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Abstract

Patch-based sparse representation modeling has shown great potential in image

compressive sensing (CS) reconstruction. However, this model usually suffers

from some limits, such as dictionary learning with great computational complex-

ity, neglecting the relationship among similar patches. In this paper, a group-

based sparse representation method with non-convex regularization (GSR-NCR)

for image CS reconstruction is proposed. In GSR-NCR, the local sparsity and

nonlocal self-similarity of images is simultaneously considered in a unified frame-

work. Different from the previous methods based on sparsity-promoting convex

regularization, we extend the non-convex weighted `p (0< p <1) penalty func-

tion on group sparse coefficients of the data matrix, rather than conventional

`1-based regularization. To reduce the computational complexity, instead of

learning the dictionary with a high computational complexity from natural im-

ages, we learn the principle component analysis (PCA) based dictionary for

each group. Moreover, to make the proposed scheme tractable and robust, we

have developed an efficient iterative shrinkage/thresholding algorithm to solve

the non-convex optimization problem. Experimental results demonstrate that

the proposed method outperforms many state-of-the-art techniques for image

CS reconstruction.
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1. Introduction

Compressive sensing (CS) [1, 2, 3], which aims to recover signals from few-

er measurements than suggested by the Nyquist sampling theory, is based on

the hypothesis that the signals in question have compressible representations.

The most attractive aspect of CS-based compression is that the sampling and5

compression are conducted simultaneously, and almost all computational cost is

derived from the decoder stage, and thus, leading to a low computational cost

of the encoder stage. Due to the superior property of CS, it has been widely ap-

plied to various areas, such as MRI image [4], remoting sensing [5], single-pixel

camera [6] and sensor networks [7].10

In the theory of CS, if a signal is sparse in some transform domain, it is

often sampled by the random projection and reconstructed by solving the `0

minimization problem with the prior information which usually makes up the

regularization terms. However, due to the fact that `0 minimization is a difficult

combinatorial optimization problem, solving this problem is NP-hard. For this15

reason, it has been proposed to replace the `0 norm by its convex `1 counter-

part to make the optimization easy. For instance, Candès et al. [1] proposed

that solving `1 minimization problem can recover a K-sparse signal X ∈ <N

from M = O(Klog(N/K)) random measurements. To solve the above `1 mini-

mization problem, many CS reconstruction algorithms have been proposed, such20

as linear programming [3], gradient projection sparse reconstruction [8], match

pursuit [9] and iterative thresholding [10].

As a basic image inverse problem in the filed of image restoration, maybe the

hottest topic is image CS reconstruction, which has attracted a lot of research

interest in the past few years [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25

25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. Image CS reconstruction

2



aims to reconstruct high quality image from fewer measurements, which may

even be far below the traditional Nyquist sampling rate. Due to the ill-posed

nature of image CS reconstruction, it has been well-known that the prior knowl-

edge of images plays a critical role in improving the performance of image CS30

reconstruction algorithms. Therefore, how to design an effective regularization

term to describe the image priors is vital for image CS reconstruction tasks.

Early regularization models mainly consider the prior on the level of pixel-

s, such as Tikhonov regularization [39] and total variation (TV) regularization

[19, 21, 22], utilize the local structure patterns of an image and high effective-35

ness to preserve image edges and recover the smooth regions. However, some

undesirable properties are produced, including smearing out the image details

and over-smoothing the images.

Another popular prior is based on image patch, which has shown promising

performance in image CS reconstruction [15, 18, 24, 26]. The well-known work40

is sparse representation-based model [40, 41], which assumes that image patch

can be precisely encoded as a sparse linear combination of basic elements. These

elements, called atoms, compose a dictionary [42, 43]. The dictionary is usu-

ally learned from a natural image dataset [12].Compared with the traditional

analytically designed dictionaries, such as DCT [14, 44] and wavelet [29], dic-45

tionaries learned directly from images are superior to be adapted to image local

structures [40, 41], and thus could improve the sparsity which results in better

performance. For example, Zhang et al. [24] proposed a method for image CS re-

construction using adaptively learned sparsifying basis via `0 minimization. Zha

et al. [26] proposed an adaptive sparse nonlocal regularization (ASNR) model50

for image CS reconstruction. However, two main problems are still existing for

patch-based sparse representation model. First, it is computationally expensive

to learn an off-the-shelf dictionary. Second, this sparse representation-based

model usually neglects the correlations between sparsely coded patches.

Image patches that have similar patterns can be spatially far from each other55

and thus can be collected in the whole image. The nonlocal self-similarity (NSS)

prior characterizes the repetitiveness of textures and structures reflected by nat-
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ural images within nonlocal regions, which can be exploited to retain edges and

sharpness effectively. The seminal work of nonlocal means (NLM) denoising [45]

has motivated a wide range of studies on NSS and a flurry of NSS-based meth-60

ods have been proposed for image CS reconstruction [14, 29, 46]. For instance,

Zhang et al. [46] proposed a nonlocal total variation (NLTV) regularization

model for image CS reconstruction. Zhang et al. [14] proposed a framework via

collaborative sparsity, which enforces local 2D sparsity and nonlocal 3D sparsi-

ty simultaneously, in an adaptive hybrid space-transform domain. Nasser et al.65

[29] proposed a new technique for high-fidelity image CS reconstruction via joint

adaptive sparsity regularization (JASR) in transform domain.

Recent advances have suggested that, by exploiting the NSS prior and clus-

tering similar patches, group-based sparse representation has shown great poten-

tial in various image inverse problems [47, 48, 49, 50]. In this paper, we propose70

a new method for image CS reconstruction, using group-based sparse represen-

tation framework with non-convex regularization (GSR-NCR). The GSR offers

a powerful mechanism of combining local sparsity and NSS of images simultane-

ously. Unlike the previous sparsity-promoting convex regularization methods,

we extend the non-convex weighted `p (0< p <1) penalty function on group75

sparse coefficients of the data matrix, rather than conventional `1-based reg-

ularization. In order to reduce the computational complexity, we learn the

principle component analysis (PCA) based dictionary for each group to sub-

stitute for the dictionary with a high computational complexity learned from

natural images. In addition, to make the optimization tractable, an efficient80

iterative shrinkage/thresholding algorithm is adopted to solve the non-convex

optimization problem. Experimental results show that the proposed method can

outperform many exisiting state-of-the-art image CS reconstruction methods.

The reminder of this paper is organized as follows. Section 2 briefly intro-

duces CS theory, patch-based sparse representation modeling and group-based85

sparse representation modeling. Section 3 presents the modeling of group-based

sparse representation with non-convex regularization (GSR-NCR) for image C-

S reconstruction and develops an iterative shrinkage/thresholding algorithm to
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solve the proposed GSR-NCR model. Section 4 presents the experimental re-

sults. Finally, some conclusions are given in Section 5.90

2. Background and related work

2.1. Compressive Sensing

Compressive sensing (CS) has attracted considerable attention from sig-

nal/image processing communities [1, 2, 3]. In the theory of CS, X ∈ <N

is a finite length signal. X is said to be sparse if X can be represented as

a superposition of a small number of vectors taken from a known sparsifying

transform domain basis Ψ, such that θ = ΨTX contains only a small set of

non-zero entries. The number of significant elements within the coefficient vec-

tor θ is regarded as the quantitative criteria of the sparsity of X in Ψ. To be

concrete, one seeks the perfect reconstruction of a signal X from its M random-

ized linear measurements, i.e., Z = φX , where Z ∈ <M , φ ∈ <M×N represents

the random projection matrix and satisfies M < N . The goal of CS recovery

is to reconstruct X from Z with subrate being S = M/N , which is usually

formulated as the following `0 minimization problem,

arg min
θ
||θ||0, s.t. Z = φΨθ (1)

where || ∗ ||0 is `0-norm, counting the non-zero entries of θ.

However, since || ∗ ||0 norm minimization is discontinuous and an NP-hard

problem, it is usually relaxed to the convex `1-norm minimization. Therefore,

Eq. (1) can be rewritten as the following unconstrained optimization problem,

θ = arg min
θ

(
1

2
||Z − φΨθ||22 + λ||θ||1

)
(2)

where λ is regularization parameter. According to [1], CS is capable of recover-

ing a K-sparse signal X (with highly probability) from Z of size M , where the95

number of random measurements satisfies M = O(Klog(N/K)).
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2.2. Patch-based Sparse Representation

Traditional patch-based sparse representation model has been proven to be

very effective in image CS reconstruction [15, 18, 24, 26]. It assumes that

each image patch can be precisely modeled as a sparse linear combination of

basic elements [40, 41]. These elements are called atoms and they compose a

dictionary [42, 43]. Mathematically, for an image X ∈ <N , let x i = RiX ,

i = 1, 2, ...n denotes an image patch of size
√
m ×

√
m extracted at location

i, where Ri is the matrix extracting patch x i from X at location i. Given a

dictionary D ∈ <m×M ,m ≤ M , the sparse representation processing of each

patch x i is to discover a sparse vector αi such that αi = D−1x i, where αi is

a sparse vector whose entries are mostly zero or close to zero. Then the whole

image X can be reconstructed by averaging all the reconstructed patches {x i},

which can be expressed as

X ≈ Dα =

(
n∑

i=1

RT
i Ri

)−1( n∑
i=1

RT
i Dαi

)
(3)

where α denotes the concatenation of all αi, that is, α = [αT
1 ,α

T
2 , ...,α

T
n ]T ,

which is the patch-based redundant sparse representation for X .

Now, we merge Eq. (3) into Eq. (2), the patch-based sparse representation

scheme for image CS reconstruction is formulated as

αi = arg min
αi

n∑
i=1

(
1

2
||z i − φDαi||22 + λ||αi||1

)
(4)

where D replaces Ψ in Eq. (2), standing for a learning dictionary, and αi100

is a patch-based sparse representation coefficient for each patch x i over the

dictionary D . z i is the linear measurements of each patch x i.

However, there exists two main issues for patch-based sparse representation

model. On the one hand, since dictionary learning is a large-scale and highly

non-convex problem, it is computationally expensive to solve the sparsity op-105

timization problem. On the other hand, the patch-based sparse representation

model usually assumes the independence between sparsely coded patches, which

takes no account of the correlation of similar patches in essence [47, 48, 49, 50].
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Figure 1: Illustrations for the group construction. Extract each exemplar patch vector x i

from image XG. For each patch x i, denote SGi
is the set, which composed of its most c

similar patches. Stack all the patches in SGi
to construct the data matrix to generate the

group, denoted by XGi
.

2.3. Group-based Sparse Representation110

Recent studies have shown that structured or group sparsity can offer more

promising performance for image restoration tasks [47, 48, 49, 50]. Since the

unit of our proposed sparse representation model is group, this section will

give briefs to introduce how to construct the groups. Specifically, as shown in

Fig. 1, image XG with size N is divided into n overlapped patches x i of size
√
m ×

√
m, i = 1, 2, ..., n. Then for each exemplar patch x i, denoted by small

red square in Fig. 1, within the H×H sized searching window (big blue square),

its most similar c patches (small green squares) are selected to form a set SGi
.

Since then, all the patches in SGi
are stacked into a matrix XGi

∈ <m×c, which

contains every element of SGi
as its column, i.e., XGi

= {xGi,1
,xGi,2

, ...,xGi,c
}.

The matrix XGi consisting of all the patches with similar structures is called

as a group, where xGi,c denotes the c-th similar patch (column form) of the

i-th group. Finally, similar to patch-based sparse representation [40, 41], given

a dictionary DGi
, which is often learned from each group, such as DCT [14],

PCA-based dictionary [51]. Therefore, in image CS reconstruction, similar to

Eq. (4), each group XGi can be sparsely represented as αGi = DGi

−1XGi and
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solved by the following `1-norm minimization problem,

αGi
= arg min

αGi

n∑
i=1

(
1

2
||ZGi

− φDGi
αGi
||2F + λ||αGi

||1
)

(5)

where ZGi
is the linear measurements of each group XGi

. Note that `1-norm

is imposed on each column of αGi , which also holds true for the following

derivation with `1-norm on matrix.

3. Image CS reconstruction using group-based sparse representation

model with non-convex weighted `p Minimization115

Typical patch-based sparse representation methods for image CS reconstruc-

tion usually suffer from a common drawback that the dictionary learning with

great computational complexity and neglecting the relationships among simi-

lar patches [47, 48, 49, 50]. The sparsity-promoting convex `1 minimization is

usually regarded as a standard scheme for recovering a sparse signal. Howev-120

er, a fact that cannot be ignored is that, `1 minimization is hard to achieve

the desired sparsity solution in some practical problems, such as image inverse

problems [52]. Based on the fact above, this paper proposes a new method

for image CS reconstruction using group-based sparse representation with non-

convex weighted `p minimization. To make the optimization tractable, an itera-125

tive shrinkage/thresholding (IST) algorithm [53] is developed to solve the above

non-convex weighted `p minimization problem efficiently.

3.1. Modeling of the Proposed Image CS Reconstruction

To obtain sparsity solution more accurately, inspired by the success of `p

(0 < p < 1) sparse optimization [54, 55, 56] and our previous work [52], we

apply the non-convex weighted `p (0 < p < 1) penalty function on group sparse

coefficients of the data matrix to replace the convex `1 norm. To be concrete,

different from Eq. (5), the proposed group-based sparse representation for image

CS reconstruction with non-convex weighted `p minimization is formulated as

αG = arg min
αG

1

2
||ZG − φDGαG||22 + ||WG · αG||p (6)
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where · represents the dot product and WG is a weight assigned to αG. The

weight WG will enhance the representation capability of group sparse coefficient130

αG. Note that here we abused the p-norm for matrix and `p-norm is imposed

on each column of αGi
.

3.2. Solving the Non-convex Weighted `p Minimization by the Iterative Shrink-

age/Thresholding (IST) Algorithm

Solving the objective function of Eq. (6) is very difficult, since it is a large

scale non-convex optimization problem. To make the proposed scheme tractable

and robust, in this paper we adopt the iterative shrinkage/thresholding (IST)

algorithm [53] to solve Eq. (6). We will briefly introduce IST algorithm. More

specifically, consider the following general optimization problem,

minu∈<N f(u) + g(u) (7)

where f(u) is a smooth convex function with gradient, which is Lipschitz con-

tinuous. g(u) is a continuous convex function which is possibly non-smooth.

The IST algorithm to solve Eq. (7) with a constant step ρ is formulated as

z (k+1) = u (k) − ρ∇f(u (k)) (8)

u (k+1) = arg min
u

1

2
||u − z (k+1)||22 + λg(u) (9)

where k denotes the iteration number. Then, by invoking IST algorithm, the

proposed non-convex weighted `p minimization problem Eq. (6) with the con-

straint uG = DGαG can be rewritten as

uG
(k) = D

(k)
G α

(k)
G (10)

Y G
(k+1) = uG

(k) − ρφT (φuG
(k) − ZG) (11)

α
(k+1)
G = arg min

αG

1

2
||DGαG −Y

(k+1)
G ||22 + ||WG ·αG||p (12)
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Obviously, the crux for solving Eq. (6) is translated into solving Eq. (12). Next,135

we will show that there is an efficient solution to Eq. (12). To avoid confusion,

the subscribe k may be omitted for conciseness.

However, due to the complex structure of ||WG ·αG||p, it is difficult to solve

Eq. (12), Let XG = DGαG, Eq. (12) can be rewritten as

αG = arg min
αG

1

2
||XG −Y G||22 + ||WG ·αG||p (13)

To enable a tractable solution of Eq. (13), in this paper, a general assumption

is made, with which even a closed-form solution can be achieved. Specifically,

Y G can be regarded as some type of noisy observation of XG, and then the140

assumption is made that each element of E = XG−Y G follows an independent

zero-mean distribution with variance σ2. The following conclusion can be proved

with this assumption.

Theorem 1 Define XG,Y G ∈ <N , XGi
, Y Gi

∈ <m×c, and e(j) as each

element of error vector e , where e = XG − Y G, j = 1, ..., N . Assume that

e(j) follows an independent zero mean distribution with variance σ2, and thus

for any ε > 0, we can represent the relationship between 1
N ||XG −Y G||22 and

1
K

∑n
i=1 ||XGi

−Y Gi
||2F by the following property,

lim
N→∞
K→∞

P{| 1

N
||XG −Y G||22 −

1

K

∑n

i=1
||XGi

−Y Gi
||2F | < ε} = 1 (14)

where P(•) represents the probability and K = m × c × n. The detailed proof

of Theorem 1 can be seen in our previous work [57].145

Therefore, based on Theorem 1, we have the following equation with a very

large probability (restricted 1) at each iteration,

1

N
||XG −Y G||22 =

1

K

∑n

i=1
||XGi

−Y Gi
||2F (15)
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Based on Eqs. (13) and (15), we have

min
αG

1

2
||XG −Y G||22 + ||WG ·αG||p

= min
αGi

∑n

i=1

(
1

2
||XGi

−Y Gi
||2F +

K

N
||WGi

·αGi
||p
)

= min
αGi

∑n

i=1

(
1

2
||Y Gi −DGiαGi ||2F +

K

N
||WGi ·αGi ||p

)
= min
αGi

∑n

i=1

(
1

2
||Y Gi −DGiαGi ||2F + τ ||WGi ·αGi ||p

)
(16)

where τ = K/N . Clearly, Eq. (16) can be regarded as a sparse representation

problem by solving n sub-problems for all the group XGi
.

Note that, dictionary learning are often learned from images, but we have on-

ly the linear measurements ZG. Thus, we need to generate a initial image from

the linear measurements ZG. In this paper, we first use the Multi-hypothesis150

block-based compressive sensing (MH-BCS) method [33] to generate the ini-

tial image XG. To adapt to the local image structures, instead of learning an

over-complete dictionary for each group as in [47], we learn the principle com-

ponent analysis (PCA) based dictionary [51] for each group Y Gi
. The proposed

PCA-based dictionary learning method is efficient and convenient since it on-155

ly requires one PCA decomposition operator for each group Y Gi , rather than

learning the dictionary from natural image dataset with a high computational

complexity.

Due to the fact that each dictionary DGi
is orthogonal, Eq. (16) is equal to

the following formula:

α̂Gi = min
αGi

∑n

i=1

(
1

2
||γGi

−αGi ||2F + τ ||WGi ·αGi ||p
)

= min
α̃Gi

∑n

i=1

(
1

2
||γ̃Gi

− α̃Gi
||22 + τ ||w̃Gi

· α̃Gi
||p
) (17)

where Y i = DGi
γGi

and X i = DGi
αGi

. α̃Gi
, γ̃Gi

and w̃Gi
denote the

vectorization of the matrix αGi , γGi
and WGi , respectively.160

To obtain the solution of Eq. (17) effectively, in this paper, the generalized

soft-thresholding (GST) algorithm [56] is adopted to solve Eq. (17). Specifically,
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given p, γ̃Gi
and w̃Gi , there exists a specific threshold,

τGST
p (w̃Gi,j

) = (2w̃Gi,j
(1− p))

1
2−p + w̃Gi,j

p(2w̃Gi,j
(1− p))

p−1
2−p (18)

where γ̃Gi,j
, α̃Gi,j

and w̃Gi,j
are the j-th element of γ̃i, α̃i and w̃ i, respectively.

Then, if γ̃Gi,j
< τGST

p (w̃Gi,j
), α̃Gi,j

= 0 is the global minimum. Otherwise, the

optimum will be achieved at non-zero point. According to [56], for any γ̃Gi,j
∈

(τGST
p (w̃Gi,j ),+∞), Eq. (17) has one unique minimum SGST

p (γ̃Gi,j ; w̃Gi,j ), which

can be obtained by solving the following equation,

SGST
p (γ̃Gi,j ; w̃Gi,j )− γ̃Gi,j + w̃Gi,jp

(
SGST

p (γ̃Gi,j ; w̃Gi,j )
)p−1

= 0 (19)

The complete description of the GST algorithm is shown in Table 1. For

more details about the GST algorithm, please refer to [56].

Table 1: Generalized Soft-Thresholding (GST)

Input: γ̃Gi,j
, w̃Gi,j

, p, J .

1. τGST
p (w̃Gi,j

) = (2w̃Gi,j
(1− p))

1
2−p + w̃Gi,j

p(2w̃Gi,j
(1− p))

p−1
2−p ;

2. If |γ̃Gi,j
| ≤ τGST

p (w̃Gi,j
)

3. SGST
p (γ̃Gi,j

; w̃Gi,j
) = 0;

4. else

5. k = 0, α̃
(k)
Gi,j

= |γ̃Gi,j
|;

6. Iterate on k = 0, 1, ..., J

7. α̃
(k+1)
Gi,j

= |γ̃Gi,j
| − w̃Gi,j

p
(
α̃
(k)
Gi,j

)p−1
;

8. k ← k + 1;

9. SGST
p (γ̃Gi,j

; w̃Gi,j
) = sgn(γ̃Gi,j

)α̃k
Gi,j

;

10. End

Ouput: SGST
p (γ̃Gi,j

; w̃Gi,j
).

Each weight WGi
is assigned to group sparse coefficient αGi

, large values

of each αGi usually include major edge and texture information. This implies

that to reconstruct XGi from its degraded one, we should shrink large values

less, while shrinking smaller ones more [58]. Inspired by [59], the weight WGi

12



of each group is set as w̃Gi = [w̃Gi,1 , w̃Gi,2 , ..., w̃Gi,j ] and we have

w̃Gi,j
=

2
√

2σ2

(δ̃Gi + ε)
(20)

where δ̃Gi
denotes the estimated variance of each group sparse coefficient γ̃Gi

,

and ε is a small constant. Obviously, it can be seen that each value of weight

WGi
is inverse proportion to each value of γGi

[58]. In light of all derivations,165

the complete description of the proposed image CS reconstruction using group-

based sparse representation via non-convex weighted `p minimization is given

in Table 2.

Table 2: The proposed GSR-NCR method for Image CS reconstruction.

Input: The observed measurement Y G, the measurement matrix φ.

Initialization: Estimate an initial image XG
(0) using a MH-BCS method [33] and

set parameters m, c, ρ, p, σ, ε, H, J ;

For k = 1, 2, ...,Max iter do

Update Y k+1
G computing by Eq. (11).

Generating the groups Y Gi
by searching similar patches from Y G.

For each group Y Gi
do

Constructing dictionary DGi

k+1 for Y Gi by PCA operator.

Update γk+1
Gi

by γGi
= DGi

−1ZGi .

Update WGi

k+1 by Eq. (20).

Update αk+1
Gi

computing by Table 1.

Get the estimation XGi

k+1 =DGi

k+1αk+1
Gi

.

End for

Aggregate all group XGi

k+1 to form the recovered image X̂
k+1

G .

End for

Output: X̂
k+1

G .
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Figure 2: All test images. From left to right: Barbara, boats, Fence, F.print, House, Leaves,

plants, staw.

4. Experimental Results

In this section, we will report the experimental results of the proposed GSR-170

NCR for image CS reconstruction. All the experimental images are shown in

Fig. 2. To evaluate the quality of the restored images, the PSNR and the

recently proposed powerful perceptual quality metric FSIM [60] are calculated.

The source code of the proposed can be downloaded at: https://

drive.google.com/open?id=0B0wKhHwcknCjYmttcFY3Zy1Kd0E.175

4.1. Parameter Setting

We generate the CS measurements at the block level by using a Gaussian

random projection matrix to test images, i.e., the block-based CS reconstruction

with block size of 32× 32. The parameters are set as follows. The size of each

patch
√
m ×

√
m is set to be 7 × 7. Similar patch numbers c = 60, the search180

window size H = 20, σ =
√

2, ε = 10−14, J = 2. (ρ, p) are set to (0.3, 0.5), (1.5,

0.95) and (1.5, 0.95) when 0.2N , 0.3N and 0.4N , respectively.

4.2. Performance Comparison with the State-of-the-Art methods

We have compared the proposed GSR-NCR against six other competing ap-

proaches including BCS [11], BM3D-CS [13], ADS-CS [15], SGSR [34], ALSB185

[24] and MRK [36]. Note that ADS-CS and ALSB are patch-based sparse rep-

resentation methods for image CS reconstruction. The PSNR and FSIM results

by the competing CS reconstruction methods are shown in Table 3 and Table 4,

respectively. It can be seen that the proposed GSR-NCR performs competi-

tively compared to other methods. In terms of PSNR, the proposed GSR-NCR190

14
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achieves 7.89dB, 2.85dB, 1.11dB, 1.20dB, 3.22dB and 2.72dB improvement on

average over the BCS, BM3D-CS, ADS-CS, SGSR, ALSB and MRK, respec-

tively. Meanwhile, based on the FSIM, the proposed GSR-NCR achieves 0.1031,

0.0339, 0.0123, 0.0063, 0.0106 and 0.0316 improvement on average over the BCS,

BM3D-CS, ADS-CS, SGSR, ALSB and MRK, respectively. The visual compar-195

isons of the image CS reconstruction are shown in Figs. 3 - 6. It can be seen

that the BCS, BM3D-CS, ADS-CS, SGSR, ALSB and MRK methods still suffer

from some undesirable artifacts or over-smooth phenomena. By contrast, the

proposed GSR-NCR not only removes most of the visual artifacts, but also pre-

serves large-scale sharp edges and small-scale fine image details more effectively.200

(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) Proposed

(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) GSR-NCR

Figure 3: CS reconstructed image boats with 0.2N measurements. (a) Original image; (b) BCS

[11] (PSNR=27.05dB, FSIM=0.8654); (c) BM3D-CS [13] (PSNR=31.02dB, FSIM=0.9314);

(d) ADS-CS [15] (PSNR=33.15dB, FSIM=0.9508); (e) SGSR [34] (PSNR=32.43dB, F-

SIM=0.9468); (f) ALSB [24] (PSNR= 32.96dB, FSIM=0.9514); MRK [36] (PSNR=32.38dB,

FSIM=0.9476); GSR-NCR (PSNR=33.31dB, FSIM=0.9526).
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(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) Proposed

(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) GSR-NCR

Figure 4: CS reconstructed image Barbara with 0.2N measurements. (a) Original im-

age; (b) BCS [11] (PSNR=22.24dB, FSIM=0.8443); (c) BM3D-CS [13] (PSNR=28.82dB,

FSIM=0.9072); (d) ADS-CS [15] (PSNR=32.27dB, FSIM=0.9498); (e) SGSR [34] (P-

SNR=33.44dB, FSIM=0.9615); (f) ALSB [24] (PSNR= 30.72dB, FSIM=0.9324); MRK [36]

(PSNR=27.99dB, FSIM=0.9135); GSR-NCR (PSNR=33.93dB, FSIM=0.9642).
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Table 3: PSNR (dB) Comparisons of BCS [11], BM3D-CS [13], ADS-CS [15], SGSR [34],

ALSB [24], MRK [36] and the Proposed GSR-NCR.

Ratio Method Barbara boats Fence F.print House Leaves plants straw Average

0.2

BCS 22.24 27.05 21.57 18.50 30.54 21.12 30.67 20.69 24.30

BM3S-CS 28.82 31.02 26.87 19.37 35.01 28.13 34.98 20.04 28.03

ADS-CS 32.27 33.15 28.37 22.70 35.76 27.88 35.45 23.75 29.92

SGSR 33.44 32.43 29.42 23.60 35.81 28.79 34.64 24.54 30.33

ALSB 30.72 32.96 28.41 23.69 36.08 27.15 32.16 24.33 24.33

MRK 27.99 32.38 22.20 20.54 36.36 27.75 35.99 23.02 28.28

GSR-NCR 33.93 33.31 29.10 23.66 36.57 29.03 35.72 24.42 30.72

0.3

BCS 25.59 28.91 23.24 19.96 32.85 23.16 32.81 22.19 26.09

BM3D-CS 33.01 34.04 30.67 23.01 36.88 32.52 38.30 22.37 31.35

ADS-CS 35.81 36.35 31.29 25.33 38.21 32.55 38.45 26.58 33.07

SGSR 35.91 35.22 31.56 25.84 37.37 33.00 37.20 27.34 32.93

ALSB 35.00 36.42 30.83 25.84 38.34 31.08 38.05 26.61 32.77

MRK 32.64 34.97 24.44 24.21 38.35 32.37 39.06 25.52 31.45

GSR-NCR 37.19 37.27 32.26 26.35 39.38 34.95 40.10 27.58 34.38

0.4

BCS 27.10 30.56 24.81 21.67 34.65 25.07 34.77 23.71 27.79

BM3D-CS 35.92 36.69 33.84 25.47 38.08 35.87 41.18 24.38 33.93

ADS-CS 38.34 38.79 34.02 27.32 40.30 35.94 40.77 28.80 35.54

SGSR 37.70 37.41 33.35 27.85 38.99 35.83 39.23 29.63 35.00

ALSB 37.19 38.92 32.83 27.70 40.25 34.57 40.66 28.54 35.08

MRK 36.17 37.20 26.63 26.83 40.04 35.53 41.64 27.69 33.97

GSR-NCR 39.23 39.65 34.39 28.53 41.12 38.55 42.48 30.06 36.75
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Table 4: FSIM Comparisons of BCS [11], BM3D-CS [13], ADS-CS [15], SGSR [34], ALSB

[24], MRK [36] and the Proposed GSR-NCR.

Ratio Method Barbara boats Fence F.print House Leaves plants straw Average

0.2

BCS 0.8443 0.8654 0.7653 0.7355 0.9011 0.7531 0.8973 0.7606 0.8153

BM3S-CS 0.9072 0.9314 0.8325 0.8184 0.9498 0.9231 0.9450 0.7604 0.8835

ADS-CS 0.9498 0.9508 0.9181 0.8976 0.9423 0.9015 0.9458 0.8704 0.9220

SGSR 0.9615 0.9468 0.9398 0.9208 0.9502 0.9381 0.9431 0.8856 0.9357

ALSB 0.9324 0.9514 0.9275 0.9226 0.9563 0.9089 0.9145 0.8830 0.9246

MRK 0.9135 0.9476 0.7765 0.8397 0.9586 0.9169 0.9555 0.8418 0.8938

GSR-NCR 0.9642 0.9526 0.9377 0.9224 0.9508 0.9431 0.9505 0.8852 0.9383

0.3

BCS 0.8782 0.8997 0.8345 0.8149 0.9299 0.8018 0.9276 0.8266 0.8641

BM3D-CS 0.9587 0.9630 0.9572 0.9111 0.9690 0.9601 0.9714 0.8322 0.9403

ADS-CS 0.9733 0.9728 0.9521 0.9408 0.9667 0.9550 0.9697 0.9220 0.9565

SGSR 0.9762 0.9684 0.9600 0.9482 0.9648 0.9676 0.9654 0.9316 0.9603

ALSB 0.9729 0.9746 0.9557 0.9475 0.9732 0.9511 0.9736 0.9226 0.9589

MRK 0.9611 0.9687 0.8415 0.9225 0.9727 0.9598 0.9768 0.9040 0.9384

GSR-NCR 0.9816 0.9783 0.9664 0.9534 0.9795 0.9799 0.9819 0.9351 0.9695

0.4

BCS 0.9068 0.9248 0.8807 0.8747 0.9490 0.8422 0.9479 0.8748 0.9001

BM3D-CS 0.9777 0.9805 0.9758 0.9452 0.9781 0.9803 0.9855 0.8848 0.9635

ADS-CS 0.9837 0.9835 0.9726 0.9608 0.9803 0.9763 0.9816 0.9487 0.9734

SGSR 0.9836 0.9793 0.9728 0.9653 0.9759 0.9799 0.9777 0.9570 0.9739

ALSB 0.9827 0.9840 0.9702 0.9638 0.9824 0.9738 0.9840 0.9479 0.9736

MRK 0.9795 0.9802 0.8979 0.9539 0.9819 0.9783 0.9873 0.9377 0.9620

GSR-NCR 0.9879 0.9867 0.9784 0.9702 0.9862 0.9894 0.9892 0.9609 0.9811
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(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) Proposed

(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) GSR-NCR

Figure 5: CS reconstructed image Leaves with 0.2N measurements. (a) Original im-

age; (b) BCS [11] (PSNR=21.12dB, FSIM=0.7531); (c) BM3D-CS [13] (PSNR=28.13dB,

FSIM=0.9231); (d) ADS-CS [15] (PSNR=27.88dB, FSIM=0.9015); (e) SGSR [34] (P-

SNR=28.79dB, FSIM=0.9381); (f) ALSB [24] (PSNR= 27.15dB, FSIM=0.9089); MRK [36]

(PSNR=27.75dB, FSIM=0.9169); GSR-NCR (PSNR=29.03dB, FSIM=0.9431).
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(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) Proposed

(a) Original Image (b) BCS (c) BM3D-CS (d) ADS-CS

(e) SGSR (f) ALSB (g) MRK (h) GSR-NCR

Figure 6: CS recovered House images with 0.3N measurements. (a) Original image; (b) BCS

[11] (PSNR=32.85dB, FSIM=0.9299); (c) BM3D-CS [13] (PSNR=36.88dB, FSIM=0.9690);

(d) ADS-CS [15] (PSNR=38.21dB, FSIM=0.9667); (e) SGSR [34] (PSNR=37.37dB, F-

SIM=0.9648); (f) ALSB [24] (PSNR= 38.34dB, FSIM=0.9732); MRK [36] (PSNR=38.35dB,

FSIM=0.9727); GSR-NCR (PSNR=39.38dB, FSIM=0.9795).
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4.3. Effect of the number of the best matched patches

We have discussed how to select the best matching patch numbers c for the

performance of the proposed GSR-NCR. Specifically, to investigate the sensi-

tivity of our method against c, two experiments were conducted with respect to205

different c, ranging from 20 to 160, in the case of 0.2N and 0.3N measurements,

respectively. The results with different c are shown in Fig. 7. It can be seen

that all the curves are almost flat, showing the performance of the proposed

GSR-NCR scheme is insensitive to c. The best performance of each case was

usually achieved with c in the range [40,80]. Therefore, in this paper c was210

empirically set to be 60.
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Figure 7: Performance comparison with different matched patch numbers c for image CS

reconstruction . (a) PSNR results achieved by different c in the case of 0.2N measurements.

(b) PSNR results achieved by different c in the case of 0.3N measurements.

4.4. Convergence analysis

Since the proposed GSR-NCR model (Eq. (6)) is non-convex, it is difficult to

give its theoretical proof for global convergence. Here, we only provide empirical

evidence to illustrate the good convergence of the proposed CS reconstruction215

method. Fig. 8 illustrates the convergent performance of the proposed GSR-

NCR. It shows the curves of the PSNR values versus the iteration numbers
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Figure 8: Convergence analysis of the proposed GSR-NCR. (a) PSNR results versus iteration

numbers for image CS reconstruction with 0.3N measurements; (b) PSNR results versus

iteration numbers for image CS reconstruction with 0.4N measurements.

for four test images with 0.3N and 0.4N measurements, respectively. One can

observe that with the increase of the iteration numbers, the PSNR curves grad-

ually increase and ultimately become flat and stable, showing good stability of220

the proposed non-convex GSR-NCR model.

5. Conclusion

In this paper, we proposed a efficient method for image CS reconstruction

using group-based sparse representation model, which is able to more accurately

enforce the local sparsity and nonlocal self-similarity of images simultaneously225

in a unified framework. Different from the typical sparsity-promoting convex

`1 minimization methods, we extended the non-convex weighted `p (0 < p < 1)

penalty function on group sparse coefficients of the data matrix to replace the

convex `1-norm. To reduce the computational complexity, we learned the prin-

ciple component analysis (PCA) based dictionary for each group to substitute230

for the dictionary with a high computational complexity learned from natu-

ral image dataset. Furthermore, to make the proposed model tractable and

robust, an efficient iterative shrinkage/thresholding algorithm was adopted to

22



solve the non-convex minimization problem. Experimental results have shown

that the proposed method not only outperforms many state-of-the-art methods235

both quantitatively and qualitatively, but also results in fine stability.
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