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Abstract

New proposals in the field of multi-label learning algorithms have been growing in number steadily over the last few
years. The experimentation associated with each of them always goes through the same phases: selection of datasets,
partitioning, training, analysis of results and, finally, comparison with existing methods. This last step is often hampered
(\] since it involves using exactly the same datasets, partitioned in the same way and using the same validation strategy.
In this paper we present a set of tools whose objective is to facilitate the management of multi-label datasets, aiming to
standardize the experimentation procedure. The two main tools are an R package, mldr.datasets, and a web repository
with datasets, Cometa. Together, these tools will simplify the collection of datasets, their partitioning, documenta-

tion and export to multiple formats, among other functions. Some tips, recommendations and guidelines for a good

018

OFeb

«— experimental analysis of multi-label methods are also presented.
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= 1. Introduction

[CS

The need to automatically label data has significantly
increased in recent years, in line with the growth of mul-
timedia content online, especially all types of social net-
works. People and objects present in a photograph re-
(O cently uploaded to Instagram or Facebook, subjects and
areas related to an article published in a digital newspa-
per, or styles and emotions linked to a new melody must
’ be determined as quickly and accurately as possible. The
large flow of new information published every minute on
the Internet requires this functionality, essential to catalog
each piece of data. This demand is satisfied by multi-label
. . learning algorithms [I 2], able to learn from prelabeled
examples and then do this task automatically.

.>< The knowledge obtained from these prelabeled data in-
@
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stances can be represented in disparate ways, i.e. decision
trees [3], neural networks [4], support vector machines [5],
etc. Since there are several labels associated to each data
sample, the structure of these models tends to be slightly
more complex than is usual in traditional classification.
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Figure 1: Number of published articles dealing with MLC 2000-2016
(source: Web of Science).

Alternatively, there also exist certain label transformation
techniques, such as binarization [6] and label powerset [7],
oriented to applying traditional classifiers to multi-label
data. In addition, there are some very specific casuistries,
such as imbalanced labels concurrence [§] or high dimen-
sionality both on the feature space [9] and label space [10].
As a consequence, a plethora of multi-label classification
(MLQ) algorithms have been proposed lately, each of them
claiming to perform better than the previous ones.
Proposing a new learning method implies comparing
it with some existing algorithms. Doing so requires con-
ducting an empirical experimentation. The experimental
process customarily consists in the following steps:

1. Collect some multilabel datasets (MLDs), analyze
their traits to choose those most suitable to the task,
and properly document them. Additionally, some
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data preparation steps may be performed, such as
binarization.

2. Run the proposed algorithm with the chosen data,
and obtain a collection of performance indicators.

3. Compare the indicators of the new method with those
of some existing ones, so as to assess the proposal.

4. Tune the algorithm as convenient and return to step
2 until it achieves a clear improvement.

Although the process is apparently clear, accomplish-
ing it in a proper way is not always straightforward. Prac-
titioners frequently fail in some steps, drawing conclusions
of doubtful correctness. Sometimes the reason is in the
scarcity of appropriate tools. Occasionally the obstacle is
the lack of experience in such a specialized field.

As long-time MLC scholars we have developed several
tools over the years to ease our work. In addition, we
follow a standardized procedure for performing MLC ex-
periments aiming to draw sound conclusions. Our goal in
this paper is to present some of these tools, specifically the
mldr.datasets R package and the comprehensive multi-
label data source, Cometa. Furthermore, how to use these
tools in order to avoid some of the pitfalls usually found
during MLC experimentation is also explained.

The main contributions in this paper can be summa-
rized as follows:

e We have identified the main pitfalls while performing
multi-label experiments.

e A collection of good practices aimed to overcome the
previous traps is provided.

e We have developed a new tool, the mldr.datasets
package introduced in Section [5 with the goal of
easing multi-label data selection and preparation.

e By means of the previous tool, a comprehensive data
repository has been generated. Cometa, presented
in Section [0} is a web application allowing to filter,
search and select datasets, available in different file
formats and partitioning schemes.

e A Docker image is provided to allow anyone to build
their own multi-label data repository, automating
the use of the previous tools.

The remainder of this paper is structured as follows.
The foundations about multi-label learning are provided
in Section [2] Section [3] describes how MLC experiments
are usually conducted, while Section [ explains some of
the frequent pitfalls and the way them can be surpassed.
Section [f] introduces the mldr.datasets R package. This
tool has been used to build Cometa, the data repository
presented in Section[f] Lastly, Section [7] provides the final
conclusions.

2. Multi-label learning background

The main focus in this paper is put on the process to
perform MLC and the tools needed to do it. However,
MLC is part of broad field generically known as multi-
label learning (MLL), where other kinds of tasks can be
conducted as well. This section provides a brief introduc-
tion to MLL, a topic to which dozens of papers [2] and
even full books [I] have been devoted.

2.1. MLL foundations

Most common supervised machine learning tasks, such
as binary and multiclass classification or regression, usu-
ally are guided only by an objective value. This would be
the class assigned to a data pattern, in classification, or the
target value to obtain as result of some kind of regression
computation. Even methods which perform frequently
non-supervised tasks, such as clustering, sometimes use
this objective value to improve their results.

Multi-label learning [I] differs from the previous ones
by the nature of the objective that guides the process. It
is a set of binary values stating which labels are relevant
to each data pattern, rather than a single class. Assuming
D is a dataset having f input features, and being L the
full set of labels appearing in D, each data pattern would
be constructed as shown in .

Di=(Xi,Yy) | Xie X'x X*x - x X/ Y,CL (1)

From this definition, mainly from the set of relevant
labels (labelset) for each data sample (Y;), it is easy to
compute certain characterization metrics, as described in
the following subsection.

2.2. Characterization metrics

Characterization measurements are useful to know traits
of multi-label data, such as the multi-labeleness degree of
a dataset, its imbalance level, the label sparseness, etc.,
thus being fundamental to choose the proper datasets for
each case. The described below are among the most used
ones.

Label cardinality. 1t is defined in [I] as shown in (2), where
D is any MLD, n the number of instances, k£ the number of
labels, and Y; the labelset corresponding to the i-th data
sample. Card is the average number of relevant labels
(number of labels active per instance) for the MLD D.

n

Card (D) = %Z|Yz| (2)

i=1

Label density. It is defined as . Usually, Card changes
along with the total number of distinct labels. So a nor-
malized version, named Dens, is defined as Card divided
by the total number of labels.

Dens (D) = 11 Z|Yz| (3)



meanIR. This measure is computed as (4 the average im-
balance ratio of each label, the IRLbI . In these equa-
tions L stands for the full set of labels appearing in the
MLD. Both measures were introduced in [I1] to assess the
imbalance level in an MLD.

1
MeanIR = — IRL . 4
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max (i [ e YA])
" : (5)
Y liev]

=1

IRLY() =

SCUMBLE and SCUMBLE.CV. These two metrics are
aimed to evaluate the level of concurrence among minor-
ity and majority labels. Introduced in [I2], the former
is defined @ as the average SCUMBLE of each instance
in the dataset. The latter is simply the coefficient of
variation associated to this average.

1 n
SCUMBLE(D) = > SCUMBLE; (6)

i=1
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TCS. This metric was presented in [I3] as a straight-
forward way to assess the theoretical complexity of an
MLD. It is based on just three traits of the dataset: f
stands for the amount of input features, k for the number
of labels, and [s is the total number of label combinations
in D. The larger is the value returned by this measure-
ment, the harder would be to learn a predictive model from
the dataset.

TCS(D) =log(f x k x 1s) (8)

All these metrics can be easily obtained through the
mldr.datasets, as described in Section

2.8. Main MLL tasks

Aside from performing exploratory data analysis, dif-
ferent machine learning tasks can be faced while working
with multi-label data. The following are among the most
usual ones:

Classification. It is arguably the most studied problem in
multi-label learning. The goal is to find a model able to
predict the labelset for new data patterns. As described
in [I], two main approaches to model a new classifier exist.
The first one aims to transform the original data so that
traditional classifiers can be used. The two main transfor-
mation techniques are known as BR (Binary Relevance)
[6] and LP (Label Powerset) [1]. The former deals with

each label separately, using a set of binary classifiers to
make the prediction. while the latter joins the labels to
create a class identifier, relying in a multiclass classifier as
predictive model. The second approach consists in adapt-
ing existing classification methods to handle multi-label
patterns, instead of transforming them. The use of en-
sembles is also very popular in the field, with proposals as
ECC (Ensemble of Classifier Chains) [14], EPS (Ensemble
of Pruned Sets) [19], etc.

Ranking. As the name denotes, label ranking methods are
used to elaborate a ranking of labels according to their rel-
evance for a data pattern. Therefore, instead of producing
a labelset, a string of Os and 1s stating which labels are
predicted as classifiers do, these methods assign a weight
to each label. This label ranking can be used directly, as
well as transformed into a predicted labelset by applying
a specific threshold. There are many proposed label rank-
ing methods, RPC (Ranking by Pairwise Comparison) [16]
and CLR (Calibrated Label Ranking) [I7] are two of the
best known.

Clustering. Usually, clustering methods [I8] work in an
unsupervised manner. Therefore, there would be no dif-
ference between clustering binary, multiclass or multi-label
data. However, sometimes class information is taken into
account to improve clustering results. Both basic and hi-
erarchical clustering have been used as tools to create pre-
dictive multi-label methods. For instance, the ML-RBF
algorithm [19] relies on the classic k-means algorithm to
cluster the data points and use the clusters as centers of the
radial basis functions in the hidden layer. The HOMER
algorithm [20] produces an hierarchical model by cluster-
ing the patterns in each node, introducing the concept of
meta-label to represent similar labels. Only a few multi-
label specific clustering methods have been proposed until
now. One of them [21I] is an evolutionary algorithm able
to perform distance metric learning. The method consid-
ers multiple labels per cluster, computing a cluster valid-
ity measure from the relationships among neighbors. In
[22] a density-based algorithm, similar to DBSCAN [23],
is proposed as potential solution to perform multi-label
clustering.

2.4. MLL evaluation metrics

The metrics used to evaluate a result depend on the
performed task, but also on the own nature of the an-
alyzed data. While in binary classification Accuracy or
Precision are the most usual performance measures, and
there are only a handful more to choose from, when the
class of patterns is not binary but multi-label the group
of available metrics is considerably larger. The difference
is that the output of a binary classifier is either correct or
incorrect, while that of a multi-label can be totally or par-
tially correct. This justifies the existence of around twenty
metrics for multi-label classification only, as explained in
[1, Chapter 3].



A multi-label classifier outputs a bipartition as result.
That is a sequence or array of Os and 1s, stating which
labels are predicted as relevant for a data sample and
which not (the predicted labelset). These predictions are
aggregated to produce several confusion matrices, from
which the usual classification performance metrics can be
computed. Depending on how the aggregation is con-
ducted, the metrics are grouped into two large categories:
example-based and label-based metrics.

Example-based measurements are computed individu-
ally from each data pattern in the evaluated set. These
values are then averaged, simply dividing by the number
of evaluated samples. Some of the most usual metrics in
this group are Hamming loss, Accuracy, Precision, Recall
and F-measure. Unlike the other ones, Hamming loss @
is not common in traditional classification. Being n the
number of data points and k the number of considered
labels, it calculates the symmetric difference (A operator)
between the predicted labelset Y; and the ground truth Z;,
thus counting the number of mismatches. Therefore, it is a
performance metric to be minimized instead of maximized.

‘ 11

Hamming loss = " ; |Y:AZ;] (9)
Instead of mixing the results of all labels in each in-
stance, those can be separately aggregated and the eval-
uation metrics computed for each label. This is the way
label-based performance metrics work. In fact, there are
two ways to perform the averaging, as shown in equations
and . The macro-averaging approach sums the
number of true positives, false positives, true negatives
and false negatives for each label, and independently com-
putes the measurement for each label. Thus the metric,
such as Precision, Recall, F-measure, etc., is calculated
several times, as many as labels there are. Lastly, these
measurements are added and divided by the number of
labels (k). By contrast, in the micro-averaging approach
the metric is computed only once, after the counters for

all label have been aggregated.

1
Macro metric = - > EvalMet (TP, FP, TN, FN;)  (10)
lel

Micro metric = EvalMet (Z TP,y FPLY TN, FNZ>

leL leL leL leL
(11)

The third main group of multi-label evaluation metrics
is aimed to work over label rankings, instead of bipar-
titions. One error, Ranking loss, Coverage and Average
precision are among the best known metrics in this cate-
gory. These metrics usually check if a true relevant label is
in the ranking produced by the algorithm, the number of
steps to walk until a relevant label is found in the ranking,
or whether a non-relevant label has been ranked above a
relevant one. They can be computed even when the used
algorithm produces a bipartition instead of a ranking, by

relying in some other kind of real value as can be the con-
fidence or a set of weights in a neural network.

Aside from these three main groups, some more spe-
cific multi-label metrics have been defined to evaluate hi-
erarchical [24] multi-label classification or the quality of
multi-label clustering [21].

3. Conducting multi-label learning experiments

Let us assume we are designing a new MLC algorithm
aimed to improve the results produced by existing ones.
Aside from explaining the theoretical hypotheses underly-
ing the new proposal, stating why it should perform better,
we also commit to providing real evidence of this enhance-
ment. Therefore, an empirical study has to be conducted.

The main steps usually followed to carry out a data
mining experiment are the four ones previously enumer-
ated, also depicted in Fig. Here we are delving into
some specific aspects. Later, we will put the focus on the
usual traps and on how to surpass them.

3.1. Data selection and preparation

The first step in this process is usually the selection of
datasets to be used in experiments. The criteria employed
to select the data that will be involved in the experimen-
tation may vary. In the MLC context aspects such as the
number of distinct labels, label cardinality and density,
imbalance levels and label concurrence, among others, are
usually taken into consideration.

Depending on the case, these data can be either real or
synthetic. The use of data collected from actual sources
has multiple advantages. In this way, the tested algorithm
will be exposed to the characteristics and complexities of
real-world information, in the same context in which it
is presumably intended to be used. However, sometimes
data of this kind do not meet the needs of ongoing ex-
perimentation or do not fit the specific traits required. In
these cases specialized tools, capable of generating data
that match the required characteristics, tend to be the so-
lution.

Once the datasets to be included in the experimen-
tal study have been collected, it is necessary to apply the
preprocessing steps that are considered appropriate. For
instance, a data transformation technique such as label
powerset or binary relevance, would allow to apply a mul-
ticlass or binary classifier. Moreover, training and test
partitions have to be extracted from the original MLD.
Sometimes, depending on the algorithm, the training set
can be also divided into two subsets, using one of them to
train the model and the other to validate its parameters.

8.2. Competing methods

One of the objectives of proposing a new learning me-
thod is to improve the results of others. Although some-
times the algorithm presented may be completely new, in
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Figure 2: Steps in a typical MLC experiment. 1) Datasets have to be selected from the available repositories, taking into account their traits
in order to choose the more appropriate ones for the task at hand. Some data preparation could be needed, depending on possible data
peculiarities (i.e. an imbalanced dataset could be balanced through a resampling algorithm). 2) Methods related to the proposed one have to
be selected and run, obtaining a set of predictions from each one of them. 3) These predictions have to be evaluated, picking from the large
set of available performance metrics those more adequate to the analyzed problem. 4) It is advisable to draw conclusions including statistical

tests over the previous results.

most cases it will be an improvement over a method al-
ready in use. In any case, it is to be assumed that the
authors have certain knowledge of the field under study
and, in particular, of methods similar to their own.

A large portion of MLC algorithms are based on trans-
formation techniques, such as binarization [6] and label
powerset [7]. Those allow to transform a complex prob-
lem (MLC) into several easier ones, but at the expense of
increasing the computational costs consumed to process
them. Therefore, running a large set of MLC methods
over several datasets can be very time consuming, thus
the importance of choosing the proper ones.

The alternative to the previous transformation tech-
niques are classification methods adapted to deal with raw
multi-label data. A plethora of proposals have been pre-
sented in this field, including multi-label decision trees [3],
instance-based classifiers [25], neural networks [4] and sup-
port vector machines [5], among other adaptations of tra-
ditional classification methods.

Deep learning techniques have also found their niche
in the classification field. Different deep neural networks
architectures [26] have been proposed in late years, and
several of them, including DBNs (Deep-Belief Networks)
and CNNs (Convolutional Neural Networks) have been
proposed to classify multi-label data [27H29]. The supe-
rior performance of most deep learning methods is due to
the integrated feature learning phase, able to extract a re-
duced set of new, more informative features. This task can
be conducted as a preprocessing phase, for instance by re-
lying on autoencoders [30], then applying any multi-label
classifier over the reduced feature set.

Once the methods that are going to compete with the
new one are selected, attention must be paid to the con-
figuration parameters present in each one of them. These
should adjust to the recommendations given by their au-
thors, otherwise their behavior could be unexpected. This
is important only if we intend to run such algorithms,

rather than take the published results. However, in the
latter case, other aspects need to be taken into account as
indicated below.

8.8. Performance metrics

The selection of performance metrics is another key
factor in the experimental process, specially in the MLC
field. Unlike traditional classification, where usually a pair
of performance indicators such as precision or accuracy
tend to be enough, more than twenty evaluation measures
are of common use in MLC. That is why picking the right
ones for each case can usually have a large impact in the
final conclusions.

As the compilation of performance metrics provided
in [I] shows, the assessment of successes and failures can
originate in a bipartition matrix or in a ranking. Moreover,
the number of hits and misses can be aggregated following
different strategies, by label or by sample.

It is obvious that the same performance metrics must
be obtained for all the methods involved in the experi-
mentation, otherwise it would not be possible to make a
correct evaluation of the results. In addition to performing
a detailed comparison, method against method and mea-
sure by measure, it is also necessary to obtain an overall
appraisal for these comparison results. To accomplish this
task it is usual to rely on the proper statistical tests.

4. Tips and pitfalls while performing multi-label
experiments

Any new algorithm proposal should begin with a re-
view of existing literature on related methods, detailing
their similarities, strengths and weaknesses, etc. Authors
should establish the niche they intend to occupy with their
proposal or the direction in which they want to improve
the methods already published. Hereafter, the experimen-
tation is usually carried out.



Most of the mistakes made during experimentation in-
volve the data used and how they are treated. You must
select the appropriate datasets for the task at hand and the
proposed algorithm type. In addition, such data should be
prepared in line with the experiments already published
on related methods. Occasionally there are obstacles that
hinder the correct use and preparation of the data. This
is why in the following sections we focus mainly on this
aspect, and why in sections 4 and 5 we present tools to
overcome these obstacles.

Logically, the rest of aspects mentioned above, such as
the selection of methods to be compared against the pro-
posal, the set of metrics used to evaluate their performance
and the usage of statistical tests, are also important. They
will therefore be addressed later, albeit more briefly.

4.1. Selecting the proper datasets

While designing a new algorithm, sometimes the aim is
to make it a general purpose method, with the goal of im-
proving prediction in a broad way. However, in other cases
the proposal is more specific. In the multi-label field, it is
common to present methods tailored for dealing with large
quantities of labels, with data showing imbalance among
labels, with missing labels, etc. Each scenario requires a
specific type of dataset to perform the experiments.

The basic principle must be that the data used in ex-
perimentation should present the problem for which the
algorithm is proposed. This, however, is not always the
case. There are authors who propose a new method to
deal with large sets of labels, but in their experimentation
they use MLDs that only have a few dozen of them. Log-
ically, to support the behavior of the proposed method,
it must be demonstrated that it works correctly with the
right configuration: against datasets having hundreds or
thousands of labels. This scenario can be extrapolated to
similar ones: if a method attempts to address multi-label
imbalance, the selected datasets should present this prob-
lem (very common in this field, on the other hand); there
would be no point in experimenting using only balanced
datasets.

When choosing datasets, it would be advisable to ob-
serve the following recommendations:

e Begin by performing an exploration of the charac-
teristics of the available datasets, obtaining metrics
that allow you to know the number of labels, car-
dinality, degree of imbalance, level of concurrence
between labels, etc. All this information is vital to
be able to select those sets that best suit your needs.

e Which datasets have other authors used to address
the same task? By answering this question, a list of
datasets commonly included in similar experiments
can be obtained. It is a work that can be done at
the same time as reviewing related works. It will
also make it easier to compare results with previously
published methods.

If the new method is presented as a generic multi-label
classifier, datasets with characteristics as diverse as possi-
ble should be included in the experimentation. This ap-
proach will make it possible to identify the strengths and
weaknesses of the proposal, key aspects when comparing
it with existing methods. Again, the selection of such
datasets should be based on an exploration of the char-
acteristics of all publicly available ones.

4.2. Preparation of data and methods

The main objective of a multi-label experimentation is
to compare a new algorithm with existing ones. For this, it
is essential that the same training data are used in all cases,
since the model obtained depends fundamentally on this
condition. Aspects such as the rate of committed errors,
the classifier’s bias towards certain classes, its ability to
generalize, etc., are highly influenced by the samples used
during training.

During our years in the MLC research field we have had
the opportunity to find, in relation to data preparation and
processing, the following mistakes:

e Comparing the results obtained by running the pro-
posed algorithm with those previously published for
other methods. Unless exactly the same datasets
have been used in the experimentation, with exactly
the same pre-processing and partitioning strategy,
such comparison will not be valid. Taking the per-
formance measures published in an article for a cer-
tain method is highly convenient, but if you train
that same method using unidentical partitions for
training and testing the results will differ.

e Delivering complete datasets to each method and al-
lowing them to be partitioned internally. Many tools
automate random partitioning when evaluating an
algorithm. However, in this situation, the exact same
training partitions would not be used to generate the
models, which would induce dissimilarities that ben-
efit some and harm others.

e Running the algorithms to be compared but using
different datasets in some cases. For example, us-
ing hold-out with certain methods because they are
slower and cross validation with others, or reducing
the set of input attributes for some methods and not
for others. Obviously in these cases the authors are
artificially favoring some algorithms over others.

For a fair comparison of several classifiers, it is there-
fore essential to train the models with exactly the same
data samples. Starting from this premise, from our point
of view there are the following alternatives:

e If you want to compare one algorithm with the pub-
lished results of another, without the need to run
the latter, it is essential to have the data partitions
used by its authors. This is only possible if, together



with the results of such method, these partitions are
also made publicly available. This approach is com-
plicated as soon as it becomes necessary to compare
with two or more already published methods, since
different authors will have used disparate data par-
titions. In this situation the new algorithm should
be run with the appropriate data for each case and
pairwise comparisons should be made. In our opin-
ion it is the least advisable alternative. It should
only be used when it is impossible to run an existing
method, but the data used to evaluate its perfor-
mance is available.

e In any other case, without having the data originally
used by other authors, the procedure to follow is
always the same. The data must first be prepared,
including partitioning, so that all algorithms to be
tested receive the same set of training and testing
samples. Then, the code of all methods compared
should be obtained, preferably from their authors.
If this is not possible, they should be implemented
as accurately as possible from the article in which
they are described. Finally, all the algorithms must
be executed using the same data and obtaining the
corresponding predictions.

Trying to follow these instructions can easily lead to
a number of obstacles. If you have access to the original
data, its format may not be appropriate for the tools used
to implement the new algorithm. In fact, almost every
time several methods are going to be run, coming from
different authors, there is diversity in file formats. These
are the kind of issues the tools described in Sections ol and
strive to overcome.

4.8. Assessing algorithm performance

As stated in Section [3.3] a multi-label classifier can
be evaluated using a wide range of performance metrics.
Each of them offers a different quality indicator, so it is
essential to use a good set of them to obtain the most
balanced possible assessment.

If the experimentation includes results taken directly
from previous publications, and bearing in mind the as-
sumptions indicated in the previous sections, then the se-
lection of measures will be given to us. It will be neces-
sary to use the metrics already used in these publications,
not others. The results obtained by the proposed method
should therefore be used to calculate these measurements,
thus allowing direct comparison with the algorithms al-
ready published.

Even if we have exactly the same data partitions to
train our model, as explained above, and calculate the
same set of measures, the comparison with other algo-
rithms may not be completely fair. The calculation of
some of the multi-label performance metrics is relatively
complex, and there may be differences in the way they

are computed between different multi-label software pack-
ages. Consequently, the only way to be absolutely certain
that the results are comparable would be to ensure that
the computation of the measures is also carried out in the
same way.

If we are going to run all the algorithms ourselves, we
will have total freedom in choosing the performance met-
rics. In this case, as recommended in [31], we should select
a broad set of evaluation metrics, including both sample-
based and label-based measures, as well as measures cal-
culated on bipartite and label rankings. In particular, it is
advisable to include at least one or two metrics from each
of the following groups:

Sample-based metrics based on bipartition results. As ex-
plained in Section[2] these metrics are computed sample by
sample and then an average evaluation is obtained. Ham-
ming loss is maybe the most common metric in this group;
Accuracy, Precision, Recall and F-measure being popular
as well. Most of them are obtained from the confusion
matrix for each label. We recommend including always
Hamming loss and F-measure, since the former one is the
complement of Accuracy and the latter is the harmonic
mean of Precision and Recall.

Metrics based on ranking results. Although many algo-
rithms produce a bipartition as result, stating which labels
are predicted for the data patterns, many others provide a
label ranking. In this case, the set of predicted labels is ob-
tained after applying a certain threshold over this ranking.
Ranking-based metrics evaluate the performance operat-
ing with a label ranking, being One error, Ranking loss
and Average precision among the most frequently used.

Label-based metrics. Most metrics obtained from a con-
fusion matrix, such as Precision and Recall, can be com-
puted by label instead of by sample, as described in Sec-
tion[2] Since two averaging strategies exist, named macro-
averaging and micro-averaging, two measurements can be
retrieved for most of these metrics. In our opinion, Macro
F-measure and Micro F-measure should be included in
most evaluations as they provide two additional views on
method performance.

The selection of evaluation metrics may be influenced
if the proposed algorithm addresses a specific problem. For
example, if the analysis corresponds to methods for work-
ing with imbalanced data, metrics such as AUC or Macro
F-measure would be more appropriate than Hamming loss
or Accuracy, as they are less biased towards majority la-
bels.

4.4. Reaching global conclusions

When an experimental study is conducted involving
multiple datasets, several algorithms and various perfor-
mance metrics, the number of indicators to be evaluated
is so large that it may be difficult to reach an overall con-
clusion. Usually, a classifier will be better than others



Stage

Avoid...

Instead, ...

Data selection

using datasets which not present the tackled problem.

skipping popular datasets for the task.

explore the characteristics of available datasets for
proper selection.

review related works and look for recurring datasets.

Method preparation

comparing your results to previously published ones.

partitioning datasets differently for each method.

performing different validations for each method.

perform new runs of each competing method under
same conditions.

build partitions prior to running methods.

determine the validation strategy taking into account
possible slow methods.

Algorithm assessment

choosing metrics that dismiss the tackled problem.

select those which are affected by it.

Conclusions

hiding the behavior of a method behind average values.

performing statistical tests without guaranteeing their
assumptions.

rank methods according to their performance.

possibly compare methods with non-parametric sta-
tistical tests.

Table 1: General tips on how to avoid common mistakes during an experimentation in the multi-label field.

while working with certain MLDs, but its behavior will
worsen with other datasets. The same is applicable to the
use of several evaluation metrics.

A first approach to a global assessment could be to
count the number of times each algorithm wins or loses
against the rest. From here, a ranking to determine the
position of each method, usually grouped by performance
metric, is almost immediate. In our opinion this approach
is better than others we have found sometimes in the litera-
ture, such as averaging all the results from each algorithm.
One of them can be the best one when evaluated with a
certain dataset or metric, but perform horribly in all other
cases. The authors should strive to show a realistic per-
spective of its behavior, for instance by means of a ranking
instead of an average, which would hide it.

The conclusions of an experimental analysis can be re-
inforced by using more formal procedures, carrying out the
relevant statistical tests. In most cases it is not possible to
guarantee conditions of normality (the results to be eval-
uated following a normal distribution) and homoscedas-
ticity (the variance being homogeneous). For this reason,
non-parametric statistical tests are commonly used. De-
pending on the number of methods to be compared, and if
such comparison is pairwise or multiple, the proper tests
have to be chosen as explained in [32] [33].

4.5. Summary, advantages and disadvantages

To make it easier to follow up on previous advice, it has
been summarized in Table [l The first column indicates
the stage of the process, second the trap to avoid and third
one what to do instead. In our opinion, adhering to these
recommendations would bring several advantages to any
MLL study:

e The selection of the proper datasets, those that pre-
sumably present the problem that the proposed me-
thod aims to solve, for instance a high imbalance
level, will back the behavior of the method.

e Correctly comparing our results with published ones,
either by using the same data partitions or by run-
ning the other methods with our data, will make the
study more solid.

e Choosing a good set of evaluation metrics, specially
those designed to expose strengths and weaknesses of
a method while facing specific problems, will be more
convincing to other researchers. This confidence in
the results can be increased if the appropriate sta-
tistical tests are conducted.

Faced with these benefits, the main disadvantage in
following these tips is the increased amount of work to be
done. Time has to be devoted to explore dataset traits,
in order to choose the best ones, as well as to obtain data
partitions and other methods implementations. Moreover,
finding the tools to tackle all this work is not always easy.
Aiming to mitigate this last obstacle, the tools we have
developed to overcome these tasks are introduced in the
following sections.

5. mldr.datasets:
label datasets

The tool for managing multi-

As the previous section has shown, selecting and prepar-
ing datasets to be used for experimentation are essential
steps. However, when it comes to obtaining the appropri-
ate datasets, partitioning them and obtaining them in the
right format for each learning algorithm, multiple obsta-
cles arise. It would be desirable to have a tool that fa-
cilitates such operations, as well as easing the exploration
of its characteristics, being able to provide the reference
for each dataset, etc. That is the motivation behind the
development of the mldr.datasets package.

The first version of this software package for R users
was introduced in [34]. Since then, its functionality has
been extended by including new multi-label partitioning



algorithms, new functions to export the data to disparate
formats, automatic checking for data sparsity, etc. The
main goal has been to facilitate all the tasks needed to se-
lect and prepare MLDs for conducting a experimentation.

This section provides a didactic description of the above
mentioned package, explaining how to complete each of
the tasks from obtaining a set of data to its exploration,
documentation, partitioning and export.

5.1. Installing mldr.datasets in our computer

The mldr.datasets software is an R package. As a
consequence, anyone interested in using it needs to have
the R interpreter [35] installed in their computer. As-
suming that this is the case, the installation procedure
is the same followed for any package available in CRAN
(Comprehensive R Archive Network), to issue the follow-
ing command at the R console:

> install.packages("mldr.datasets")

This will install the last stable version of the pack-
age, which is 0.4 at this time. Development versions, with
added functionality, are available in GitHukﬂ Assuming
that the devtools package [36] is installed and loaded,
the most recent version of mldr.datasets can be always
installed from GitHub as shown below:

> install_github("fcharte/mldr.datasets")

Once installed, the package has to be loaded into mem-
ory each time a new R session is started. This can be done
with the usual library() or require() R commands.
Since this moment the user can access the functions pro-
vided by the package. The index of all available functions
(partially shown in Fig. |3) can be retrieved with the fol-
lowing command:

> help(package="mldr.datasets")

Files Plots Packages Help Viewer - (5
0]
R: R Ultimate Multilabel Dataset Repository ~

~

Documentation for package ‘mldr.datasets’ version 0.4.0

* DESCRIPTION file.

Help Pages

available.midrs Obtain additional datasets available to download

bibtex Dataset with BibTeX entries

birds Dataset with sounds produced by birds and the species they belong to

bookmarks Dataset with data from web bookmarks and their categories

cal500 Dataset with music data along with labels for emotions, instruments,
genres, etc.

(Deprecated) Check if an midr object is locally available and download
it if needed

Datasets with data from the Corel image collectidn. There are 10
subsets in corel16k

check_n_load.midr

corel16k001

Figure 3: Help index of the mldr.datasets package.

IThe source code of the package is publicly available at github.
com/fcharte/mldr.datasets.

If you need help with a particular function, you can
click on its name in the previous index. You can also
use the command help("function.name") or, if you have
already entered the name of the function into the R console
or editor, you can prepend a question mark to it. In all
cases, a description of the function and its parameters will
be obtained, as shown in Fig.

Files Plots Packages Help Viewer - (5

0]

R: Partition an midr object into k folds ~

random.kfolds {mldr.datasets} R Documentation

Partition an mldr object into k folds

Description

This method randomly partitions the given dataset into k folds, providing training and test partitions
for each fold.

Usage

random.kfolds (mld, k = 5, seed = 10, get.indices = FALSE)

Arguments

mld The mldr object to be partitioned

k The number of folds to be generated. By default is 5

seed The seed to initialize the random number generator. By default is 10. Change it if

you want to obtain partitions containing different samples, for instance to use a
2x5 fev strategy

get.indices Alogical value indicating whether to return lists of indices or lists of "m1dr"
objects

Value

Anmldr. folds object. This is a list containing k elements, one for each fold. Each element is
made up of two midr objects, called train and test

Figure 4: Help about the random.kfolds() function.

The subsequent sections introduce most of the avail-
able functions in the mldr.datasets package, showing
how they can be used to perform each type of task.

5.2. How to load and import multi-label datasets

The package includes not only the functions mentioned
below, able to import MLDs from a web repository, but
also a set of 10 already integrated MLDs. They are avail-
able immediately, as soon as m1dr.datasets is loaded into
memory. These MLDs are birds [37], cal500 [38], emotions
[39], flags [40], genbase [41], langlog [42], medical [43], ng20
[44], slashdot [14] and stackex_chess [45]. The following
command can be entered into the R console to obtain a
list of built-in datasets:

> data(package="mldr.datasets")

Each dataset is an R object, specifically an object of
class mldr. This is the format defined in the homonymous
packageﬂ [46] which, among other functionality, facilitates
the reading of multi-label data in various formats and a

2The mldr package establishes the format of MLDs in R. It pro-
vides a user interface to ease the exploratory analysis and also per-
forms data transformations, such as binarization and label powerset,
among other functions. Please refer to [46] for an extended descrip-
tion.


github.com/fcharte/mldr.datasets
github.com/fcharte/mldr.datasets

user interface to carry out exploratory analysis of MLDs.
These are implementation details that are not essential for
the regular user of mldr.datasets. You can access these
datasets simply by entering their name in the console, as
you would with any R object.

There are many other MLDs available online. Most
of them are not embedded into the package, but can be
downloaded and saved locally by means of the following
two functions:

e available.mldrs(): Retrieves the most up to date
list of additional datasets from the Internet. This
function does not need parameters. It returns as
result an R data.frame containing the name and de-

scription, among other details, about available MLDs.

e get.mldr(): Loads any of the available datasets into
memory, downloading it from the Internet if it were
necessary. Once loaded, users will be able to work
with it as they would with any of the already built-in
MLDs.

Below is an explanation on how to use these functions
to complete each of the tasks associated with loading and
downloading MLDs.

5.2.1. Browsing the available datasets

In addition to the 10 MLDs already integrated in the
package, a much larger number is available online. The
list of datasets is maintained and updated independently
of the mldr.datasets software, so it can be extended in
the future. The available.mldrs() function is in charge
of obtaining the most recent list of online MLDs, returning
it as a data.frame object.

A data.frame is a data structure made up of several
rows (records) and columns (fields). In this case each row
contains details of a dataset, while the columns provide
the following data:

e Name: The name of the MLD. The usual denomina-
tion found in the literature is used to refer to each
MLD. This is the name to be given as input to the
get.mldr () function explained below.

e Description: A brief description of the MLD’s ori-
gin and/or nature.

e Instances: Number of data instances in the MLD.

e Attributes: Number of input attributes (features)
in the MLD.

e Labels: Number of output attributes (labels) in the
MLD.

e URL: Full URL from which the MLD can be down-
loaded. It is the address automatically used by the
get.mldr() function to download a dataset when
needed.
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The result returned by the available.mldrs() func-
tion can be treated like any other data.frame in R. Fig.
shows how to get its structure, with the str() command
(upper part), and how to recover the name and URL from
some of the 60 MLDs initially available.

5.2.2. Setting the download directory

Before downloading any MLDs, it is possible to set the
directory in which they will be stored locally. For this
purpose, the environment option mldr.download.dir is
used, whose value indicates the absolute or relative path
of the desired directory. The aim is to provide a means for
each user to save the downloaded MLDs where they want,
so that they can load them later into memory without
having to retrieve them again from the Internet.

The options() command from R allows to set the
value of mldr.download.dir. It gets one parameter, in-
dicating the name of the variable and the value to be
assigned. The bottom of Fig. [6] shows how to do this,
as well as how to check the current value through the
getOption() command.

If a value for the previous variable is not set, and
the user does not specify a download directory when in-
voking the get.mldr() function, the default download
path will be used. This corresponds to a subdirectory
.mldr/datasets that will be created in the home folder
of the current user. In the case of GNU/Linux the path
is usually /home/user, while in Windows it would cor-
respond to the user’s documents folder, as shown in the

upper part of Fig. [f]

5.2.83. Downloading new datasets

In order to download an MLD you first need to know
its name. It can be retrieved from the Name column of the
data.frame returned by available.mldrs (). This name
is the only parameter required to invoke the get.mldr ()
function. Optionally, the directory where you want to
store the downloaded file can be specified by means of
the download.dir parameter. If this argument is not pro-
vided by the user, the directory indicated by the option
mldr.download.dir, as described in the previous section,
will be used.

The get.mldr () function works in three steps:

1. It starts by determining the download directory. If
the parameter download.dir has been provided by
the user, this path is used, otherwise the option
mldr.download.dir is checked. If it has been pre-
viously set, this directory is used, resorting to the
default path otherwise.

2. The next step is to check whether the requested MLD
is already in the download directory. If this is the
case, simply skip to the next step. Otherwise, it is
downloaded and stored locally.

3. Finally, the requested dataset is loaded into memory
and returned as a result. This will be an object of
class mldr, as explained above. It can then be used
like any of the built-in MLDs.



Console  Termina

> str(avai1ab1e.m1drs())

'data.frame’: 51 obs. of 6 variables:
$ Name : chr "bibtex"
$ Description: chr "Dataset

tegories" "Datasets with data
asets with data from the Corel image collection.
$ Instances
$ Attributes :
$ Labels
$ URL

int
int
chr

ds" ...
> available.mldrs () [18:25,c("Name",

Name
18 eurlexev_test
19 eurlexev_tra
20 eurlexsm_test
21 eurlexsm_tra
22 imdb
23 mediamill
24 nuswide_BoW
25 nuswide_VLAD

"URL"™)]

with BibTeX entries" "Dataset with data from web bookmarks and their
from the Corel image collection.
There are 10 subsets in corell6bk” ...

int 7395 87856 13766 13761 13760 13837 13847 13859 13915 13864 ...

1836 2100 500 500 500 500 500 500 500 500 ...

159 208 153 164 154 162 160 162 174 168 ...
"https://cometa.ml/public/full/bibtex.rds" "https://cometa.ml/public/full/bookma
rks.rds" "https //cometa.ml/public/full/corell6k001l.rds" "https://cometa.ml/public/full/corell6k002.r

https://cometa.ml/public/full/eurlexev_test.
https://cometa.ml/public/full/eurlexev_tra.
https://cometa.ml/public/full/eurlexsm_test.
https://cometa.ml/public/full/eurlexsm_tra.
https://cometa.ml/public/full/imdb.
https://cometa.ml/public/full/mediamill.
https://cometa.ml/public/full/nuswide_BoWw. rds
https://cometa.ml/public/full/nuswide_VLAD.

"bookmarks"™ "corell6k001" "corell6k002" ...

ca
There are 10 subsets in corell6bk"” "Dat

URL
rds
rds
rds
rds
rds
rds

rds

Figure 5: Browsing the available MLDs.

Console  Terminal

>
> file.path(normalizerPath("~"), ".mldr", "datasets")
[1] "c:\\Users\\Francisco\\Documents/.mldr/datasets"
>

options(mldr.download.dir = "/home/fcharte/mymlds")

VVVVYV

> getoption("mldr.download.dir")
[1] "/home/fcharte/mymlds"

>

>

Figure 6: Setting the directory where new MLDs will be stored.

Fig. [7] shows how to set the download folder, retrieve
the names of all MLDs available online, and download one
of them. Once the transfer is completed, the dataset is
loaded into memory and stored in the imdb variable.

As a shortcut, in mldr.datasets there are individual
functions defined to make it easier to download each of
the MLDs available online. For example, to download the
MLD tmc2007 we can use either of the following two com-
mands in the R console, obtaining exactly the same result.

> tmc2007 <- get.mldr("tmc2007")
> tmc2007 <- tmc2007()

The operations described in the next sections are avail-
able for any mldr class object, be it a dataset obtained with
mldr.datasets, generated by the mldr package or by any
other software that produces this object format.
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5.8. Obtaining descriptive meta-data

All mldr objects have several fields which provide meta-
data about the MLD they contain. The name and infor-
mation on these fields is as follows:

e name: Contains the original name of the MLD. Some-
times this name does not coincide with the usual
name given to the dataset.

e dataset: A data.frame holding the actual data
samples of the MLD.

e attributes and attributesIndexes: The former
is a vector with all the MLD’s attributes, including
input features and output labels. For each attribute
its name and data type is provided. The latter states
the numeric index of input features in the MLD,
since labels can be located at the beginning or at
the end of the dataset.

e labels: It is a data.frame object with details about
each label in the MLD (see example in Fig. , such
as its name, number of occurrences, frequency, and
the IRLb! [11], SCUMBLE and SCUMBLE.CV [12]
metrics.

e labelsets: A vector containing each label combi-
nation (labelset) appearing in the MLD along with
their number of occurrences.

e measures: This list provides a set of measures aimed
to characterize the MLD. When the mldr package is
loaded, the user can retrieve this list by means of the
standard summary () command, as shown in Fig. [0
They can also be retrieved individually through the
syntax mld$measures$measureName.




Console  Terminal

>

> available.mldrs () $Name

>

> imdb <- get.mldr("imdb™)

Looking for dataset imdb in the download directory
Looking for dataset imdb online...

Downloading dataset imdb

trying URL
Content type 'application/octet-stream;
downloaded 5.3 MB

'https://cometa.ml/public/full/imdb.rds’
charset=utf-8'

> options(mldr.download.dir = "D:/FCharte/Estudios")

[1] "bibtex" "bookmarks" "corell6k001" "corell6k002"

[5] "corell6k003" "corell6k004" "corell6k005" "corell6k006"

[9] "corell6k007" "corell6k008" "corell6k009" "corell6k010"
[13] "corel5k"™ "delicious" "enron" "eurlexdc_test"
[17] "eurlexdc_tra" "eurlexev_test" "eurlexev_tra" "eurlexsm_test"
[21] "eurlexsm_tra" "imdb" "mediamill"” "nuswide_BoW"
[25] "nuswide_VLAD" "ohsumed" "rcvlsubl” "rcvlsub2”

[29] "rcvlsub3™ "rcvlsub4” "rcvlsub5"” "reutersk500"
[33] "stackex_chemistry" "stackex_coffee" "stackex_cooking" "stackex_cs"
[37] "stackex_philosophy"” "tmc2007" "tmc2007_500" "yahoo_arts"
[41] "yahoo_business™ "yahoo_computers"” "yahoo_education” "yahoo_entertainment”
[45] "yahoo_health" "yahoo_recreation” "yahoo_reference" "yahoo_science"
[49] "yahoo_social" "yahoo_society" "yeast"

Tength 5560440 bytes (5.3 MB)

Figure 7: Downloading a new MLD and loading it into memory.

e bibtex: Holds the BibTeX entry needed to reference
the source the MLD is coming from. This informa-
tion can be also retrieved with the toBibtex () func-
tion. The returned string is ready to be copied to the
clipboard, but can also be printed into the R console
using the cat() command (see Fig. [L0).

The measures list is the tool aimed to ease the selec-
tion of the proper MLDs. Most of them were described in
Section 2l It contains 13 different metrics:

num.attributes, num. inputs and num.labels: The
total count of attributes in the dataset, how many
of them are input features and how many output la-
bels, respectively. The first field always is the sum
of the other two.

num.instances: The number of instances in the

dataset.

num.labelsets and num.single.labelsets: The
former indicates how distinct labelsets appear in the
MLD, while the latter states how many of them ap-
pear only once.

max .frequency: Provides the number of times that
the most common labelset occurs in the MLD.

cardinality and density: These fields contain the
measures known as label cardinality (Card) and label
density (Dens).

meanIR: Holds the meanIR measure. The IRLbl met-
ric is stored in the homonymous column of the 1abels
field described above.
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e scumble and scumble.cv: Provide the SCUMBLE
and SCUMBLE.CV metrics for the dataset.

e tcs: Holds the T'CS metric, a evaluation of the the-
oretical complexity of the dataset.

All these metrics are automatically computed each time
a new mldr object is created, for instance by means of the
loading functions provided by the mldr R package. Jointly,
these measures would ease for a practitioner the selection
of the proper MLDs to be included in a experimental study.

5.4. Partitioning the datasets

Once the proper set of MLDs has been selected, the
next step usually consists in partitioning them so that
some samples are used to train a model, while the remain-
ing ones allow to test its performance. The mldr.datasets
package provides us with the functions needed to accom-
plish this task. Three different partitioning strategies can
be applied:

e Random: Randomly separates the data samples into
a certain number of partitions. As a result, the num-
ber of patterns for each label can be distributed non-
uniformly. In some extreme cases, this strategy could
gather all the instances for a label in the same par-
tition.

Stratified: Follows the stratified algorithm described
in [I3] in an attempt to distribute the data samples
as evenly as possible among different partitions.

Iterative stratification: The partitioning method in-
troduced in [47] has the same goal of the previous
one, but it tackles the problem iteratively.



Console  Terminal
D:/FCharte/Estudios,
>
>
> imdb$1abels

index count freq
Sci-Fi 1 5488 0.045385754
Crime 2 9031 0.074686360
Romance 3 12379 0.102374317
Animation 4 7458 0.061677652
Music 5 3687 0.030491486
Comedy 6 31216 0.258156286
war 7 3297 0.027266186
Horror 8 8044 0.066523871
Film-Noir 9 411 0.003398970
Adventure 10 8037 0.066465981
News 11 499 0.004126729
western 12 4190 0.034651295
Thriller 13 11623 0.096122198
Adult 14 1386 0.011462219
Mystery 15 5204 0.043037074
Short 16 32423 0.268138175
Talk-Show 17 290 0.002398300

IRLb1
7.977223
4.847636
3.536554
5.870072

11.873881
1.402454
3.278435
5.442442
106.518248
5.447182
87.733467
10.448449
3.766583
31.586580
8.412567
1.350245
150.962069

1

COO0OO0O0OO0OO0O0CO0OO0OO0O0OO00O0OO0O

SCUMBLE SCUMBLE.CV
.8884458
.7460513
.6432376
.5235917
.6021957
.2031447
.3725959
.0352863
.1397466
.9161755
.5453036
.3460870
.9655549
.3377658
.7366114
.2497104
.2436135

.13456030
.18261815

17687118

.17700698
.25892907

12208385

.35033939
.09753873
.74167975

12229903

.53074149
.10298233

11872109

.18934304
.18637228
.11843045
.28007742

HHEHOFHFOHOOOHOHFHOOOOO

Figure 8: List of labels in an MLD.

Console  Terminal

D:/FCharte/Estudios/

>

>

> Tibrary(mldr)

Enter mldrGUI() to launch mldr's web-based GUI
>

> summary (imdb)

1 1029 120919 1001 28 4503
max.frequency cardinality density meanIR scumble scumble.cv tcs
1 13144 1.999669 0.07141676 25.12399 0.1082165 1.40234 18.65346
z » name
Z dataset
> ¢ attributesIndexes
> o attributes
= Tabels
z Tabelsets
“; measures
: » bibtex K§
> imdb§]

=0

num.attributes num.instances num.inputs num.labels num.labelsets num.single.labelsets

2263

Figure 9: Exploring the MLD traits.

For each one of these strategies, there exist three func-
tions in the package. The first and more generic family of
functions allows to create any amount of partitions with a
given distribution of instances. The second group builds
two partitions in a hold-out manner, one for training and
one for test. The last family of functions generates par-
titions oriented to performing k-fold cross validation. In
total, users can access the following 9 functions:

e random.partitions

e stratified.partitions

e iterative.stratification.partitions
e random.holdout

e stratified.holdout
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e iterative.stratification.holdout

e random.kfolds

e stratified.kfolds

e iterative.stratification.kfolds

Regardless of which of the previous methods we use,
the parameters to be given to the respective function are

the same in all cases:

e mld: The only compulsory argument is the mldr ob-

ject containing the MLD to be partitioned.

e r (only for partitions functions): A vector indi-
cating the percentages of instances desired in each
partition. For example, a value of c(35, 25, 40)




Console  Terminal

=0

> A
> toBibtex(stackex_chess)
[1] "@inproceedings{,\n title=\"QUINTA: A question tagging assistant to improve the answering ratio
in electronic forums\",\n author=\"Charte, Francisco and Rivera, Antonio J. and del Jesus, Maria J.
and Herrera, Francisco\",\n booktitle=\"EUROCON 2015 - International Conference on Computer as a Too
1 (EUROCON), IEEE\",\n year=\"2015\",\n pages=\"1-6\",\n month=\"Sept\"\n}"
>
>
> cat(toBibtex(stackex_chess))
@inproceedings{,
title="QUINTA: A question tagging assistant to improve the answering ratio in electronic forums",
author="Charte, Francisco and Rivera, Antonio J. and del Jesus, Maria J. and Herrera, Francisco",
booktitle="EUROCON 2015 - International Conference on Computer as a Tool (EUROCON), IEEE",

year="2015",
pages="1-6",
month="Sept"
} I
>
>
Figure 10: Getting bibliographic data to cite a dataset.
Console  Terminal p—
>
> folds <- stratified.kfolds(emotions)
> summary(folds[[1]]$train)
num.attributes num.instances num.inputs num.labels num.labelsets num.single.labelsets
1 78 473 72 6 27 4
max.frequency cardinality density meanIR scumble scumble.cv tcs
1 65 1.883721 0.3139535 1.442662 0.009688929  1.240576 9.364262
>
> folds <- stratified.kfolds(emotions, get.indices = TRUE)
> summary(folds[[1]]$train)
Min. 1lst Qu. Median Mean 3rd Qu. Max.
1.0 151.0 295.0 297.5 444.0 593.0

v

Figure 11: Partitioning a dataset obtaining a list of mldr object (above) or a list of samples’ indexes.

would indicate three partitions, with 35%, 25% and
40% of instances respectively.

p (only for holdout functions): Indicates the desired
percentage of instances in the training subset. It has
a default value of 60.

k (only for kfolds functions): Indicates the desired
number of folds. By default it is 5, so five different
folds of training/testing samples would be produced.

seed: The seed used to initialize the random gener-
ator. Its default value is 10. It should be changed if
we want to obtain different sets of folds, for instance
to generate two sets of 5 folds (2x5fcv).

get.indices: By default the partitioning functions
generate a list with as many elements as partitions
requested. Each element will be of class m1dr by de-
fault for the generic and hold-out function; in the
case of k-folds functions, each element will consist of
two mldr objects, one for training and one for test-
ing. If we assign the TRUE value to this parameter,
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lists with the indexes of the samples will be provided
instead of generating mldr objects with the data.
These indexes can be used over the original MLD to
select instances, taking up much less memory space
than several mldr objects.

The example shown in Fig. partitions the same
dataset twice. Firstly, a list of five objects is obtained
holding two members, train and test. Each one is an
mldr object, so the same operations previously described
for this class of objects are applicable. Secondly, the same
MLD is partitioned enabling the get.indices option. In
this case the train and test members are numeric vectors
rather than mldr objects.

5.5. How to export data to other formats

Although the MLDs in R format can be useful to per-
form exploratory analysis with the mldr package, or con-
duct some experimentation using the mlr package [4§],
most users would need to export them to other formats.
This is the goal of the write.mldr () function. Currently



it is able to write the content of any mldr object to the
following formats:

e MULAN: The data is written in ARFF file format
following the MULAN [49] multi-label standard: the
labels are usually located at the end of each data
row, and a separate XML file containing label names
is also generated.

e MEKA: As for MULAN, the MEKA [50)] file format
is also ARFF-based. However, the number and lo-
cations of labels in the data is stated in the ARFF
header itself, so a separate XML file is not needed.

e KEEL: This machine learning tool [51] also relies on
the ARFF file format, as the two previous ones. The
ARFF header enumerates the attributes acting as
inputs and as outputs. Therefore, the labels can be
located at any position on the dataset.

e LibSVM: It is the file format used by the well-known
SVM library LibSVM [52]. It uses sparse represen-
tation, locating the labels at the beginning of each
data row.

e CSV: In case none of the previous formats fits the
user’s needs, they can always export to CSV format
and import the data from the tool to use. This for-
mat is the standard CSV, with the attributes and
labels separated by commas with these at the end.
A second CSV file with the label names is also gen-
erated.

When calling the write.mldr () function, an mldr ob-
ject or the value returned by one of the partitioning func-
tions described in the previous section must be given as
the first argument. In the first case a single data file will
be created (and one with the labels if applicable), while
in the second case as many files as partitions contained in
the list will be generated.

The format to export the MLD in is indicated via the
format parameter. This should be a string with any of
the format identifiers previously enumerated, i.e. "KEEL".
A vector with several formats can also be given, in which
case the dataset is simultaneously written in all of them.

Many MLDs are sparse, mainly those having hundreds
or thousands of input attributes. This means that only
some of these attributes have a useful value in each row,
the remaining ones being 0. Writing all these zeros in a
text file implies a waste of space. This is the reason to
use the ARFF sparse format, far more compact for sparse
MLDs. The sparse parameter of the write.mldr () func-
tion takes the FALSE value by default. Assigning it the
TRUE value activates this functionality. However, it should
only be used with truly sparse MLDs, otherwise it will
not produce any benefit. The sparsity() function in
mldr.datasets can be used to check the sparsity level
of any MLD. For instance:
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> sparsity(emotions)
[1] 0.05834739

>

> sparsity(stackex_chess)

[1] 0.9729319

As can be seen, the emotions dataset has less than a
6% of sparsity, while for stackex_chess the level is above
97%. So the former should not be written as sparse, while
the latter should be.

The last parameter accepted by the write.mldr () func-
tion is basename. It is useful to set the root of the filenames
when several MLDs are going to be exported, usually as a
result of a previous partitioning task. The original name
of the MLD, stored in the name attribute, is used by de-
fault. If it is not a valid name, the string "unnamed mldr"
will be used instead.

In Fig. two typical use cases of write.mldr() are
shown. First, a sparse MLD is written to MEKA and
CSV formats. Second, a dataset is partitioned and these
partitions are exported to MULAN format.

Console  Terminal

> write.mldr(stackex_chess,

+ format = c("MEKA", "CSv"),
+ sparse = TRUE)

wrote file chess.arff

wrote file chess.csv

wrote file chess_labels.csv

>

> write.mldr(random.kfolds (emotions),
+ format = "MULAN",

+ basename = "emo")

wrote file emo-1x5-tra.arff

wrote file emo-1x5-tra.xml

wrote file emo-1x5-test.arff

wrote file emo-1x5-test.xml

wrote file emo-2x5-tra.arff

wrote file emo-2x5-tra.xml
wrnata fila amn_2vS_tact anrff

Figure 12: Exporting a dataset and some partitions.

6. Cometa: The comprehensive multi-label data
archive

By means of the functionality offered by the package
mldr.datasets any user can examine the characteristics
of the MLDs, select the most appropriate ones for their
study, partition and export them to the desired format,
and reference them appropriately. Logically, it would be
desirable for such partitions to be made publicly available
so that third parties can use them for comparisons. In
fact, the interesting point would be that we could all use
the same data partitions, thus simplifying any comparative
study. This is the goal behind the comprehensive multi-
label data archive (Cometa).



Using the functions described in Section [5} we have
taken many of the publicly accessible datasets, partitioned
them according to different strategies, exported them to
the most popular file formats and finally designed a website
that acts as a repository of all that information. The repos-
itory is accessible at https://cometa.ml. Its purpose is
to make it easier for researchers to use the same data par-
titions when conducting multi-label studies. This section
describes Cometa’s structure and the steps for creating
your own Cometa repository with the desired datasets.

6.1. Browse the MLDs available at Cometa

The main page of Cometa (Fig. provides several
options, aimed to ease the access to related software pack-
ages, multi-label bibliography, the source code of Cometa
itself, and the list of hosted MLDs. This is accessible
through the Browse button

COMETA

Cometa is an exhaustive collection of multilabel datasets
Available in different formats and pre-partitioned

Browse

Get access to more functionality with mldr software

R packages that retrieve and manage your multilabel datasets

mldr.datasets

Figure 13: Cometa main page.

The list of MLDs initially available in Cometa, par-
tially visible in Fig. is provided in Table Those
marked with a v symbol are built-in MLDs, available as
soon as the mldr.datasets package is loaded into mem-
ory. The remaining ones can be obtained through the
get.mldr () function explained in subsection [5.2.3]

6.2. Filtering and searching MLDs

The dataset browsing page provides for each MLD a set
of metrics, such as the number of features, labels, labelsets,
the imbalance ratio, SCUMBLE and TCS measures, etc.
That list is dynamic, so that the user can change the order
simply by clicking the desired column header. A second
click will reverse the order. This way looking for MLDs
having certain traits, i.e. those with more labels or more
imbalanced, becomes a simpler process.
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Name MLDs Ref. Field

bibtex 1 [53] Text

birds v/ 1 [37 Sound/Music
bookmarks 1 [53] Text

cal500 v/ 1 [38] Sound/Music
corell16k 10 [54] Image
corelbk 1 [55] Image
delicious 1 [20] ‘Text
emotions v/ 1 [89] Sound/Music
enron 1 [B6] Text
EUR-Lex 3 [B7] Text

flags v/ 1 [40] Image
foodtruck 1 [58] Other
genbase v/ 1 [4I] Protein/Genetics
imdb 1 [I4] Text

langlog v/ 1 [42] Text
mediamill 1 [B9] Video
medical v/ 1 [43] Text

ng20 v 1 [44] Text
nus-wide 2 [60] Image
ohsumed 1 [6I] Text

revlv2 5 [62] Text

reuters 1 [42] Text

scene 1 [0 Image
slashdot v 1 [I4] Text
stackexchange 6 [45] Text
tmc2007 2 [63] Text

yahoo 11 [64] Text

yeast 1 [B] Protein/Genetics

Table 2: Datasets initially available in Cometa

6.3. Details about an MLD

In order to search a specific MLD or set of MLDs, all
the user has to do is enter part of its name in the text
box located at the top-left of the page. It is also valid to
introduce a known value for any of the metrics shown in
the list. The rows in it will be filtered as a result, easing
the selection of the searched dataset.

A click on the name of any of the datasets displays
its detail page (see Fig. . This is composed of several
panels, showing the measures that characterize the MLD,
information on label concurrency, including a plotEI, and
imbalance levels, the complete list of attributes indicating
their type, the list of labels and finally, the source informa-
tion necessary to reference it. This additional information
should be useful to decide if the MLD is appropriate for
the study at glance or not.

At the bottom of the page, a link provides all the infor-
mation displayed on this page in JSON [65] format. This
facilitates the automated treatment of meta-data related
to MLDs.

6.4. Downloading data partitions
All the datasets available at Cometa can be down-
loaded from R through the mldr.datasets package. The

3This kind of plot, among others, can be easily generated by the
mldr package.


https://cometa.ml

COMETA Home Browse dat:

Browse datasets

59 datasets

Click the name of a dataset to access information and downloads. Sort the table by clicking the corresponding header
Name $ Instances$  Attributes$ Inputs$ Labels$ Labelsets$ Single$ Max $ Cad? Dens$ Mean IR$ Scumble$ TCS$
eurlexev 19348 8993 5000 3993 16467 14609 34 5.3102 0.0013 396.636 0.4201 26.5186
delicious 16105 1483 500 983 15806 15642 19 19.02 0.0193 71.1338 0.532 22.7734
eurlexdc 19348 5412 5000 412 1615 7 1633 1.2923 0.0031 268.9297 0.048 21.9253
stackex_cooking 10491 977 577 400 6386 5276 134 2.2248 0.0056 37.8576 0.1933 21.1112
corelSk 5000 873 499 374 3175 2523 55 3.522 0.0094 189.5676 0.3941 20.1999
stackex_cs 9270 909 635 274 4749 3679 119 2.5562 0.0093 85.0023 02723 20.5324
stackex_philosophy 3971 1075 842 233 2249 1890 224 2272 0.0098 68.7532 0.2325 19.9051
stackex_chess 1675 812 585 227 1078 890 48 24113 0.0106 85.7898 0.2625 18.7794
bookmarks 87856 2358 2150 208 18716 14971 6087 2.0281 0.0098 12.308 0.0597 22.8479
eurlexsm 19348 5201 5000 201 2504 1182 1041 22133 0.011 536.9761 0.182 21.6461
stackex_chemistry 6961 715 540 175 3032 2331 318 2.1093 0.0121 56.8779 0.1867 19.4733
cal500 502 242 68 174 502 502 1 26.0438  0.1497 20.5778 03372 15.5972
corel16k007 13915 674 500 174 5158 3389 254 2.8859 0.0166 37.7146 0.2821 19.922

Figure 14: Browsing the list of datasets.

bibtex mlds.dataseta: :get.mlds ("Bibtex")

Summary
Instances 7395
Attributes 1995
Inputs 1836
Labels 159
Labelsets 2856
Single labelsets 2199
Max frequency 47
Cardinality 24019
Density 0.0151
Mean IR 12.4983
Scumble 0.0938
TCS 20.5414

Citation

Katakis, |.; Tsoumakas, G.; Vlahavas, |. (2008). Multilabel Text Classification for
Automated Tag Suggestion. In Proc. ECML PKDDO8 Discovery Challenge,
Antwerp, Belgium, 75-83.

BIBTEX

ginproceedings{,

author = "Katakis, I. and Tsoumakas, G. and Vlahavas, I.",

# Download partitions

Concurrence plot

"oy 5§

In this concurrence plot. sectors represent labels and finks between them depict label co-occurrences
SCUMBLE is 2 measure designed to assess the concurrence among imbalanced labels.

Attributes
all attributes labels
binary 0

nnn

hinans

Figure 15: MLD details page.
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tip located at the top-left of the details page, following
the MLD’s name, provides the command to use. This will
provide the full dataset, without partitioning. This same
version of the MLD can be also directly downloaded from
the page, by clicking the Download button on the right.

To the right of the previous button there is another one
whose objective is to allow the download of the chosen
MLD already partitioned. FEach of the datasets in the
repository has been partitioned according to the following
parameters:

e Partitioning strategy: All three partitioning meth-
ods supported by mldr .datasets (see subsection|5.4))
have been used with every MLD, so the user can

choose between random, stratified and iteratively strat-

ified partitions.

Number of folds: Three configurations are pro-
vided for each partitioning strategy: hold out, 2x5-
fcv and 10-fcv. The first consists of two partitions,
a training partition with 60% of the instances and a
test partition with the remaining 40%. The second
one is made of two different sets of five folds, with
80% of samples for training and 20% for testing. The
last configuration is a set of ten folds, each having
90% of instances for training and the remaining 10%
for testing.

File format: For each one of the previous nine strat-
egy/folds configurations data have been exported to
five file formats: MULAN, MEKA, KEEL, LibSVM
and the mldr format.

This adds up to a total of 45 settings for each MLD,
prepared to download and use in any experimental study.
All of them are accessible through the Download parti-
tions button previously mentioned. It opens a window as
the one shown in Fig. from where the a .tar.gz file for
each case is available.

6.5. How to host your own Cometa repository

Since Cometa is based exclusively on open-source soft-
ware, other researchers can build their own multi-label
data repository by running the same software. However,
installing the required software, manually partitioning the
datasets and extracting their metadata might be a tedious
task. In order to relieve them from this work, we provide
a mostly automatic, menu-based assistant in the form of
a Docker [60] imagdﬂ

The assistant will automatically process datasets, but
it will need them in mldr format for this. Provided that we
are working in R, the mldr() or mldr from dataframe ()
functions from the mldr package can convert a dataset to
mldr format. Afterwards, we just need to save this object
into a file with the built-in function saveRDS().

4The Docker image is hosted on the Docker Hub at https://hub.
docker.com/r/fdavidcl/cometa/
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Assuming now that the directory containing the pub-
lic data for the repository will be located in ~/public,
we should save our datasets in RDS file format inside
“/public/full. At this point, the Cometa assistant can
run by starting the Docker image in interactive mode and
forwarding one port from the host to the 80 port in the
container:

$ docker run -itp 8080:80 --mount \
type=bind,source=""/public",target=/usr/app/public \
fdavidcl/cometa

After downloading the required image, the main menu
of the Cometa assistant will show some options:

Partition datasets

Create summaries of your data
Modify website configuration
Launch Cometa server

Quit

These options are intended to be processed in order.
When choosing the first option, the assistant will scan the
public/full folder for datasets, partition them according
to different partitioning and validation strategies, and ex-
port them in a variety of formats into public/partitions.
This process can take several hours depending on the size
of the datasets, but it is only needed once. If serving
dataset partitions is not desired, this option can be skipped
safely.

The second option will again read the original datasets
and output metadata in public/json. Running this op-
tion is required in order for the datasets to appear on the
website. The third option will allow the user to modify pa-
rameters such as the website title or its accent color, and
the fourth one will start a web server hosting the current
datasets, which will be accessible at 1localhost:8080.

When partitions and metadata have been created, you
may want to start the web server without requiring human
interaction. This can be achieved by running Docker in
detached mode:

CU W

$ docker run -dp 8080:80 --mount \
type=bind, source=""/public",target=/usr/app/public \
fdavidcl/cometa

After this command is run, the program will automat-
ically build the website and serve it. That way, the server
can be launched at system startup if desired.

7. Concluding remarks

The use of multi-label classification algorithms is be-
coming increasingly widespread, given the breadth of its
applications. It is therefore important to design increas-
ingly efficient methods that are tailored to specific needs.
The behavior and performance of these new methods must
always be validated experimentally. This requires appro-
priate procedures and tools.


https://hub.docker.com/r/fdavidcl/cometa/
https://hub.docker.com/r/fdavidcl/cometa/

bibtex mlds.datasets::get.mlds ("Bibtax)

Select your desired partitioning strategy, validation and format

o

/

Stratified

Random
Hold out MULAN ~ MEKA  LibSYM  KEEL  midr MULAN
2x5-fold cross validation MULAN ~ MEKA  LibSYM  KEEL  midr MULAN
10-fold cross validation MULAN ~ MEKA  LibSYM  KEEL  midr MULAN

& Download

Iterative stratified
MEKA  LibSVM  KEEL  midr MULAN ~ MEKA  LibSYM  KEEL  midr
MEKA  LibSYM  KEEL  midr MULAN ~ MEKA  LibSYM  KEEL  midr
MEKA  LibSYM  KEEL  midr MULAN ~ MEKA  LibSYM  KEEL  midr

Figure 16: Selecting the partition strategy, folds and format for downloading the MLD.

This paper attempts to help improving the way multi-
label experimentation is conducted through several contri-
butions. First, we have identified the main traps that the
practitioner can find while performing multi-label experi-
ments, and then a set of good practices has been provided.
In addition, we have developed and introduced the tools
needed to follow these recommendations, thus easing this
kind of work.

In the first sections of this article we have tried to com-
pile a set of good practices regarding how a multi-label
experimentation should be conducted. According to our
experience, most mistakes are due to incorrect selection or
processing of MLDs. Most of the pieces of advice provided
relate to this aspect.

Aiming to ease the usual steps followed in a multi-label
experimentation, we have developed a specific software:
the mldr.datasets R package. As has been explained
in Section [5} the functionality provided by this software
makes easier the selection, partitioning, documentation
and exporting of MLDs. mldr.datasets is free software
available to any R user, and it is open to future extensions
by the authors and the community.

Even those who are not R users can benefit from the
functionality of this software package, thanks to Cometa,
the repository from which 60 MLDs with different parti-
tioning strategies, number of partitions and formats can be
downloaded. The main objective of this repository is to
facilitate that new multi-label studies always use the same
MLD partitions. This would allow future comparisons be-
tween algorithms, without the need for each researcher to
re-run all results for published methods. All that would
have to be done is to take the same partitions of data used
in the reference article. Like mldr.datasets, Cometa is
free software and any user can set up their own repository,
as well as contribute to Cometa by providing additional
datasets.

As future work, we aim to enlarge the collection of
MLDs hosted in Cometa, as well as extend the informa-
tion provided for each one of them. The functionality of
the mldr.datasets package could be also enhanced, for
instance allowing any user to upload and process their
datasets automatically from the R command line.
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