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Abstract

In this paper, we propose a stochastic Primal-Dual Hybrid Gradient (PDHG) approach for solving
a wide spectrum of regularized stochastic minimization problems, where the regularization term
is composite with a linear function. It has been recognized that solving this kind of problem is
challenging since the closed-form solution of the proximal mapping associated with the regularization
term is not available due to the imposed linear composition, and the per-iteration cost of computing
the full gradient of the expected objective function is extremely high when the number of input data
samples is considerably large.

Our new approach overcomes these issues by exploring the special structure of the regulariza-
tion term and sampling a few data points at each iteration. Rather than analyzing the conver-
gence in expectation, we provide the detailed iteration complexity analysis for the cases of both
uniformly and non-uniformly averaged iterates with high probability. This strongly supports the
good practical performance of the proposed approach. Numerical experiments demonstrate that the
efficiency of stochastic PDHG, which outperforms other competing algorithms, as expected by the
high-probability convergence analysis.

Keywords: Stochastic Primal-Dual Hybrid Gradient; Iteration Complexity; High Probability; Graph-
Guided Regularized Logistic Regression.

1 Introduction

In this paper, we are interested in solving a class of compositely regularized convex optimization prob-
lems:

min
x∈X

E [l(x, ξ)] + r(Fx), (1)

where x ∈ Rd, X is a convex compact set with diameter Dx, r : Rl → R is a convex regularization
function, and F ∈ Rl×d is a penalty matrix (not necessarily diagonal) specifying the desired structured
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sparsity pattern in x. Furthermore, we denote l(·, ·) : Rd × Ω → R as a smooth convex function when
applying a prediction rule x on a sample dataset {ξi = (ai, bi)}, and the corresponding expectation is
denoted by l(x) = E [l(x, ξ)].

When F = I, the above formulation accommodates quite a few classic classification and regression mod-

els including Lasso obtained by setting l(x, ξi) = 1
2

∥∥a>i x− bi∥∥2
and r(x) = λ ‖x‖1, and linear support

vector machine (SVM) obtained by letting l(x, ξi) = max
(
0, 1− bi · a>i x

)
and r(x) = (λ/2) ‖x‖22, where

λ > 0 is a parameter. Moreover, the general structure of F enables problem (1) to cover more com-
plicated problems arising from machine learning, such as the fused Lasso [21], fused logistic regression
and graph-guided regularized minimization [7].

However, this modeling power also comes with a challenge in computation. In particular, when F is not
diagonal, it is very likely that the proximal mapping associated with r(Fx) does not admit a closed-form
expression. To cope with this difficulty, we could reformulate problem (1) as a convex-concave saddle
point problem by exploiting some special structure of the regularization term, and then resort to the
Primal-Dual Hybrid Gradient (PDHG) approach [27]. This approach has exhibited attractive numerical
performance in image processing and image restoration applications [6, 3, 27, 23]. We refer readers to
[5, 9, 10] to visit convergence properties of PDHG and its variants.

In practice, E [l(x, ξ)] is often replaced by its empirical average on a set of training samples. In this case,
the computational complexity of calling the function value or the full gradient of l(x) is proportional to
the number of training samples, which is extremely huge for modern data-intensive applications. This
could make PDHG and linearized PDHG suffer severely from the very poor scalability. Therefore, it
is promising to propose a Stochastic variant of PDHG (SPDHG). Like many well-studied incremental
or stochastic gradient methods [13, 18, 12, 1, 24], we draw a sample ξk+1 in random and compute a
noisy gradient ∇l(xk, ξk+1) at the k-th iteration with the current iterate xk. As a result, the proposed
SPDHG method enjoys the capability of dealing with very large-scale datasets.

Another way to handle the non-diagonal F and the expected objective function E [l(x, ξ)] is stochastic
ADMM-like methods [16, 25, 8, 19, 22, 2, 26, 20] which aim for solving the following problem after
introducing an additional variable z:

min
x∈X ,z=Fx

l(x) + r(z), (2)

whose augmented Lagrangian function is given by l(x) + r(z) + λ>(z − Fx) + γ
2‖z − Fx‖

2
2. Comparing

this function with the convex-concave problem (1) in Section 2, we can see that ADMM-like methods
need to update one more vector variable than PDHG-type methods in every iteration. Thus, it can be
expected that the per-iteration computational cost of ADMM-like methods is higher than our proposed
algorithm SPDHG, as confirmed by the numerical experiments in Section 5.

Our contribution: To the best of our knowledge, we propose in this paper a new convex-concave
formulation of problem (1), as well as the first stochastic variant of the PDHG algorithm for both
uniformly and non-uniformly averaged iterates with achievable iteration complexities. We also present
the iteration complexity analysis of the proposed algorithms in the sense of high-probability. In partic-
ular, for the proposed algorithm, the probability of converging with a rate higher than O( 1√

t
) can be

exponentially small, which has also been established for the well-known stochastic ADMM (SADMM)
[16]. Moreover, as mentioned before, the significant advantage gained by SPDHG beyond SADMM is
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the low per-iteration complexity. The effectiveness and efficiency of the proposed SPDHG algorithm are
demonstrated by encouraging empirical evaluation in graph-guided regularized minimization tasks on
different genres of real-world datasets, the convergence behaviors strongly support the high-probability
analysis.

Related work: Given the importance of problem (1), various stochastic optimization algorithms have
been proposed to solve problem (1) or the more general form of problem (1), which can be written as:

min
x∈X ,y∈Rd

E [l(x, ξ)] + r(y), s.t. Ax+By = b. (3)

It is easy to verify that problem (1) is a special case of problem (3) when A = F , B = −I and b = 0.

In solving problem (3), Wang and Banerjee [22] proposed an online ADMM that requires an easy
proximal mapping of l. However, this is difficult for many loss functions such as logistic loss function.
Ouyang et al. [16], Suzuki [19], Azadi and Sra [2], Gao et al. [8], and recently Zhao et al. [25] developed
several stochastic variants of ADMM, which linearize l by using its noisy subgradient or gradient and
add a varying proximal term. Furthermore, Zhong and Kwok [26] and Suzuki [20] respectively proposed
a stochastic averaged gradient-based ADMM and a stochastic dual coordinate ascent ADMM, which
can both obtain improved iteration complexities. However, these methods did not explore the structure
of r and need to update one more vector variable than PDHG-type methods in every iteration. We will
show in the experiments that our proposed SPDHG algorithm is far more efficient than these algorithms.

It is worth mentioning that some other stochastic version of the primal-dual gradient approach was
also analyzed in recent work [12, 4]. However, their convex-concave formulation is different from ours,
and their algorithm cannot be applied to solve problem (1). Regarding the iteration complexity, the
proposed SPDHG algorithm has accomplished the best possible one for first-order stochastic algorithms
under general convex objective functions [1]. A better convergence rate of O( 1

t2
+ 1√

t
) can be obtained

by using Nesterov’s acceleration technique in [13].

The most related algorithm to our proposed SPDHG algorithm are the SPDC algorithm [24] and its
adaptive variant [28]. Similar to our SPDHG algorithm, the SPDC algorithm is also a stochastic variant
of the batch primal-dual algorithm developed by Chambolle and Pock [5], which alternates between
maximizing over a randomly chosen dual variable and minimizing over the primal variable. However,
the SPDC algorithm does not explore the special structure of the regularization term (Assumption 3),
and their convex-concave formulation is different from ours. This leads to the inability of the SPDC
algorithm to solve problem (1). Specifically, [24] suggests to reformulate problem (1) as

min
x∈X

max
y∈Rd

{E [〈y, x〉 − l∗(y, ξ)] + r(Fx)} , (4)

where l∗(y, ξ) = supα∈Rd {〈α, y〉 − l(α, ξ)} is the convex conjugate of l(x, ξ). Then the SPDC algorithm
in solving problem (4) requires that the proximal mapping of l∗ and r(Fx) are easily computed, which
is somewhat strong for a variety of application problems. In addition, the SPDC algorithm requires r
to be strongly convex.

In contrast, our SPDHG algorithm only needs the smoothness of l and the convexity of r, and hence
efficiently solves a wide range of graph-guided regularized optimization problems, which cannot be
solved by the SPDC algorithm and its adaptive variant.
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2 Problem Set-Ups

2.1 Assumptions

We make the following assumptions (Assumption 1-4) regarding problem (1) throughout the paper:

Assumption 1. The optimal set of problem (1) is nonempty.

Assumption 2. l(·) is continuously differentiable with Lipschitz continuous gradient. That is, there
exists a constant L > 0 such that

‖∇l(x1)−∇l(x2)‖ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ X .

Many formulations in machine learning satisfy Assumption 2. The following least square and logistic
functions are two commonly used ones:

l(x, ξi) =
1

2

∥∥∥a>i x− bi∥∥∥2
or l(x, ξi) = log

(
1 + exp

(
−bi · a>i x

))
,

where ξi = (ai, bi) is a single sample point.

Assumption 3. r(x) is a continuous function which is possibly non-smooth, and it can be described as
follows:

r(x) = max
y∈Y
〈y, x〉 ,

where Y ∈ Rd is a convex compact set with diameter Dy.

Note that Assumption 3 is reasonable for the learning problems with a norm regularization such as
`1-norm or nuclear norm:

‖x‖1 = max {〈y, x〉 | ‖y‖∞ ≤ 1} ,
‖X‖∗ = max {〈Y,X〉 | ‖Y ‖2 ≤ 1} .

Assumption 4. The function l(x) is easy for gradient estimation. That is to say, any stochastic
gradient estimation ∇l(·, ξ) for ∇l(·) at x satisfies

E [∇l(x, ξ)] = ∇l(x),

and
E
[
‖∇l(x, ξ)−∇l(x)‖2

]
≤ σ2,

and

E

[
exp

(
‖∇l(x, ξ)−∇l(x)‖2

σ2

)]
≤ exp (1) ,

where σ > 0 is a constant. Indeed, σ2 can be interpreted as the variance of stochastic gradient
estimation ∇l(x, ξ), and need to be finite in the iteration complexity analysis of stochastic gradient
methods. We refer the interested readers to [15, 14, 11] for more details.
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Assumption 5. l(·) is µ-strongly convex at x. In other words, there exists a constant µ > 0 such
that

l(y)− l(x)− (y − x)>∇l(x) ≥ µ

2
‖y − x‖2 , ∀y ∈ X .

We remark that Assumption 5 is optional, and it is only necessary for the theoretical analysis that can
lead to a lower iteration complexity.

2.2 Convex-Concave Saddle Point Problem

According to Assumption 3, we are able to rewrite problem (1) as the following convex-concave saddle
point problem:

min
x∈X

max
y∈Y
{P (y, x) = l(x) + 〈y, Fx〉} . (5)

Remark 6. We remark here that the formulation (5) is greatly different from those used in [12, 24, 28],
where they formulate problem (1) as another convex-concave saddle point problem (4) by using the convex
conjugate of l(·). Therefore, their algorithms are limited to solving problem (1) due to the fact that the
proximal mapping of r(Fx) is difficult to compute.

This problem can be solved by Linearized PDHG (LPDHG) with the following iteration scheme:

yk+1 := argmax
y∈Y

{
P (y, xk)− 1

2s

∥∥∥y − yk∥∥∥2
}
, (6)

xk+1 :=
∏
X

[
xk − β

(
∇l(xk) + F>yk+1

)]
. (7)

where
∏
X (x) is the projection of x onto the convex set X , and s > 0 is a positive constant. As

mentioned before, the above algorithm is more efficient than ADMM-like methods. Indeed, the scheme
of Gradient-based ADMM [8] for solving problem (2) is as follows,

zk+1 := argmin

{
r(z)−

〈
λk, z − Fxk

〉
+
ρ

2

∥∥∥z − Fxk∥∥∥2
}
,

xk+1 :=
∏
X

{
xk − ρ

(
∇l(xk) + F>λk − ρ(zk+1 − Fxk)

)}
,

λk+1 := λk − ρ
(
zk+1 − Fxk+1

)
,

where one more vector λ needs to be updated.

However, the above algorithm is inefficient since computing ∇l(xk) in each iteration is very costly when
the total number of samples n is large. This inspires us to propose a stochastic variant of PDHG, where
only the noisy gradient ∇l(xk, ξk+1) is computed at each step.

3 The Algorithm and Convergence Results
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Algorithm 1 SPDHG

Initialize: x0 and y0.
for k = 0, 1, 2, · · · do

Choose one data sample ξk+1 randomly.
Update yk+1 according to Eq. (6).
Update xk+1 according to Eq. (8).

end for

Output: x̄t =
t∑

k=0

αk+1xk+1 and ȳt =
t∑

k=0

αk+1yk+1.

In this section, we first propose our Stochastic Primal-Dual Hybrid Gradient (SPDHG) algorithms with
either uniformly or non-uniformly averaged iterates for solving problem (5); and then provide the main
result of the convergence property of the proposed algorithm.

3.1 Algorithm

The SPDHG is presented in Algorithm 1, where we have addressed the following three important issues:
how to apply the noisy gradient, how to choose the step-size, and how to determine the weights for the
non-uniformly averaged iterates.

Stochastic Gradient: Our SPDHG algorithm shares some common features with the LPDHG al-
gorithm. In fact, the y-subproblems for both algorithms are essentially the same, while for the x-
subproblem we adopt the noisy gradient ∇l(xk, ξk+1) in SPDHG rather than the full gradient ∇l(xk)
in LPDHG, i.e.,

xk+1 :=
∏
X

[
xk − βk+1

(
∇l(xk, ξk+1) + F>yk+1

)]
, (8)

where
∏
X (x) is the projection of x onto the convex set X . That is, in SPDHG we first maximize over

the dual variable and then perform one-step projected stochastic gradient descent along the direction
−∇l(xk, ξk+1)− F>yk+1 with step-size βk+1.

The Step-Size βk+1: The choice of the step-size βk+1 varies with respect to the different conditions
satisfied by the objective function l(·). Different step-size rules also lead to different convergence rates.
Note that a sequence of vanishing step-sizes is necessary since we do not adopt any technique of variance
reduction in the SPDHG algorithm.

Non-uniformly Averaged Iterates: It was shown in [2] that the non-uniformly averaged iterates
generated by stochastic algorithms converge with fewer iterations. Inspired by their work, through non-
uniformly averaging the iterates of the SPDHG algorithm and adopting a slightly modified step-size,
we manage to establish an accelerated convergence rate of O(1

t ) in expectation.

For the convenience of readers, we summarize the convergence properties with respect to different
settings in Table 1.
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Table 1: Convergence properties.

l General Convex Strongly Convex

βk+1 1√
k+1+L

1
µ(k+1)+L

2
µ(k+2)+2L

αk+1 1
t+1

2(k+1)
(t+1)(t+2)

Rate O( 1√
t
) O( log(t)

t ) O(1
t )

3.2 Convergence of uniformly averaging under convex objective functions

In this subsection, we present the convergence result for uniformly averaged iterates under general
convex objective functions in the following theorem.

Theorem 7. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of
problem (5),

(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O( 1√

t
) rate in expectation.

We further present the high-probability result for uniformly averaged iterates under general convex
objective functions in the following theorem.

Theorem 8. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of
problem (5),

(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O( 1√

t
) rate in the sense of

high probability. More specifically, the following statement holds true,

Prob

(
P (y∗, x̄t)− P (ȳt, x∗) >

D2
y

2s(t+ 1)
+

LD2
x

2(t+ 1)
+
D2
x + 2λmax(F>F )D2

y√
t+ 1

+
2
√

ΩDxσ√
t+ 1

+
(1 + Ω)σ2

√
t+ 1

)
≤ 2 exp (−Ω) ,

for any Ω > 0.

3.3 Convergence of uniformly averaging under strongly convex objective functions

In this subsection, we present the convergence result in the following theorem when the objective function
is further assumed to be strongly convex.

Theorem 9. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of

problem (5),
(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O( log(t)

t ) rate in expectation.

We further present the high-probability result in the following theorem when the objective function is
further assumed to be strongly convex.

Theorem 10. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of

problem (5),
(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O( 1√

t
+ log(t)

t ) rate in the sense

7



of high probability. More specifically, the following statement holds true,

Prob

(
P (y∗, x̄t)− P (ȳt, x∗) >

D2
y

2s(t+ 1)
+

LD2
x

2(t+ 1)
+
λmax(F>F )D2

y log(t+ 1)

µ(t+ 1)

+
2
√

ΩDxσ√
t+ 1

+
(1 + Ω)σ2 log(t+ 1)

2µ(t+ 1)

)
≤ 2 exp (−Ω) ,

for any Ω > 0.

3.4 Convergence of non-uniformly averaging under strongly convex objective func-
tions

In this subsection, we present the convergence result for non-uniformly averaged iterates under strongly
convex functions in the following theorem.

Theorem 11. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of
problem (5),

(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O(1

t ) rate in expectation.

We further present the high-probability result for non-uniformly averaged iterates under strongly convex
functions in the following theorem.

Theorem 12. Denote βk+1 and αk+1 as shown in Table 1, then for any stationary point (y∗, x∗) of
problem (5),

(
ȳt, x̄t

)
generated by Algorithm 1 converges to (y∗, x∗) with O( 1√

t
+ 1

t ) rate in the sense

of high probability. More specifically, the following statement holds true,

Prob

(
P (y∗, x̄t)− P (ȳt, x∗) >

D2
y

s(t+ 2)
+
LD2

x

t+ 2
+

4λmax(F>F )D2
y

µ(t+ 2)
+

2
√

2ΩDxσ√
t+ 2

+
4(1 + Ω)σ2

µ(t+ 2)

)
≤ 2 exp (−Ω) ,

for any Ω > 0.

4 Technical Proofs

In this section, we provide the detailed technical proof of a list of lemmas and theorems mentioned
above.

4.1 Key lemma for high-probability analysis

In order to make our analysis complete, we present a key technical lemma (Proposition 3.2) in [14],
which is important to our iteration complexity with high probability.
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Lemma 13. For 1 ≤ k ≤ t, let ζk be a deterministic function of ξ1:k and satisfies that E
[
ζk|ξ[1:k−1]

]
= 0

and E
[
exp

(
ζ2k
σ2
k

)
|ξ[1:k−1]

]
≤ exp(1). Then the following statements hold true,

(a) Let γ ≥ 0 and 1 ≤ k ≤ t, then E
[
exp (γζk) | ξ[1:k−1]

]
≤ exp(γ2σ2

k).

(b) Let St =
∑t

k=1 ζk, then Prob(St ≥ Ω
√∑t

k=1 σ
2
k) ≤ exp

(
−Ω2

4

)
.

4.2 Convergence of uniformly averaging under convex objectives

In this subsection, we analyze the convergence property of the SPDHG algorithm with uniformly aver-
aged iterates for general convex objectives.

Lemma 14. Let (yk+1, xk+1) be generated by Algorithm 1, and βk+1 and αk+1 be shown in Table 1.
For any stationary point (y∗, x∗) of problem (5), it holds that

0 ≥ E
[
P (yk+1, x∗)− P (y∗, xk+1)

]
(9)

≥ 1

2s

(
E
∥∥∥y∗ − yk+1

∥∥∥2
− E

∥∥∥y∗ − yk∥∥∥2
)
−
λmax(F>F )D2

y + σ2

√
k + 1

+

√
k + 1 + L

2

(
E
∥∥∥x∗ − xk+1

∥∥∥2
− E

∥∥∥x∗ − xk∥∥∥2
)
.

Proof. For any optimal solution (y∗, x∗) of problem (5), the first-order optimality conditions for Eq. (6)
and Eq. (8) are

0 ≤
(
y∗ − yk+1

)>(
−Fxk +

1

s

(
yk+1 − yk

))
,

0 ≤
(
x∗ − xk+1

)> [
xk+1 − xk + βk+1

(
∇l(xk, ξk+1) + F>yk+1

)]
,

which implies that (
x∗ − xk+1

)>
∇l(xk, ξk+1)−

(
y∗ − yk+1

)>
Fxk+1

+
(
x∗ − xk+1

)>
F>yk+1 (10)

≥ 1

βk+1

(
x∗ − xk+1

)> (
xk − xk+1

)
+

1

s

(
y∗ − yk+1

)> (
yk − yk+1

)
+
(
y∗ − yk+1

)> (
Fxk − Fxk+1

)
≥ 1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2
−
∥∥∥x∗ − xk∥∥∥2

+
∥∥∥xk+1 − xk

∥∥∥2
)

+
1

2s

(∥∥∥y∗ − yk+1
∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
+
(
y∗ − yk+1

)> (
Fxk − Fxk+1

)
.
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By using Young’s inequality, we have(
y∗ − yk+1

)> (
Fxk − Fxk+1

)
(11)

=
(
F>y∗ − F>yk+1

)> (
xk − xk+1

)
≥ −

λmax(F>F )D2
y

γ
− γ

4

∥∥∥xk − xk+1
∥∥∥2
,

for any γ > 0, and(
x∗ − xk+1

)>
∇l(xk, ξk+1)

=
(
x∗ − xk+1

)>
∇l(xk) +

(
x∗ − xk+1

)>
δk+1

≤ l(x∗)− l(xk+1) +
L

2

∥∥∥xk − xk+1
∥∥∥2

+
(
x∗ − xk+1

)>
δk+1

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)>
δk+1 +

L+
√
k + 1/2

2

∥∥∥xk − xk+1
∥∥∥2

+

∥∥δk+1
∥∥2

√
k + 1

,

where δk+1 = ∇l(xk, ξk+1) − ∇l(xk), and the first inequality holds due to Lemma 6.2 in [8]. Then by
letting γ =

√
k + 1 in Eq. (11), we obtain

l(x∗)− l(xk+1) +

(
y∗ − yk+1

x∗ − xk+1

)>( −Fxk+1

F>yk+1

)
(12)

≥
(
x∗ − xk+1

)>
∇l(xk, ξk+1)−

(
x∗ − xk

)>
δk+1 − L+

√
k + 1/2

2

∥∥∥xk − xk+1
∥∥∥2
−
∥∥δk+1

∥∥2

√
k + 1

−
(
y∗ − yk+1

)>
Fxk+1 +

(
x∗ − xk+1

)>
F>yk+1

≥ 1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2
−
∥∥∥x∗ − xk∥∥∥2

)
+

1

2s

(∥∥∥y∗ − yk+1
∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
−
(
x∗ − xk

)>
δk+1

+
(
y∗ − yk+1

)> (
Fxk − Fxk+1

)
−
∥∥δk+1

∥∥2

√
k + 1

+

(
1

2βk+1
− L+

√
k + 1/2

2

)∥∥∥xk − xk+1
∥∥∥2

≥ 1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2
−
∥∥∥x∗ − xk∥∥∥2

)
+

1

2s

(∥∥∥y∗ − yk+1
∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
−
(
x∗ − xk

)>
δk+1

−
λmax(F>F )D2

y√
k + 1

−
∥∥δk+1

∥∥2

√
k + 1

+

(
1

2βk+1
− L+

√
k + 1/2

2
−
√
k + 1

4

)∥∥∥xk − xk+1
∥∥∥2

=
1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2
−
∥∥∥x∗ − xk∥∥∥2

)
+

1

2s

(∥∥∥y∗ − yk+1
∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
−
(
x∗ − xk

)>
δk+1

−
λmax(F>F )D2

y√
k + 1

−
∥∥δk+1

∥∥2

√
k + 1

.

Since xk and yk are independent of ξk+1, we take the expectation on both sides of the above inequality

10



conditioning on xk, yk, and conclude that

E
[
P (yk+1, x∗)− P (y∗, xk+1)

]
≥ 1

2βk+1

(
E
∥∥∥x∗ − xk+1

∥∥∥2
−
∥∥∥x∗ − xk∥∥∥2

)
−

E
∥∥δk+1

∥∥2

√
k + 1

+
1

2s

(
E
∥∥∥y∗ − yk+1

∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
−
λmax(F>F )D2

y√
k + 1

.

Finally, Eq. (9) follows from the above inequality and Assumption 4.

4.2.1 Proof of Theorem 7

Because (yk, xk) ∈ Y ×X and
∑t

k=0 α
k+1 = 1 defined in Table 1, it holds true that (ȳt, x̄t) ∈ Y ×X for

all t ≥ 0. By invoking the convexity of function l(·) and summing Eq. (9) over k = 0, 1, . . . , t, we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 1

t+ 1

t∑
k=0

[
1

2s

(
E
∥∥∥y∗ − yk+1

∥∥∥2
− E

∥∥∥y∗ − yk∥∥∥2
)

+

√
k + 1 + L

2

(
E
∥∥∥x∗ − xk+1

∥∥∥2
− E

∥∥∥x∗ − xk∥∥∥2
)
−
λmax(F>F )D2

y√
k + 1

− σ2

√
k + 1

]

≥ −
D2
y

2s(t+ 1)
− LD2

x

2(t+ 1)
−
D2
x + 2λmax(F>F )D2

y + 2σ2

√
t+ 1

.

This together with the fact that E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≤ 0 implies the conclusion in Theorem 7.

4.2.2 Proof of Theorem 8

Summing (12) over k = 0, 1, . . . , t and invoking the convexity of function l(·) and the definition of Dx,
Dy and βk+1 yields that

P (y∗, x̄t)− P (ȳt, x∗) ≤ At +Bt + Ct,

where

At =
D2
y

2s(t+ 1)
+

LD2
x

2(t+ 1)
+
D2
x + 2λmax(F>F )D2

y√
t+ 1

,

Bt =
1

t+ 1

t∑
k=0

(
x∗ − xk

)>
δk+1,

Ct =
1

t+ 1

t∑
k=0

∥∥δk+1
∥∥2

√
k + 1

.

Note that random variables Bt and Ct are dependent on ξ[1:k−1]. We have the following two claims.

11



1. For Ω > 0, we have

Prob

(
Bt >

2
√

ΩDxσ√
t+ 1

)
≤ exp (−Ω) .

2. For Ω > 0, we have

Prob

(
Ct >

(1 + Ω)σ2

√
t+ 1

)
≤ exp (−Ω) .

For claim 1, we use Lemma 13 by setting ζk =
(
x∗ − xk

)>
δk+1, and St =

∑t
k=0 ζk, and σk = Dxσ, we

can verify that E
[
ζk|ξ[1:k−1]

]
= 0, and

E
[
exp

(
ζ2
k

σ2
k

)
|ξ[1:k−1]

]
≤ E

[
exp

(
D2
x

∥∥δk+1
∥∥2

σ2
k

)
|ξ[1:k−1]

]
≤ exp(1),

where the first inequality holds true due to the fact that exp(·) is a convex function together with
‖x∗ − xk‖ ≤ D2

x. Based on the above results, it follows that

Prob
(
St > Ω1Dxσ

√
t+ 1

)
≤ exp

(
−Ω2

1

4

)
.

Since St = (t+ 1)Bt and Ω1 = 2
√

Ω, we have

Prob

(
Bt >

2
√

ΩDxσ√
t+ 1

)
≤ exp (−Ω) .

For claim 2, we let ηk+1 =
1√
k+1∑t

i=0
1√
k+1

, and obtain ηk ∈ (0, 1) and
∑t

k=0 ηk = 1. Since
{
δk+1

}t
k=0

are

independent and applying Assumption 4, we have

E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]

=
t∏

k=0

E

[
exp

(
ηk+1

∥∥δk+1
∥∥2

σ2

)]

≤
t∏

k=0

(
E

[
exp

(∥∥δk+1
∥∥2

σ2

)])ηk+1

≤
t∏

k=0

(exp(1))ηk+1 = exp

(
t∑

k=0

ηk+1

)
= exp(1).

12



By Markov’s Inequality, we have

Prob

(
Ct >

(1 + Ω)σ2

√
t+ 1

)
≤ Prob

(
Ct >

(1 + Ω)σ2

2(t+ 1)

t∑
k=0

1√
k + 1

)

≤ exp (−(1 + Ω))E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]
≤ exp (−Ω) .

In conclusion, we have the desired inequality.

4.3 Convergence of uniformly averaging under strongly convex objectives

In this subsection, we analyze the convergence property of the SPDHG algorithm with uniformly aver-
aged iterates for strongly convex objectives.

Lemma 15. Let (yk+1, xk+1) be generated by Algorithm 1, and βk+1 and αk+1 be shown in Table 1.
For any any stationary point (y∗, x∗) of problem (5), it holds that

0 ≥ E
[
P (yk+1, x∗)− P (y∗, xk+1)

]
(13)

≥ µ(k + 1) + L

2
E
∥∥∥x∗ − xk+1

∥∥∥2
+

1

2s
E
∥∥∥y∗ − yk+1

∥∥∥2

−µk + L

2
E
∥∥∥x∗ − xk∥∥∥2

− 1

2s
E
∥∥∥y∗ − yk∥∥∥2

−
λmax(F>F )D2

y + σ2

µ(k + 1)
.

Proof. By using the same argument as Lemma 14 and the strongly convexity of l, we have(
x∗ − xk+1

)>
∇l(xk, ξk+1) (14)

≤ l(x∗)− l(xk)− µ

2

∥∥∥x∗ − xk∥∥∥2
+ l(xk)− l(xk+1) +

L

2

∥∥∥xk − xk+1
∥∥∥2

+
(
x∗ − xk+1

)>
δk+1

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)>
δk+1 − µ

2

∥∥∥x∗ − xk∥∥∥2
+
L

2

∥∥∥xk − xk+1
∥∥∥2

+
κ

4

∥∥∥xk − xk+1
∥∥∥2

+
1

κ

∥∥∥δk+1
∥∥∥2
.

Substituting Eq. (11) with γ = µ(k + 1) and Eq. (14) with κ = µ(k + 1) into Eq. (10) yields that

l(x∗)− l(xk+1) +

(
y∗ − yk+1

x∗ − xk+1

)>( −Fxk+1

F>yk+1

)
(15)

≥ 1

2s

(∥∥∥y∗ − yk+1
∥∥∥2
−
∥∥∥y∗ − yk∥∥∥2

)
−
∥∥δk+1

∥∥2

µ(k + 1)
+
µ(k + 1) + L

2

∥∥∥x∗ − xk+1
∥∥∥2
− µk + L

2

∥∥∥x∗ − xk∥∥∥2

+

(
1

2βk+1
− L+ µ(k + 1)

2

)∥∥∥xk − xk+1
∥∥∥2
−
λmax(F>F )D2

y

µ(k + 1)
−
(
x∗ − xk

)>
δk+1.

13



Then we obtain Eq. (13) as the same as that in Lemma 14.

4.3.1 Proof of Theorem 9

Because (yk, xk) ∈ Y × X , it holds true that (ȳt, x̄t) ∈ Y × X for all t ≥ 0 since
∑t

k=0 α
k+1 = 1

where αk+1 is defined in Table 1. By invoking the convexity of function l(·) and summing Eq. (13) over
k = 0, 1, . . . , t, we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 1

t+ 1

t∑
k=0

[
1

2s

(
E
∥∥∥y∗ − yk+1

∥∥∥2
− E

∥∥∥y∗ − yk∥∥∥2
)

+
µ(k + 1) + L

2

∥∥∥x∗ − xk+1
∥∥∥2
− µk + L

2

∥∥∥x∗ − xk∥∥∥2
−
λmax(F>F )D2

y + σ2

µ(k + 1)

]

≥ −
D2
y

2s(t+ 1)
− LD2

x

2(t+ 1)
−
(
λmax(F>F )D2

y + σ2
)

log(t+ 1)

µ(t+ 1)
.

This together with the fact that E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≤ 0 implies the conclusion in Theorem 9.

4.3.2 Proof of Theorem 10

Summing (15) over k = 0, 1, . . . , t and invoking the convexity of function l(·) and the definition of Dx,
Dy and βk+1 yields that

P (y∗, x̄t)− P (ȳt, x∗) ≤ At +Bt + Ct,

where

At =
D2
y

2s(t+ 1)
+

LD2
x

2(t+ 1)
+
λmax(F>F )D2

y log(t+ 1)

µ(t+ 1)
,

Bt =
1

t+ 1

t∑
k=0

(
x∗ − xk

)>
δk+1,

Ct =
1

t+ 1

t∑
k=0

∥∥δk+1
∥∥2

µ(k + 1)
.

Note that random variables Bt and Ct are dependent on ξ[1:k−1]. We have the following two claims.

1. For Ω > 0, we have

Prob

(
Bt >

2
√

ΩDxσ√
t+ 1

)
≤ exp (−Ω) .

2. For Ω > 0, we have

Prob

(
Ct >

(1 + Ω)σ2 log(t+ 1)

2µ(t+ 1)

)
≤ exp (−Ω) .

14



For claim 1, we apply the similar argument used in Theorem 8, and obtain the desired inequality. For

claim 2, we let ηk+1 =
1

k+1∑t
i=0

1
k+1

, and apply the similar argument used in Theorem 8, we have

E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]
≤ exp(1).

By Markov’s Inequality, we have

Prob

(
Ct >

(1 + Ω)σ2 log(t+ 1)

2µ(t+ 1)

)
≤ Prob

(
Ct >

(1 + Ω)σ2

2(t+ 1)

t∑
k=0

1

µ(k + 1)

)

≤ exp (−(1 + Ω))E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]
≤ exp (−Ω) .

In conclusion, we have the desired inequality.

4.4 Convergence of non-uniformly averaging under strongly convex objectives

In this subsection, we analyze the convergence property of the SPDHG algorithm with non-uniformly
averaged iterates for strongly convex objectives.

Lemma 16. Let (yk+1, xk+1) be generated by Algorithm 1, and βk+1 and αk+1 be shown in Table 1.
For any stationary point (y∗, x∗) of problem (5), it holds that

0 ≥ E
[
P (yk+1, x∗)− P (y∗, xk+1)

]
(16)

≥ µ(k + 2) + 2L

4
E
∥∥∥x∗ − xk+1

∥∥∥2
+

1

2s
E
∥∥∥y∗ − yk+1

∥∥∥2

−µk + 2L

4
E
∥∥∥x∗ − xk∥∥∥2

− 1

2s
E
∥∥∥y∗ − yk∥∥∥2

−
2λmax(F>F )D2

y + 2σ2

µ(k + 1)
.

Proof. By substituting Eq. (11) with γ = µ(k+1)
2 and Eq. (14) with κ = µ(k+1)

2 into Eq. (10), we have(
y∗ − yk+1

)> (
Fxk − Fxk+1

)
≥ −

2λmax(F>F )D2
y

µ(k + 1)
− µ(k + 1)

8

∥∥∥xk − xk+1
∥∥∥2
,

and (
x∗ − xk+1

)>
∇l(xk, ξk+1)

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)>
δk+1 − µ

2

∥∥∥x∗ − xk∥∥∥2

+
L

2

∥∥∥xk − xk+1
∥∥∥2

+
µ(k + 1)

8

∥∥∥xk − xk+1
∥∥∥2

+
2

µ(k + 1)

∥∥∥δk+1
∥∥∥2
.
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Then we plug the above two inequalities into Eq. (10), and then follow the same argument as Lemma
15 to obtain the desired inequality in Eq. (16).

4.4.1 Proof of Theorem 11

Because (yk, xk) ∈ Y × X , it holds true that (ȳt, x̄t) ∈ Y × X for all t ≥ 0 since
∑t

k=0 α
k+1 = 1

where αk+1 is defined in Table 1. By invoking the convexity of function l(·) and summing Eq. (16) over
k = 0, 1, . . . , t, we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 2

(t+ 1)(t+ 2)

t∑
k=0

(k + 1)

[
−

2λmax(F>F )D2
y + 2σ2

µ(k + 1)
+
µ(k + 2) + 2L

4

∥∥∥x∗ − xk+1
∥∥∥2

−µk + 2L

4

∥∥∥x∗ − xk∥∥∥2
+

1

2s

(
E
∥∥∥y∗ − yk+1

∥∥∥2
− E

∥∥∥y∗ − yk∥∥∥2
)]

≥ −
D2
y

s(t+ 2)
− LD2

x

t+ 2
−

4λmax(F>F )D2
y + 4σ2

µ(t+ 2)

+
µ

2(t+ 1)(t+ 2)

t∑
k=0

[
(k + 2)(k + 1)

∥∥∥x∗ − xk+1
∥∥∥2
− (k + 1)k

∥∥∥x∗ − xk∥∥∥2
]
.

Therefore, we conclude that

0 ≥ E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ −

D2
y

s(t+ 2)
− LD2

x

t+ 2
−

4λmax(F>F )D2
y + 4σ2

µ(t+ 2)
,

which implies the conclusion in Theorem 11.

4.4.2 Proof of Theorem 12

By using the same argument as Theorem 10, we have

P (y∗, x̄t)− P (ȳt, x∗) ≤ At +Bt + Ct,

where

At =
D2
y

s(t+ 2)
+
LD2

x

t+ 2
+

4λmax(F>F )D2
y

µ(t+ 2)
,

Bt =
2

(t+ 1)(t+ 2)

t∑
k=0

(k + 1)
(
x∗ − xk

)>
δk+1,

Ct =
4

µ(t+ 1)(t+ 2)

t∑
k=0

∥∥∥δk+1
∥∥∥2
.

Note that random variables Bt and Ct are dependent on ξ[1:k−1]. We have the following two claims.
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1. For Ω > 0, we have

Prob

(
Bt >

2
√

2ΩDxσ√
t+ 2

)
≤ exp (−Ω) .

2. For Ω > 0, we have

Prob

(
Ct >

(1 + Ω)σ2

√
t+ 1

)
≤ exp (−Ω) .

For claim 1, we use Lemma 13 by setting ζk = (k + 1)
(
x∗ − xk

)>
δk+1, and St =

∑t
k=0 ζk, and σk =

(k + 1)Dxσ, we can verify that E
[
ζk|ξ[1:k−1]

]
= 0, and apply the similar argument used in Theorem 8,

we have

E
[
exp

(
ζ2
k

σ2
k

)
|ξ[1:k−1]

]
≤ E

[
exp

(
D2
x

∥∥δk+1
∥∥2

σ2
k

)
|ξ[1:k−1]

]
≤ exp(1).

Based on the above results, it follows that

Prob

(
St > Ω1Dxσ

√
(t+ 1)(t+ 2)(2t+ 3)

6

)
≤ exp

(
−Ω2

1

4

)
.

Since St = (t+1)(t+2)
2 Bt and Ω1 = 2

√
Ω, we have

Prob

(
Bt >

2
√

2ΩDxσ√
t+ 2

)
≤ exp (−Ω) .

For claim 2, we let ηk+1 = 1
t+1 , and obtain that

E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]

=

t∏
k=0

E

[
exp

(
ηk+1

∥∥δk+1
∥∥2

σ2

)]

≤
t∏

k=0

(
E

[
exp

(∥∥δk+1
∥∥2

σ2

)])ηk+1

≤
t∏

k=0

(exp(1))ηk+1 = exp

(
t∑

k=0

ηk+1

)
= exp(1).
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By Markov’s Inequality, we have

Prob

(
Ct >

4(1 + Ω)σ2

µ(t+ 2)

)
≤ Prob

(
Ct >

4(1 + Ω)σ2

µ(t+ 1)(t+ 2)

t∑
k=0

1

)

≤ exp (−(1 + Ω))E

[
exp

(∑t
k=0 ηk+1

∥∥δk+1
∥∥2

σ2

)]
≤ exp (−Ω) .

In conclusion, we have the desired inequality.

Table 2: Statistics of datasets.

Dataset Number of Samples Dimension

splice 1,000 60
svmguide3 1,243 21

hitech 2,301 10,080
la12 2,301 31,472
k1b 2,340 21,839

ng3sim 2,998 15,810
la2 3,075 31,472
la1 3,204 31,472

reviews 4,069 18,482
classic 7,094 41,681
sports 8,580 14,866
ohscal 11,162 11,465
20news 16,242 100

a9a 32,561 123
w8a 64,700 300

covtype 581,012 55
SUSY 5,000,000 19

5 Experiments

We conduct experiments by evaluating two models: graph-guided logistic regression (GGLR) (17) and
graph-guided regularized logistic regression (GGRLR) (18) in [26],

min
x∈X

l(x) + λ‖Fx‖1 (17)

and
min
x∈X

l(x) +
γ

2
‖x‖22 + λ‖Fx‖1. (18)
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Here l(x) = 1
N

[
N∑
i=1

l(x, ξi)

]
is empirical average of l(x, ξi) on a set of samples, and l(x, ξi) is logistic

function log
(
1 + exp

(
−bi · a>i x

))
, where ξi = (ai, bi). λ is the regularization parameter. F is a penalty

matrix promoting the desired sparse structure of x, which is generated by sparse inverse covariance
selection [17]. To proceed, we reformulate problems (17) and (18) into the convex-concave saddle
point problem (5) and apply our proposed SPDHG algorithm. On the other hand, we can reformulate
problems (17) and (18) into problem (2) by introducing an additional variable z = Fx and then apply
stochastic ADMM algorithms.

In the experiments, we compare our SPDHG algorithm with the LPDHG algorithm, and six existing
stochastic ADMM algorithms1: SADMM [16], OPG-ADMM [19], RDA-ADMM [19], FSADMM[26],
and two variants of adaptive SADMM (i.e., SADMMdiag and SADMMfull) [25]. We do not include
online ADMM [22] and SDCA-ADMM [20] since [19] has shown that RDA-ADMM performs better
than online ADMM while [24] has shown that the performance of FSADMM is comparable to that
of SDCA-ADMM. Finally, SPDC and Adaptive SPDC are excluded from the experiments since they
cannot solve problem (17) and problem (18), as clarified in Section 1.

The experiments are conducted on 17 binary classification datasets: classic, hitech, k1b, la12, la1, la2,
reviews, sports, ohscal 2, a9a, 20news 3, splice, svmguide3, mushrooms, w8a, covtype, SUSY 4. On each
dataset, we use 80% samples for training and 20% for testing, and calculate the lipschitz constant L as
its classical upper bound L̂ = 0.25 max1≤i≤n ‖ai‖2. The regularization parameters are set to λ = 10−5

and γ = 10−2. To reduce statistical variability, experimental results are averaged over 10 repetitions.
We set the parameters of SPDHG exactly following our theory while using cross validation to select the
parameters of the other algorithms. Additionally, we use the metrics in [26] to compare our algorithm
with the other algorithms, including test losses, objective values and time costs to compare our algorithm
with the other. The “test loss” means the value of the empirically averaged loss evaluated on a test
dataset, while the “objective value” means the sum of the empirically averaged loss and regularized
terms evaluated on a training dataset, and the “time cost” means the computational time consumption
of each algorithm. In addition, “Number of Epochs” for the horizontal axis is the ratio between
iteration number and data size.

Specifically, we use test losses (i.e., l(x)) on test datasets, objective values (i.e., l(x) + λ‖Fx‖1 on the
GGLR task and l(x) + γ

2‖x‖
2
2 + λ‖Fx‖1 on the GGRLR task) on training datasets, and computational

time costs on training datasets. Figure 1 shows the objective values, test losses and time costs as the
function of the number of epochs on the GGLR task, where the objective function is convex but not
necessarily strongly convex. We observe that our algorithm SPDHG mostly achieves the best perfor-
mance, surpassing six stochastic ADMM algorithms, all of which outperform LPDHG by a significant
margin. FSADMM sometimes achieves better solutions but consumes much more computational time
than SPDHG. In fact, our algorithm requires the least iterations and computational time among all the
evaluated algorithms. Furthermore, the performance of our algorithm SPDHG on 17 datasets is most
stable and effective among all algorithms as the high-probability analysis expected.

1We use the code of SADMM, OPG-ADMM, RDA-ADMM and FSADMM provided by the authors while implementing
two variants of adaptive SADMM according to [25].

2https://www.shi-zhong.com/software/docdata.zip
3www.cs.nyu.edu/roweis/data.html
4https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
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Figure 1: Comparison of SPDHG with STOC-ADMM (SADMM), RDA-ADMM, OPG-ADMM, Fast-
SADMM (FSADMM), Ada-SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Logistic
Regression Task. Left Panels: Averaged objective values. Middle Panels: Averaged test losses.
Right Panels: Averaged time costs (in seconds).
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Figure 2: Comparison of SPDHG-SC1 (Uniformly Averaged) and SPDHG-SC2 (Non-Uniformly Aver-
aged) with STOC-ADMM (SADMM), RDA-ADMM, OPG-ADMM, Fast-SADMM (FSADMM), Ada-
SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Regularized Logistic Regression
Task. Left Panels: Averaged objective values. Middle Panels: Averaged test losses. Right Panels:
Averaged time costs (in seconds).
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Figure 3: Comparison of SPDHG-SC1 (Uniformly Averaged) and SPDHG-SC2 (Non-Uniformly Aver-
aged) with STOC-ADMM (SADMM), RDA-ADMM, OPG-ADMM, Fast-SADMM (FSADMM), Ada-
SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Regularized Logistic Regression
Task. Left Panels: Averaged objective values. Middle Panels: Averaged test losses. Right Panels:
Averaged time costs (in seconds).
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Figure 4: Comparison of SPDHG-SC1 (Uniformly Averaged) and SPDHG-SC2 (Non-Uniformly Aver-
aged) with STOC-ADMM (SADMM), RDA-ADMM, OPG-ADMM, Fast-SADMM (FSADMM), Ada-
SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Regularized Logistic Regression
Task. Left Panels: Averaged objective values. Middle Panels: Averaged test losses. Right Panels:
Averaged time costs (in seconds).
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We further compare our algorithm against the other algorithms on the GGRLR task, where the ob-
jective function is strongly convex, and experiments results on all the datasets listed in Table 2. The
experimental results are displayed in Figure 2, Figure 3, and Figure 4. Our algorithm still outperforms
the other algorithms consistently, which supports our high-probability analysis in the previous sections.
We also find that the difference between uniformly averaging and non-uniformly averaging is not signif-
icant. One reason is that our algorithm converges within only one or two effective epochs. In this case,
non-uniformly averaging will not exhibit its advantage.

6 Conclusions

In this paper, we propose a novel convex-concave saddle point formulation to resolve problem (1) as
well as the stochastic variant of the PDHG algorithm, named SPDHG. The new algorithm can tackle a
variety of real-world problems which cannot be efficeintly solved by the existing stochastic primal-dual
algorithms proposed in [12, 24, 28, 4]. We further provided the high-probability convergence analysis
for the proposed SPDHG algorithm when applied to deal with general and strongly convex objectives,
respectively.

The proposed SPDHG algorithm is well-suited for addressing compositely regularized minimization
problems when the penalty matrix F is non-diagonal. The experiments in performing graph-guided lo-
gistic regression and graph-guided regularized logistic regression tasks demonstrated that our algorithm
outperforms the other competing stochastic algorithms.
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