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ABSTRACT 

The bandwidth of the communication networks has been increased continuously as results of 

technological advances. However, the introduction of new services and the expansion of the 

existing ones have resulted in even higher demand for the bandwidth. This explains the many 

efforts currently being invested in the area of data compression. The primary goal of these works is to 

develop techniques of coding information sources such as speech, image and video to reduce 

the number of bits required to represent a source without significantly degrading its quality.  

 

With the large increase in the generation of digital image data, there has been a correspondingly 

large increase in research activity in the field of image compression. The goal is to represent 

an image in the fewest number of bits without losing the essential information content within. 

Images carry three main type of information: redundant, irrelevant, and useful. Redundant 

information is the deterministic part of the information, which can be reproduced without loss 

from other information contained in the image. Irrelevant information is the part of information 

that has enormous details, which are beyond the limit of perceptual significance (i.e., 

psychovisual redundancy). Useful information, on the other hand, is the part of information, 

which is neither redundant nor irrelevant. Human usually observes decompressed images. 

Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual 

System. 

*Corresponding author Tel.: +44(0)1512312458, Fax: +44(0)1512074594 
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This paper provides a survey on various image compression techniques, their limitations, 

compression rates and highlights current research in medical image compression.   

 

1. INTRODUCTION 

 

Images are important representative objects. They can represent transmitted television or 

satellite pictures, medical or computer storage pictures and much more [199]. When a two-

dimensional light intensity signal is sampled and quantised to create a digital image, a huge 

amount of data is produced. The size of the digitised picture could be so great that results in 

impractical storage or transmission requirements. Image compression deals with this problem 

such that the information required to represent the image is reduced thus making the 

transmission or storage requirements of images more practical.  

The applications of image compression for transmission purposes are limited by real-time 

considerations. On the other hand, the applications of image compression for storage purposes 

are less strict. This is because the algorithm is not performed in real time, and therefore 

buffering is not required to match the output generated at the encoder to the transmission rate 

of the communication channel [1]. 

There are two types of compression methods, lossless and lossy image compression. In the 

former method, the compressed image should be an exact replica of the original image. 

Lossless image compression has wide applications such as the archival of medical [201-203] 

or business documents and digital radiography where any loss of information in the original 

image can result in improper diagnosis [2]. Other applications of lossless compression include 

the compression of image for camera system [200], the storage and transmission of thermal 

images captured by Nano-satellite [204] and remote sensing applications such as monitoring 

forest fires and determining the soil moisture [205].  The latter method is the most common in 

image compression, where some of the information of the original image will be lost and the 

purpose of the lossy method is to increase the compression rate on the expense of the accuracy 

of the reconstructed image. The compressed images include some distortion and the measure 

of the efficiency of the compression algorithm is considered with respect to the resulting 

distortion, the data compression ability and the implementation complexity of the algorithm 

[3], [127], [89]. The applications of lossy image compression include the transmission of 

images through the web [206], and the construction of image vegetation [207]. Kozhemiakin 

et. al. [208] indicated that while remote sensing images are widely compressed using lossless 



  

compression to preserve the image quality, small compression ratio is achieved and suggested 

lossy image compression technique based on discrete cosine transform.  

 

1.1 Digital Representation of Images  
 

An image could be defined as a two-dimensional (2-D) function, f (x, y), where x and y are 

spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x, y) is called the 

brightness, intensity or grey level [4]. Before the image can be processed, it needs to be 

digitised. In a digital images f (i, j), i and j are integer values as shown in Figure 1. 

x

y

(a)

i

(b ) 

j

 
 

              Figure 1:   Digital representation of images.  
              

                (a) f (x, y) – Continuous.  (b) f (i, j) – Digital 
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The sampled brightness values are still 
continuous. Next, each element in the matrix 



  

sampled at discrete locations to form an 
element in a rectangular matrix 

is quantised (replaced by an integer). 
Quantised values are called gray levels. 

 

Figure 2: Transform process from continuous-tone image into digital image form. 

(a) Scanner process, (b) Sampling process, and (c) Quantisation process 

 

 

To transform a continuous tone image into digital format, a digitizer is required. The most 

commonly used digitizers are scanners and digital cameras. The two functions of a digitizer 

are sampling and quantising. Figure 2 shows the transformation steps. 

 

 

A grayscale image measures light intensity only. Each pixel is a scalar proportional to the 

brightness. It is represented digitally by a matrix of MN pixels. Pixels are typically unsigned 

8-bit integer values, ranging from 0 to 255, and therefore allowing for 256 shades of gray. A 

typical example is given in Figure 3. 

 

 

 

Figure 3: A typical greyscale image of resolution 512 × 512. 

 

Colour images can be simulated, according to trichromatic theory, by linear combinations of 

the three primary colours red, green and blue, resulting in what is known as a colour space. A 

colour image measures the intensity and chrominance of light. Each colour pixel is a vector of 

colour components. Common colour spaces are RGB (red, green and blue), HSV (hue, 

saturation, value), and CMYK (cyan, magenta, yellow, black), which are used in the printing 

industry [5]. Colour images consist of three matrices representing each pixel's coordinates in 

some or other colour space. Since each of these matrices consists of 8-bit values, each pixel 

has 24-bit precision. This is known as 24-bit colour.  

 



  

For storage purposes, pixel values need to be quantised. The brightness in greyscale images is 

usually quantised to Z levels, so f (x, y)  {0, 1, …, Z-1}. If Z has the form 2L, the image is 

referred to as having L bits per pixel. Many common greyscale images use 8- bits per pixel, 

giving 256 distinct grey levels. This is a rough bound on the number of different intensities the 

human visual system is able to discern [6]. 

Coding of colour signals is no different in principle from coding of luminance signals and 

researchers have achieved visual “gain” that colour pictures give in comparison with their 

monochrome counterparts for very little extra effort (an increase in the bit-rate around 10%) 

[7].  

 

1.2 Digital Image Compression 
 

Digital image compression is a very popular research topic in the field of multimedia 

processing.  

An image can be compressed due to the following reasons: within a single image, there exists 

significant correlation or redundancy among neighbouring samples or pixels. This correlation 

is referred as spatial correlation or redundancy. For data acquired from multiple sensors (such 

as satellite images), there exists significant correlation or redundancy among samples from 

these sensors. This correlation or redundancy is called spectral correlation or redundancy. Thus, 

the compression is achieved by taking advantage of the redundancy that exists in images. If the 

redundancies are removed prior to compression, a more effective compression can be achieved. 

 

Image compression system consists of two parts: the compressor, and the decompressor. The 

compressor consists of a preprocessing stage and encoding stage, whereas the decompressor 

consists of a decoding stage followed by a postprocessing stage. A systematic view of the 

compression process is depicted in Figure 4. Before encoding, pre-processing is performed to 

prepare the image for the encoding process, and consists of any number of operations that are 

application specific. After the compressed file has been decoded, postprocessing can be 

performed to eliminate some of the potentially undesirable artefacts gained due to the 

compression process.  

The compressor part can be further broken down into stages as depicted in Figure 5. The first 

stage in pre-processing is data reduction. The image data can be reduced by grey level and/or 

spatial quantisation, or can undergo any desired image improvement (for example, noise 

removal). The second step in processing is the mapping process, which maps the original image 

data into another mathematical space where it is easier to compress the data. Next, as part of 



  

the encoding process, is the quantisation stage, which takes the potentially continuous data 

from the mapping stage and puts it in discrete form. 
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Figure.4: compression system model.  

 

(a) Compression. (b) Decompression [8]. 

 

 

 

Figure 5: The Compressor [8]. 

 

The final stage of encoding involves coding the resulting data. The compression algorithm may 

consist of all the stages, or it may consist of only one or two of those stages.  

 

The decompressor can be further broken down into the stages shown in Figure 6. The decoding 

process is divided into two stages. In the first stage, the decoder takes the compressed file and 

reverses the original coding by mapping the codes to the original, quantised values. Next, these 
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values are processed by a stage that performs an inverse mapping to reverse the original 

mapping process. Finally, the image may be postprocessed to enhance the look of the final 

image. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The decompressor [8]. 

 

The development of a compression algorithm is highly application specific. During the 

preprocessing stage of compression, processing such as enhancement, noise removal, or 

quantisation is applied. The goal of preprocessing is to prepare the image for the encoding 

process by eliminating any irrelevant information which is defined by the application.  

 

The mapping process is important because image data tends to be highly correlated. If the value 

of one pixel is known, it is likely that the adjacent pixel value is similar. By finding a mapping 

equation that decorrelates the data, this type of data redundancy can be removed. It is important 

to note that the quantisation process is not reversible, so some information may be lost during 

quantisation. Additionally, since it is not a reversible process, the inverse process does not 

exist, so it does not appear in the decompression model. 

 

The coding stage of any image compression algorithm is very important. The coder provides a 

one-to-one mapping; each input is mapped to a unique output by the coder, so it is a reversible 

process. The code can be an equal length code, where all the codewords are the same size, or 

an unequal length code with variable length codewords. In most cases, an unequal length code 

is the most efficient for data compression, but requires more overhead in the coding and 

decoding stages [8].  

The reduced file created by the compression process is called the compressed file and is  
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used to reconstruct the image, resulting in the decompressed image. The ratio of the original 

(uncompressed file) and the compressed file is referred to as the compression ratio. The 

compression ratio is determined according to the following equation: 

                   

Compression Ratio = 
)(

)(

bytes

bytes

sizefileCompressed

sizefileedUncompress
 

 

(1) 

 
Another image compression terminology is the number of bits per pixel. For N × N image, this 

is determined as follows: 

 

Bits Per Pixel = 
PixelsofNumber

bitsofNumber
 

 

(2) 

 

 

1.3 Quality Measures in Image Coding 
 

One of the main problems in lossy compression consists in the assessment of the quality of the 

compressed image [116-117]. Therefore, in order to determine the efficiency of a compression 

algorithm, we need to quantify the difference. The difference between the original and the 

reconstruction image is often called the distortion [9]. To determine exactly what information 

is important, and to be able to measure image quality, we need to define image fidelity criteria. 

The performance of a compression algorithm will be good if the distortion is small [9]. This 

means that the fidelity or quality of the reconstructed image is high when the difference 

between the original and the reconstructed image is small.  

Fidelity criteria can be divided into two classes; objective fidelity criteria, and subjective 

fidelity criteria. The objective fidelity criteria provide us with equations that can be used to 

measure the amount of error in a processed image in comparison to the original image [8]. The 

objective criteria are widely used, however they are not necessarily correlated with the human 

perception of image quality. For example, an image with a low error as determined by an 

objective measure may actually look much worse than an image with a high error metric.  

 

. These types and degrees of degradation depend on the situation for which the image is being 

used. Because human responses are difficult to model mathematically, and there is difficulty 

in objectively reporting the results since they depend on observer’s judgment; practical 

approximate measures of distortion are used to determine the quality of the reconstructed image 

g(x, y) to its original f(x, y). One of the simplest and most popular method is to use the difference 



  

between f and g. In its most basic form is the mean square error (MSE), and is often represented 

by the symbol σq
2, which is determined according to the following equation [9], [11]: 
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where f and g are MN size images. MSE is often called quantisation error variance q
2. This 

is a useful measure as it gives an average value of the energy lose in the lossy compression of 

the original image f.  

A human observing two images affected by the same type of degradation will generally judge 

the one with the smaller MSE to be closer to the original. A very small MSE can be taken to 

mean that the image is very close to the original [109], [64], [137]. However the MSE has some 

problems when images with different types of degradation are compared, the one with the 

smallest MSE will not necessarily seem closest to the original. In many applications, the Signal-

to Noise- Ratio (SNR) is expressed in terms of MSE, and is defined as: 

 

SNR = 10 log10 
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(4) 

 

where σ2 is the variance of the original image, and σq
2 is the MSE. The SNR is measured in 

decibels (dB) and gives a good indication of the ratio of signal to noise reproduction.  

 

A more subjective qualitative measurement of quality is the Peak Signal-to-Noise Ratio 

(PSNR). This measurement is used when there is more interest in the size of the error relative 

to the peak value of the image than with the size of the error relative to the average squared 

value of the image. The PSNR between two images having 8-bits per pixel is determined as 

follows: 

 

PSNR = 10 log10 
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(5) 

 

In general, if b is the number of bits per pixel, the PSNR is given by: 

 



  

PSNR = 10 log10 
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From equations 5 and 6, we can conclude that the PSNR measures the strength of the signal 

relative to the strength of the error that is introduced by the compression. Consequently, a high 

PSNR indicates a higher image quality.  

 

These objective measures are often used because they are easy to generate and seemingly 

unbiased, but these metrics are not necessarily correlated to our perception of an image. 

Subjective measures are better than the objective measures for image evaluation, if the goal is 

to achieve high-quality images as defined by our visual perception [8]. Subjective fidelity 

measures can be classified into three classes. The first type is referred to as impairment tests, 

where the test subjects score the images in terms of how bad they are. The second type is quality 

tests, where the test subjects rate the images in terms of how good they are. The third type is 

called comparison tests, where the images are evaluated on a side-by-side basis.  

 

2. LOSSLESS COMPRESSION METHODS 
 

 

 

2.1 Huffman Coding 
       

Huffman coding is one of the oldest image data compression methods. It was developed by 

Huffman [14] and is used to reduce coding redundancy without degrading the quality of the 

reconstructed image. The basic idea of the Huffman coding approach is based on data statistics, 

and it provides an optimal way of assigning variable length codewords to an alphabet of 

symbols with a known probability distribution. It represents the symbols of the alphabet by 

variable code length, depending on their probability of occurrence (the more probable a symbol 

is, the shorter the code is assigned). Shortest average code length is achieved by Huffman 

coding, provided that all source symbol probabilities are an exact power of ½.  Huffman coding 

algorithm can be described as follows: 

 Step 1- List the probabilities of various grey levels (the source symbols) in the image. These 

probabilities are tabulated in a descending order with the highest probability at the top and the 

lowest probability at the bottom. Produce a node set by making these probabilities the leaves 

of a binary tree. 

 



  

 Step 2- Take two nodes with the two lowest probabilities from the set, and generate a new 

probability representing the sum of these two probabilities. The order of the probabilities is 

reorganised in a descending order for the proceeding process. 

 

 Step 3- Produce a parent node with the new probability, and mark the branch of its top (or left) 

child node as 1 and the branch of its bottom (or right) child node as 0, respectively. 

 

 Step 4- Update the node set by replacing the two nodes with the two lowest probabilities for 

the newly produced node. If the node set contains only one node, quit. Otherwise go to step 2.  

 

The bit assignment procedure is performed in the backward direction, that is, if the node set 

contains only one node and the algorithm is stopped, we go backwards and assign to the two 

joined probabilities in the previous stage the symbol of the next stage plus the binary symbols 

0 and 1 assigned to each probability. Such process is repeated until the first stage of the process 

is achieved. To illustrate the main concept of Huffman coding, consider the following example. 

Assume a digital image has seven source symbols. {s1, s2, s3, s4, s5, s6, s7}, with the following 

probabilities: {0.40, 0.20, 0.10, 0.08, 0.05, 0.04, 0.03}, which can be coded using a fixed word 

length of 3 bits/pixel. The procedure for obtaining Huffman code is shown in Figure 7. The 

probabilities of s6 and s7 have the lowest values. Therefore, they are combined with each other 

to form the new probability of value 0.07. This means that the order of the probabilities will be 

rearranged. The process is repeated until we achieve the final stage of the process where two 

probabilities remain (in this example 0.5 and 0.4). The bit assignment procedure is performed 

in the backward direction as show in Figure 8. 

 

Probability list Code Design Procedure      Bits   
 
 
P(S1) = 0.4  0.4  0.4  0.4  0.4 0.5 0  
P(S2) = 0.2  0.2  0.2  0.2  0.3 0.4 01 
P(S3) = 0.1  0.1  0.12  0.18  0.2  0000 
P(S4) = 0.08  0.08  0.1  0.12    0001  
P(S5) = 0.05  0.07  0.08      0011  
P(S6) = 0.04  0.05        00100 
P(S7) = 0.01          00101 
 
 

 

Figure 7: Huffman coding; fixed word length = 3 bits; average word length = 2.07 bits. 

 
 



  

 

Figure 8: Huffman coding, bit assignment procedure. 

 
The average codewords length assigned to various grey level values is defined as [4]: 
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where ri , i = 1, 2, …, L represent the ith grey level of an L- grey level image, I(ri) is the number 

of bits required to represent the grey level, and P(ri) is its probability. Therefore from Figure 8 

the average code length of Huffman codewords in this example is: 

 

Lave = (0.4) (1) + (0.2) (2) + (0.1) (4) + (0.08) (4) + (0.05) (4) + (0.04) (5) + (0.03) (5) 

 

   Lave = 2.07 bits 

 

In the above example, it is clear that, the average number of bits will be reduced from 3 bits 

for a fixed coding to 2.07 bits for variable length coding using Huffman coding. This shows 

the efficiency of Huffman coding. However, it must be noticed that Huffman coding is optimal 

only if the probability distribution of a source is known and each source symbol is encoded in 

integral number of bits. As different images differ in their own probability distribution of 

symbols, Huffman coding is not necessarily optimal for all images. Nevertheless, Huffman 

coding is one of the most important compression techniques with applications in JPEG (Joint 

Photographic Experts Group) and other standards.  

 

2.2 Arithmetic Coding 
           



  

Arithmetic coding is a variable-length coding procedure that, like Huffman coding, is designed 

to reduce coding redundancy. It is only optimal when all symbols probabilities are an integral 

power of ½ [7]. Glen and Langdon [15] provided a good introduction to arithmetic coding.  

 

The basic idea in arithmetic coding is to divide the interval between 0 and 1 and to denote the 

range of the input message, into a number of smaller intervals corresponding to the probabilities 

of the message symbols. Each probability is represented by a two end interval; the left end is 

closed while the right end is open. The next input symbol selects one of these intervals, and the 

procedure is repeated. In this way, the selected interval narrows with every symbol, and at the 

end, any number inside the final interval can be used to represent the message. Suppose that 

the current message is specified in the interval [lowold , highold) and the range of the present 

incoming symbol is [Qa1 , Qa2), this means that the new range of the message is: 

 

Lownew = lowold + (rangeold × Qa1) (8) 

 

highnew = lowold + (rangeold × Qa2) (9) 

and 

 

rangeold = highold - lowold (10) 

 

To explain the main concept of arithmetic coding, consider the following example [16]. 

Assume that the source symbols are {a1, a2, a3, a4} and the probabilities of these symbols are 

{0.4, 0.3, 0.2, 0.1}, respectively. The interval [0, 1) can be divided as four subintervals: [0.0, 

0.4), [0.4, 0.7), [0.7, 0.9), and [0.9, 1) Table 1 shows source symbols and their probabilities.  

Consider the message a2, a1, a3, a4, with the initial probability interval between 0 and 1. The 

first symbol a2, in the interval [0.4, 0.7), will scale the initial range of the message to that 

interval. The next symbol is a1 which lies in the interval [0.0, 0.4). Therefore, the message 

interval is now scaled according to Equations 8, 9 and 10 between [0.4, 0.52). Symbol a3 will 

scale the message to [0.484, 0.508). The final symbol is a4 which lies between [0.9, 1.0) and 

will give the final interval of the message which is [0.5056, 0.508) (refer to Figure 9). The 

compression output can be any number in the last interval. 

 

Table 1: Source symbols, their probabilities and the initial subintervals. 

 

Symbol Probability Initial subinterval 

a1 0.4 [0.0 , 0.4) 



  

a2 0.3 [0.4 , 0.7) 

a3 0.2 [0.7 , 0.9) 

a4 0.1 [0.9 , 1.0) 

 

If the two ends of the final interval of the message are provided to the decoder, the decoder 

will determine the first symbol of the message which is a2 (in our example), since the range of 

the interval lies completely within the whole range of this symbol. The next process is to 

perform similar steps to the encoder; this in turn will lead to the next symbol which is a1. This 

process is continued until the whole message is retrieved.  

To terminate the message and separate it from other incoming messages, end of file symbol 

known to both ends of the compression system is transmitted. 
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Figure 9: Representation of the arithmetic coding process with the interval scaled up at each 

stage. 

 

There are several problems in arithmetic coding that can affect its efficiency, some of these 

problems are: 

  1. An arithmetic coder produces only one codeword, a real number in the interval [0, 1), for 

the entire message to be transmitted. We cannot perform decoding process until we received 

all bits representing this real number. 

  2. Arithmetic coding is an error sensitive compression scheme. A single bit error can corrupt 

the entire message. 

However, arithmetic coding serves a very important role in imaging standards such as JBIG 

(Joint Bi-level Image Experts Group) and JPEG (Joint Photographic Experts Group). 

 

2.3 Lossless Predictive Coding 



  

 
In lossless predictive image compression approach [2], interpixel redundancies are removed by 

predicting the current pixel value using closely spaced pixel values and generating new values 

for coding. The new values represent the error generated from the subtraction of the predicted 

value from the original value. Figure 10 shows the complete structure of lossless predictive 

coding system.  

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

Figure 10. The complete structure of the lossless predictive coding system. (a) The encoder; 

(b) The decoder [2]. 

 
As shown in Figure 10, lossless predictive coding system consists of two parts, the transmitter 

and the receiver. At the transmitter, the current pixel value is predicted using the closely spaced 

neighbourhood pixel values. The predicted value is generated using linear weighted 

combination of the previous pixel values as follows [2]: 
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where wi are the predictor parameters and the linear combination of the previous pixel values 

is rounded to its nearest integer value. The difference between the original and the predicted 

signal values:  
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will be transmitted to the symbol encoder in which a variable length coding system is provided 

to encode the error value.  
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It may argue that this is a lossy rather than lossless image compression method because of the 

rounding operation at the transmitter. However, since there is no quantiser, the technique is 

considered lossless.      

At the receiver, the same predictor is provided. The coded error signal is added to the predicted 

signal )i(Ŝ to produce the original signal: 

 
nnn ŜeS   

(13) 

The compression of the image is performed using variable length coding where coding 

redundancy is removed and the prediction operation provides the elimination of the interpixel 

redundancy.    

 

3. LOSSY COMPRESSION SCHEMES FOR IMAGE CODING 
 

Unlike other data sources, such as text, or numerical information, in which any errors are 

obvious, the human eye can compensate for some distortion in images. Such systems are 

referred as lossy. The motivation for lossy compression originates from the inability of lossless 

algorithms to produce as low bit rates as desired. At the encoder, there exists a quantiser which 

limits the number of bits required to represent the image. The purpose of the quantiser is to 

remove psychovisual redundancy. By allowing such ‘lossy’ compression, the performance of 

such a compression is no longer capped by the Shannon limit [136], [137]. This means that it 

becomes possible for lossy compression systems to achieve extremely high compression rates 

(less than one bit per pixel) [17]. The use of lossy compression is always a trade-off between 

the bitrate and the image quality. Depending on the application, a significant compression can 

be achieved if the resulting degradation can be tolerated for that certain application.  

 

There are various approaches to lossy image compression such as vector quantisation, 

predictive coding and transform coding.  

A combined system that uses the properties of two or more of these approaches is known as 

hybrid coding.. The general components of a lossy image compression technique are shown in 

Figure 11. 
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Figure 11: General components of a lossy compression technique. 

 

As shown in Figure 11, the first stage is image decomposition or transformation. The purpose 

of this stage is to produce a more efficiently coded representation of image data. The second 

stage is quantisation and it aims to reduce the number of possible output symbols. The type and 

degree of quantisation has a significant effect on the quality of the reconstructed image and its 

bitrate. The third stage is symbol encoding, which may or may not be included in the process, 

depending on the lossy technique used. For example, symbol encoding is usually part of a 

transform coding method but it is not part of a vector quantization method. Most compression 

algorithms are either based on transformation first, followed by scalar quantisation and coding; 

or by direct vector quantization of the original image, skipping the transformation part [132].  

 

3.1 Predictive Coding 
 

A general paradigm in data compression is the concept of prediction. Prediction allows a 

compact representation of data by encoding the error between the data itself and the 

information predicted from past observations. If the predictor works well, predicted samples 

are similar to the actual input and the prediction error is small or negligible.  

 

Pixels in images show a high degree of correlation among their neighbouring samples.  This 

means that there exists a mutual redundancy in the raw data. Predictive coding is used to 

remove the mutual redundancy. Removing the mutual redundancy by decorrelating the data, 

much more efficient and better compressed coding of the signal can be obtained.  

 

Predictive coding predicts the next pixel value based on a sequence of reproduced pixels values 

(previous values) obtained during the scanning of the image and encodes (quantises) the 

difference between predictive and actual value (the error signal) [8]. The better the prediction, 

the smaller the transmitted error, hence the better the coding process. If the current reproduced 

pixel is taken as the sum of the predicted pixel value and the quantised error value between the 

current pixel and the predicted pixel, the prediction method is called differential pulse code 

modulation (DPCM) [113], [130].  

 

There are two different parts in the predictive coding encoder, which are the predictor and the 

quantiser. The former is used to estimate the next value of the image signal using the previously 

coded elements, whereas the latter quantises the difference between the predicted value and the 
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original value. The order of the predictor is the number of previous elements used in the 

prediction. A simplified block diagram of predictive coding system is illustrated in Figure 12.  

 

 

 

 

 

 

Figure 12: A simplified block diagram of predictive coding system. 

 

The predictors are classified into linear and nonlinear types. For linear predictors, the previous 

samples are linearly coded to predict the current value, while nonlinear predictors use nonlinear 

functions for coding the previous samples. Implementation of nonlinear predictors is more 

complicated than the implementation of linear predictors. However, nonlinear predictors can 

provide better coding since the correlation among the image pixels is a nonlinear function.  

 

A further classification of the predictors can be done according to the previous pixel values 

used in the prediction. The prediction can be one dimensional or two dimensional. A one-

dimensional predictor uses the previous pixel values in the same row. A two-dimensional 

predictor uses pixels in the same row and in the previous rows to predict the current pixel value. 

Figure 13 shows various predictive structures. 

 

   

 

 

 

 

Figure 13: Various predictive structures. 

 

 

Linear Predictor Structure  
 

The idea behind linear prediction (LP) is that a sample can be approximated by a linear 

combination of previous samples. Using this approach, the sample x(n) at the instant n can be 
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predicted as a weighted sum of p previous samples. The basic equation of linear prediction is 

given as follows: 
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1

knxanx
p

k

k 


  
 

(14) 

where )(nx  is the estimated sample of the actual )(nx  value from the linear combination of 

samples, and a1, a2, …, ap are the prediction coefficients. Linear predictor coefficients are 

determined such that the coefficients minimise the error between the actual and the estimated 

signal. The number, p, of previous samples decides the order of the model, and the higher 

number, the more accurate is the prediction. This will however also mean that the computation 

complexity increases [18]. The prediction error is expressed as: 

 




 
p

k

k knxanxnxnxne
1

)()()()()(  
 

(15) 

 

and the prediction gain is given by: 
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where x  and e  are the variances of the input signal and the prediction error signal, 

respectively. 

LP has been extensively studied because it plays an important role in image compression 

standards such as JPEG due to its compression efficiency and its simplicity, as well as a number 

of efficient algorithms have been designed to determine the predictor’s coefficients [19-24]. In 

order to minimise the error, the best, or optimal, values of {ak} have to be determined. This can 

be done by minimising the expectation value of the mean square error between the predictive 

value and the actual value, i.e. ]))()([( 2nxnxE  . To satisfy this condition, partial derivatives 

of the expected value, with respect to each of the coefficients  is set to zero. 
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hence, 
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Let the covariance of x(k) and x(j) be 

 

Rj, k = E [x(j) x(k)] (19) 

 

Then, the following set of equations can be obtained: 

 

Rn,n-k = a1Rn-1, n-k + a2Rn-2, n-k + … + apRn-p, n-k ,     k = 1, 2, …, p (20) 

 

For optimum predictors, the minimum value of the mean square error can be found as follows: 
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(21) 

 

where Rn,n is the variance, σ2, of the input signal. 

 

Consider the implementation of a first-order linear predictor where the following equation is 

satisfied [16]: 
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and 

 

R1,0 = a1R0,0 . (23) 

 

R0,0 is simply the variance of the actual sequence. Therefore, the predictor coefficient, a1, can 

be determined according to the following equation: 
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where ρ1 is the inter-element correlation coefficient of the image data in the direction in which 

the prediction is taken. Thus, from Equation 24, when n = 1, the mean square error is found to 

be: 
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On the other hand, for second order predictors: 
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and 

 

R2,1 = a1R1,1 + a2R0,1 , R2,0 = a1R1,0 + a2R0,0 (27) 

 

Therefore, 
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Solving the previous Equations in (28) gives the values of the predictor coefficients: 
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(29) 

 

The same procedure can be followed to implement higher order predictors. Various 

formulations for efficient computation of the predictor coefficients have been derived. The 

details of these derivations can be found in [25], [26], and [27]. 

If the order of the predictor, p, is infinite, the error samples can be made completely 

uncorrelated [28]. On the other hand, using a finite and sufficiently large pth order 

autoregression process to predict the input signal, error sequences are made uncorrelated [29]. 

Therefore, increasing the number of samples used for prediction will not improve the estimate 

value [30]. In image compression, some researchers such as Stott [32] suggested that higher 

orders predictors are useful to improve the efficiency of the predictive algorithm. However, 

using more previous values in the predictor increases the complexity of computations for 

compression and decompression, and it has determined that using more than three of the 

previous values provides no significant improvement for resulting image [8]. It is also 

considered that fourth order predictors are sufficient to achieve the required benefit from the 

scheme [33]. 

 



  

The nonlinear nature of images makes nonlinear predictors more appropriate. Unfortunately, 

there are not as mathematically tractable as linear predictors. In addition, they are time 

consuming and usually impossible to design optimal nonlinear predictors [34]. 

 

Two-dimensional Prediction  
 

The idea of the DPCM can be extended to the two-dimensional space. In this case, a pixel can 

be predicted using its adjacent pixels in two dimensions, as in Equation (30) 
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where W is a two-dimensional prediction region and ai,j are the prediction coefficients. 

Prediction can be causal or non-causal. Examples of causal and non-causal predictions are 

shown in Figure 14 (a) and 14(b), respectively. In a causal prediction, the prediction of a sample 

depends only on the previous samples. In non-causal prediction, some future pixels are also 

used in the prediction. 

 

 

(a) 

 

(b) 

 

Figure 14: Examples of two-dimensional prediction. (a) Causal prediction. (b) Non causal 

prediction [31] . 

 

It has been shown that for typical images, using more than four nearest pixels for the prediction 

of a sample cannot increase the prediction gain [30], [31]. Thus, a sample in a two-dimensional 

DPCM can be predicted as 
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Maximising the prediction gain requires the minimisation of the error variance. Minimising the 

error variance, in the special case of a separable correlation function, results in the following 

relations [31]: 
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where v and h are vertical and horizontal correlation coefficients given by 
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A separable model for covariance function is defined as 
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Drawbacks of DPCM  
 

There are three types of degradation are common in a DPCM quantiser design: granularity, 

slope overload and edge-busyness [35]. Granularity is generated as a result of the step-like 

nature of the output where the input signal is almost constant. Slope overload happens when 

there is a sharp change in the input signal (edges). In this case the quantised output cannot 

follow the input and a few steps are needed to match the output with the input. Edge-busyness 

is caused at less sharp edges when the input in the adjacent lines is quantised into different 

levels. Another drawback of the DPCM is its sensitivity to channel noise and image statistics. 

Adaptive techniques have been used to compensate these drawbacks. 

 

 

3.2 Transform Coding 
 

A common approach to image compression is the use of transformations that transform the 

pixels in the image domain into another domain to produce a set of coefficients, where the 

representation is more natural and therefore more compact. This representation allows some 

coefficients to give the bulk of the energy in the image while others are very likely to be very 

small or zero.  

 

Transform coding is a general scheme for lossy image compression. It uses a reversible, linear 

transform (such as the Fourier transform) to map the image into a set of coefficients which are 

then quantised and coded. A good transformation packs as much information as possible into 

a small number of transform coefficients. Then quantisation selectively eliminates the 

coefficients that carry the least information. In transform coding approach, an NN input 



  

image first is divided into a number of n n nonoverlapping subimages (blocks), which are 

then transformed to generate (N / n)2 subimage transform arrays, each of size n n, and the 

transform is applied separately to each of these blocks.   

 

For a typical image, the correlation between the adjacent pixels is high. Transform coding uses 

this correlation in order to achieve a high compression ratio. To illustrate this correlation, two 

consecutive pixels of image “Lena” are grouped as a vector (x, y), and the dependency of y on 

x is presented in Figure 15. It can be shown that most of these points are concentrated near 

bisector y = x in the dense area. 

 

 

Figure 15: The correlation of adjacent pixels for the image Lena. 

 

Quantising any two consecutive samples independently results in inefficiency since the 

quantisation levels for both dimensions are the same. For example, the quantiser allocates the 

same bit rate to the upper-left as the dense area. However, the probability of a vector being in 

this area is very low. To improve the quantiser efficiency, after grouping the samples, the 

coordinate system can be rotated by a certain angle such that one of the axes is placed in the 

middle of the dense area. In this case, more bits can be allocated to the u-axis and less to the v-

axis (refer to Figure 15). Hence, with the same average bit rate: better precision is achieved. 

After quantisation and encoding, the inverse of this rotation is carried out in the decoder.  

 

Transform coding achieves high compression due to three mechanisms. First, transform coding 

is a block technique where a block of data is processed rather than a single element of the 

image. Second, the quantisation of the transformed coefficients results in removing the 

correlation defined among the pixels of each subimage. Finally, not all transformed coefficients 

are quantised and transmitted to the receiver; as a result, high compression rates can be 

achieved. The implementation of the transform coding system is more complicated than the 

implementation of the predictive coding system and hence it is not preferable for applications 

that require less cost and complexity [26]. 



  

 

 

Figure 16 shows a typical transform coding system. It consists of two parts, the encoder and 

the decoder. The encoder performs four relatively straightforward operations: subimage 

decomposition, transformation, quantisation, and coding. Using a suitable form of  

transformation [37], the values of the grey levels in each block are transformed. Large values 

which significantly influence the total energy of the system will be quantised, while all other 

values are set to zero. The decoder implements the inverse sequence of steps (with the 

exception of the quantisation function) of the encoder. 

 

 

Input 

image

(NxN)

Construct 

nxn

subimages

Forward

transform
Quantiser

Symbol

encoder

Compressed

image

(a) Encoder
 

Compressed

image

Symbol

decoder

Inverse

transform

Merge

nxn

subimages

Decompressed

image

(b) Decoder
 

Figure 16: A transform coding system. (a) Encoder. (b) Decoder. 

 

 

Discrete Linear Orthonormal Transforms  

 

The use of orthogonal transforms on digital signals has become popular.  

 

Linear image transformations view a grayscale image as a vector whose components are the 

pixel intensities of the image. The entire image can be taken as a single vector or it can be 

divided into blocks as in the transform coding or vector quantisation scheme, and view the 

blocks as vectors. Let n be the number of pixels in the image (or in the image blocks) so the 

images (or blocks) are elements of the real vector space Rn. A linear transformation is a linear 

function nn RRf : of the image space into itself. 

 

The transformation can be represented as a (possibly complex) matrix T operating on column 

vectors b and c:  

 



  

c = T b (35) 

 

b = T -1c (36) 

 

where T is an n n transform matrix, b represents an image block of size n 1 and c is the 

column vector of the transformed coefficients. T is called a linear transform.  

The transform matrix T is called an orthonormal or unitary transform if Equation (37) is 

satisfied [26]: 

 

 T -1 = T  / (37) 

 

where T / denotes conjugate transpose of the matrix T. If the jth column of the transform matrix 

T / is denoted by tj, then equation (37) is equivalent to 

 

jiijtt /
 

(38) 

 

where ji is the kronecher delta and is defined as 
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The vectors tj are called orthonormal basis vectors for the linear unitary transform T, and 

Equation (39) can be written as 

 

b = 


N

j 1

cj tj 

(40) 

 

where cj is the jth element of c, given by 

 

cj = tj
/ b (41) 

 

In practical applications of transform coding, determining n transformed coefficients requires 

n n multiplications and n (n – 1) additions. Therefore, transform coding is a 

computationally demanding algorithm. 

 



  

The application of transform coding to images is carried out in a two-dimensional fashion. The 

image is divided into blocks of 8 8 or 16 16, and the transformation is performed in the 

horizontal and the vertical directions. The first step of the transform operation is: 

 

C1 = T B (42) 

where T is the transform matrix, and B is the data block. 

 

Transforming the rows of C1 is carried out as follows: 

 

C = C1T T = T B T T (43) 

 

In this case, C contains the final two-dimensional transformed coefficients of the data block B. 

The inverse transformation can be used to reconstruct the original values of the data block 

matrix. Since we assume an orthonormal transformation, then the inverse of the transform 

matrix is the same as its transpose matrix. 

 

 

Basic Transforms for Image Coding  
 

There exist several different transformations that are used in image compression such as 

Karhunen-Loeve Transform (KLT) [38], Discrete Fourier Transform (DFT) [39], [40]; 

Discrete Walsh Hadamard Transform (DWHT) [41], [42]; and Discrete Cosine Transform 

(DCT) [43]. Most of them have been developed in the last 60s and the early 70s. They differ 

in their energy compaction capability and computational complexity. Other transformations 

have been developed [44], however we will concentrate on the basic transformations. 

 

Karhunen-Loeve Transform (KLT) 
 

KLT [45] is an orthonormal linear transformation which is a preferred method for 

approximating a set of vectors or images by a low dimensional subspace. It is the optimum 

transform in the energy compaction sense; it has the best “input-decorrelating” and “variance-

ordering”. This means that the method provides the optimal subspace, spanned by the KLT 

basis, which minimises the MSE between the given set of vectors and their projections on the 

subspace. It creates an autocorrelation matrix from the original signal. From this 

autocorrelation matrix the orthogonal eigenvectors are found to form the linear basis of the 

original data signal [46]. With these basis vectors, it is possible to represent the original data 

signal as a linear combination of these basis vectors. The resultant transformed signal has all 



  

its linear correlation removed. This transform depends heavily on the statistics of the input 

samples.  

 

 

Discrete Fourier Transform (DFT) 

 

In the late 60s, the application of the DFT to image compression was introduced [47], [39]. 

This is one of the complex transformations used in image coding [48]. The Fourier transform 

decomposes a complex signal into a weighted sum of a zero frequency term (the DC term which 

is related to the average value). The equation for the one-dimensional discrete Fourier 

transform of a sequence {f (x), x = 0, 1, …, N - l} is defined by [44]: 
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The inverse for the one-dimensional DFT is given by: 
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 Thus, the transform matrix of the one-dimensional DFT is given by 
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(46) 

 

The disadvantages of the DFT is that the difficulty of using this transformation due to the 

requirement to process both real and imaginary components as shown in Equation 46. 

 

For image application, an NN image can be decomposed into a weighted sum of two-

dimensional sinusoidal term. The two-dimensional discrete Fourier transform equation is given 

by: 
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(47) 

 

The inverse of the two-dimensional DFT is given by: 
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(48) 

 

The transform matrix of the two-dimensional DFT is given by 
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(49) 

The application of two-dimensional DFT to image arrays produces a two-dimensional spectrum 

of the data where highly correlated image data have small energy at high spatial frequencies 

[48]. One important property of the DFT is its separability in which the two-dimensional basis 

image can be decomposed into two product terms. If the basis images are separable, the result 

can be found by successive application of two, one-dimensional transforms. This can be done 

by first separating the basis image term into product terms as follows: 
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Equation 50 can be written as 
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(51) 

 

 

One of main reasons that the DFT has become an important tool in signal processing is that it 

can be implemented using Fast Fourier Transforms (FFT) [31]. With these methods the 

complexity of the transform operation is reduced from N2 multiplication/addition operations to 

(N log2 N) operations [37]. The problem with the DFT is that it is not an optimal transformation, 

since it does not diagonalise the covariance matrix. In addition, inverse DFT generates samples 

which are periodic extension of the first N samples [49], that is, 
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This periodicity in DFT causes discontinuities at the beginning and end of each block. This 

effect can be shown in Figure 17. 
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Figure 17: Side effect in DFT. 

 

Discrete Cosine Transform (DCT) 
 

DCT is one of the most efficient transform coding schemes. It was introduced by Ahmed [43] 

to produce good performance and solve the problem of discontinuity at the ends of the data 

blocks inherit with the DFT.  

 

This transformation is an orthogonal, separable, and real transform which translates the image 

information from spatial domain to frequency domain to be represented in a more compact 

form. It is closely related to DFT.. DCT is the basis of many image compression methods. For 

example, the standard JPEG (Joint Photographers Expert Group) [54], [55], for which DCT is 

carried out in 8 8 image blocks existed as the main image compression standard. 

The equation for the one-dimensional DCT of a sequence {f (x), x = 0, 1, …,N – l} that is zero 

outside the interval 0 ≤ x ≤ N-1 is defined as: 
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The inverse transformation is given by 
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One-dimensional DCT basis vectors can be obtained from 
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Since DCT is a separable transform, the two-dimensional DCT and its inverse can be obtained 

in two steps by successive applications of the one-dimensional DCT and its inverse [55].  For 

image processing applications, two-dimensional DCT of an NN block of pixels, f(x, y) can 

be defined as [37]: 
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where, f(x, y) denotes a two dimensional sequence of N x N points, C(u, v) denotes NN points 

DCT of the block f(x, y) and x , y = 0,1, …,N-1; u ,v = 0,1, …, N-1. The inverse DCT is defined 

as 
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The transform matrix of the two-dimensional DCT is given by 
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(62) 

The coefficient of the DCT matrix with zero frequency (C (0, 0)) is called the “DC coefficient,” 

while the remaining coefficients are called the “AC coefficients”, which reflect variations in 

grey level values in certain direction at certain rate as shown in Figure 18. 



  

 

 

Figure 18: The DCT block structure. 

 

Conveniently, in most image subblocks the energy is concentrated in the DC and low AC 

frequency bands. That is, the image information (energy) is usually concentrated in the low 

frequency region (the top left corner). The high frequency region is located in the bottom right 

corner. This allows for the suppression of the higher AC frequency bands thus allowing the 

block to be represented by fewer coefficients in its transformed state than when it existed in its 

original state. One simple observation is that each DCT coefficient C (u, v) is a linear 

combination of all pixel values within the block [50], [175]. 

 

DCT has decorrelation property close to that of the KLT for most images. The basis vectors 

used to represent the original signal or image block are signal or image independent. These 

linear basis functions can be seen in Figure 19 for an 8 8 image block [51]. 

 

 



  

Figure 19: Basis functions of an 8x8 DCT [51]. 

 

 

DCT has an excellent energy compaction property for highly correlated data [52], [53], [173], 

[174]. These properties make the DCT a popular transform for image coding. However, a 

disadvantage of DCT is the blocking (or tiling) artifacts that appear in high compression ratios 

[111]. The same artifacts may appear in other transforms as well, because typically the 

transforms are implemented on pixel blocks, rather than the whole image. 8 8 DCT 

coefficients are scanned in a zigzag order as shown in Figure 20, starting from the lowest to 

highest frequency.  

 

 

Figure 20: Zigzag scanning of the transformed coefficients [51]. 

 

Walsh-Hadamard Transform (WHT) 
 

WHT differs from Fourier and cosine transforms in that the basis functions are not sinusoid. 

The basis functions are based on square or rectangular waves with peaks ± 1, as shown in 

Figure 21. 
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Figure 21: Form of the Walsh-Hadamard basis functions. (a) A square wave. (b) 



  

Representation of a rectangular wave. The width of each pulse may vary [8]. 
 
The transform is one of the simplest transformations where only addition and subtraction 

operations are required. The lowest order of the Walsh-Hadamard transform is: 
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By replacing the elements of the transform matrix by the first order matrix itself, higher order 

Walsh-Hadamard transform matrices can be obtained: 

 

T2 = 























































































1111

1111

1111

1111

2

1

11

11

2

1

11

11

2

1

11

11

2

1

11

11

2

1

2

1
    (60) 

 

The general expression for the WHT can be defined as follows: 
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And H1 = 1 and N = 2n. 

 

The determination of the inverse matrix is further simplified for the WHT because of the 

symmetry of the transform matrix. 

 

3.4 JPEG Standard 
 

The Joint Photographic Expert Group (JPEG) met initially in 1987 under the auspices of the 

International Standards Organisation (ISO) to design an optimal still image compression 

standard. JPEG became a Draft International Standard in 1991 and an International Standard 

in 1992 [54], [56] and [197]. JPEG is not just one image compression algorithm. There are 

several modes defined for JPEG [55], including baseline, lossless, progressive and 

hierarchical. 

 

The baseline mode is the most popular one and supports lossy coding only, and can be extended 



  

by several options depending on the requirements of the applications. It uses DCT, Huffman 

coding and sequential transmission. The extended options include arithmetic coding instead of 

Huffman coding; and progressive sequential or hierarchical modes. All these options are built 

on top of the baseline algorithm. There is an independent lossless mode that is not based on 

DCT but uses predictive coding instead [37].  

 

In the baseline mode, the image is divided into 8 8 blocks. DCT is computed over these 

blocks. DCT coefficients are scaled and truncated in order to reduce the dynamic range of the 

data. The transformed blocks are quantised with a uniform scalar quantiser, zigzag scanned in 

which the scaled DCT coefficients are ordered, and entropy coded with Huffman coding. The 

quantisation step size for each of the 64 DCT coefficients is specified in a quantisation table, 

which remains the same for all blocks. The DC coefficients of all blocks are coded separately, 

using a predictive scheme. It refers to this mode simply as JPEG. 

 

The lossless mode is based on a completely different algorithm, which uses a predictive 

scheme. The prediction is based on the nearest three causal neighbours and seven different 

predictors are defined (the same one is used for all samples). The prediction error is entropy 

coded with Huffman coding. 

 

The progressive and hierarchical modes of JPEG are both lossy and differ only in the way the 

DCT coefficients are coded or computed, when compared to the baseline mode [119]. They 

allow a reconstruction of a lower quality or lower resolution version of the image, by partially 

decoding the compressed bitstream. Progressive mode encodes the quantised coefficients by a 

mixture of spectral selection and successive approximation, while hierarchical mode uses a 

pyramidal approach to compute the DCT coefficients in a multi-resolution way. In what 

follows the full details about JPEG image coding will be provided.  

 

Like any transform coding scheme, JPEG is a two–step transform coding algorithm: the first 

step is lossy and involves a DCT transformation followed by quantisation. This part is used to 

remove information that is perceptively irrelevant for a human user. The second step involves 

lossless entropy encoding to eliminate statistical redundancies that could still be present in the 

transformed representation. Each block is converted into 64 DCT coefficients whose values are 

uniquely determined by the 64 input pixels.  

 

The DCT coefficients are quantised by a set of uniform scalar quantisers defined in a 

quantisation table. Different transform coefficients may use quantisers with various step sizes. 



  

The step sizes are specified in a quantisation table. The idea of allowing various coefficients to 

be quantised differently is to take advantage of the high sensitivity of the human visual system 

to low frequencies. Lower frequency coefficients are quantised less than higher frequency 

coefficients. A quantisation table is an 8 × 8 array of quantisation step sizes, with entries from 

1 to 255. JPEG does not fix the quantisation table, but it allows the user to specify the table to 

be used. The table is then included as part of the compressed data. Up to four different 

quantisation tables may be specified in the baseline JPEG [33]. Tables 2 and 3 show the 

quantisation tables defined by JPEG for luminance (brightness) and chrominance (colour), 

respectively [8].  

 

Table 2: Luminance quantisation table. 

 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 
 

Table 3: Chrominance quantisation 

table. 
 

17 18 24 47 99 99 99 99 

18 21 26 66 99 99 99 99 

24 26 56 99 99 99 99 99 

47 66 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

99 99 99 99 99 99 99 99 

 

 

The quantised DCT coefficients are fed to the entropy coder, which is either a Huffman or an 

arithmetic coder. When passing the quantised coefficients to the entropy coder, two coding 

modes can be utilised which are sequential coding (JPEG sequential mode) and progressive 

coding (JPEG progressive mode). The outputs of the quantisation component are called image 

descriptors. 

 

 

 

3.5 JPEG-2000 Standard 
 

JPEG-2000 [57], [58], [61] is the image compression standard for still image coding developed 

jointly by the ISO/ITU-T (International Organisation for Standardisation / International 

Telecommunications Union), to complement the JPEG standard [55] by providing improved 

compression performance and new functionalities [56]. JPEG-2000 Part I, the core coding 

algorithm, became an international standard in December 2000 [59] and provides, in a single 

bit-stream, a wide array of functionalities, such as: progressive transmission by resolution, 

quality, component (normally: a single colour plane of an image), or location; random access; 



  

lossless to lossy compression; and error tolerance. JPEG-2000 algorithm is based upon 

embedded block coding with optimised truncation [60]. It is based on discrete wavelet 

transform (DWT) [138], [139], scalar quantisation, context modelling, arithmetic coding and 

post-compression rate allocation. 

 

JPEG-2000 has been designed to offer compression performance as good as, or better than, 

conventional JPEG. Reported results comparing JPEG-2000 to conventional JPEG [61] 

indicate approximately a 2dB improvement in image quality (measured with PSNR) at the same 

bit rate, or alternatively, a 20-30% improvement in compression for the same quality. The 

superiority of JPEG-2000 is particularly significant at low bit rates (say, compression ratios > 

10:1). 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: JPEG 2000 Block Diagram. (a) Encoder. (b) Decoder [GON, 04]. 

 

Figure 22 shows the block diagram of JPEG-2000 image compression technique.  This is 

similar to every other transform based coding scheme. The transform is first applied on the 

source image data. The transform coefficients are then quantised and entropy coded, before 

forming the output. The decoder is just the reverse of the encoder. Unlike other coding schemes, 

JPEG-2000 can be both lossy and lossless. This depends on the wavelet transform and the 

quantisation applied 

 

As we can see from Figure 22, the principal difference between the wavelet-based JPEG-2000 

system and the DCT-based JPEG system is the omission of the latter subimage processing 

stages. Because wavelet transforms are both computationally efficient and inherently local (i.e., 

their basis functions are limited in duration), subdivision of the image into blocks is 

unnecessary. The removal of subdivision step eliminates the blocking artefact that characterises 

DCT-based approximations at high compression ratios [4]. 
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JPEG-2000 standard works on image tiles [56]. All operations, including component mixing, 

wavelet transform, quantisation, and entropy coding, are performed independently for the 

various tile.  The nominal tile dimensions are powers of two, except for those on the boundaries 

of the image. Tiling is done to reduce memory requirements, and since each tile is reconstructed 

independently, they can be used to decode specific parts of the image, rather than the whole 

image.  Each tile can be considered as an array of integers in sign-magnitude representation. 

This array is then described in a number of bit planes.  These bit planes are a sequence of binary 

arrays with one bit from each coefficient of the integer array. The first bit plane contains the 

most significant bits of all the magnitudes. The second array contains the next most significant 

bits of all the magnitudes, and so on until the final array, which consists of the least significant 

bits of all the magnitudes [62], [172]. 

Before the forward DWT is applied to each tile, all image tiles are DC level shifted by 

subtracting the same quantity, such as the component depth, from each sample [56].   

This process is pictured in Figure 23.  These subbands contain coefficients that describe the 

horizontal and vertical characteristics of the original tile component. All of the wavelets 

transforms employing JPEG-2000 compression method are fundamentally one-dimensional in 

nature [63], [136]. Applying one-dimensional transforms in the horizontal and vertical 

directions forms two-dimensional transform. This results in four smaller image blocks; one 

with low resolution, one with high vertical resolution and low horizontal resolution, one with 

low vertical resolution and high horizontal resolution, and one with all high resolution. 

 

 

 

Figure 23: Tiling, DC level shifting, and DWT on each tile [9]. 

 

 



  

This process of applying the one-dimensional filters in both directions is then repeated a 

number of times on the low-resolution image block. This procedure is called dyadic 

decomposition and is pictured in Figure 24. An example of dyadic decomposition [56], [112] 

into subbands with the whole image treated as one tile is shown in Figure 25. 

One significant feature of JPEG-2000 is the possibility of defining regions of interest (ROI) in 

an image [65], [138]. These regions of interest are coded with better quality than the rest of the 

image. This is done by scaling up, or DC shifting, the coefficients so that the bits associated 

with the regions of interest are placed in higher bit-planes. During the embedded coding 

process, these bits are then placed first in the bit-stream. Hence, the region of interest will be 

decoded before the rest of the image.   

 

 

 

Figure 24: The dyadic decomposition [9]. 

 

 

 

Figure 25: Example of dyadic decomposition [56]. 

 

 

3.5 Singular Value Decomposition  
 



  

Singular Value Decomposition (SVD) is a highlight of linear algebra. It plays an interesting 

fundamental role in many different applications such as digital image processing, 

dimensionality reduction and image compression [139], [66], [67], [140]. The use of SVD in 

image compression is motivated by its excellent energy compaction in the least square sense 

[31], [68], [141]. Consequently, the use of SVD technique in image compression has been 

widely studied [69-75], [142]. The main disadvantage of the SVD transformation is the need 

for recalculation for each sub image. To exploit the optimal energy compaction properties of 

the SVD, most of the effort in designing a more efficient SVD coder is provided into the 

effective coding of singular values and singular vectors in order to reduce computational cost 

[76]. 

 

SVD is an efficient method to diagonalise a rectangular mn matrix A by factorizing it into 

three matrices U, S, and V, such that:  

 
TUSVA   (64) 

 

where S is a diagonal mn matrix (the same dimensions as A) with elements is  along the 

diagonal and zeros everywhere else. U and V are orthonormal matrices with sizes mm and n

n, respectively.  

The matrix U is called the left singular matrix (the columns ui of U are called the left singular 

vectors), V is called the right singular matrix (the columns vi of V are called the right singular 

vectors), and the diagonal matrix S is the singular value matrix (the diagonal elements si of S 

are called the singular values). The singular vectors form orthonormal bases and lead to the 

following relationship: 

 
Avi = si ui (65) 

 
SVD is an approximation technique reduces any matrix into a smaller invertible and square 

matrix. Thus, one special feature of SVD is that it can be performed on any real mn matrix.  

 

Calculating the SVD consists of finding the eigenvalues and eigenvectors of AAT and ATA. The 

eigenvectors of ATA make up the columns of V; the eigenvectors of AAT make up the columns 

of U. The eigenvalues of ATA or AAT are the squares of the singular values for A. The singular 

values are the diagonal entries of the S matrix and are typically arranged in descending order. 

Singular values are always real numbers.  If the matrix A is a real matrix, then U and V are also 

real. Equation 65 can be expressed as: 



  

 

T

ii

p

i

i vsuA 



1

 
 

(66) 

                                      

where iu  and iv  are the ith column vectors of U and V respectively, is  are the singular values, 

and p = min{m , n}. If the singular values  are ordered so that psss  ...21 , and if the matrix 

A has a rank r < p, then the last p – r singular values are equal to zero, and the matrix A can be 

approximated by a matrix A* with rank r ( i.e. the SVD becomes A* ) as follows:  
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(67) 

 

Hence, the approximation error matrix rE is dependent on the performance accuracy of the 

quantisation and/or truncation by parameter r, which can be described as  AAEr . 

 

The 2-norm of a matrix may be calculated from the singular values. Therefore the 2-norm of 

the error matrix (A - A*) is equal to the next singular value not used in A*, that is, the 2-norm 

of approximation error is calculated by: 
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As the singular values are in descending order, it can be shown that the error decreases towards 

zero in the 2-norm sense. 

 

The property of SVD to provide the closest rank r approximation for a matrix A as shown in 

Equation 68 can be used in image processing for compression and noise reduction. By setting 

the small singular values to zero, matrix approximations whose rank equals the number of 

remaining singular values can be obtained [77].  

 

SVD generally relies on “global” information derived from all the vectors in the dataset, which 

is more effective for datasets consisting of homogeneously distributed vectors. For databases 

with heterogeneous distributed vectors, more efficient representation can be generated by 

subdividing the vectors into various groups characterised by a different set of statistical 

parameters.  

 



  

3.6 Vector Quantisation  

Vector quantisation (VQ) [9], [78], [115], [133] is an attractive technique for lossy data 

compression, which has been a key technology for data storage and/or transfer. It is a 

generalisation of scalar quantisation technique where the numbers of possible pixel values are 

reduced. The input data consists of k-dimensional vectors (k-pixel blocks) instead of scalars. 

VQ is superior to predictive and transform coding because it achieves optimal rate distortion 

performance subject to constraints on the memory or block length of the observable signal 

segment being coded [79], [131], [142]. 

VQ is the process of optimal approximation from an input space to an output space that, in the 

case of image compression, is itself a subset of the input space.  

The input space is not evenly occupied by these vectors [118]. Because of the high correlation 

between the neighbouring pixel values, some input vectors are very common while others 

hardly ever appear in real images. For example, completely random patterns of pixels are rarely 

seen but certain structures (like edges, flat areas, and slopes) are found in almost every image 

[110], [126], [128], [135], [141]. The efficiency of VQ comes from its role as a pattern 

matching technique. The vector of samples is a pattern that must be approximated by one of 

the finite set of prototype patterns. To describe this pattern, one can simply identify the address 

of the pattern in the dictionary of standard patterns that best approximates it. This dictionary 

of patterns is called the codebook; the patterns in the codebook are called codewords or 

codevectors. 

 

VQ is a clustering method, grouping similar vectors (blocks) into one class. It  maps features 

extracted from the sampled input image using pre-processing operations. In the most direct 

application of VQ to image compression, the source samples (pixels) are blocked into vectors 

so that each vector describes a small segment, or subblock, of the original image. The simplest 

way to encode the image with VQ is to independently quantise each input vector. Encoding 

each vector does not depend on previous encoded vectors ; hence, this technique is called 

memoryless VQ. Spatial correlation between pixels in an individual vector is efficiently 

exploited. When VQ maps input vectors into a set of codevectors, similar vectors are mapped 

to the same codevectors in the codebook.  

Vector quantiser Q of dimension k and size N is a mapping of a vector (or a “point”) in k-

dimensional Euclidean space, Rk, to a finite subset Y of Rk containing N reproduction points, 

called codevectors or codewords [9]: 

 

Q : Rk→ Y (69) 



  

 

The finite set Y = {yi:  i = 1… N}, where N is the size of the set Y, is called VQ codebook, and 

yi represents the ith codevector (codeword) in the codebook Y. Associated with each 

reproduction codevector is a partition of Rk, called a region or cell, S = {Si ; i = 1, 2, …, N} 

[98]. The most popular form of vector quantiser is the Voronoi or nearest neighbour vector 

quantiser [9], where for each input source vector, x, a search is performed to the entire 

codebook to find the nearest codevector, yi, which has the minimum distance [9]. 

 

 

Q (x)  yi if d (x, yi) < d (x, yj)  for all i ≠ j (70) 

 

where d (x, y) is a distance measure between the vectors, x and y. The cells Si can be described 

as: 

  

Si  {x Rk : Q(x)  yi } (71) 

 

with this definition, it follows that 
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(72) 

 

VQ partitions the input space into N nonoverlapping regions so that the input space is 

completely covered. The regions in a nearest neighbour’s vector quantiser are also called 

Dirichlet or Voronoi regions [89]. 

For a codebook of size N, the number of bits needed to uniquely address an individual 

codevector of dimension n2 (block of size n n pixel), is r = log2 N, and the average number 

of bits needed to describe each pixel is R [9] defined as:  

 

R = 
2

2log

n

N
  (bit per pixel “bpp”) 

(73) 

where R is the bitrate in bits per pixel (bpp) of the vector quantiser. 

 

Vector Quantisation in Image Compression 
 

Vector quantisers are the best quantisers to achieve minimum distortion for a given bitrate and 

vector dimension. The goal of a vector quantiser based system is to reduce the bitrate and 

minimise communication channel capacity or digital storage memory requirements while 



  

maintaining the necessary fidelity of the data [78]. Vector quantisation provides many 

attractive features for image coding applications with high compression ratios [9]. 

One important feature of vector quantisation is the possibility of achieving high compression 

ratios with relatively small block sizes [114]. Another important advantage of VQ image 

compression is its fast decompression using small size lookup table. The decompression 

process requires the use of the codebook to recreate the image. This type of compression is 

useful for applications where the images are compressed once and decompressed many times, 

such as the compression of images displayed on the websites [8].  
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Figure 26: A block diagram of a VQ encoder. 
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Figure 27: A block diagram of a VQ decoder. 

 

At the decoder, the received index will be used to select the corresponding codevector from the 

same codebook utilised at the encoder as the reconstructed version of the input vector. 

Therefore, the codebook is extremely important in reconstructing good quality images at the 

receiver. The LBG algorithm, which was designed by Linde Buzo and Gray and hence the 

name, has been used extensively for the reconstruction of the codebook in VQ image coding 

[80], [150]. Blocks are typically 4 4 pixels or 8 8 pixels, which are transformed into 1-

dimentional vectors of 16-dimentioanl or 64-dimensional.  

Statistical studies on natural images have shown that there is a little correlation between pixels 

more than 8 positions apart [51], [81], [151], and as result, most of the correlations are among 

pixels that are within 4 positions away. Therefore, 4 4 and 8 8 codevectors are excellent 



  

choices from both the bitrate and the correlation-exploitation standpoints. Figures 26 and 27 

depict the block diagrams of VQ encoder and decoder, respectively. 

 

Figure 28 shows the image “Lena” quantised at bitrate of 0.5625 bits/pixel and each vector is 

formed from a block of 4 4 pixels. The codebook trained using various images including the 

“Lena” image.  

 

 

(a) 

 

 

 

(b) 

 

Figure 28: The image “Lena” (512 512) coded using a vector quantiser at 0.52 bpp, and 4

4 blocks: (a) Entire coded image, PSNR = 28.7617; (b) Close-up of an edge region, showing 

the “staircase effect”. 

 

  

Practical Limitations of Basic Vector Quantisation  
 

Despite the optimality, basic unconstrained vector quantisers for image coding are limited to 

small dimension and low bitrates due to their computational complexity and memory 

requirements growing exponentially. Furthermore, the training of a high bitrate vector 

quantiser requires a large training set. Mismatch between the trained codebook and an image 

to be quantised, which is not part of the training set, also leads to degraded quality. Therefore, 

the training set should be large and representative of the images to be quantised [82], [152]. 

Various approaches have been proposed in the literature to mitigate the abovementioned 

limitations of the basic VQ scheme which are concentrated in two directions: to reduce the 

computational complexity and to generate a better codebook that approaches the global optimal 

solution. Many methods designed to reduce the computational time, by merging nearest 

training vector clusters until the desired number of codevectors is obtained or by reducing the 



  

dimension measure in the LBG algorithm [83], [84], [120], [153], [154], [155] and [85]. 

However, codebooks generated by these methods are slightly degraded even though the 

computation time is reduced by several times. On the other hand, several methods are proposed 

to generate better codebooks [86], [156], [87] [30], but these methods need a great deal of time 

in order to obtain better codebooks. 

 

3.7 Hybrid Coding 

Habibi [30] introduced hybrid transform/DPCM coding. The proposed hybrid coding system 

enjoys the benefits of both transform coding and DPCM and is less vulnerable to their 

limitations.  

In what follows, we will describe one-dimensional hybrid coding. The NN  image is divided 

into vertical strips of width M and the one-dimensional transformation is performed as follows: 
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where t are the elements of the transformation matrix and b(x,y) is the pixel value at location 

(x, y). The aim of this transformation is to remove the redundancy between pixels situated in 

the same row of a strip. Therefore, this is a transformation in the horizontal direction [88]. The 

vertical redundancy can be removed using DPCM to code the transformed coefficients. A 

parallel linear DPCM predictor is available at the encoder and used to code the set of 

coefficients at each transform coordinate column wise [44].  The error signal is defined as: 
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where k represents the index of the strip, k

ic  is the transformed value and k

iĉ  is its 

corresponding predicted value. This error signal is quantised using Lloyd-Max quantiser and 

transferred to the communication channel. At the receiver, the predicted coefficient signal is 

added to the quantised error signal to retrieve the original value of the transformed coefficients 

plus some quantisation error: 
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where k

ie~  is the quantised error signal. To obtain the reconstructed value of the image, inverse 

transformation is performed as follows: 
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where T-1 is the inverse of the transform matrix T. Various transformations can be used in 

hybrid coding such as Hadamard, Fourier, and Karhunen-Loéve. The one-dimensional hybrid 

transform/DPCM system is shown in Figure 29.  

 

 

Figure 29. Hybrid coding (one-dimensional transform/DPCM coder). 

Habibi [30] extended hybrid coding to two-dimensional transformations followed by a bank of 

DPCM systems. When the image is divided into large size subimages, the complexity of 

transform coding is increased. On the other hand, by employing small size subimages, the 

mathematical complexity is reduced at the expense of the efficiency of the coding. Therefore, 

a two-dimensional transformation followed by a bank of DPCM systems could improve the 

performance of the system by removing the correlation in the neighbouring pixels and utilising 

small block sizes.  

 

Hussain et al. [90] generated hybrid predictive wavelet coding. The system encoder consists of 

three stages. In the first stage, functional link neural network [91-93] is utilised as predictor 

structure. The error signals are forwarded to the second stage of the encoder. In this case, a 

Discrete Wavelet Transform [108] is utilised to transform the error signals into Wavelet 

coefficients. In the final stage, the transform coefficients of the most significant band will be 

Entropy encoded using Arithmetic Coding. Figure 30 shows the structure of their encoder.  
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Figure 30: The encoder of the proposed neural network hybrid image compression system. 
 
 

3.8 Image Compression using Neural Networks 

Neural networks are suitable for image compression because of their nonlinearity, massively 

parallel structure, and training capabilities [143-175]. They have characteristics similar to those 

of the human visual system, and as a result, they can be applied to the processing of visual 

information [178] and other applications [195-196].  

 

The parameters of the encoder which are the weights of the neural network need to be trained 

before encoding. This means that the training sets have to be carefully selected to represent the 

appropriate class of images for which the compression system is used. Furthermore, for neural 

networks based image compression systems, we should account for the increase in the bit rate 

caused by transmitting extra overhead information containing the encoder parameters [70-75].     

    

3.8.1 Basic Image Compression System  

Multilayer perceptrons can be used as a complete image compression system. In this case, the 

compressor and the decompressor (CODEC) are implemented in a single network. The network 

is trained using backpropagation. The network consists of two layers, the hidden and the output 

layers. The input neurons work as buffers where the image pixel values are forwarded. The 

image is divided into nonoverlapped blocks, with the elements of each block forwarded to the 

input neurons. Hence, the number of input nodes is equal to the size of the image block.  

 

The number of neurons in the hidden layer is less than the number of inputs and corresponds 

to the compressed ratio, which is the ratio of input to hidden neurons. The outputs of the hidden 

neurons are quantised with the same number of bits as the original input pixels and are stored 

for later use or transmitted to the communication channel. The outputs of the hidden layer are 

Transform 
Coefficients  



  

the reconstructed image data. Therefore, the number of neurons in the output layer is equal to 

the number of inputs [179].  

 

This model is developed by Sonehara et al. [180] where the sigmoid transfer function is used 

in the hidden and the output layers. The inputs are scaled between 0 and 1 to match the range 

of the outputs. The simulation results demonstrated poor performances for the testing and the 

training images.  

A similar approach was followed by Sicuranza and Ramponi [181] achieving a SNRs between 

19.4 dB and 20.5 dB for the training images and between 18.2 dB and 19.4 dB in the case of 

generalisation.  

Figure 31: Pattern classes, (a) Horizontal edges, (b) Vertical edges, (c) Diagonal edges, (d) Shade 

[182].  

 

To further improve this technique, Qiu et al. [182] used several mutilayer perceptrons neural 

networks to decrease edge degradation in the compressed images. In this case, the image is 

divided into a number of blocks of size nm . Then, each block is classified according to its 

orientation using two directional derivative approximations Gx and Gy determined as follows: 
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where bij is the pixel value of the block. The gradient magnitude and orientation within each 

block are determined according to: 
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The gradient magnitude is then compared to a threshold value. If the gradient magnitude is less 

than the threshold value, its corresponding block is considered as a shade, otherwise it is a 

directional block [182].     

(a) (b) (d)(c)



  

Nine classes are defined and described as follows: two horizontals, two verticals, four diagonals 

and one shade as shown in Figure 31. After classification, different neural network structures 

are used to represent the various orientations and the compression is performed to the residual 

blocks, which are determined by subtracting the mean value of each block from its individual 

elements. As a result, in this method the compressed data contains quantised outputs of the 

hidden layer and the mean value of each block. The simulation results showed improvements 

over the method selected by Cottrell et. al. [183] in which for a bit rate of 1 bit/pixel an average 

peak signal to noise ratio of 31.79 dB and 30.57 dB are achieved for two training and four test 

images, respectively.  

Figure 32:  The structure of the hierarchical compression-decompression system [184].  

A more complicated CODEC structure is proposed by Namphol and Chin [184], which is called 

hierarchical neural networks (refer to Figure 32). The system consists of three sections, which 

are the input-layer, the hidden-layer, and the output-layer sections. At the input layer, there are 

M blocks corresponding to the number of nonoverlapped blocks of the image. Each block is 

constructed from P2 nodes, corresponding to the size of each block of the image. The hidden-

layer section is constructed from the combiner, the compressor, and the decombiner. The first 

structure acts as a multiplexer to the input subblocks and contains less nodes than the number 

of neurons of the input layer. The second structure has less neurons than the combiner and its 

outputs represent the compressed data, which are stored for latter processing. The 

reconstruction of the compressed image involves decombining the stored data using the 

1 2 P2

1 2 P2 1 2 P2

1 2 Nn 1 2 Nn 1 2 Nn

P221P221P221

1 2 Nn 1 2 Nn 1 2 Nn

1 2 Q

1 2 M

1 2 M

Combiner

Compressor

Decombiner



  

decombiner which acts as the demultiplexer. The output of the decombiner is forwarded to the 

output-layer section in which the compressed image data is reconstructed. 

Hierarchical neural network is used to compress the Lena and the Mandrill images at a 

compression rate of 1 bit/pixel using various block sizes. The authors noticed that the 

performance of the network is enhanced as the block size increased. They suggested that since 

the network showed learning and generalisation abilities over a wide range of images and 

robustness when hidden nodes are damaged, it should be considered as an alternative to 

traditional techniques. 

Benbsenisti et al. [185] disagreed with Namphol and Chin because although hierarchical neural 

networks have better performance than single-stage neural networks, they show potential 

increase in the complexity of the network structure and required more computational power. 

Therefore, they suggested the use of single-structure neural networks, utilising normalisation 

approach, i.e., the image grey levels are normalised according to:  

 s/L)old(x)new(x iii  , 
(80) 

where xi(new) is the new grey level image value at location i, Li is a low-pass image, and s is 

a measure of the speed among the residual grey level differences. 3.8.2 Vector 

Quantisation 

Neural networks are used to design optimal codebooks in vector quantisation. Most of these 

neural network structures use competitive learning algorithms [186].  

Nasrabadi and Feng [187] are the first to use Kohonen self-organising feature maps (SOFMs) 

in designing optimal codebooks for vector quantisation. Two codebooks are  designed for high 

and low variance blocks with 284 and 64 entries, respectively. The new codebook provides an 

improvement of 1 dB when compared to a codebook designed using the LBG algorithm and 

compressed with the same bit rate. Furthermore, SOFMs are relatively easy to implement and 

require less computational power than the LBG algorithm.  

 

 

 

 



  

 

 

Figure 33: The structure of the FSO neural network [ref. 198].  

A similar technique was proposed by Lu and Shin [188], but differs in classifying the edges 

into horizontal, vertical, and diagonal classes to preserve edge orientations. Therefore, four 

different codebooks are used instead of two. The edges are classified using multilayer 

perceptron network trained using a predefined set of binary edge blocks. The authors compared 

their method with the LBG algorithm in which an improvement of approximately 0.5 dB was 

achieved with the same compression rate. This result could be further enhanced using nine 

classes as suggested by Qiu et al. [182]. 

Although Kohonen self-organising feature maps provided good results when used to design 

optimal codebook structures, their major problem is that some of the neurons are under utilised. 

This means that the codebook may contain some untrained vectors, which cannot represent all 

structure varieties contained in the image. To overcome this problem, Chen et al. [189] 

proposed frequency sensitive self-organisation (FSO) neural network as shown in Figure 33.     

The network consists of a single competitive layer. The inputs are forwarded to the network by 

the input nodes which distribute the input data Xp to the competitive layer. The distortion 

between the codevector Wi and the input Xp is calculated at the competitive layer where the 

winner-take-all operation is performed. The network solves the problem of under-utilisation by 

including frequency measures.  

The training starts by randomly initialising the codevectors, then for each input vector the 

frequency-sensitivity distortion is determined as follows: 
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where Fi is the usage frequency of neuron i, and Fthd is a frequency threshold value. By 

introducing the frequency of usage of each neuron, the method prevents under-usage or vastly 

over-usage. Codebook designed in this way solely is called 1-path codebook. The method starts 

by designing a 1-path codebook and proceeds by eliminating neurons with small frequencies. 

Then over-used codevectors are split into two new generated codevectors by adding and 

subtracting a small constant value vector to produce 2-path codebook. Such process is repeated 

until the required N-path codebook is designed.  

The simulation results indicate that good reconstruction images and fairly high compression 

ratios can be obtained. Furthermore, for a 4-path or 5-path codebook, an increase in the quality 

of the compressed image of 1.5 dB can be obtained over 1-path and the Kohonen self-

organising feature map codebooks [179]. 

3.8.3 Predictive Coding 

The nonlinear nature of images makes nonlinear predictors more appropriate. Unfortunately, 

they are time consuming and usually impossible to design optimal nonlinear predictors [190].  

Neural networks may provide a solution to this problem since the nonlinearity is embedded in 

their structures and their training algorithms are simple and tractable.  

 

Figure 34: Architecture of practical functional-link type neural network predictor for 4th order generalised 
1-D AR source [190]. 
 
Y1=Xn-1, Y2=Xn-2, Y3=Xn-3, Y4=Xn-4. 



  

Y12=Xn-1 Xn-2, Y13=Xn-1 Xn-3, Y14=Xn-1 Xn-4, Y23=Xn-2 Xn-3, Y24=Xn-2 Xn-4, Y34=Xn-3 Xn-4. 
Y123=Xn-1 Xn-2Xn-3, Y124=Xn-1 Xn-2Xn-4, Y234=Xn-2 Xn-3Xn-4. 
Y1234=Xn-1 Xn-2Xn-3Xn-4. 

 

Dianat et al. [191] suggested the use of mutilayer perceptrons as nonlinear predictor structures 

in DPCM. The network consists of three inputs representing the immediate causal neighbours, 

a hidden layer of 30 neurons and one output unit for the prediction of the current pixel value. 

The experiments demonstrated an improvement in the SNR of 4 dB over the optimal linear 

DPCM predictor. He and Li [192] reported similar results, while stressing the use of the 

quantised prediction error in the network cost function.  

Another neural network structure that is used in predictive image coding system is the 

functional link neural network proposed by Li and Manikopoulos [193] and is referred to as 

higher order neural network (refer to Figure 34). The network can appropriately approximate 

sharply defined structures in images such as edges. The network is first tested to predict a 

simplified Volterra sequence defined as: 

 
4n3n2n2n1n1nnnn vvv5.0vv5.0vv5.0vV   , (82) 

where vn is a sequence of Gaussian random variables with mean 0.429.  

 

Figure 35: Geometry of prediction schemes for a two-dimensional nonlinear algorithm.  

 

Manikopoulos [194] further enhanced the structure of the network by suggesting the use of 

adaptive predictive image coding system called neural net adaptive DPCM (NNADPCM) 

applied to two-dimensional image prediction. In this case, the image is divided into square 

subblocks of size 3232 . Nine previous values of the image are used to predict the current 

signal as demonstrated in Figure 35. The network is trained adaptively for each subblock and 

the trained weights are transmitted to the receiver and used as the initial weights for the 

successive image subblock. The predicted error is forwarded to a three levels Max quantiser 



  

and passed to Huffman coding to achieve an average bit rate and peak SNR of 0.51 bit/pixels 

and 29.5 dB, respectively.  

  

4. IMAGE COMPRESSION IN MEDICAL IMAGING 
 

Digital images are subject to a wide variety of distortions during acquisition [198].  Medical 

images face severe requirements for the quality of the reconstructed data. Fidelity loss must be 

reduced in medical applications to avoid diagnostic errors. Ideally, the decoded image should 

be identical to the original one, meaning lossless compression. Medical imaging application 

demands lossless or high-fidelity image compression. This is because compression might affect 

the diagnostic value of the image and possibly contribute to diagnostic errors. Based on such 

stringent requirements on medical images, the application of image compression to the medical 

imaging environment is a challenging problem. Studies have shown that, compression ratios 

of 3: 1 or 4: 1 with more complex lossless compression are possible [94]. Lossless compression 

alone is insufficient to attain ratios better than 4:1. Additionally, the increasing volume of data 

generated by new imaging modalities such as multislice computed tomography (CT) scanners 

and magnetic resonance imaging (MRI) justifies the use of lossy compression techniques to 

decrease the cost of storage and improve the efficiency of transmission over networks for 

teleradiology or for access to electronic patient records [95].  

Amri at al [96] developed image reduction and expansion techniques such as digital 

watermarking and lossless compression standards JPEG-LS (JLS) for the compression of 

medical images. They utilised MRI images to achieve good quality image reconstructions. 

They proposed the combination of the image size and encoding algorithms for lossless image 

compression. 

 

Independent research groups [95], [97], [98], [99], [100], [11] [101] worked with various lossy 

compression algorithms indicated that lossy compressed medical images with high fidelity do 

not affect the diagnostic accuracy in a statistically significant way. Lossy techniques with 

compression ratios of about 10:1 are commonly adopted for picture archiving and 

communication system (PACS) for use in primary diagnosis and clinical review, using Digital 

Imaging and Communication in Medicine (DICOM), namely, DICOMJPEG or JPEG-2000 

compression algorithms [95]. Lossy image compression research in medical imaging has 



  

traditionally concentrated on transform methods, especially the two-dimensional DCT [101], 

[102] or wavelet/subband coding methods [103].  

 

Al-Fayadh et al. [105-107] proposed hybrid classified vector quantizer for the compression of 

medical images, their technique utilises classified vector quantisation [121-124]. The authors 

involve a number of neurosurgery specialised consultants experts in the field of medical 

imaging to judge the visual quality of their reconstructed compressed images, they have also 

involved a group of novice observers to participate in this visual assessment experiment [125]. 

Their results indicate that the hybrid technique generates high visual quality images from both 

the experts and the novice observers’ point of views. Their method shows slightly better quality 

against JPEG-2000 for approximately the same bitrate. 

 

Sophie et al. [104] developed a compression technique for medical images using wavelet 

transformation, normalization, and prediction. In their paper, they have indicated that their 

method can produce a good quality image close to the original image for the selected area of 

interest. The image undergoes 2D wavelet transform in order to find the coefficients. 

Normalization is then performed to achieve better prediction for each sub-band, separately. 

The resulted prediction errors are entropy-encoded using arithmetic coding technique.  

 

Vidhya [177] proposed the use of threshold-based medical image compression algorithm. The 

algorithm can be used for the compression of magnetic resonance imaging, computed 

tomography and ultrasound images. The technique utilised thresholding coefficient selection 

and one-level wavelet decomposition achieving a PSNR above 36 dB. The performance of the 

proposed technique achieves higher values than JPEG and the authors indicated that the use of 

8x8 blocks by JPEG could have generated more artefacts. The paper however did not provide 

a comparison between the proposed technique and JPEG 2000.    

 

Ravichandran et al. [177] used Wavelet Transform for the compression of 3D medical images, 

their arguments indicate that more medical images are created in hospitals and medical 

organizations using 2D and 3D. Their simulation results showed that 3D medical images have 

high frequency patterns, and therefore wavelets technique allows the generation of a better 

PSNR even at the higher compression ratio than 2D medical images.  

 

 



  

5. DISCUSSION AND CONCLUSION 

 

This paper provides a survey into the topic of image compression. The increasing demand for 

multimedia computing has led to the demand of using digital images. The manipulation, storage 

and transmission of these images in their raw form is very expensive, it significantly slows the 

transmission and makes storage costly. With the increasing use of digital imaging comes the 

need to handle larger volumes of digital image data. Data compression has become an essential 

part of modern digital communication, video signal processing, and storage systems. Although 

the bandwidth of communication networks has been increasing continuously, the introduction 

of new services and the expansion of the existing ones demand an even higher bandwidth. 

Image data compression is concerned with the minimisation of the volume of data used to 

represent an image.  

Table 4: Comparison of standard Lossless Image Compression Techniques 

 

Technique Compression Rate  Problems 

Arithmetic Coding [7],[15] Low The code is only optimal 

when all symbols 

probabilities are an integral 

power of ½ 

Huffman Coding [14] Low Significant mathematical 

calculation. It determine 

alphabet of symbols with 

known probability 

distribution. 

Lossless predictive coding 

[2] 

Low Needs good predictor 

strcuture 

  

 

There are two categories of image compression, lossy and lossless. Lossy compression requires 

the reconstructed image to be an exact replica of the original image. This type of compression 

is used for medical images constructions in which a loss of information may incur wrong 

diagnosis. Table 4 compares between standard lossless image compression techniques.    

In contrast to error free coding, lossy image compression reduces the accuracy of the coded 

image in exchange for higher compression ratio. At the encoder, there exists a quantiser which 

limits the number of bits required to represent the image. The purpose of the quantiser is to 

remove psychovisual redundancy. There are three standard approaches to lossy image 

compression which are vector quantisation, predictive coding and transform coding. Combined 

system that uses the properties of various image compression coding to increase the efficiency 



  

is also provided and known as hybrid coding. Table 5 shows basic lossy image compression 

techniques.  

 

Table 5: Comparison of Standard Lossy Image Compression Techniques 

 

Technique Compression Rate  Advantages Problems 

Predictive Coding 

[113], [137] 

Low compression rate  Removes 

Interpixel 

redundancy.  

Low compression 

rate. 

Degradation such as 

granularity, slope 

overload and edge-

busyness [35]. 

Needs good quantiser 

and predictor 

structures 

sensitivity to channel 

noise 

Transform Coding 

[48] 

High compression rate Frequency 

domain technique  

High 

compression due 

to block coding  

Affected by the 

blocking attracts  

JPEG [54], [56], 

[197] 

High Compression  

 

Uses Transform 

coding 

Blocking artefact 

JPEG 2000 [58] High Compression 

 

Current Standard  

Eliminates the 

blocking artefact 

Uses block 

coding to achieve 

high 

compression.  

Uses DWT.  

Can define ROI 

More complicated 

than JPEG to 

implement 

Vector Quantisation 

[209], [210]  

High compression  Easy 

implementation 

of the 

Decoder 

High 

compression  

Has many 

improved 

techniques 

including 

classified VQ 

[211] 

 

Codebook training 

and construction 

Edge degradation. 

Codebook training 

and construction. 

 



  

  

 

Predictive image compression uses previous values obtained during the scanning of the image 

to predict the next value along the line. We usually perform the scanning from the left to right 

and from top to bottom. This order of scanning is performed as a matter of convention.  

Transform coding differs from predictive coding by dividing the image into a number of blocks. 

While predictive coding uses the actual values of the pixels for prediction, transform coding is 

a frequency domain technique. JPEG and JPEG 2000 standards are based on transform coding.  

Vector quantisation has wide areas of application, such as speech coding, speech recognition 

and image coding. The main concept of vector quantisation is that the image is divided into 

nonoverlapped blocks which will be used for coding. The blocks of data will be quantised. 

Each block is transferred into a one-dimensional vector. A lookup table is provided at the 

encoder where the index of the location of the vector in the lookup table that provides minimum 

distortion to the input vector will be transmitted to the communication channel or stored. 

 

The application of image compression has widened and its benefits are far from being counted. 

Image compression has been and continues to be crucial to the growth of multimedia such as 

the use of digital computers in printing, publishing and video production. In addition, image 

compression can be used in television or satellite transmission, video conferencing, facsimile 

transmission of printed material, graphics sensing images obtained from reconnaissance 

aircraft. Another area where image compression is applicable is where pictures are stored in a 

database, such as archiving of medical images, multispectral images, fingerprints, and 

drawings. As a result, image compression is now one of the most commercial applications and 

demonstrates great potential. 
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