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Abstract

Despite the great successes of deep learning, the effectiveness of deep neural networks has not been understood

at any theoretical depth. This work is motivated by the thrust of developing a deeper understanding of recurrent

neural networks, particularly LSTM/GRU-like networks. As the highly complex structure of the recurrent unit in

LSTM and GRU networks makes them difficult to analyze, our methodology in this research theme is to construct

an alternative recurrent unit that is as simple as possible and yet also captures the key components of LSTM/GRU

recurrent units. Such a unit can then be used for the study of recurrent networks and its structural simplicity may allow

easier analysis. Towards that goal, we take a system-theoretic perspective to design a new recurrent unit, which we call

the prototypical recurrent unit (PRU). Not only having minimal complexity, PRU is demonstrated experimentally to

have comparable performance to GRU and LSTM unit. This establishes PRU networks as a prototype for future study

of LSTM/GRU-like recurrent networks. This paper also studies the memorization abilities of LSTM, GRU and PRU

networks, motivated by the folk belief that such networks possess long-term memory. For this purpose, we design

a simple and controllable task, called “memorization problem”, where the networks are trained to memorize certain

targeted information. We show that the memorization performance of all three networks depends on the amount

of targeted information, the amount of “interfering” information, and the state space dimension of the recurrent

unit. Experiments are also performed for another controllable task, the adding problem, and similar conclusions are

obtained.

Introduction

Deep learning has demonstrated great power in the recent years and appears to have prevailed in a broad spectrum of

application domains (see, e.g., [12] [17]). Despite its great successes, the effectiveness of deep neural networks has not

been understood at a theoretical depth. Thus developing novel analytic tools and theoretical frameworks for studying

deep neural networks is of the greatest importance at the present time, and is anticipated to be a central subject of

machine learning research in the years to come.

This work is motivated by the thrust of understanding recurrent neural networks, particularly LSTM/GRU-like

networks [13] [8] [9] [4] [23]. These networks have demonstrated to be the state-of-the-art models for time series or

sequence data [10] [1] [21]. Recently LSTM/GRU recurrent units have also been successfully adopted for modelling

other forms of data (e.g., [3] [22]). Despite these successes, the design of LSTM and GRU recurrent units was in fact

heuristical; to date there is little theoretical analysis justifying their effectiveness. A particularly interesting observa-

tion regarding these networks is that they appear to possess “long-term memory”, namely, being able to selectively

“remember” the information from many time steps ago [7]. As one may naturally expect such memorization capability

to have played an important role in the working of these networks, this aspect has not been well studied, analytically

or experimentally.

The difficulty in analyzing recurrent networks resides in the complex structure of the recurrent unit, which induces

highly complex nonlinear dynamics. To understand LSTM-like recurrent networks, the methodology explored in this

theme of research is to maximally simplify the structure of the recurrent unit. That is, we wish to construct an alter-

native recurrent unit that captures the key components LSTM and GRU but stays as simple as possible. Such a unit

can then be used for the study of recurrent networks and its structural simplicity may allow easier analysis in future

research.
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Towards that goal, the main objective of this present paper is to design such a recurrent unit and verify that this unit

performs comparably to LSTM and GRU. To that end, we develop a new recurrent unit, which we call the Prototypical

Recurrent Unit (PRU). We rationalize our design methodology from a system-theoretic perspective where a recurrent

unit is understood as a causal time-invariant system in state-space representations. Insights from previous research

suggest that additive evolution appear essential for LSTM-like networks to avoid the “gradient-vanishing” problem

under back-propagation [14] [5] [18]. This understanding is also exploited in our design of PRU.

The performance of PRU is verified and compared against LSTM and GRU via extensive experiments. Using

these three kinds of recurrent unit, we not only experiment on constructing a standard language model for character

prediction [19], but also test the recurrent units for two controlled learning tasks, the Adding Problem [13], and the

Memorization Problem. The latter problem is what we propose in this work specifically for studying the memorization

capability of the recurrent networks. All experimental results confirm that PRU performs comparably to LSTM and

GRU, achieving the purpose of this paper.

As another contribution, our experiments in this work demonstrate that the intrinsic memorization capability of the

recurrent units depends critically on the dimension of the state space. The amount of targeted information (for mem-

orization), the duration of memory, and the intensity of the interfering signal also directly impact the memorization

performance.

Finally it is perhaps worth noting that although PRU is designed to be a prototype which hopefully allows for

easier analysis in future research, our experiments suggest that it can also be used as a practical alternative to LSTM

and GRU. A particular advantage of PRU is its time complexity. In this metric, PRU demonstrates to be superior to

both LSTM and GRU.

State-Space Representations

In system theory [15], a (discrete-time) system can be understood as any physical or conceptual device that responds

to an input sequence x1, x2, . . . and generates an output sequence y1, y2, . . ., where the indices of the sequences are

discrete time. In general, each xt and each yt at any time t may be a vector of arbitrary dimensions. We will then use

X and Y to denote the vector spaces from which xt and yt take value respectively. We will call X the input space

and Y the output space. The behaviour of the system is characterized by a function J that maps the space of all input

sequences to the space of all output sequences. Then two systems J and J ′ are equivalent if J and J ′ are identical as

functions.

The class of systems that are of primary interest are causal systems, namely those in which the output yt at each

time t is independent of all future inputs xt+1, xt+2, . . .. The grand idea in system theory is arguably the introduction

of the notion of state to causal systems [15]. This makes state-space models the central topic in system theory, resulting

in wide and profound impact on system analysis and design. In a nutshell, the state configuration is an quantity internal

to the system, serving as a complete summary of the all past inputs so that given the current state, the current and

future outputs are independent of all past inputs.

In this perspective, a recurrent unit can be regarded precisely as a causal time-invariant system in a state-space

representation. We now formalize such a state-space representations.

At each time instant t, in addition to the input variable xt and output variable yt, the representation of a recurrent

unit also contains a state variable st, taking values in a vector space S , which will be referred to as the state space.

Before the system is excited by the input, or at time t = 0, it is assumed that the state variable s0 takes certain initial

configuration, which is assumed customarily to be the origin 0 ∈ S .

The behavior of the recurrent unit is governed by two functions F : X × S → S and G : X × S → Y as follows.

At each time instant t, function F maps the current input xt and the previous state st−1 to the current state st, namely,

via

st = F (xt, st−1), (1)

and function G maps the current input xt and the current state st to the current output yt, namely, via

yt = G(xt, st). (2)

That is, in general a recurrent unit can be specified by the tuple (X ,Y ,S, F,G) according to (1) and (2). We call

such specification of the recurrent unit Type-I state-space representation of the unit, and denote it by (X ,Y ,S, F,G)I.
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Figure 1: A recurrent network(top) and the dependency structure of variables in Type-I representation (middle) and

Type-II representation (bottom).

It is remarkable that Type-I state-space representation is generic for any causal time-invariant system and hence

generic for any recurrent unit. To illustrate this, we take the LSTM network as an example. The standard formulation

of the LSTM network is given by the following equations:

it = σ(Wi[ct−1, ht−1, xt] + bi) (3)

ft = σ(Wf [ct−1, ht−1, xt] + bf) (4)

ot = σ(Wo[ct−1, ht−1, xt] + bo) (5)

c̃t = tanh(Wc[ht−1, xt] + bg) (6)

ct = it ⊙ c̃t + ft ⊙ ct−1 (7)

ht = ot ⊙ tanh(ct) (8)

where ⊙ is the element-wise product. In these equations, if we take (ct, ht) as state st, and ht as yt, Equations(3-7)

can be expressed as Equation (1), and Equations (5) and (8) can be expressed as Equation (2). We then arrive at a Type-

I representation. It is also easy to verify that the recurrent unit in RNN [6] and GRU networks can all be expressed this

way.

As a clarification which might be necessary for the remainder of this paper, we pause to remark that in this paper

(and under a system-theoretic perspective), the notion of a recurrent unit and that of a recurrent (neural) network are

synonyms. In particular, a recurrent unit that operates over n time instances may be viewed as n copies of the same

recurrent unit connected in a chain-structured network as shown in Figure 1 (top). In this “time-unfolded” view, the

dependency structure between the variables in Type-I representation is shown in Figure 1 (middle).

Since we aim at designing a simpler recurrent unit, we now introduce another simpler representation, which we

call Type-II state-space representation. This representation is identical to the Type-I representation except that the

function G is made to have domain S , or alternatively put, the current output yt at each time t is made dependent only

of the current state st. That is, G acts only on st and generates yt via

yt = G(st). (9)
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Under this representation, the recurrent unit is specified again by the tuple (X ,Y ,S, F,G), but according to (1) and

(9). We denote this representation by (X ,Y ,S, F,G)II. A diagram exhibiting the dependency structure of the variables

in this representation is shown in Figure 1 (bottom).

The following lemma suggests that Type-II representation has precisely the same expressive power as Type-I

representation.

Lemma 1 Given its input and output spaces X and Y , a recurrent unit can be represented by (X ,Y ,S, F,G)I for

some choice of S , F and G if any only if it can be represented by (X ,Y , S̃, f, g)II for some choice of S̃ , f and g.

As the proof of this lemma contains certain insights into state-space representations, we sketch it here.

The “if” part of the proof is trivial, since function G in Equation (9) is a special case of function G in Equation

(2). The “only if” part can be proved by construction, proceeded as follows. Let (X ,Y ,S, F,G)I be given. Define

S̃ := X × S . Let function f : X × S̃ → S̃ be defined as follows: for each (x, x′, s) ∈ X × X × S = X × S̃ ,

f(x, x′, s) = (x∗, s∗) ∈ X × S = S̃ , where x∗ = 0 ∈ X and s∗ = F (x, s) ∈ S . Define function g : S̃ → Y

as follows: for each (x, s) ∈ X × S = S̃ , g(x, s) = G(x, s). Now the lemma can be proved by identifying that

systems (X ,Y ,S, F,G)I and (X ,Y , S̃, f, g)II are equivalent. This latter fact can be easily established using proof by

induction.

The significance of this lemma is that every recurrent unit can be represented using Type-II representation, in

which the current output is made only dependent of the current state. In the proof of this result, we see that to convert

a Type-I representation to a Type-II representation, it may require increasing the dimension of the state space. In the

worst case, although often unnecessary in practice, one can make the state space S̃ equal to the cartesian product

X × S of the input space X and the state space S in the Type-I representation.

Prototypical Recurrent Unit (PRU)

Given that there is no loss of expressive power in Type-II representation, to arrive at a simplified recurrent unit, we

will stay within this representation. That is, for some given choices of vector spaces X , Y , and S , we will design two

functions F : X × S → S and G : S → S for (X ,Y ,S, F,G)II. It is our hope that the designed recurrent unit

captures the essence of recurrent unit in LSTM and GRU networks, but stays as simple as possible.

From the previous literature [20], the following properties of LSTM and GRU appear crucial for their effectiveness.

1. The recurrent unit behaves according to a nonlinear system, where the nonlinearity is induced by the use of

nonlinear activation functions such as sigmoid, tanh, or ReLU functions.

2. The evolution from state st to state st+1 is additive. It has been understood that such a property is critical for

eliminating the problem of vanishing or blowing-up gradient in backpropagation.

Based on this understanding, our design philosophy is to impose these two properties minimally on the recurrent

unit. Our hypothesis is that if these two properties are indeed essential, the resulting recurrent unit will behave in a

way similar to GRU and LSTM recurrent units and can be used as a prototypical example for in-depth understanding

of LSTM/GRU-like recurrent networks.

Such a design philosophy naturally results in the following new recurrent unit, which we call the Prototypical

Recurrent Unit (PRU) and now describe.

We begin with some notations. We consider X = R
m, Y = R

l and S = R
k; all vectors are taken as column

vectors; the sigmoid (logistic or soft-max) function will be denoted by σ; when an activation function (σ, tanh, or any

other function h : R → R) applies to a vector, it acts on the vector element-wise and outputs a vector of the same

length.

With these notations, we describe the functions F and G in (X ,Y ,S, F,G)II that defines PRU.

Function F : The function F is defined by the following sequence of function compositions involving two other

variables ut ∈ S and ct ∈ R
k (we note that although here ct is a k-dimensional vector, it should not be interpreted as

a state configuration in S due to its physical meaning).

ut = tanh (Usst−1 + Uxxt + bu) (10)
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where Us is a k × k matrix, Ux is a k ×m matrix, and bu is a k-dimensional vector.

ct = σ
(
CT

s st−1 + CT
x xt + bc

)
(11)

where Cs is a k × k matrix, Cx is a k ×m matrix, and bc is a k-dimensional vector.

st = ct ⊙ st−1 + (1− ct)⊙ ut (12)

where ⊙ is the element-wise product.

Function G: The function G is defined as follows.

yt = h(Wst + b) (13)

where W is an l × k matrix, b is a length l vector, and h is an activation function. Depending on the applications and

the physical meaning of output yt, h can be chosen as σ, tanh, ReLU, or even the identity function.

At this point, we have completely defined PRU, which is parameterized by θ := (Cx, Cs, bc, Ux, Us, bu,W, b).

Experimental Study

Our experimental study serves two purposes.

First, we wish to verify that the designed PRU behaves similarly as LSTM and GRU. For this purpose, experiments

need to be performed not only for real-world applications, in which one has no control over the datasets, but also for

certain meaningful tasks where we have full control over the data. Such controllable tasks will allow a comparison of

these recurrent units over arbitrary ranges of data parameter settings, so as to fully demonstrate the performances of

the compared recurrent units and reduce the risk of being biased by the statistics of a particular dataset.

Second, we wish to take the opportunity to investigate a fundamental aspect of recurrent networks, namely, their

memorization capabilities. It has been experimentally observed and intuitively justified that LSTM/GRU-like recur-

rent unit has “long-term memory” [11]. Motivate by such observations, we are interested in thoroughly studying the

memorization capability of these recurrent units and understand what factors may influence their memorization per-

formance.

As such, we consider four different learning tasks, where the recurrent networks are trained to solve four different

problems: the Memorization Problem, the Adding Problem, the Character Prediction Problem, and the MNIST Image

Classification Problem. The Character Prediction Problem and the MNIST Image Classification Problem are two

well-known problems in the real-world application domain [19] [16]. The Adding Problem is a controllable task, first

introduced in [13]. The Memorization Problem is also a controllable task that we introduce in this work, inspired by

the idea of a similar task presented in [2].

All models in these experiments have the architecture shown in the top diagram of Figure 1 with single layer. In

Memorization problem and Adding problem, we use single layer structure, in the other two experiments we will use a

two-layer stacked structure. In the description of the experiments, when we speak of “state space dimension”, for both

PRU and GRU, it refers to the length of the vector passed between two consecutive recurrent units in the diagram. In

LSTM networks, there are two vectors of the same length passed between two consecutive recurrent units. Although

from a system-theoretic perspective, two times this length should be regarded as the state space dimension, this choice

would put LSTM in disadvantage. This is because the output of the unit depends only on one of the vectors. For this

reason, for LSTM networks, the term “state space dimension” refers to half of the true state-space dimension.

Experiments on Memorization Problem and Adding Problem are performed on the computer(Intel(R) Core(TM)

i5-4570 CPU @3.20Hz), whereas experiment on Character Prediction Problem and MNIST Image Classification Prob-

lem are performed on a GeForce GTX 970 GPU. Time cost is evaluated in unit of second.

Memorization Problem

To describe this problem, let us first imagine a “memorization machine” Mmem that behaves as follows. For any given

non-negative integers I and N , an input sequence x1, x2, . . . , xI+N of scalar values are fed to the machine, where
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for t = 1, 2, . . . , I , xt takes on value in {+1,−1} each with probability 1/2, and for t = I + 1, I + 2, . . . , I + N ,

xt is drawn independently from a Gaussian distribution with zero mean and variance δ2. After processing the input

sequence, the machine generates an output vector (x1, x2, . . . , xI)
T of dimension I . That is, as a function, the machine

Mmem behaves according to

Mmem(x1, x2, . . . , xI+N ) = (x1, x2, . . . , xI)
T .

Then in the Memorization Problem, the objective is to train a model that simulates the behaviour of Mmem,

namely, capable of “memorizing” the “I bit” “targeted information” in the beginning of the input sequence, after N
symbols of “noise” or “interfering signal” enter the model. Obviously, the Memorization Problem is configured by

three parameters: I , N , and δ, where I represents the amount of targeted information, N represents the duration of

memory, and δ represents the intensity of noise that might interfere with the memorization behaviour of the model.

Modelling: Under a recurrent network model, it is natural to regard the input space X as R and the output space Y as

R
I , and one may freely configure the dimension k of the state space S . Except at the final time t = I +N , the output

yt is discarded, and final output yI+N is used to simulate the output Mmem(x1, x2, . . . , xI+N ) of the memorization

machine.

Datasets: For each problem setting (I,N, δ2), we generate 50000 training examples and 1000 testing examples ac-

cording to the specification of the problem.

Training: The training of each model is performed by optimizing the Mean Square Error (MSE) defined as

EMSE(θ) := E‖Mmem(x1, x2, . . . , xI+N )− yI+N‖2 (14)

where the expectation operation E is taken as averaging over the training examples. Mini-batched Stochastic Gradient

Descent (SGD, in fact more precisely, mini-batched Back-Propagation Through Time) is used for this optimization.

The batch size is chosen as 100, the learning rate as 10−3, and the number of epochs as 1000. Each component of

the model parameters is initialized to random values drawn independently from the zero-mean unit-variance Gaussian

distribution.

Evaluation Metrics: A trained model is evaluated using MSE defined in (14), where the expectation operation E is

taken as averaging over the testing examples. For experiment setting (I,N, δ2, k), each studied model is trained 50
times with different random initializations, and the average MSE is taken the performance metric for the experiment

setting. Time complexity for the three models are also evaluated.
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Figure 2: MSE comparison of LSTM, GRU and PRU networks in Memorization Problem with same state space

dimension

Results: Results are obtained for LTSM, GRU and PRU under various problems settings (I,N, δ2) and model state-

space dimensions k.

Figure 2 shows the performance comparison of the three recurrent units with same state space dimension. It can

be seen that the three units perform similarly, among which LSTM’s performance is superior to the other two with

same state space dimension. However, in this comparison, LSTM uses the most parameters. Figure 3 demonstrates the

performances under the same number of parameters. It can be observed that PRU outperforms GRU, even catches up

the performance of LSTM to a certain extent. In addition, with respect to any given parameter, the performance trends

of the three units are identical.

Figure 4 shows how the performance of each unit is related to the problem parameters I , N , and δ2. For every unit

and a fixed state space dimension k, the following performance trend can be observed.
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Figure 3: MSE comparison of LSTM, GRU and PRU networks in Memorization Problem with same number of pa-

rameters.
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Figure 4: MSE comparison of LSTM, GRU and PRU networks with varying parameters in Memorization Problem

• The performance degrades with increasing I . That is, when the amount of targeted information increases, it

becomes more difficult for the unit to memorize this information.

• The performance degrades with increasing N . That is, over a long period of time, the units tend to forget the

targeted information.

• The performance degrades with increasing δ2. That is, when the interfering signal become stronger, it is more

difficult to memorize the targeted information.

Figure 5 shows how the performance of each unit varies with the state space dimension k. It is apparent from the
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Figure 5: MSE comparison of LSTM, GRU and PRU networks with varying state-space dimension k.

figure that as the dimension of state space increases, the performance of each unit improves. This behaviour is sensible,

since the role of the state variable in a recurrent unit may be intuitively understood as the “container” for “storing”

information, and large state space would result in larger “storage capacity”.

From Table 1 (measured at k = 15 and I = 15), it can be observed that PRU has lowest time complexity,

significantly below GRU and LSTM. This is a direct consequence of PRU’s structural simplicity.

Table 1: Time cost per epoch in Memorization Problem, k = 3, I = 2
N 20 30 40 50 60

LSTM 40.445 60.575 80.653 102.435 125.245

GRU 30.355 45.863 60.524 76.328 93.558

PRU 20.472 31.791 43.434 55.131 70.244

Adding Problem

To describe the Adding Problem, let Madd be an “adding machine”, which is a function mapping a length-N sequence

(x1, x2, . . . , xN ) to a real number. In particular, each xt, t = 1, 2, . . . , N , is a vector in R
2, and we may write xt

as (xt[1], xt[2])
T . At each t, xt[1] is a random value drawn independently from the zero-mean Gaussian distribution

with variance δ2; and in the sequence (x1[2], x2[2], . . . , xN [2]), there are exactly two 1’s, the locations of which are

randomly assigned; the remaining values of the sequence all are equal to 0. The behaviour of the adding machine is

given by

Madd(x1, x2, . . . , xN ) :=

N∑

t=1

xt[1] · xt[2].

The objective of the Adding Problem is then to train a model that simulates the behaviour of Madd. Obviously, the

Adding Problem is parametrized by the pair (N, δ2). Intuitively, the Adding Problem demands higher “memorization

capacity” than the Memorization Problem, since only counting the locations of the two 1’s in the second component

the input sequence, there are
(
N

2

)
possibilities.

Modelling: Under a recurrent network model, it is natural to take input space X = R
2 and output space Y =

R. Except at the final time t = N , the output yt is discarded, and final output yN is used to simulate the output

Madd(x1, x2, . . . , xN ) of the adding machine.

Datasets: For each problem setting (N, δ2), we generate 2000 training examples and 400 testing examples according

to the specification of the problem.

Training: The training of each model is performed by optimizing the MSE between the yN and Madd(x1, x2, . . . , xN ).
A mini-batched SGD method is used for optimization, where we use the same set of training parameters as those in

the Memorization Problem, except that the batch size is chosen as 50.

Evaluation Metrics: MSE is used as the evaluation metric, and the same averaging process as that for the Memoriza-

tion Problem is applied.
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Figure 6: MSE comparison of LSTM, GRU and PRU in Adding Problem.
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Figure 7: MSE comparison of LSTM, GRU and PRU in Adding Problem with same number of parameters.
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Figure 8: MSE comparison of LSTM, GRU, and PRU in Adding Problem under varying experiment settings. The MSE

value has been normalized over δ2.

Results: Figure 6 shows the performance comparison of LSTM, GRU and PRU in the Adding Problem with the same

state space dimension, Figure 7 shows the performance comparison of the three recurrent units with the same number

of parameters and Figure 8 shows the performance trend of each of the three units with respect varying parameters.

In Adding Problem, overall the three units perform comparably, GRU superior to the other two units. It is worth

noting in Figure 6, with low state-space dimension (k = 1), PRU appears under-perform LSTM. But as the state-space
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dimension increases, PRU catches up (at k = 2) and even out-performs LSTM (at k = 3). This may be explained

as follows. First the Adding Problem demands higher “memorization capacity”. But as we discussed earlier, PRU

uses the Type-II representations, which may need larger state-space for the same representation power. In Figure 7, it

can be seen that the performance difference between PRU and GRU is narrowing with same number of parameters,

additionally, under certain parameter settings, the performance between PRU and GRU is almost with no difference

even the same.

These results also suggest that the three studied units all have identical performance trends with respect to state-

space dimension or any given problem parameter. Conclusions similar to those in the Memorization Problem may

be obtained. The time complexity of PRU is also the lowest among the three for the Adding Problem(table below,

measured at k = 3).

Table 2: Time cost per epoch for Adding Problem, k = 3
N 2 4 6 8 10

LSTM 0.4678 0.8097 1.1826 1.5450 2.0387

GRU 0.4346 0.7270 0.9954 1.3106 1.5756

PRU 0.3191 0.5822 0.7367 0.9380 1.2037

Character Prediction Problem

Let Mchar be a “character-prediction machine”, which takes an input sequence (x1, x2, . . . , xN ) of arbitrary length N
and produces an output sequence of the same length. The input sequence is fed to the machine one symbol per time

unit, and at each time t, the machine is characterized by a function M t
char defined by

M
t
char(x1, . . . , xt) := xt+1.

That is, for every input sequence, the output of the machine is the input sequence shifted in time. Here each symbol xt

is a character in a K-character alphabet. Each character in the alphabet is represented by a length-K one-hot vector.

The objective of the Character Prediction Problem is then to train a model that simulates the behaviour of Mchar.

Modelling: Naturally, both X and Y are taken as RK in the models. The output yt is computed by a soft-max classifier.

Dataset: A Shakespeare drama dataset1 is used in this experiment, where each sentence is taken as an input sequence.

The dataset consists of 1,115,393 occurrences of characters from an alphabet of size 64, where 90% of the sentences

are used for training set and the rest is held out for testing.

Training and Evaluation: The objective of this problem is to minimize the (expected) cross entropy loss (CEL)

ECEL(θ) = −E

(
1

N

N∑

t=1

K∑

i=1

M
t
char(x1, . . . , xt)[i] log yt[i]

)

where we have used v[i] to denote the ith component of vector v, and usedN to denote the length of the input sequence.

Mini-batched SGD with Adadelta dynamic learning rate [24] is used for optimization. All parameters are randomly

initialized in [−0.1, 0.1], and the base learning rate is set to 0.8. CEL is used to evaluate the models.

Results: Figure 9 plots the performances of the three units as functions of SDG epoch number. The three units show

very close performances for the chosen three settings of state space dimension. The table below lists the CEL perfor-

mance of the three recurrent units at the end of SDG iterations, where PRU appears slightly outperform the other two.

State Space Dimension LSTM GRU PRU

64 1.2752 1.3015 1.2245

96 1.2211 1.2132 1.1894

128 1.1584 1.1968 1.1410

The average training time for PRU, GRU, and LSTM per epoch are respectively 83.65, 104.65 and 188.86 seconds

respectively, with PRU leading by a significant margin.

1https://github.com/karpathy/char-rnn
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Figure 9: CEL comparison of LSTM, GRU and PRU in Character Prediction Problem

MNIST Image Classification Problem

The MNIST dateset contains images of handwritten digits(′0′ −′ 9′), all the images are of size 28× 28, we treat each

row of the image(28 pixels) as a single input in the input sequence. Let Mimage be a “image-classification machine”,

which takes an input sequence (x1, x2, . . . , xN ) with N = 28 and predict the label y of the input sequence. the

machine is asked to predict the category of the image after seeing all the pixels and Mimage can be defined by

Mimage(x1, . . . , xN ) := y

The objective of the MNIST Image Classfication Problem is then to train a model that simulates the behaviour of

Mchar.

Modelling: It is natural to take input space X = R
28 and Y = R

10, since the number of image category is 10. in the

models. The output y is computed by a soft-max classifier.

Dataset: The MNIST dataset2 contains 60,000 images in the training set, and 10,000 in the test set.

Training and Evaluation: The objective of this problem is to maximize the prediction accuraty (PA)

EPA(θ) =
1

K

K∑

i=1

G (Mimage(x
i
1, . . . , x

i
N ), yi)

where we have used K to denote the total number of examples , (xi
1, . . . , x

i
N ) and yi denote the input and label of un

example respectively, if Mimage(x
i
1, . . . , x

i
N ) matches yi, the value of G (Mimage(x

i
1, . . . , x

i
N ), yi) is 1, otherwise 0.

Mini-batched SGD with Adadelta dynamic learning rate [24] is used for optimization. All parameters are randomly

initialized in [−0.1, 0.1], and the base learning rate is set to 0.1. PA is used to evaluate the models.
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Figure 10: Test prediction accuracy comparison of LSTM, GRU and PRU in MNIST Image Classification Problem:

Under same state space dimension(left), With same number of parameters(right)

Results: Results are obtained for LTSM, GRU and PRU in two conditions: under of model state-space dimensions

k and the same number of parameters p. Figure 10 plots the performances of the three units as functions of iteration

2 http://yann.lecun.com/exdb/mnist/

11



Experiment Setting LSTM GRU PRU

Same state space dimension 0.9815 0.9821 0.9852

Same number of parameters 0.9815 0.9843 0.9856

Table 3: Prediction Accuracy for MNIST Image Classification

number. The three units show very close performances for the chosen three settings of state space dimension. The table

below lists the PA performance of the three recurrent units at the end of SDG iterations, the performance on MNIST

is similar to that on the character prediction problem, where PRU appears slightly outperform the other two.

The average training time for PRU, GRU, and LSTM per epoch are respectively 110.73, 154.94 and 210.04 seconds

respectively, with PRU leading by a significant margin.

Concluding Remarks

This paper presents a new recurrent unit, PRU. Having very simple structure, PRU is shown to perform similarly to

LSTM and GRU. This potentially allows the use of PRU as a prototypical example for analytic study of LSTM-like

recurrent networks. Its complexity advantage may also make it a practical alternative to LSTM and GRU.

This work is only the beginning of a journey towards understanding recurrent networks. It is our hope that PRU

may provide some convenience to this important endeavor.
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