

comparable to those from CNN. However, how to apply LSTMs for video saliency detection still needs a lot of work to do and it is 

worth for further investigation.  

 

7. Film clips ranking based database 
 

In this group of experiments, the proposed spatial-temporal video saliency model is applied for predicting movie highlights. 

Relevant results on a large clip-based database collected by us are reported below to further validate the efficacy of the proposed 

methodologies.  

 

7.1.Construction of the movie clip dataset 

 

The movie clip database collected by us contains 596 clips, which are manually chosen from a total of 20 movies. As listed in 

Table 5, these movies cover four major genres including action, horror, war and disaster. For each movie, 15-18 clips are extracted, 

with a length varying from 40 seconds to 2 minutes. The criterion of choosing clips here is to select three kinds of clips whose 

highlight levels are low, medium and high whilst keeping the number of clips in each category nearly identical.  

 
TABLE 5 

LIST OF MOVIES USED IN CONSTRUCTING OF OUR DATASET. 

No. Movie Names Genres 

1 Red (2010) Action/Comedy 

2 Mission: Impossible III(2006) Action/Thriller 

3 Live Free or Die Hard (2007) Action/Thriller 

4 Gladiator (2000) Action/Drama 

5 Terminator 2: Judgment Day (1991) Action/Sci-Fi 

6 The Day After Tomorrow (2004) Disaster/Sci-Fi 

7 Twister (1996) Disaster/Drama 

8 Titanic (1997) Disaster/Romance 

9 The Perfect Storm (2000) Disaster/Drama 

10 2012 (2009) Disaster/Family 

11 The Silence of the Lambs (1991) Horror/Crime 

12 Silent Hill (2006) Horror/Thriller 

13 The Shining(1997) Horror 

14 Final Destination (2000) Horror/Thriller 

15 Alien: Resurrection (1997) Horror/Sci-Fi 

16 Black Hawk Down (2001) War/History 

17 The Lord of the Rings: The Return of 

the King (2003) 

War/Action 

18 Troy (2004) War/Romance 

19 Brave heart (1995) War/History 

20 Saving Private Ryan (1998) War/History 

 

For the convenience of quantitative assessment, a user experiment was conducted to establish the ground truth where each movie 

clip was labeled according to the votes by a group of users as the measurement of corresponding highlight level. The user group 

contains 70 undergraduate students, 30 females and 40 males, who have received detailed instructions of how the experiment is 

conducted. During the two-day experiment each user was asked to watch these 596 movie clips on a computer screen with a noise 

canceling headphone. Afterwards, the viewer was asked to vote whether the clip was exciting, i.e. a highlight clip. Eventually, the 

highlight level for each clip is determined as a ratio between the number of votes and it is then normalized into [0-1] by using the 



total number of users, i.e. 70. The experimental highlight level for each movie clip is plotted in Fig. 12, which shows that our 

dataset contains clips with different highlight levels.  

 

 

Fig. 12. Histogram of sorted user votes for clips 
 

The advantage of the clip datasetwe built is that it is easy for understanding and implementation. The viewers need not to 

remember the complex ranking criterion. Instead, the only thing is to record their feelings about whether a clip is exciting enough, 

which makes the resultcloser to the intrinsic excitement of the video content. Of course there are disadvantages of the dataset. 

Firstly, as the isolated clips are presented without the context information, this may mislead viewers. Secondly, the ground true is 

not captured directly when the clip is being watched. Nevertheless, the use of viewer‟s majority vote may potentiallycancel 

outeffects caused by their subconsciously subjective experience and personal habit.  

However, showing isolated clips is almost certainly suboptimal. For future work we believe that eye gazing tracking and 

electroencephalographic signal are better ways to generate ground truth for video highlight extraction. 

 

7.2. Results and analysis 

 

A simple test model has been adopted to map several low-level features to highlight-level semantics of movie 

highlight/excitement. To show the effectiveness of the TDA, TDA is regarded as a high-level feature in the movie clip which is 

further compared with the frequently-used low-level features, such as motion, shot cut density and sound energy [66]. By 

concatenating the TDA feature with the conventional features, a linear kernel SVM is employed for training and predicting in this 

movie clip highlight predicting problem. The ratio of training and testing data is 5:2 where again the best value for the parameter C 

is selected by a five-fold cross-validation. 

For each movie clip, the absolute mean error between the predicted highlight score and the ground truth is computed for 

quantitative performance assessment. As the range of mean error is within [0-1], it is evenly divided into 10 sub-ranges. A 

histogram is used to show how many clips have mean prediction error lies within each sub-range, as illustrated in Fig. 13 for 

comparison. With the TDA feature, the number of clips with their mean prediction errors less than 0.1 has increased from nearly 80 

to over 110. It is seen that more than 110 clips have prediction errors reduced to less than 0.1. For all other sub-ranges, the number 

of clips from the new approach is consistently reduced, showing the better efficacy of the proposed model for the detection of 

movie highlights/excitementwhen TDA feature is included in the model.  

 

 
Fig. 13. Results for movie highlight prediction: By using the TDA feature, more clips fall in smaller error range than the result from [66]. 

 

8. Conclusion 



As shown in Fig. 1, a deep-learning based hybrid feature extraction framework is proposed to address the problem of video 

saliency description and characterization. With the combination of proposed novel deep learning networks and conventional 

methods as feature extractors, the final hybrid features are used to predict the spatial and temporal saliency. Two detail applications 

are implemented for detection of spatiotemporal dynamic attention. Novel deep learning networks architecture for spatial saliency 

is proposed by considering both the spatial and temporal characteristics. A movie clip dataset with manually labeled video 

highlights. An application of highlight clip extraction is carried out by using temporal saliency results. A careful and thoughtful 

experimental research is shown that the proposed framework achieves the advantage that the outputs outperform five other 

methods 

Future work will focus on finding novel architecture of deep learning network for video dynamic attention model. Especially for 

the dataset of videos in the wild[124], a human factor independence novel model is needed. To achieve this, the challenge is how to 

extract reliable and informative feature from the unconstrained videos[125]. 
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