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Abstract

In order to provide a simplified representation of key performance indicators for

an easier analysis by mobile network maintainers, a model-based co-clustering

algorithm for functional data is proposed. Co-clustering aims to identify block

patterns in a data set from a simultaneous clustering of rows and columns. The

algorithm relies on the latent block model in which each curve is identified by its

functional principal components that are modeled by a multivariate Gaussian

distribution whose parameters are block-specific. These latter are estimated by

a stochastic EM algorithm embedding a Gibbs sampling. In order to select the

numbers of row- and column-clusters, an ICL-BIC criterion is introduced. In

addition to be the first co-clustering algorithm for functional data, the advan-

tage of the proposed model is its ability to extract the hidden double structure

induced by the data and its ability to deal with missing values. The model has

proven its efficiency on simulated data and on a real data application that helps

to optimize the topology of 4G mobile networks.

Keywords: co-clustering, functional data, SEM-Gibbs algorithm, latent block

model, ICL-BIC criterion, mobile network, key performance indicators.

1. Introduction

With the introduction of new technologies and services in mobile networks,

the complexity of these latter have increasingly grown creating an heterogeneous
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environment where different architectures (micro-, macro-, pico-, femto-cells)

and different radio access technologies (GSM, UMTS, LTE . . .) coexist. New5

difficulties have been resulted such as network management, optimization, trou-

bleshooting and planning. Automated networks have also been created such

as the self-organizing networks [1] that demand new techniques for self-healing

and self-optimization. Therefore, mobile operators need to deal with these new

challenges in order to provide a top quality of services without increasing costs10

[2].

The quality of services is measured by data that are generated from mul-

tiple sources including key Performance Indicators (KPI) which are measure-

ments collected from network elements such as transceivers, cells, or sites [2].

They are defined by mathematical formulas derived from different counters and15

computed periodically from the network with different temporal granularities

(weekly, daily, hourly or less). For instance, Figure 1 illustrates a sample of

p = 30 KPIs for n = 20 daily observations. From a statistical perspective,

these KPIs are considered as functional data [3] which is a type of data that

has recently appealed to researchers since they were for longtime inaccessible20

for statistics. However, with the advance of modern technology, more and more

data are being recorded continuously during a time interval (or intermittently

at numerous discrete time points). They become very frequent, not only in

the telecommunication field, but in numerous other domains like medicine, eco-

nomics and chemometrics (see [3] for an overview). Functional data is the25

observation (sample path) of a stochastic process X = {X(t), t ∈ T}, where T

can be for instance a time interval, or any other continuous subset.

The KPIs may be specific to each radio access technology (GSM, UMTS,

LTE,. . .) and to each constructor (Huawei, Ericsson,. . .). Therefore, as the

number of technologies, services, cell types, and constructors grows, the KPIs30

observed by the support team become enormous and they may need to be an-

alyzed over a large period (several weeks or months). Hence, on one hand,

observing all the KPIs makes their daily analysis by the engineers a difficult

task and also their treatment by the self-organizing networks more greedy in

2



Figure 1: An example of functional data set composed of 20 observations and 30 KPIs

terms of time and memory. On the other hand, ignoring some KPIs risks to35

decrease the performance. Therefore, in order to help the network maintainers

in their job, our work aims to provide a simplified representation of the daily

evolutions of KPIs.

Since the number of days of observations and the number of KPIs are large, a

co-clustering algorithm will be designed in order to cluster both of them. Thus,40

crossing days-clusters and KPIs-clusters will lead to define homogeneous blocks
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of data, containing daily KPI observations having the same behavior.

Let x = (xij)i∈I,j∈J , where I is a set of n observations (rows, objects) and

J is a set of p attributes (columns, features). The basic idea of co-clustering

can be seen as making permutations of objects and variables in order to draw45

a correspondence structure on I × J . For illustration, consider Figure 2 that

represents a binary data set of n = 10 observations I = {A,B, . . . , J} and of

p = 7 binary attributes J = {1, 2, . . . , 7}. By permuting the rows and columns,

the data set is re-organized into a set of 3 × 3 co-clusters, defining 9 blocks of

homogeneous data.

Figure 2: Binary data set (1), data re-organized by partition on I (2), by partitions on I and

J simultaneously (3) and summary matrix (4)

50

Co-clustering has successfully proven its efficiency in many applications such as

recommendation systems [4] or text mining [5]. According to [6], two families of

the block co-clustering techniques can be distinguished, namely: (a) the matrix

reconstruction based family in which the problem is formulated as a matrix

approximation using dissimilarity metrics and a set of constraints (see [7] for55

an example) (b) the model-based family that uses probabilistic models in order

to define the blocks [8, 9, 10]. Many types of data have been treated when

dealing with co-clustering such as categorical data [11], ordinal data [12, 13],

discrete [14] or continuous data [15]. However, there does not exist, to the best

of our knowledge, co-clustering algorithm for functional data even though a lot60

of clustering algorithms have been proposed for this type of data (see [16] for a
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survey).

The purpose of this paper is to propose a co-clustering technique based on the

Latent Block Model (LBM, [14]) that we adapt for functional data. The LBM

assumes local independence, i.e. the n×p curves are assumed to be independent65

once the row and column partitions are fixed. Since the notion of probability

distribution for functional data is not well defined [17], a Functional Principal

Components Analysis (FPCA, [3]) is used in order to plug the functional data

into a finite-dimensional space. This strategy is frequent in functional data

clustering and has proven its efficiency [18, 19, 20, 21]. Once each curve is being70

identified by its principal components, the probability distribution of these latter

can be modeled by a multivariate (Gaussian) distribution with block-specific

parameters.

The paper is organized as follows. Section 2 introduces the notations, the

transformation of the discrete observations of curves into functional data and75

functional principal components analysis. The definition of the latent block

model for functional data is described in Section 3. Given the numbers of row-

clusters and column-clusters, a Stochastic EM algorithm embedding a Gibbs

sampling (SEM-Gibbs) is proposed in Section 4 for the estimation of the model

parameters. Since the number of row- and column-clusters must be estimated in80

practice, a strategy based on an ICL-BIC criterion is proposed in Section 5 that

may be used to determine these numbers. The behavior of the model is studied

on simulated data in Section 6. Finally, Section 7 presents an application of the

co-clustering model on real data of mobile networks extracted within Orange

Labs, France.85

2. From discrete data to functional principal components

The data under study are a sample of n observations. Each observation

is described by a set of p curves (functional features). The statistical model

underlying data, represented by multivariate curves, is a stochastic process with
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continuous time:90

X = {X(t)}t∈[0,T ] with X(t) = (X1(t), . . . , Xp(t))
′ ∈ Rp, p ≥ 2.

One way to explore such data is to perform a clustering of multivariate curves

[21]. In the present work, the goal is to go further by also clustering together

the functional features having the same behavior.

As previously mentioned, the latent block model that we propose assumes a

probability distribution on the functional principal components of the curves.95

This section explains how to transform the discrete observations into functional

data and then, how to perform a FPCA.

2.1. Transformation of the observed discrete curves

The main source of difficulty when dealing with functional data consists in

the fact that these latter belong to an infinite-dimensional space, whereas in100

practice, data are generally observed at discrete time points and with some

noise. Thus, in order to reflect the functional nature of data, a smoothing may

be considered. Smoothing methods consider that the true curve belongs to a

finite-dimensional space spanned by some basis of functions such as trigonomet-

ric functions, B-splines or wavelets (see [3] for a detailed study). Smoothing105

assumes that each observed curve xij (1 ≤ i ≤ n, 1 ≤ j ≤ p) can be expressed

as a linear combination of basis functions {φj`}`=1,...,Mj
:

xij(t) =

Mj∑
`=1

aij`φj`(t), t ∈ [0, T ], (1)

where {aij`}`=1,...,Mj
are the basis expansion coefficients. These coefficients can

be estimated by least square smoothing for instance [3]. In this work, due to

the nature of the KPIs under study, the same basis {φ`}`=1,...,M is used for110

all the functional features. The choice of the basis as well as the number of

basis functions strongly depends to the nature of data. Hence, they can be set

empirically.
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2.2. Principal components analysis for functional data

From the set of functional data, it is interesting to have optimal represen-115

tation of curves into a functional space of reduced dimension. The main tool

to answer this request is the principal components analysis for functional data

(FPCA, [3]). It consists in computing the principal components Ch and princi-

pal factors fh of the Karhunen-Loeve expansion:

X(t) = µ(t) +
∑
h≥1

Chfh(t), t ∈ [0, T ]. (2)

When curves are assumed to be decomposed into a finite basis of function (1),120

FPCA consists in a usual PCA of the basis expansion coefficients using a metric

defined by the inner products between the basis functions. In theory, the number

of principal components are infinite. However, in practice, due to the fact that

the curves are observed at discrete time points and that they are approximated

on a finite basis of functions, the maximum number of components one can125

compute is equal to the number M of basis functions used for approximation.

In this work, in order to project all the data onto the same FPCA space, func-

tional principal components analysis is applied on the whole data set of curves

x, without distinction between curves from different observations or curves from

different features. Moreover, in order to reduce the dimensionality of the prob-130

lem, only the first m ≤ M principal components are considered. This number

m is fixed empirically so that the principal components express a given part of

the total variance.

3. Latent block model for functional data

This section describes the co-clustering technique for functional data based135

on the latent block model.

Let x = (xij)1≤i≤n,1≤j≤p be the matrix of curves (xij : xij(t), t ∈ [0, T ])

whose rows are observations and whose columns are the functional features.

After functional principal components analysis, each curve xij is summarized

7



by its principal components cij = (chij)1≤h≤m. Let c = (chij)1≤i≤n,1≤j≤p,1≤h≤m140

denotes the set of all the principal components.

The objective of co-clustering is to divide the data into Kr row-clusters

and Kc column-clusters. The clusters are mixed in varying proportions de-

noted by αkr for the row-mixing proportion of the row-cluster kr and by βkc

for the column-mixing proportion of the column-cluster kc. Hence, the data are145

summed up in Kr×Kc blocks. Each block contains data belonging to the same

Gaussian distribution N (µkrkc ,Σkrkc).

Let v be the row-clustering matrix v = (vikr )i=1...n,kr=1...Kr with vikr = 1

if row i belongs to the cluster kr, 0 otherwise. Let p(vikr ) be the probability of

row i to belong to the cluster kr, with the constraint that
∑Kr

kr=1 p(vikr ) = 1. In150

the same way for the column partitioning, let w = (wjkr )j=1...p,kc=1...Kc
be the

column-clustering matrix and let p(wjkc) be the probability of column j to be-

long to the cluster kc. In the following, the straightforward ranges for i, j, h, kr

and kc will be omitted for simplicity of notations.

155

The latent block model for functional data is defined by its density:

p(x; θ) =
∑
v∈V

∑
w∈W

p(v; θ)p(w; θ)f(c|v,w; θ) (3)

where,

• V is the set of all possible partitions of the rows into Kr groups, W is the

set of all possible partitions of the columns into Kc groups,

• p(v; θ) =
∏
ikr

α
vikr

kr
; p(w; θ) =

∏
jkc

β
wjkc

kc
,160

• f(c|v,w; θ) =
∏
ijkrkc

p(cij ;µkrkc ,Σkrkc)vikrwjkc with:

– p(·;µkrkc ,Σkrkc) is them-variate Gaussian density with mean µkrkc =

(µhkrkc)1≤h≤m and covariance matrix Σkrkc ,

• θ = (αkr , βkc , µkrkc ,Σkrkc)1≤kr≤Kr,1≤kc≤Kc
, is the whole set of the model

parameters.165
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The parameter θ of the latent block model is to be estimated, and we propose

to use maximum likelihood inference.

4. Inference via a SEM-Gibbs algorithm

The objective of this section is to determine the latent blocks of the model

by estimating the parameter θ using maximum likelihood inference. The max-170

imum likelihood estimation of θ results in an optimization of the observed log-

likelihood l(θ;x) = ln p(x; θ) where p(x; θ) is defined by (3). The usual way used

to maximize the log-likelihood in the presence of missing observations is the EM

algorithm [22]. However, since the LBM involves a double missing structure,

v and w, the maximum likelihood inference is computationally infeasible with175

an EM algorithm. For instance, with a data matrix of size 20 × 20 and with

Kr = Kc = 2, computing (3) requires Kn
r ×Kp

c ≈ 1012 terms. For this work, we

choose to use a stochastic version of the EM algorithm in which the missing data

simulation is performed without the need of computing the whole missing data

distribution thanks to a Gibbs sampler [23]. A second advantage of SEM-Gibbs180

algorithm is that it is expected to be insensitive to its initial values. Starting

from an initial value of the parameter θ(0) and of the missing data w(0), the

qth iteration of the partial SEM-Gibbs alternates the following SE-Gibbs and

M steps.

SE-Gibbs step. Execute a small number (at least 1) of successive iterations of185

the two following steps:

1. Generate the row partition v
(q+1)
ikr

|c,w(q) for all 1 ≤ i ≤ n, 1 ≤ kr ≤ Kr

according to:

p(vikr = 1|c,w(q); θ(q)) =
α
(q)
kr
fkr (ci|w(q); θ(q))∑

k′r
α
(q)
k′r
fk′r (ci|w(q); θ(q))

where ci = (chij)j,h and fkr (ci|w(q); θ(q)) =
∏
jkc

p(cij ;µ
(q)
krkc

,Σ
(q)
krkc

)w
(q)
jkc .
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2. Generate the column partition w
(q+1)
jkc

|c,v(q+1) for all 1 ≤ j ≤ p, 1 ≤ kc ≤190

Kc according to:

p(wjkc = 1|c,v(q+1); θ(q)) =
β
(q)
kc
fkc(cj |v(q+1); θ(q))∑

k′c
β
(q)
k′c
fk′c(cj |v(q+1); θ(q))

where cj = (chij)i,h and fkc(cj |v(q+1); θ(q)) =
∏
ikr

p(cij ;µ
(q)
krkc

,Σ
(q)
krkc

)v
(q+1)
ikr .

M step. Estimate θ(q+1) given v(q+1),w(q+1).

For the mixing proportions, the estimations are:

α
(q+1)
kr

=
1

n

∑
i

v
(q+1)
ikr

and β
(q+1)
kc

=
1

p

∑
j

w
(q+1)
jkc

,

and for the means and the covariances of each block:195

µ
(q+1)
krkc

=
1

n
(q+1)
krkc

∑
i

∑
j

c
v
(q+1)
ikr

w
(q+1)
jkc

ij and Σkrkc
(q+1) =

1

n
(q+1)
krkc

S
(q+1)
krkc

where n
(q+1)
krkc

=
∑
ij v

(q+1)
ikr

w
(q+1)
jkc

and ,

S
(q+1)
krkc

=
∑
ij((cij − µ

(q+1)
krkc

)t(cij − µ(q+1)
krkc

))v
(q+1)
ikr

w
(q+1)
jkc .

Choosing the parameters estimation and the final partition. The SE-Gibbs and

M steps are iterated for a given number of iterations. After a burn-in period,

the final estimation θ̂ is defined by the mean of the sample distribution. For200

the final partitions, since v and w depend to each other, a new sampling of

v,w|θ̂ is simulated by successive SE-Gibbs steps with θ = θ̂. Then, every vikr

(respectively wjkc) is obtained by computing the mode of the new sampling

distribution.

5. Choice of the number of clusters205

In the previous section, the numbers of clusters, Kr in rows and Kc in

columns, are supposed to be known. However, in real applications, it may not

be easy to precisely guess these numbers. Therefore, we propose to use the

ICL-BIC criterion developed for continuous data in [24]:

ICL-BIC(Kr,Kc) = log p(x, v̂, ŵ; θ̂)− Kr − 1

2
log n− Kc − 1

2
log p− ν

2
log(np)

10



where:210

• v̂, ŵ and θ̂ are the respective estimations of the row partition, the column

partition and the model parameters obtained at the end of the estimation

algorithm,

• The complete-log likelihood is given by:

log p(x, v̂, ŵ; θ̂) =
∑
ikr

v̂ikr log α̂kr +
∑
jkc

ŵjkc log β̂kc

+
∑
ijkrkc

v̂ikr ŵjkc log p(cij ; µ̂krkc , Σ̂krkc),

• ν is the number of continuous parameters of the LBM: ν = KrKc

(
m+ m(m+1)

2

)
.215

Strategy of exploration. In the co-clustering context, exploring all the possible

combinations of values of {Kr,Kc} (with Kr ≤ Kmax
r and Kc ≤ Kmax

c ) be-

comes rapidly computationally demanding. Inspired by the strategy developed

in [25], a greedy search algorithm is proposed. It allows to only explore a rele-

vant subspace of possible combinations of {Kr,Kc} (see Algorithm 1). At each220

step, the algorithm consists in computing the ICL-BIC criterion of the models

obtained with one additional cluster, either in row or in column. The solution

with the best ICL-BIC criterion is retained and the previous step is repeated

until the ICL-BIC criterion does no longer increase.
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225

initialization: {Kr,Kc} = {2, 2};

repeat

{Kold
r ,Kold

c } = {Kr,Kc};

if ICL-BIC(Kr + 1,Kc) ≥ ICL-BIC(Kr,Kc + 1) and Kr < Kmax
r

then

Kr = Kr + 1;

else if ICL-BIC(Kr + 1,Kc) < ICL-BIC(Kr,Kc + 1) and

Kc < Kmax
c then

Kc = Kc + 1;

end

end

until (Kr ≥ Kmax
r and Kc ≥ Kmax

c ) or

ICL-BIC(Kr,Kc) ≤ ICL-BIC(Kold
r ,Kold

c );

Algorithm 1: Greedy search for exploring the numbers of clusters

6. Numerical experiments

The aim of this section is to evaluate, through simulation studies, the robust-

ness of the co-clustering model and to determine its strengths and limitations.

The first experiment consists in producing a set of simulated data to test the230

behavior of SEM-Gibbs algorithm in terms of convergence, in order to choose

the best number of iterations. The second experiment verifies the quality of the

parameter estimations and of the final partitions resulted by SEM-Gibbs algo-

rithm. The third experiment checks if the greedy search algorithm can detect

the right number of row- and column-clusters.235

6.1. Experimental setup

The experimental setup is composed of four steps. Let’s assume that the

data set is divided into 9 blocks (Kr = Kc = 3), the first step consists in

assigning, to each block, a mean curve with discrete values. The 9 mean curves

are chosen among the daily evolution of the KPIs under study, presented in240

the next section. They are also chosen according to two scenarios so that two

families of experiences are considered with different levels of difficulty. The first

12



family (Family1) is set such that the co-clustering task is less difficult: only

2 couples among the 9 mean curves are close. The second family (Family2)

provides a more challenging situation: the mean curves of the blocks are set245

such that 4 couples among them are close.

In the second step, each mean curve is smoothed using B-splines as follows:

µkrkc(t) =
∑M
l=1 akrkclφl(t), where the number of basis functions is empirically

set to M = 10. Figure 3 (respectively Figure 4) illustrates the Family1 (re-

spectively Family2) and their corresponding smoothing.250

The third step consists in simulating curves for each block. By using the basis

expansion coefficients, each curve is simulated as follows : x(t) =
∑
l alφl(t)

where al ∼ N(akrkcl, 10). These simulations are used to generate a number s of

data sets of size n× p, where n, p ∈ {50, 100, 500}.

In the fourth step, a FPCA is applied for each data set. The number of255

principal components m is chosen so that they cover at least 80% of the in-

formation. Figure 5 illustrates the mean of FPCA variance proportions after

s = 50 simulations of data sets of size 100× 100. For all the samples’ sizes and

the families of simulation, 80% of the information is summarized by the first 3

principal components. Consequently, for what follows, the number of principal260

components is set to m = 3.
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Figure 3: Discrete mean curves belonging to Family1 and their smoothing
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Figure 4: Discrete mean curves belonging to Family2 and their smoothing
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6.2. Tuning of the number of iterations

This experiment aims to choose the length of the SEM-Gibbs chain. It allows

to verify that after a burn-in period, the simulations are stable which means that

the SEM-Gibbs chain has achieved its stationary distribution. Consequently, it265

allows to choose the number of iterations. The convergence is tested with q

iterations of α
(q)
kr

, β
(q)
kc

and µ
(q)
krkc

where q ∈ [0..100] over s = 20 simulations

of data sets with different sizes (s simulations for each size). The number of

blocks are set to Kr = Kc = 3 which are the right numbers of row- and column-

clusters. Figure 6 illustrates the parameters convergence of all the simulations270
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Figure 6: Parameters convergence after s = 20 simulations over data sets of sizes 50 × 50

(first line), 100 × 100 (second line), 500 × 500 (third line) with functional data belonging to

Family1.
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where each curve represents the values of the corresponding parameter over q

iterations and per simulation. The data sets are of size 50× 50, 100× 100 and

500× 500, where the functional data are derived from the Family1.

We notice that SEM-Gibbs algorithm has achieved its stationary distribu-

tion. Since by the 50th iteration, the algorithm has already converged, for the275

rest of the experiment series, the number of iterations is set to q = 50 with a

burn-in period equal to 20.

6.3. Validation of the SEM-Gibbs algorithm

In this second experiment, the purpose is to validate the parameters estima-

tions resulted from SEM-Gibbs algorithm through s = 50 simulations of data280

sets with different sizes. Let Kr = Kc = 3 and the functional data are derived

from both families. The comparison between the real parameters and their

estimation is held in terms of the following metrics:

• ARIr (respectively ARIc): the adjusted rand index of the real row- (re-

spectively column-) clustering and its estimation,285

• ∆α: the distance between the real α and its estimation, where ∆α =∑Kr
kr=1 |αkr−α̂kr |

Kr
, and similarly for ∆β,

• ∆µ: the distance between the real µ and its estimation, where ∆µ =∑Kr
kr=1

∑Kc
kc=1

∑h
l=1 |µ

l
krkc
−µ̂l

krkc
|

Krkcl
.

Table 1 presents the results over the 50 simulations. Each metric is composed290

of two values: a mean distance (or ARI) followed by a standard deviation in

parenthesis.
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Table 1: Validation of the parameters and the final partitions estimated by SEM-Gibbs algo-

rithm over data sets of different sizes

Family1 Family2

Size of the data sets 50 × 50 100 × 100 500 × 500 50 × 50 100 × 100 500 × 500

ARIr 0.93 0.97 0.98 0.95 0.96 1

(0.18) (0.11) (0.09) (0.15) (0.14) (0)

ARIc 0.92 0.92 0.95 0.9 0.99 0.97

(0.19) (0.19) (0.15) (0.2) (0.08) (0.11)

∆α 0.028 0.01 0.008 0.02 0.02 0

(0.07) (0.04) (0.04) (0.06) (0.06) (0)

∆β 0.03 0.03 0.02 0.04 0.004 0.01

(0.07) (0.07) (0.07) (0.08) (0.032) (0.05)

∆µ 2.14 13.2 0.92 590.13 33 103.13

(4.01) (30.02) (3.12) (1248.48) (229.52) (412.38)

As shown in Table 1, ARIr and ARIc are close to 1 which proves that

the final partitions estimated by the model, v̂ and ŵ, are very close to the

real partitions v and w. α and β are two parameters that belong to [0, 1].295

The fact that the metrics ∆α and ∆β are close to zero proves that these two

parameters are successfully estimated. As for the parameter µ, the possible

values depend to the data set. In our simulations, the range of values belongs

to [−120, 100] for Family1 and to [−120, 14000] for Family2, and the data

sets are not normalized. That is why, knowing the range of values, the results300

of ∆µ are acceptable enough to conclude that the estimation of the different

parameters is close to the reality which proves the efficiency of our model.

6.4. Choice of Kr and Kc

The aim of this section is to verify that the greedy search algorithm presented

by Algorithm 1 with the ICL-BIC criterion can detect the right numbers of row-305

and column-clusters. Therefore, s = 50 simulations are generated over data sets

of different sizes where the functional data are derived from Family1 or from

Family2. Given Kmax
r = Kmax

c = 4, we compute the number of selections
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of each couple {Kr,Kc}. The results are compared to the exhaustive method

in which all the possible combinations of the couples {Kr,Kc} are tested as310

presented in Table 2.

Table 2: The results of the exhaustive method and the Greedy search algorithm over 50

simulations of data sets of different sizes

Family1 Family2

Size of the data sets 50 × 50 100 × 100 50 × 50 100 × 100

Exhaustive method

Kr/kc 2 3 4

2 0 0 0

3 0 36 8

4 0 4 2

Kr/kc 2 3 4

2 0 0 0

3 0 40 5

4 0 5 0

Kr/kc 2 3 4

2 0 0 0

3 0 42 5

4 0 3 0

Kr/kc 2 3 4

2 0 0 0

3 0 34 11

4 0 5 0

Greedy search

Kr/kc 2 3 4

2 0 0 0

3 5 42 2

4 0 1 0

Kr/kc 2 3 4

2 0 1 0

3 7 40 0

4 0 2 0

Kr/kc 2 3 4

2 0 4 1

3 3 41 1

4 0 0 0

Kr/kc 2 3 4

2 0 0 0

3 8 38 1

4 3 0 0

We notice that the right number of clusters {3, 3} is selected most of the

time even when the blocks have close behaviors (i.e. the functional data belong

to Family2). The results of both methods are equivalent but with the Greedy

search algorithm, the execution time is faster, which proves the efficiency of the315

Greedy search algorithm using the ICL-BIC criterion for choosing the number

of blocks.

7. Application to mobile networks monitoring

This section presents an application of the proposed co-clustering algorithm

to mobile network monitoring. Due to the huge number of KPIs captured contin-320

uously from the network, analyzing all of them daily is impossible for engineers.

As a result, they are forced to ignore most of the KPIs and to lose the infor-

mation behind, which may affect the network performance and consequently

the quality of services offered by the mobile operators. Even for the automated

networks, the enormous amount of data treated by the algorithms may impose a325
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huge computational capacities and a time consuming tasks which is not helpful

especially in the case of real-time applications.

In this part, we are interested in the study of the relationship between the

behavior of different daily-captured KPIs for a specific geographical area. KPIs

with similar behaviors will be grouped in the same block. In this way, the infor-330

mation induced by KPIs can be summarized which offers a simple representation

for engineers as well as self-organizing networks.

7.1. Description of the real data

The data are collected using an internal tool of Orange Labs, France. We

focus our study on Long Term Evolution (LTE) sites located in Lyon as il-335

lustrated in Figure 7. LTE is a standard technology that brings the cellular

communication to the fourth generation (4G) era [26]. In wireless telephony,

a cell [2] is the geographical area covered by a cellular telephone transmitter.

The transmitter facility itself is called the cell site. The cell provided by a cell

site can be from one mile to twenty miles in diameter, depending on terrain340

and transmission power. The data are extracted from 99 cells, for 170 KPIs

and for 13 days: seven days among them correspond to an atypical week in

the telecommunication field, distinguished by the end of summer holidays (from

August, 25 to August 31, 2016) and the other six days correspond to a typical

work days (from September, 16 to September, 21, 2016).345

The KPIs are extracted with a granularity of 15 minutes (therefore, each

daily KPI contains 96 values). The extracted KPIs belong to different families

of indicators. The first family, labeled ”Quality”, refers to the network’s abil-

ity to address its supported services regarding its characteristics. The second

family, labeled ”Accessibility”, refers to the network’s ability to meet with the350

users demands for accessing to the different services. The third family, labeled

”Retainability”, refers to the network’s ability to maintain its users connections

regardless the quality. In this extract, 85 KPIs belong to ”Quality”, 60 KPIs

belong to ”Accessibility” and 25 KPIs belong to ”Retainability”.

19



Figure 7: The geographical area used for the data extraction

7.2. Smoothing and FPCA355

The overall size of the data set is 1287 rows (= 99 cells × 13 days), 170

columns and 96 discrete values per curve. The data set contains 7% of missing

values. These latter are easily treated by applying the smoothing step, since it

allows to gain the functional behavior of the daily KPIs which is an advantage

when dealing with functional data. A FPCA is then applied, which helps to gain360

in term of dimensionality reduction. The number of basis functions M = 20,

and the number of principal components m = 8 have been chosen empirically.

After pre-processing, the data set is composed of 1287× 170 curves, each curve

is identified by 8 principal components.

7.3. Co-clustering365

Given {kmaxr , kmaxc } = {4, 4}, the greedy search algorithm suggests to disso-

ciate the data set in 4 row-clusters and 4 column-clusters, since they maximize

the ICL-BIC criterion. In this first analysis, we are restricted to {4, 4} for an
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easier interpretation, but since the Greedy search algorithm chose the maximum

values, a deeper analysis should be tackled with Kmax
r > 4 and Kmax

c > 4.370

By fixing Kr = Kc = 4, this experiment aims to apply the LBM for func-

tional data on the data set. Let the number of iterations of the SEM-Gibbs

algorithm be equal to 50 with a burn-in period equal to 20. Figures 8 and

9 illustrate the estimated parameters per block i.e. α̂kr , β̂kc and µ̂krkc when

1 ≤ kr ≤ 4 and 1 ≤ kc ≤ 4. Let’s notice that the third column-cluster only375

contains 2% of the KPIs.

Figure 8: Estimated mixing proportions: α̂ (left) and β̂ (right)

After digging in the data of each block, it can be noticed that the proposed

approach has succeed to discern the row-clusters in terms of days. As illustrated

in Figure 10, the first row-cluster mainly contains, Monday, Tuesday, Wednesday

and Friday. The second row-cluster mainly contains Thursday. The third row-380

cluster mainly contains Saturday and Sunday. It also contains in less proportions

the week days. However, when digging into the cells of each row-cluster as

described in Table 3, we notice that the third row-cluster exclusively contains

the cells of two sites ”Ile Roy” and ”Fontaine saône” that happens to be isolated

sites situated next to the ”Saône” river of Lyon and to train railways. Having385

this information, we can conclude that these cells have atypical traffic due to

their locations which makes the algorithm to consider their activities on work
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Figure 9: Estimated mean per block

Figure 10: Row-clusters repartition in terms of days (left) and column-clusters repartition in

terms of KPIs families (right). The y-axis are percentages.

days similar to the activity of the other cells on week-ends. The fourth row-

cluster has a similar behavior as the first row-cluster but it differs with the sites

as presented in Table 3.390

Regarding the column-clusters, the algorithm has dissociated the KPIs ac-

cording to their families. As illustrated in Figure 10, we can notice that the
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Table 3: Row-clusters repartition in terms of sites

row-cluster No.1 No.2 No.3 No.4

Brignais x x

Ile Roy x

Fontaine Saône x

Dugusclin x x x

Fosses Ours x x x

Saint Gryphe x x x

The rest of the sites x x x x

KPIs of type ”Quality” are mainly in the first and second column-clusters.

The KPIs of type ”Accessibility” and ”Retainability” are mainly in the fourth

column-cluster and the second column-cluster.395

With this initial study on mobile networks, we notice that our model may

help to dissociate the data in terms of cells and days which will help the mobile

operators for a better planning of the topological structure of their networks.

The network topology [2] is the arrangement of the various elements of a network

in a geographical area and the presented work may help with its optimization400

which is a very known problematic in the telecommunication field. However, in

order to have more interesting results for self-healing and self-optimization, a

deeper study is considered (particularly, with bigger Kmax
r and Kmax

c ).

8. Conclusion and Future works

While functional data analysis is widely used in many real applications, the405

co-clustering of functional data has never been proposed. In this paper, a model-

based co-clustering for functional data is introduced. In the presented latent

block model, each block of curves is identified by the multivariate Gaussian dis-

tribution of the principal components of the curves. The model parameters are

estimated using a SEM-Gibbs algorithm and the number of row- and column-410

clusters can be chosen by using a greedy search algorithm based on an ICL-BIC

criterion. In addition, the model can also be used for clustering of multivari-
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ate functional data [21], by simply setting the number of column clusters to

p. Finally, through a simulation study, the proposed algorithm has proven its

efficiency and the application of the model on mobile network monitoring has415

shown interesting results.

As future work, we will held a deeper study on mobile network troubleshoot-

ing, optimization and topology planning using the LBM for functional data.

Inspired by the clustering model presented in [21], the proposed model can be420

improved by considering block-specific FPCA. Moreover, following the strat-

egy of [27, 28], several parsimonious sub-models can be introduced by imposing

constraints on the covariance matrix Σkrkc such as: (1) full covariance ma-

trix common to all blocks; (2) diagonal block-specific covariance matrices; (3)

diagonal covariance matrix common to all blocks. The study of the possible425

parsimonious sub-models is an interesting alternative in order to reduce the ex-

ecution time. Finally, we are currently working on an R package that may be

an interesting option for the prospective users of the model.
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