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Abstract—Deep domain adaptation has emerged as a new
learning technique to address the lack of massive amounts of
labeled data. Compared to conventional methods, which learn
shared feature subspaces or reuse important source instances
with shallow representations, deep domain adaptation methods
leverage deep networks to learn more transferable represen-
tations by embedding domain adaptation in the pipeline of
deep learning. There have been comprehensive surveys for
shallow domain adaptation, but few timely reviews the emerging
deep learning based methods. In this paper, we provide a
comprehensive survey of deep domain adaptation methods for
computer vision applications with four major contributions. First,
we present a taxonomy of different deep domain adaptation
scenarios according to the properties of data that define how
two domains are diverged. Second, we summarize deep domain
adaptation approaches into several categories based on training
loss, and analyze and compare briefly the state-of-the-art methods
under these categories. Third, we overview the computer vision
applications that go beyond image classification, such as face
recognition, semantic segmentation and object detection. Fourth,
some potential deficiencies of current methods and several future
directions are highlighted.

I. INTRODUCTION

Over the past few years, machine learning has achieved
great success and has benefited real-world applications. How-
ever, collecting and annotating datasets for every new task
and domain are extremely expensive and time-consuming
processes, sufficient training data may not always be available.
Fortunately, the big data era makes a large amount of data
available for other domains and tasks. For instance, although
large-scale labeled video databases that are publicly available
only contain a small number of samples, statistically, the
YouTube face dataset (YTF) consists of 3.4K videos. The
number of labeled still images is more than sufficient [107].
Hence, skillfully using the auxiliary data for the current task
with scarce data will be helpful for real-world applications.

However, due to many factors (e.g., illumination, pose,
and image quality), there is always a distribution change
or domain shift between two domains that can degrade the
performance, as shown in Fig. [T] Mimicking the human vision
system, domain adaptation (DA) is a particular case of transfer
learning (TL) that utilizes labeled data in one or more relevant
source domains to execute new tasks in a target domain. Over
the past decades, various shallow DA methods have been
proposed to solve a domain shift between the source and target
domains. The common algorithms for shallow DA can mainly
be categorized into two classes: instance-based DA [6], [18]]
and feature-based DA [37]], [82], [30], [81]. The first class
reduces the discrepancy by reweighting the source samples,
and it trains on the weighted source samples. For the second
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class, a common shared space is generally learned in which
the distributions of the two datasets are matched.

Recently, neural-network-based deep learning approaches
have achieved many inspiring results in visual categorization
applications, such as image classification [62]], face recognition
[112], and object detection [35]]. Simulating the perception
of the human brain, deep networks can represent high-level
abstractions by multiple layers of non-linear transformations.
Existing deep network architectures [[71] include convolutional
neural networks (CNNs) [62], [L06], [110], [44], deep belief
networks (DBNs) [46]], and stacked autoencoders (SAEs)
[122], among others. Although some studies have shown that
deep networks can learn more transferable representations that
disentangle the exploratory factors of variations underlying the
data samples and group features hierarchically in accordance
with their relatedness to invariant factors, Donahue et al.
[22] showed that a domain shift still affects their perfor-
mance. The deep features would eventually transition from
general to specific, and the transferability of the representation
sharply decreases in higher layers. Therefore, recent work has
addressed this problem by deep DA, which combines deep
learning and DA.

There have been other surveys on TL and DA over the
past few years [83]], [101], [20], [84], [137], [19]. Pan et
al. [83] categorized TL under three subsettings, including
inductive TL, transductive TL, and unsupervised TL, but they
only studied homogeneous feature spaces. Shao et al. [101]]
categorized TL techniques into feature-representation-level
knowledge transfer and classifier-level knowledge transfer.
The survey written by Patel [84]] only focused on DA, a
subtopic of TL. [20] discussed 38 methods for heterogeneous
TL that operate under various settings, requirements, and
domains. Zhang et al. [137] were the first to summarize several
transferring criteria in detail from the concept level. These
five surveys mentioned above only cover the methodologies
on shallow TL or DA. The work presented by Csurka et al.
[19] briefly analyzed the state-of-the-art shallow DA methods
and categorized the deep DA methods into three subsettings
based on training loss: classification loss, discrepancy loss and
adversarial loss. However, Csurka’s work mainly focused on
shallow methods, and it only discussed deep DA in image
classification applications.

In this paper, we focus on analyzing and discussing deep
DA methods. Specifically, the key contributions of this survey
are as follows: 1) we present a taxonomy of different deep
DA scenarios according to the properties of data that define
how two domains are diverged. 2) extending Csurka’s work,
we improve and detail the three subsettings (training with
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Fig. 1. (a) Some object images from the ”"Bike” and “Laptop” categories in Amazon, DSLR, Webcam, and Caltech-256 databases. (b) Some digit images
from MNIST, USPS, and SVHN databases. (c) Some face images from LFW, BCS and CUFS databases. Realworld computer vision applications, such as

face recognition, must learn to adapt to distributions specific to each domain.

classification loss, discrepancy loss and adversarial loss) and
summarize different approaches used in different DA scenes.
3) Considering the distance of the source and target domains,
multi-step DA methods are studied and categorized into hand-
crafted, feature-based and representation-based mechanisms.
4) We provide a survey of many computer vision applications,
such as image classification, face recognition, style transla-
tion, object detection, semantic segmentation and person re-
identification.

The remainder of this survey is structured as follows.
In Section II, we first define some notations, and then we
categorize deep DA into different settings (given in Fig. 2). In
the next three sections, different approaches are discussed for
each setting, which are given in Table [[] and Table [[]in detail.
Then, in Section VI, we introduce some successful computer
vision applications of deep DA. Finally, the conclusion of this
paper and discussion of future works are presented in Section
VIIL

II. OVERVIEW
A. Notations and Definitions

In this section, we introduce some notations and definitions
that are used in this survey. The notations and definitions
match those from the survey papers by [83], to maintain
consistency across surveys. A domain D consists of a fea-
ture space X' and a marginal probability distribution P(X),
where X = {x1,..,2z,} € X. Given a specific domain
D = {X,P(X)}, a task T consists of a feature space Y
and an objective predictive function f(-), which can also be
viewed as a conditional probability distribution P(Y|X) from
a probabilistic perspective. In general, we can learn P(Y|X)
in a supervised manner from the labeled data {x;,y;}, where
$i€Xal’ldyi€y.

Assume that we have two domains: the training dataset
with sufficient labeled data is the source domain D° =
{X*, P(X)®}, and the test dataset with a small amount of
labeled data or no labeled data is the target domain D! =

{X*, P(X)'}. We see that the partially labeled part, D,
and the unlabeled parts, D', form the entire target domain,
that is, D* = D U D*. Each domain is together with its
task: the former is 7° = {Y*, P(Y*|X*)}, and the latter is
Tt ={Y!, P(YtX")}. Similarly, P(Y*$|X?®) can be learned
from the source labeled data {zf,y;}, while P(Y*|X") can
be learned from labeled target data {z!,y!'} and unlabeled
data {x!“}.

B. Different Settings of Domain Adaptation

The case of traditional machine learning is D® = D!
and 7° = Tt For TL, Pan et al. summarized that
the differences between different datasets can be caused by
domain divergence D* # D! (i.e., distribution shift or feature
space difference) or task divergence 7° # T (i.e., conditional
distribution shift or label space difference), or both. Based
on this summary, Pan et al. categorized TL into three main
groups: inductive, transductive and unsupervised TL.

According to this classification, DA methods are transduc-
tive TL solutions with the assumption that the tasks are the
same, i.e., 7° = 7!, and the differences are only caused
by domain divergence, D # D!. Therefore, DA can be
split into two main categories based on different domain
divergences (distribution shift or feature space difference):
homogeneous and heterogeneous DA. Then, we can further
categorize DA into supervised, semi-supervised and unsuper-
vised DA in consideration of labeled data of the target domain.
The classification is given in Fig. 2]

o In the homogeneous DA setting, the feature spaces
between the source and target domains are identical
(X* = X' with the same dimension (d° = d*). Hence,
the source and target datasets are generally different in
terms of data distributions (P(X)® # P(X)Y).

In addition, we can further categorize the homogeneous DA

setting into three cases:

1) In the supervised DA, a small amount of labeled target

data, D, are present. However, the labeled data are
commonly not sufficient for tasks.
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Fig. 2. An overview of different settings of domain adaptation

2) In the semi-supervised DA, both limited labeled data,
D, and redundant unlabeled data, D", in the target
domain are available in the training stage, which allows
the networks to learn the structure information of the
target domain.

3) In the unsupervised DA, no labeled but sufficient un-
labeled target domain data, D', are observable when
training the network.

o In the heterogeneous DA setting, the feature spaces

between the source and target domains are nonequivalent
(X # &%), and the dimensions may also generally differ
(d* # db).

Similar to the homogeneous setting, the heterogeneous DA
setting can also be divided into supervised, semi-supervised
and unsupervised DA.

All of the above DA settings assumed that the source
and target domains are directly related; thus, transferring
knowledge can be accomplished in one step. We call them one-
step DA. In reality, however, this assumption is occasionally
unavailable. There is little overlap between the two domains,
and performing one-step DA will not be effective. Fortunately,
there are some intermediate domains that are able to draw the
source and target domains closer than their original distance.
Thus, we use a series of intermediate bridges to connect
two seemingly unrelated domains and then perform one-
step DA via this bridge, named multi-step (or transitive) DA
[L13]], [114]]. For example, face images and vehicle images
are dissimilar between each other due to different shapes or
other aspects, and thus, one-step DA would fail. However,
some intermediate images, such as ’football helmet’, can be
introduced to be an intermediate domain and have a smooth
knowledge transfer. Fig. [3] shows the differences between the
learning processes of one-step and multi-step DA techniques.

III. APPROACHES OF DEEP DOMAIN ADAPTATION

In a broad sense, deep DA is a method that utilizes a
deep network to enhance the performance of DA. Under this
definition, shallow methods with deep features [22], [49], [88]],
[80], [138] can be considered as a deep DA approach. DA
is adopted by shallow methods, whereas deep networks only
extract vectorial features and are not helpful for transferring
knowledge directly. For example, [76] extracted the convolu-
tional activations from a CNN as the tensor representation,
and then performed tensor-aligned invariant subspace learning
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to realize DA. This approach reliably outperforms current
state-of-the-art approaches based on traditional hand-crafted
features because sufficient representational and transferable
features can be extracted through deep networks, which can
work better on discrimination tasks [22].

In a narrow sense, deep DA is based on deep learning
architectures designed for DA and can obtain a firsthand effect
from deep networks via back-propagation. The intuitive idea
is to embed DA into the process of learning representation and
to learn a deep feature representation that is both semantically
meaningful and domain invariant. With the “good” feature
representations, the performance of the target task would
improve significantly. In this paper, we focus on the narrow
definition and discuss how to utilize deep networks to learn
”good” feature representations with extra training criteria.

A. Categorization of One-Step Domain Adaptation

In one-step DA, the deep approaches can be summarized
into three cases, which refers to [19]]. Table 1 shows these three
cases and brief descriptions. The first case is the discrepancy-
based deep DA approach, which assumes that fine-tuning the
deep network model with labeled or unlabeled target data can
diminish the shift between the two domains. Class criterion,
statistic criterion, architecture criterion and geometric criterion
are four major techniques for performing fine-tuning.

e Class Criterion: uses the class label information as
a guide for transferring knowledge between different
domains. When the labeled samples from the target
domain are available in supervised DA, soft label and
metric learning are always effective [L18]], [86], [S3I,
[45], [[79]. When such samples are unavailable, some
other techniques can be adopted to substitute for class
labeled data, such as pseudo labels [75[], [139]], [130],
[98] and attribute representation [29], [[118].

« Statistic Criterion: aligns the statistical distribution shift
between the source and target domains using some mech-
anisms. The most commonly used methods for compar-
ing and reducing distribution shift are maximum mean
discrepancy (MMD) [74], [130], [73], [75], [120], [32],
correlation alignment (CORAL) [109], [87], Kullback-
Leibler (KL) divergence [144] and H divergence, among
others.

o Architecture Criterion: aims at improving the ability
of learning more transferable features by adjusting the
architectures of deep networks. The techniques that are
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Fig. 3. Different learning processes between (a) traditional machine learning, (b) one-step domain adaptation and (c) multi-step domain adaptation [83]].

TABLE I
DIFFERENT DEEP APPROACHES TO ONE-STEP DA

One-step DA

Approaches Brief Description

Subsettings

Discrepancy-based

fine-tuning the deep network with labeled or
unlabeled target data to diminish the domain shift

class criterion [[118], [86], [79], [98]
(530, (450, 1750, (139}, [130), (290, [118], 28]
statistic criterion [[74], [130], [73]
1751, 11200, [32], [109], [87], [144]
architecture criterion [69]], [547], 168], 1951, 1128, [89] |
geometric criterion [[16]

Adversarial-based

using domain discriminators to encourage domain
confusion through an adversarial objective

generative models [[70], [4], [S7]
non-generative models [119], (118, [26], [250, [117] |
[85]

Reconstruction-

based ensure feature invariance

using the data reconstruction as an auxiliary task to

encoder-decoder reconstruction [S]], [33], [31], [144]
adversarial reconstruction [131]], [143], 139]

TABLE I
DIFFERENT DEEP APPROACHES TO MULTI-STEP DA

Multi-step Approaches | Brief Description

Hand-crafted

users determine the intermediate domains based on experience [[129]

Instance-based domains [114], [16]

selecting certain parts of data from the auxiliary datasets to compose the intermediate

Representation-based to the new network [96]

freeze weights of one network and use their intermediate representations as input

proven to be cost effective include adaptive batch normal-
ization (BN) [69]], [54]], [68], weak-related weight [93]],
domain-guided dropout [128], and so forth.

o Geometric Criterion: bridges the source and target
domains according to their geometrical properties. This
criterion assumes that the relationship of geometric struc-
tures can reduce the domain shift [16].

The second case can be referred to as an adversarial-based
deep DA approach [26]. In this case, a domain discriminator
that classifies whether a data point is drawn from the source
or target domain is used to encourage domain confusion
through an adversarial objective to minimize the distance
between the empirical source and target mapping distributions.
Furthermore, the adversarial-based deep DA approach can
be categorized into two cases based on whether there are
generative models.

o Generative Models: combine the discriminative model
with a generative component in general based on gen-
erative adversarial networks (GANs). One of the typical
cases is to use source images, noise vectors or both to
generate simulated samples that are similar to the target
samples and preserve the annotation information of the
source domain [70], [4], [57].

o Non-Generative Models: rather than generating models
with input image distributions, the feature extractor learns
a discriminative representation using the labels in the
source domain and maps the target data to the same space
through a domain-confusion loss, thus resulting in the
domain-invariant representations [[119]], [L18], [26], [25],
[L17].

The third case can be referred to as a reconstruction-based
DA approach, which assumes that the data reconstruction of
the source or target samples can be helpful for improving the
performance of DA. The reconstructor can ensure both speci-
ficity of intra-domain representations and indistinguishability
of inter-domain representations.

o Encoder-Decoder Reconstruction: by using stacked au-
toencoders (SAEs), encoder-decoder reconstruction meth-
ods combine the encoder network for representation
learning with a decoder network for data reconstruction
(S0, [33], (311, [144].

o Adversarial Reconstruction: the reconstruction error is
measured as the difference between the reconstructed and
original images within each image domain by a cyclic
mapping obtained via a GAN discriminator, such as dual
GAN [131]], cycle GAN [143] and disco GAN [39].
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TABLE III
DIFFERENT APPROACHES USED IN DIFFERENT DOMAIN ADAPTATION SETTINGS

Supervised DA | Unsupervised DA

Class Criterion v

Discrepancy-based Stgtistic Crite.r iOI.l
Architecture Criterion V4
Geometric Criterion V4

Adversarial-based

Generative Model

Non-Generative Model

Reconstruction-based

Encoder-Decoder Model

Adversarial Model

RGNS

B. Categorization of Multi-Step Domain Adaptation

In multi-step DA, we first determine the intermediate do-
mains that are more related with the source and target domains
than their direct connection. Second, the knowledge transfer
process will be performed between the source, intermediate
and target domains by one-step DA with less information
loss. Thus, the key of multi-step DA is how to select and
utilize intermediate domains; additionally, it can fall into three
categories referring to [83]: hand-crafted, feature-based and
representation-based selection mechanisms.

o Hand-Crafted: users determine the intermediate do-
mains based on experience [129].

« Instance-Based: selecting certain parts of data from the
auxiliary datasets to compose the intermediate domains
to train the deep network [114]], [16].

« Representation-Based: transfer is enabled via freezing
the previously trained network and using their intermedi-
ate representations as input to the new one [90].

IV. ONE-STEP DOMAIN ADAPTATION

As mentioned in Section the data in the target domain
have three types regardless of homogeneous or heterogeneous
DA: 1) supervised DA with labeled data, 2) semi-supervised
DA with labeled and unlabeled data and 3) non-supervised
DA with unlabeled data. The second setting is able to be
accomplished by combining the methods of setting 1 and
setting 3; thus, we only focus on the first and third settings
in this paper. The cases where the different approaches are
mainly used for each DA setting are shown in Table As
shown, more work is focused on unsupervised scenes because
supervised DA has its limitations. When only few labeled
data in the target domain are available, using the source and
target labeled data to train parameters of models typically
results in overfitting to the source distribution. In addition, the
discrepancy-based approaches have been studied for years and
produced more methods in many research works, whereas the
adversarial-based and reconstruction-based approaches are a
relatively new research topic but have recently been attracting
more attention.

A. Homogeneous Domain Adaptation

1) Discrepancy-Based Approaches: Yosinski et al.[133]
proved that transferable features learned by deep networks
have limitations due to fragile co-adaptation and representation

specificity and that fine-tuning can enhance generalization per-
formance. Fine-tuning (can also be viewed as a discrepancy-
based deep DA approach) is to train a base network with
source data and then directly reuse the first n layers to
conduct a target network. The remaining layers of the target
network are randomly initialized and trained with loss based
on discrepancy. During training, the first n layers of the target
network can be fine-tuned or frozen depending on the size
of the target dataset and its similarity to the source dataset
[L7]. Some common rules of thumb for navigating the 4 major
scenarios are given in Table

5: Transfer + fine-tuning improves generalization

0.64]

3: Fine-tuning recovers co-adapted interactions

0.62| 2: Performance drops

due to fragile
co-adaptation

4: Performance

drops due to
representation
specificity

0.60]

0.58]

Top-1 accuracy (higher is better)

0.56]

4 :
0 1 2 3 4 5 3 7
Layer n at which network is chopped and retrained

Fig. 4. The average accuracy over the validation set for a network trained
with different strategies. Baseline B: the network is trained on dataset B. 2)
BnB: the first n layers are reused from baseline B and frozen. The higher
layers are trained on dataset B. 3) BnB+: the same as BnB but where all
layers are fine-tuned. 4) AnB: the first n layers are reused from the network
trained on dataset A and frozen. The higher layers are trained on dataset B.
5) AnB+: the same as AnB but where all layers are fine-tuned [[133]].

e Class Criterion

The class criterion is the most basic training loss in deep
DA. After pre-training the network with source data, the
remaining layers of the target model use the class label
information as a guide to train the network. Hence, a small
number of labeled samples from the target dataset is assumed
to be available.

Ideally, the class label information is given directly in
supervised DA. Most work commonly uses the negative log-
likelihood of the ground truth class with softmax as their
training loss, £ = —Zfio y; logy; (y; are the softmax
predictions of the model, which represent class probabilities)
[118], [86], [53], [126]. To extend this, Hinton et al. [45]
modified the softmax function to soft label loss:

exp(z;/T)

U= 5 {exp(z,/T)) M
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TABLE IV
SOME COMMON RULES OF THUMB FOR DECIDING FINE-TUNED OR FROZEN IN THE FIRST N LAYERS. [I7]]
The Size of Target Dataset
Low Medium High
The Distance Low Freeze Try Freeze or Tune | Tune
between Medium | Try Freeze or Tune Tune Tune
Source and Target High Try Freeze or Tune Tune Tune

where 2¢ is the logit output computed for each class. T is a
temperature that is normally set to 1 in standard softmax, but it
takes a higher value to produce a softer probability distribution
over classes. By using it, much of the information about
the learned function that resides in the ratios of very small
probabilities can be obtained. For example, when recognizing
digits, one version of 2 may obtain a probability of 10° of
being a 3 and 10° of being a 7; in other words, this version
of 2 looks more similar to 3 than 7. Inspired by Hinton,
[L18] fine-tuned the network by simultaneously minimizing
the domain confusion loss (belonging to adversarial based
approaches, which will be presented in Section[[V-A2)) and soft
label loss. Using soft labels rather than hard labels can preserve
the relationships between classes across domains. Gebru et al.
[29] modified existing adaptation algorithms based on [118]]
and utilized soft label loss at the fine-grained class level L0
and attribute level Lz ¢:.
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Fig. 5. Deep DA by combining domain confusion loss and soft label loss
[L18].
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In addition to softmax loss, there are other methods that
can be used as training loss to fine-tune the target model in
supervised DA. Embedding metric learning in deep networks
is another method that can make the distance of samples from
different domains with the same labels be closer while those
with different labels are far away. Based on this idea, [79]
constructed the semantic alignment loss and the separation
loss accordingly. Deep transfer metric learning is proposed by
[S3], which applies the marginal Fisher analysis criterion and
MMD criterion (described in Statistic Criterion) to minimize

their distribution difference:

min J = SEM)

S (m)||? m)]|?
13 (e |+ o)
m=1

—ast™ 4+ DM (a0, Xt
(2)

where «, 3 and ~ are regularization parameters and W (™)
and (™ are the weights and biases of the m!" layer of the
network. Dgw) (X*, X) is the MMD between representations
of the source and target domains. S. and S define the intra-
class compactness and the interclass separability.

However, what can we do if there is no class label informa-
tion in the target domain directly? As we all know, humans
can identify unseen classes given only a high-level descrip-
tion. For instance, when provided the description “tall brown
animals with long necks”, we are able to recognize giraffes.
To imitate the ability of humans, [64] introduced high-level
semantic attributes per class. Assume that a¢ = (af, ..., al,)
is the attribute representation for class ¢, which has fixed-
length binary values with m attributes in all the classes. The
classifiers provide estimates of p(a,,|z) for each attribute a,,.
In the test stage, each target class y obtains its attribute vector
a¥ in a deterministic way, i.e., p(aly) = [a = a¥]. By applying
Bayes rule, p(yla) = pp((y)) [a = a¥], the posterior of a test
class can be calculated as follows:

>

ac{0,1}M

p(yla)p(alz) =

pylz) = >

P@) 11
y

) nglp(am|x> 3)

Gebru et al. [29] drew inspiration from these works and
leveraged attributes to improve performance in the DA of fine-
grained recognition. There are multiple independent softmax
losses that simultaneously perform attribute and class level
to fine-tune the target model. To prevent the independent
classifiers from obtaining conflicting labels with attribute and
class level, an attribute consistency loss is also implemented.

Occasionally, when fine-tuning the network in unsupervised
DA, a label of target data, which is called a pseudo label,
can preliminarily be obtained based on the maximum poste-
rior probability. Yan et al. [130] initialized the target model
using the source data and then defined the class posterior
probability p(yj = c|z) by the output of the target model.

With p(y} = c|z}), they assigned pseudo-label y! to z by
Yy = argmaxp(y: = clzt). In [98], two different networks

assign pseudo-labels to unlabeled samples, another network is
trained by the samples to obtain target discriminative repre-
sentations. The deep transfer network (DTN) [139] used some
base classifiers, e.g., SVMs and MLPs, to obtain the pseudo
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labels for the target samples to estimate the conditional distri-
bution of the target samples and match both the marginal and
the conditional distributions with the MMD criterion. When
casting the classifier adaptation into the residual learning
framework, [[75] used the pseudo label to build the conditional
entropy E(D?, f'), which ensures that the target classifier f*
fits the target-specific structures well.

o Statistic Criterion

Although some discrepancy-based approaches search for
pseudo labels, attribute labels or other substitutes to labeled
target data, more work focuses on learning domain-invariant
representations via minimizing the domain distribution dis-
crepancy in unsupervised DA.

MMD is an effective metric for comparing the distributions
between two datasets by a kernel two-sample test [3]. Given
two distributions s and ¢, the MMD is defined as follows:

MMDQ(S,t) = Hd)sllup<1 ||Ex5~s[¢(Xs)} _ EXtNS[d)(Xt)}H,QH
. )

where ¢ represents the kernel function that maps the origi-
nal data to a reproducing kernel Hilbert space (RKHS) and
l|#]l;, < 1 defines a set of functions in the unit ball of RKHS
H.

Based on the above, Ghifary et al. [32] proposed a model
that introduced the MMD metric in feedforward neural net-
works with a single hidden layer. The MMD metric is
computed between representations of each domain to reduce
the distribution mismatch in the latent space. The empirical
estimate of MMD is as follows:

2

MMD?*(Dy, D) = if}s( n-1 S 5
s 2t) =97 X;) NZ¢(Xj) (%)
i=1 j=1 "

Subsequently, Tzeng et al. [120] and Long et al. [73]
extended MMD to a deep CNN model and achieved great
success. The deep domain confusion network (DDC) by Tzeng
et al. [120] used two CNNs for the source and target domains
with shared weights. The network is optimized for classifi-
cation loss in the source domain, while domain difference is
measured by an adaptation layer with the MMD metric.

L=Lc(XE y) + AMMD?(X5X?) (6)

where the hyperparameter A is a penalty parameter.
Lo (XE, y) denotes classification loss on the available labeled
data, X”, and the ground-truth labels, y. MM D?(X*X?")
denotes the distance between the source and target data. DDC
only adapts one layer of the network, resulting in a reduction
in the transferability of multiple layers. Rather than using
a single layer and linear MMD, Long et al. [73]] proposed
the deep adaptation network (DAN) that matches the shift
in marginal distributions across domains by adding multiple
adaptation layers and exploring multiple kernels, assuming that
the conditional distributions remain unchanged. However, this
assumption is rather strong in practical applications; in other
words, the source classifier cannot be directly used in the
target domain. To make it more generalized, a joint adaptation
network (JAN) [74] aligns the shift in the joint distributions

of input features and output labels in multiple domain-specific
layers based on a joint maximum mean discrepancy (JMMD)
criterion. [[139] proposed DTN, where both the marginal and
the conditional distributions are matched based on MMD. The
shared feature extraction layer learns a subspace to match the
marginal distributions of the source and the target samples, and
the discrimination layer matches the conditional distributions
by classifier transduction. In addition to adapting features
using MMD, residual transfer networks (RTNs) [75] added
a gated residual layer for classifier adaptation. More recently,
[130] proposed a weighted MMD model that introduces an
auxiliary weight for each class in the source domain when the
class weights in the target domain are not the same as those
in the source domain.

If ¢ is a characteristic kernel (i.e., Gaussian kernel or
Laplace kernel), MMD will compare all the orders of statistic
moments. In contrast to MMD, CORAL [108]] learned a linear
transformation that aligns the second-order statistics between
domains. Sun et al. [109] extended CORAL to deep neural
networks (deep CORAL) with a nonlinear transformation.

1
ACCORAL:@ |Cs — Cr|3 @)

where || - [|% denotes the squared matrix Frobenius norm. Cg
and Cr denote the covariance matrices of the source and target
data, respectively.

By the Taylor expansion of the Gaussian kernel, MMD can
be viewed as minimizing the distance between the weighted
sums of all raw moments [67]]. The interpretation of MMD
as moment matching procedures motivated Zellinger et al.
[134] to match the higher-order moments of the domain dis-
tributions, which we call central moment discrepancy (CMD).
An empirical estimate of the CMD metric for the domain
discrepancy in the activation space [a, b]" is given by

1 .
CMDg(X* X" = HHE(P) - E(XY)]],
K 1 (8)
+30 ——llenx) - x|,
iy |b—al

where Cy(X) = E((z — E(X))" is the vector of all kth-
order sample central moments and F(X) = ﬁ Y osex T is
the empirical expectation.

The association loss L,ss0c proposed by [42] is an alter-
native discrepancy measure, it enforces statistical associations
between source and target data by making the two-step round-
trip probabilities P2’® be similar to the uniform distribution

]
over the class labels.

e Architecture Criterion

Some other methods optimize the architecture of the net-
work to minimize the distribution discrepancy. This adaptation
behavior can be achieved in most deep DA models, such as
supervised and unsupervised settings.

Rozantsev et al. [93] considered that the weights in cor-
responding layers are not shared but related by a weight
regularizer 7,(-) to account for the differences between the
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Fig. 6. Different approaches with the MMD metric. (a) The deep adaptation network (DAN) architecture [73], (b) the joint adaptation network (JAN)

architecture [74] and (c) the residual transfer network (RTN) architecture [75].

two domains. The weight regularizer r,(-) can be expressed
as the exponential loss function:
2
rul05,61) = exp (||og - 05]*) —1 ©)
where 07 and 9; denote the parameters of the j** layer of the
source and target models, respectively. To further relax this
restriction, they allow the weights in one stream to undergo a
linear transformation:
rw(605,0%) = exp(||a;05 + b; — 9?”2) -1

20! (10)
where a; and b; are scalar parameters that encode the linear
transformation. The work of Shu et al. [105] is similar to
[95] using weakly parameter-shared layers. The penalty term

Q) controls the relatedness of parameters.
- O _w0l* L0 0|
OBl LEe P L & I

where {Wg),bg)}f:l and {W}l ), bg)}{;l are the parameters
of the [*" layer in the source and target domains, respectively.
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Li et al. [69] hypothesized that the class-related knowledge
is stored in the weight matrix, whereas domain-related knowl-
edge is represented by the statistics of the batch normaliza-
tion (BN) layer [56]. BN normalizes the mean and standard
deviation for each individual feature channel such that each
layer receives data from a similar distribution, irrespective
of whether it comes from the source or the target domain.
Therefore, Li et al. used BN to align the distribution for
recomputing the mean and standard deviation in the target

domain. A s (x—u(xf)) )

o(X?) (12)

where A and 3 are parameters learned from the target data and
w(x) and o(x) are the mean and standard deviation computed
independently for each feature channel. Based on [69]], [9]]
endowed BN layers with a set of alignment parameters which
can be learned automatically and can decide the degree of
feature alignment required at different levels of the deep
network. Furthermore, Ulyanov et al. [121] found that when
replacing BN layers with instance normalization (IN) layers,
where p(xz) and o(x) are computed independently for each
channel and each sample, the performance of DA can be
further improved.

Occasionally, neurons are not effective for all domains
because of the presence of domain biases. For example, when
recognizing people, the target domain typically contains one
person centered with minimal background clutter, whereas the
source dataset contains many people with more clutter. Thus,
the neurons that capture the features of other people and clutter
are useless. Domain-guided dropout was proposed by [128]]
to solve the problem of multi-DA, and it mutes non-related
neurons for each domain. Rather than assigning dropout with a
specific dropout rate, it depends on the gain of the loss function
of each neuron on the domain sample when the neuron is
removed.

s = Llg(a),,) — Lg(x)) (13)

where £ is the softmax loss function and g(x)\i is the
feature vector after setting the response of the i neuron to
zero. In [66], each source domain is assigned with different
parameters, 0l = 00 1 AW where ©© is a domain
general model, and A is a domain specific bias term. After
the low rank parameterized CNNs are trained, 0 can serve
as the classifier for target domain.

¢ Geometric Criterion

The geometric criterion mitigates the domain shift by in-
tegrating intermediate subspaces on a geodesic path from
the source to the target domains. A geodesic flow curve is
constructed to connect the source and target domains on the
Grassmannian. The source and target subspaces are points on
a Grassmann manifold. By sampling a fixed [40] or infinite
[38]] number of subspaces along the geodesic, we can form the
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intermediate subspaces to help to find the correlations between
domains. Then, both source and target data are projected to
the obtained intermediate subspaces to align the distribution.

Inspired by the intermediate representations on the geodesic
path, Chopra et al. [16] proposed a model called deep learning
for DA by interpolating between domains (DLID). DLID
generates intermediate datasets, starting with all the source
data samples and gradually replacing source data with target
data. Each dataset is a single point on an interpolating path
between the source and target domains. Once intermediate
datasets are generated, a deep nonlinear feature extractor
using the predictive sparse decomposition is trained in an
unsupervised manner.

2) Adversarial-Based Approaches: Recently, great success
has been achieved by the GAN method [39], which estimates
generative models via an adversarial process. GAN consists
of two models: a generative model G that extracts the data
distribution and a discriminative model D that distinguishes
whether a sample is from G or training datasets by predicting
a binary label. The networks are trained on the label prediction
loss in a mini-max fashion: simultaneously optimizing G to
minimize the loss while also training D to maximize the
probability of assigning the correct label:

mci:n max V(D,G) = Eppyora(a)llog D(x)]
+Ep. (»[log(l — D(G(2)))]

In DA, this principle has been employed to ensure that
the network cannot distinguish between the source and target
domains. [119] proposed a unified framework for adversarial-
based approaches and summarized the existing approaches
according to whether to use a generator, which loss function
to employ, or whether to share weights across domains. In this
paper, we only categorize the adversarial-based approaches
into two subsettings: generative models and non-generative
models.
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Fig. 8. Generalized architecture for adversarial domain adaptation. Existing
adversarial adaptation methods can be viewed as instantiations of a framework
with different choices regarding their properties. [[119]

o Generative Models

Synthetic target data with ground-truth annotations are an
appealing alternative to address the problem of a lack of
training data. First, with the help of source data, generators
render unlimited quantities of synthetic target data, which are
paired with synthetic source data to share labels or appear as if
they were sampled from the target domain while maintaining

labels, or something else. Then, synthetic data with labels are
used to train the target model as if no DA were required.
Adversarial-based approaches with generative models are able
to learn such a transformation in an unsupervised manner
based on GAN.

The core idea of CoGAN [70] is to generate synthetic target
data that are paired with synthetic source ones. It consists
of a pair of GANs: GAN; for generating source data and
G AN, for generating target data. The weights of the first few
layers in the generative models and the last few layers in the
discriminative models are tied. This weight-sharing constraint
allows CoGAN to achieve a domain-invariant feature space
without correspondence supervision. A trained CoGAN can
adapt the input noise vector to paired images that are from the
two distributions and share the labels. Therefore, the shared
labels of synthetic target samples can be used to train the target
model.

Discriminators

Generators

GAN, f1(912)

9:1(2)

weight | sharing

f2(922)
9>(2)
GAN,

Fig. 9. The CoGAN architecture. [[70]

More work focuses on generating synthetic data that are
similar to the target data while maintaining annotations. Yoo
et al. [[132] transferred knowledge from the source domain to
pixel-level target images with GANs. A domain discriminator
ensures the invariance of content to the source domain, and
a real/fake discriminator supervises the generator to produce
similar images to the target domain. Shrivastava et al. [104]] de-
veloped a method for simulated+unsupervised (S+U) learning
that uses a combined objective of minimizing an adversarial
loss and a self-regularization loss, where the goal is to improve
the realism of synthetic images using unlabeled real data. In
contrast to other works in which the generator is conditioned
only on a noise vector or source images, Bousmalis et al. [4]]
proposed a model that exploits GANs conditioned on both.
The classifier T is trained to predict class labels of both source
and synthetic images, while the discriminator is trained to
predict the domain labels of target and synthetic images. In
addition, to expect synthetic images with similar foregrounds
and different backgrounds from the same source images, a
content similarity is used that penalizes large differences
between source and synthetic images for foreground pixels
only by a masked pairwise mean squared error [24]. The
goal of the network is to learn G, D and T by solving the
optimization problem:

min max V(D,G) = aLly(D,Q) as)
LT, G) +7L(G)

where a, 3, and  are parameters that control the trade-off
between the losses. L4, £; and L. are the adversarial loss,
softmax loss and content-similarity loss, respectively.

+ Non-Generative Models
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Fig. 10. The model that exploits GANs conditioned on noise vector and
source images. [4]

The key of deep DA is learning domain-invariant represen-
tations from source and target samples. With these representa-
tions, the distribution of both domains can be similar enough
such that the classifier is fooled and can be directly used in
the target domain even if it is trained on source samples.
Therefore, whether the representations are domain-confused
or not is crucial to transferring knowledge. Inspired by GAN,
domain confusion loss, which is produced by the discriminator,
is introduced to improve the performance of deep DA without
generators.
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Fig. 11.

The domain-adversarial neural network (DANN) [25] in-
tegrates a gradient reversal layer (GRL) into the standard
architecture to ensure that the feature distributions over the
two domains are made similar. The network consists of
shared feature extraction layers and two classifiers. DANN
minimizes the domain confusion loss (for all samples) and
label prediction loss (for source samples) while maximizing
domain confusion loss via the use of the GRL. In contrast
to the above methods, the adversarial discriminative domain
adaptation (ADDA) [119] considers independent source and
target mappings by untying the weights, and the parameters
of the target model are initialized by the pre-trained source
one. This is more flexible because of allowing more domain-
specific feature extractions to be learned. ADDA minimizes the
source and target representation distances through iteratively
minimizing these following functions, which is most similar
to the original GAN:

AI}E%ACCZS(X ,Y?) =
K

— E(oeyo)m(xye) D Lipmys) log C(M*(z*))
k=1

m[i)n/:adUD(Xs,Xt,Ms,Mt) =
= E(z)~(x+) [log D(M*(2%))]
— E (o)~ (xt)[log(1 — D(M*(a")))]
min ﬁadUM(Ms MY =
e to ot (16)
— E(pty~(xty[log D(M*(2"))]

where the mappings M® and M? are learned from the source
and target data, X* and X*. C represents a classifier working
on the source domain. The first classification loss function £ ;¢
is optimized by training the source model using the labeled
source data. The second function £,4,p is minimized to train
the discriminator, while the third function L4, is learning
a representation that is domain invariant.

Pre-training Testing

Adversarial Adaptation

Discriminator

Fig. 12. The Adversarial discriminative domain adaptation (ADDA) archi-
tecture. [[119]

Tzeng et al. [118] proposed adding an additional domain
classification layer that performs binary domain classification
and designed a domain confusion loss to encourage its predic-
tion to be as close as possible to a uniform distribution over
binary labels. Unlike previous methods that match the entire
source and target domains, Cao et al. introduced a selective
adversarial network (SAN) [8] to address partial transfer
learning from large domains to small domains, which assumes
that the target label space is a subspace of the source label
space. It simultaneously avoids negative transfer by filtering
out outlier source classes, and it promotes positive transfer
by matching the data distributions in the shared label space
via splitting the domain discriminator into many class-wise
domain discriminators. [[78] encoded domain labels and class
labels to produce four groups of pairs, and replaced the typical
binary adversarial discriminator by a four-class discriminator.
Volpi et al. [123] trained a feature generator (S) to perform
data augmentation in the source feature space and obtained
a domain invariant feature through playing a minimax game
against features from S.

Rather than using discriminator to classify domain label,
some papers make some other explorations. Inspired by
Wasserstein GAN [[1]], Shen et al. [[102] utilized discriminator
to estimate empirical Wasserstein distance between the source
and target samples and optimized the feature extractor network
to minimize the distance in an adversarial manner. In [99]],
two classifiers are treated as discriminators and are trained to
maximize the discrepancy to detect target samples outside the
support of the source, while a feature extractor is trained to
minimize the discrepancy by generating target features near
the support.

3) Reconstruction-Based Approaches: In DA, the data re-
construction of source or target samples is an auxiliary task
that simultaneously focuses on creating a shared representation
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between the two domains and keeping the individual charac-
teristics of each domain.

¢« Encoder-Decoder Reconstruction

The basic autoencoder framework [2]] is a feedforward
neural network that includes the encoding and decoding pro-
cesses. The autoencoder first encodes an input to some hidden
representation, and then it decodes this hidden representation
back to a reconstructed version. The DA approaches based
on encoder-decoder reconstruction typically learn the domain-
invariant representation by a shared encoder and maintain the
domain-special representation by a reconstruction loss in the
source and target domains.

Xavier and Bengio [36] proposed extracting a high-level
representation based on stacked denoising autoencoders (SDA)
[122]. By reconstructing the union of data from various
domains with the same network, the high-level representations
can represent both the source and target domain data. Thus,
a linear classifier that is trained on the labeled data of the
source domain can make predictions on the target domain data
with these representations. Despite their remarkable results,
SDAs are limited by their high computational cost and lack
of scalability to high-dimensional features. To address these
crucial limitations, Chen et al. [10] proposed the marginalized
SDA (mSDA), which marginalizes noise with linear denoisers;
thus, parameters can be computed in closed-form and do not
require stochastic gradient descent.

The deep reconstruction classification network (DRCN)
proposed in [33]] learns a shared encoding representation that
provides useful information for cross-domain object recogni-
tion. DRCN is a CNN architecture that combines two pipelines
with a shared encoder. After a representation is provided by
the encoder, the first pipeline, which is a CNN, works for su-
pervised classification with source labels, whereas the second
pipeline, which is a deconvolutional network, optimizes for
unsupervised reconstruction with target data.

min )\Ec({eencv olab}) + (]- - )\)Er({aenc; Qdec})

where A is a hyper-parameter that controls the trade-off
between classification and reconstruction. 0.,¢, 040 and 04y
denote the parameters of the encoder, decoder and source clas-
sifier, respectively. L. is cross-entropy loss for classification,
and L, is squared loss || z — f(z) ||§ for reconstruction in
which f,.(x) is the reconstruction of z.

a7

nnnnn

Fig. 13. The deep reconstruction classification network (DRCN) architecture.
1331

Domain separation networks (DSNs) [5] explicitly and
jointly model both private and shared components of the
domain representations. A shared-weight encoder learns to

capture shared representations, while a private encoder is used
for domain-specific components in each domain. Additionally,
a shared decoder learns to reconstruct the input samples by
both the private and shared representations. Then, a classifier
is trained on the shared representation. By partitioning the
space in such a manner, the shared representations will not
be influenced by domain-specific representations such that
a better transfer ability can be obtained. Finding that the
separation loss is simple and that the private features are
only used for reconstruction in DSNs, [[116] reinforced them
by incorporating a hybrid adversarial learning in a separation
network and an adaptation network.

Zhuang et al. [144] proposed transfer learning with deep
autoencoders (TLDA), which consists of two encoding layers.
The distance in distributions between domains is minimized
with KL divergence in the embedding encoding layer, and
label information of the source domain is encoded using a
softmax loss in the label encoding layer. Ghifary et al. [31]
extended the autoencoder into a model that jointly learns two
types of data-reconstruction tasks taken from related domains:
one is self-domain reconstruction, and the other is between-
domain reconstruction.

o Adversarial Reconstruction

Dual learning was first proposed by Xia et al. [43] to reduce
the requirement of labeled data in natural language processing.
Dual learning trains two “opposite” language translators, e.g.,
A-to-B and B-to-A. The two translators represent a primal-
dual pair that evaluates how likely the translated sentences
belong to the targeted language, and the closed loop measures
the disparity between the reconstructed and the original ones.
Inspired by dual learning, adversarial reconstruction is adopted
in deep DA with the help of dual GANs.

Zhu et al. [143] proposed a cycle GAN that can translate
the characteristics of one image domain into the other in
the absence of any paired training examples. Compared to
dual learning, cycle GAN uses two generators rather than
translators, which learn a mapping G : X — Y and an inverse
mapping F' : Y — X. Two discriminators, Dx and Dy,
measure how realistic the generated image is (G(X) =Y or
G(Y) = X) by an adversarial loss and how well the original
input is reconstructed after a sequence of two generations
(F(G(X)) =~ X or G(F(Y)) = Y) by a cycle consistency loss
(reconstruction loss). Thus, the distribution of images from
G(X) (or F(Y)) is indistinguishable from the distribution ¥’
(or X).

Lcan(G, Dy, X,Y) = Eypiara(y) [log Dy ()]
FEmpgara () [108(1 — Dy (G(x)))]
Leye(G, F) = Eqdata() [[|1F(G(2)) — 4]
TEydatan) 1G(F () — yll]

where L 4 is the adversarial loss produced by discriminator
Dy with mapping function G : X — Y. L is the
reconstruction loss using L1 norm.

The dual GAN [131] and the disco GAN [59] were proposed
at the same time, where the core idea is similar to cycle
GAN. In dual GAN, the generator is configured with skip
connections between mirrored downsampling and upsampling

(18)
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Fig. 14. The cycle GAN architecture. [143]

layers [93]], [S57], making it a U-shaped net to share low-level
information (e.g., object shapes, textures, clutter, and so forth).
For discriminators, the Markovian patch-GAN [63]] architec-
ture is employed to capture local high-frequency information.
In disco GAN, various forms of distance functions, such as
mean-square error (MSE), cosine distance, and hinge loss, can
be used as the reconstruction loss, and the network is applied
to translate images, changing specified attributes including
hair color, gender and orientation while maintaining all other
components.

4) Hybrid Approaches: To obtain better performance, some
of the aforementioned methods have been used simultaneously.
[118] combined a domain confusion loss and a soft label
loss, while [75]] used both statistic (MMD) and architecture
criteria (adapt classifier by residual function) for unsupervised
DA. [130] introduced class-specific auxiliary weights assigned
by the pseudo-labels into the original MMD. In DSNs [J5],
encoder-decoder reconstruction approaches separate represen-
tations into private and shared representations, while the MMD
criterion or domain confusion loss is helpful to make the
shared representations similar and soft subspace orthogonality
constraints ensure dissimilarity between the private and shared
representations. [95] used the MMD between the learned
source and target representations and also allowed the weights
of the corresponding layers to differ. [144] learned domain-
invariant representations by encoder-decoder reconstruction
approaches and the KL divergence.

B. Heterogeneous Domain Adaptation

In heterogeneous DA, the feature spaces of the source
and target domains are not the same, Xs # Xt, and the
dimensions of the feature spaces may also differ. According
to the divergence of feature spaces, heterogeneous DA can be
further divided into two scenarios. In one scenario, the source
and target domain both contain images, and the divergence of
feature spaces is mainly caused by different sensory devices
(e.g., visual light (VIS) vs. near-infrared (NIR) or RGB
vs. depth) and different styles of images (e.g., sketches vs.
photos). In the other scenario, there are different types of
media in source and target domain (e.g., text vs. image and
language vs. image). Obviously, the cross-domain gap of the
second scenario is much larger.

Most heterogeneous DA with shallow methods fall into
two categories: symmetric transformation and asymmetric
transformation. The symmetric transformation learns feature
transformations to project the source and target features onto
a common subspace. Heterogeneous feature augmentation
(HFA) [23] first transformed the source and target data into
a common subspace using projection matrices P and () re-

spectively, then proposed two new feature mapping functions,
ps (a%) = [Pa®,2°,04,]" and @ (') = [Qa*,04,.2"]", to
augment the transformed data with their original features and
zeros. These projection matrices are found using standard
SVM with hinge loss in both the linear and nonlinear cases
and an alternating optimization algorithm is proposed to
simultaneously solve the dual SVM and to find the optimal
transformations. [[124] treated each input domain as a man-
ifold which is represented by a Laplacian matrix, and used
labels rather than correspondences to align the manifolds.
The asymmetric transformation transforms one of source and
target features to align with the other. [142]] proposed a
sparse and class-invariant feature transformation matrix to
map the weight vector of classifiers learned from the source
domain to the target domain. The asymmetric regularized
cross-domain transfer (ARC-t) [63] used asymmetric, non-
linear transformations learned in Gaussian RBF kernel space
to map the target data to the source domain. Extended from
[97], ARC-t performed asymmetric transformation based on
metric learning, and transfer knowledge between domains with
different dimensions through changes of the regularizer. Since
we focus on deep DA, we refer the interested readers to [20],
which summarizes shallow approaches of heterogeneous DA.

However, as for deep methods, there is not much work
focused on heterogeneous DA so far. The special and effective
methods of heterogeneous deep DA have not been proposed,
and heterogeneous deep DA is still performed similar to some
approaches of homogeneous DA.

1) Discrepancy-Based Approach: In discrepancy-based ap-
proaches, the network generally shares or reuses the first n
layers between the source and target domains, which limits the
feature spaces of the input to the same dimension. However,
in heterogeneous DA, the dimensions of the feature spaces of
source domain may differ from those of target domain.

In first scenario of heterogeneous DA, the images in differ-
ent domains can be directly resized into the same dimensions,
so the Class Criterion and Statistic Criterion are still effective
and are mainly used. For example, given an RGB image and
its paired depth image, [41] used the mid-level representation
learned by CNNs as a supervisory signal to re-train a CNN
on depth images. To transform an RGB object detector into
a RGB-D detector without needing complete RGB-D data,
Hoffman et al. [48] first trained an RGB network using labeled
RGB data from all categories and finetuned the network with
labeled depth data from partial categories, then combined mid-
level RGB and depth representations at fc6 to incorporate
both modalities into the final object class prediction. [[77] first
trained the network using large face database of photos and
then finetuned it using small database of composite sketches;
[72] transferred the VIS deep networks to the NIR domain in
the same way.

In second scenario, the features of different media can
not be directly resized into the same dimensions. Therefore,
discrepancy-based methods fail to work without extra process.
[105] proposed weakly shared DTN to transfer labeled infor-
mation across heterogeneous domains, particularly from the
text domain to the image domain. DTN take paired data, such
as text and image, as input to two SAEs, followed by weakly
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parameter-shared network layers at the top. Chen et al. [12]]
proposed transfer neural trees (TNTs), which consist of two
stream networks to learn a domain-invariant feature represen-
tation for each modality. Then, a transfer neural decision forest
(Transfer-NDF) [94], [61] is used with stochastic pruning for
adapting representative neurons in the prediction layer.

2) Adversarial-Based Approach: Using Generative Models
can generate the heterogeneous target data while transferring
some information of source domain to them. [111] employed
a compound loss function that consists of a multiclass GAN
loss, a regularizing component and an f-constancy component
to transfer unlabeled face photos to emoji images. To generate
images for birds and flowers based on text, [90] trained a GAN
conditioned on text features encoded by a hybrid character-
level convolutional-recurrent neural network. [135] proposed
stacked generative adversarial networks (StackGAN) with con-
ditioning augmentation for synthesizing photo-realistic images
from text. It decomposes the synthesis problem into several
sketch-refinement processes. Stage-I GAN sketches the primi-
tive shape and basic colors of the object to yield low-resolution
image, and Stage-II GAN completes details of the object to
produce a high-resolution photo-realistic image.

| Augmentation (ca) | |
Text descriptiont Embedding @/ o |
| &
This birdis grey with |
‘white on ts chest and —> |
has a very short beak [l

Fig. 15. The StackGAN architecture. [135]

3) Reconstruction-Based Approach: The Adversarial Re-
construction can be used in heterogeneous DA as well. For
example, the cycle GAN [143], dual GAN [131] and disco
GAN [59] used two generators, G4 and Gp, to generate
sketches from photos and photos from sketches, respectively.
Based on cycle GAN [143]], [125]] proposed a multi-adversarial
network to avoid artifacts of facial photo-sketch synthesis by
leveraging the implicit presence of feature maps of different
resolutions in the generator subnetwork.

V. MULTI-STEP DOMAIN ADAPTATION

For multi-step DA, the selection of the intermediate domain
is problem specific, and different problems may have different
strategies.

A. Hand-Crafted Approaches

Occasionally, the intermediate domain can be selected by
experience, that is, it is decided in advance. For example, when
the source domain is image data and the target domain is
composed of text data, some annotated images will clearly be
crawled as intermediate domain data.

With the common sense that nighttime light intensities
can be used as a proxy for economic activity, Xie et al.

[129] transferred knowledge from daytime satellite imagery
to poverty prediction with the help of some nighttime light
intensity information as an intermediate domain.

B. Instance-Based Approaches

In other problems where there are many candidate inter-
mediate domains, some automatic selection criterion should
be considered. Similar to the instance-transfer approaches
proposed by Pan [83], because the samples of the source
domain cannot be used directly, the mixture of certain parts of
the source and target data can be useful for constructing the
intermediate domain.

Tan et al. [114] proposed distant domain transfer learning
(DDTL), where long-distance domains fail to transfer knowl-
edge by only one intermediate domain but can be related
via multiple intermediate domains. DDTL gradually selects
unlabeled data from the intermediate domains by minimizing
reconstruction errors on the selected instances in the source
and intermediate domains and all the instances in the target
domain simultaneously. With removal of the unrelated source
data, the selected intermediate domains gradually become
closer to the target domain from the source domain:

1 &8 .
jl(feafdavS7UT):%ng|‘%g‘_mg||z
1 Zl g 112
S N ILET )
1=1

1 &
+EZ

i=1

iéa - :17}“3 + R(vg,vr)

where 2%, #% and &% are reconstructions of source data
S, target data 7% and intermediate data I’ based on the
autoencoder, respectively, and f. and f; are the parameters
of the encoder and decoder, respectively. vg = (vg, ..., vg® )T
and vy = (v}, ..., v}”)—r, vY, v € 0,1 are selection indicators
for the *" source and intermediate instance, respectively.
R(vs,vr) is a regularization term that avoids all values of
vg and vy being zero.

The DLID model [16] mentioned in Section (Geo-
metric Criterion) constructs the intermediate domains with a
subset of the source and target domains, where source samples

are gradually replaced by target samples.

C. Representation-Based Approaches

Representation-based approaches freeze the previously
trained network and use their intermediate representations
as input to the new network. Rusu et al. [96] introduced
progressive networks that have the ability to accumulate and
transfer knowledge to new domains over a sequence of expe-
riences. To avoid the target model losing its ability to solve
the source domain, they constructed a new neural network for
each domain, while transfer is enabled via lateral connections
to features of previously learned networks. In the process,
the parameters in the latest network are frozen to remember
knowledge of intermediate domains.
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Fig. 16. The progressive network architecture. [96]

VI. APPLICATION OF DEEP DOMAIN ADAPTATION

Deep DA techniques have recently been successfully applied
in many real-world applications, including image classifica-
tion, object recognition, face recognition, object detection,
style translation, and so forth. In this section, we present
different application examples using various visual deep DA
methods. Because the information of commonly used datasets
for evaluating the performance is provided in [[137] in detail,
we do not introduce it in this paper.

A. Image Classification

Because image classification is a basic task of computer
vision applications, most of the algorithms mentioned above
were originally proposed to solve such problems. Therefore,
we do not discuss this application repeatedly, but we show how
much benefit deep DA methods for image classification can
bring. Because different papers often use different parameters,
experimental protocols and tuning strategies in the preprocess-
ing steps, it is quite difficult to perform a fair comparison
among all the methods directly. Thus, similar to the work
of Pan [83], we show the comparison results between the
proposed deep DA methods and non-adaptation methods using
only deep networks. A list of simple experiments taken from
some published deep DA papers are presented in Table [V]

In [74], [134], and [[118]], the authors used the Office-31
datase as one of the evaluation data sets, as shown in Fig.
[[a). The Office dataset is a computer vision classification data
set with images from three distinct domains: Amazon (A),
DSLR (D), and Webcam (W). The largest domain, Amazon,
has 2817 labeled images and its corresponding 31 classes,
which consists of objects commonly encountered in office
settings. By using this dataset, previous works can show the
performance of methods across all six possible DA tasks. [74]
showed comparison experiments among the standard AlexNet
[62], the DANN method [25]], and the MMD algorithm and
its variations, such as DDC [120], DAN [73], JAN [74] and
RTN [75]. Zellinger et al. [[134]] evaluated their proposed CMD
algorithm in comparison to other discrepancy-based methods
(DDC, deep CROAL [109], DLID [16]], AdaBN [69]) and the
adversarial-based method DANN. [118]] proposed an algorithm
combining soft label loss and domain confusion loss, and they

I https://cs.stanford.edu/~jhoffman/domainadapt/

also compared them with DANN and DLID under a supervised
DA setting.

In [119], MNISTHM), USPS|U), and SVHNT| (S) digit
datasets (shown in Fig.[I(b)) are used for a cross-domain hand-
written digit recognition task, and the experiment showed the
comparison results on some adversarial-based methods, such
as DANN, CoGAN [70] and ADDA [119], where the baseline
is VGG-16 [106].

B. Face Recognition

The performance of face recognition significantly degrades
when there are variations in the test images that are not
present in the training images. The dataset shift can be caused
by poses, resolution, illuminations, expressions, and modality.
Kan et al. [58] proposed a bi-shifting auto-encoder network
(BAE) for face recognition across view angle, ethnicity, and
imaging sensor. In BAE, source domain samples are shifted
to the target domain, and sparse reconstruction is used with
several local neighbors from the target domain to ensure its
correction, and vice versa. Single sample per person domain
adaptation network (SSPP-DAN) in [51] generates synthetic
images with varying poses to increase the number of samples
in the source domain and bridges the gap between the synthetic
and source domains by adversarial training with a GRL in real-
world face recognition. [107] improved the performance of
video face recognition by using an adversarial-based approach
with large-scale unlabeled videos, labeled still images and syn-
thesized images. Considering that age variations are difficult
problems for smile detection and that networks trained on the
current benchmarks do not perform well on young children,
Xia et al. [[127] applied DAN [73] and JAN [74] (mentioned
in Section to two baseline deep models, i.e., AlexNet
and ResNet, to transfer the knowledge from adults to infants.

Feature F Label
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Fig. 17. The single sample per person domain adaptation network (SSPP-
DAN) architecture. [S1]]
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C. Object Detection

Recent advances in object detection are driven by region-
based convolutional neural networks (R-CNNs [35], fast R-
CNNs [34]] and faster R-CNNs [91]]). They are composed
of a window selection mechanism and classifiers that are
pre-trained labeled bounding boxes by using the features
extracted from CNNs. At test time, the classifier decides
whether a region obtained by sliding windows contains the
object. Although the R-CNN algorithm is effective, a large

2 http://yann.lecun.com/exdb/mnist/
3http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html
“http://ufldl.stanford.edu/housenumbers/
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TABLE V
COMPARISON BETWEEN TRANSFER LEARNING AND NON-ADAPTATION LEARNING METHODS
Data Set Source vs. Target | Baselines Deep Domain Adaptation Methods
(reference)
AlexNet DDC DAN RTN JAN DANN
Avs. W 61.6£0.5 61.8£0.4 68.5 73.3£0.3 7524104 73.0£0.5
D vs. W 95.4£0.3 95.0£0.5 96.0+0.3 96.8+0.2 96.61+0.2 96.410.3
Office-31 Dataset W vs. D 99.040.2 98.5+0.4 99.0+0.3 99.6£0.1 99.640.1 99.240.3
ACC (unit:%)[74] Avs.D 63.8£0.5 64.4£0.3 67.0£0.4 71.0£0.2 72.84£0.3 72.3£0.3
Dvs. A 51.1£0.6 52.1£0.6 54.0£0.5 50.5£0.3 57.5£0.2 53.4+0.4
W vs. A 49.84+0.4 522404 53.1£0.5 51.0£0.1 56.34+0.2 51.240.5
Avg 70.1 70.6 72.9 73.7 76.3 74.3
AlexNet | Deep CORAL CMD DLID AdaBN DANN
Avs. W 61.6 66.4 77.0£0.6 51.9 74.2 73
D vs. W 95.4 95.7 96.3+0.4 78.2 95.7 96.4
Office-31 Dataset W vs. D 99.0 99.2 99.240.2 89.9 99.8 99.2
ACC (unit:%)[134] Avs.D 63.8 66.8 79.6+0.6 - 73.1 -
D vs. A 51.1 52.8 63.8+0.7 - 59.8 -
Wvs. A 49.8 51.5 63.310.6 - 57.4 -
Avg 70.1 72.1 79.9 - 76.7 -
AlexNet DLID DANN | Soft Labels | Domain | Confusion
Confusion | +Soft
Avs. W 56.5£0.3 51.9 53.61£0.2 82.7+0.7 82.8+£0.9 82.7£0.8
D vs. W 92.440.3 78.2 71.240.0 95.94+0.6 95.6+0.4 95.740.5
Office-31 Dataset W vs. D 93.6+0.2 89.9 83.5+0.0 98.3£0.3 97.54£0.2 97.6+0.2
ACC (unit:%)[118] Avs.D 64.6£0.4 - 849+1.2 85.9+£1.1 86.1£1.2
D vs. A 47.610.1 - 66.0£0.5 66.24+0.4 66.240.3
W vs. A 42.774£0.1 - 65.2£0.6 64.9£0.5 65.0£0.5
Avg 66.2 - 82.17 82.13 82.22
MNIST, USPS, VGG-16 DANN CoGAN ADDA
and SVHN M vs. U 75.2+1.6 77.1£1.8 91.2£0.8 89.4+0.2
digits datasets Uvs. M 57T.1£1.7 73.0£2.0 89.1+£0.8 90.1£0.8
ACC (unit:%)[119] Svs. M 60.1£1.1 73.9 - 76.0£1.8

amount of bounding box labeled data is required to train
each detection category. To solve the problem of lacking
labeled data, considering the window selection mechanism as
being domain independent, deep DA methods can be used in
classifiers to adapt to the target domain.

Because R-CNNs train classifiers on regions just like clas-
sification, weak labeled data (such as image-level class labels)
are directly useful for the detector. Most works learn the detec-
tor with limited bounding box labeled data and massive weak
labeled data. The large-scale detection through adaptation
(LSDA) [47] trains a classification layer for the target domain
and then uses a pre-trained source model along with output
layer adaptation techniques to update the target classification
parameters directly. Rochan et al. [92] used word vectors
to establish the semantic relatedness between weak labeled
source objects and target objects and then transferred the
bounding box labeled information from source objects to target
objects based on their relatedness. Extending [47] and [92],
Tang et al. [115] transferred visual (based on the LSDA model)
and semantic similarity (based on work vectors) for training
an object detector on weak labeled category. [[L3] incorporated
both an image-level and an instance-level adaptation compo-
nent into faster R-CNN and minimized the domain discrepancy
based on adversarial training. By using bounding box labeled
data in a source domain and weak labeled data in a target
domain, [S5] progressively fine-tuned the pre-trained model
with domain-transfer samples and pseudo-labeling samples.

D. Semantic Segmentation

Fully convolutional network models (FCNs) for dense pre-
diction have proven to be successful for evaluating semantic
segmentation, but their performance will also degrade un-
der domain shifts. Therefore, some work has also explored
using weak labels to improve the performance of semantic
segmentation. Hong et al. [52] used a novel encoder-decoder
architecture with attention model by transferring weak class
labeled knowledge in the source domain, while [60], [103]]
transferred weak object location knowledge.

Much attention has also been paid to deep unsupervised DA
in semantic segmentation. Hoffman et al. [S0] first introduced
it, in which global domain alignment is performed using FCNs
with adversarial-based training, while transferring spatial lay-
out is achieved by leveraging class-aware constrained multiple
instance loss. Zhang et al. [140] enhanced the segmentation
performance on real images with the help of virtual ones. It
uses the global label distribution loss of the images and local
label distribution loss of the landmark superpixels in the target
domain to effectively regularize the fine-tuning of the semantic
segmentation network. Chen et al. [15] proposed a framework
for cross-city semantic segmentation. The framework assigns
pseudo labels to pixels/grids in the target domain and jointly
utilizes global and class-wise alignment by domain adversarial
learning to minimize domain shift. In [14], a target guided
distillation module adapts the style from the real images by
imitating the pre-trained source network, and a spatial-aware
adaptation module leverages the intrinsic spatial structure to
reduce the domain divergence. Rather than operating a simple
adversarial objective on the feature space, [[100] used a GAN
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to address domain shift in which a generator projects the
features to the image space and a discriminator operates on
this projected image space.
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Fig. 18. The architecture of pixel-level adversarial and constraint-based
adaptation. [S0]

E. Image-to-Image Translation

Image-to-image translation has recently achieved great suc-
cess with deep DA, and it has been applied to various tasks,
such as style transferring. Specially, when the feature spaces
of source and target images are not same, image-to-image
translation should be performed by heterogeneous DA.

More approaches of image-to-image translation use a
dataset of paired images and incorporate a DA algorithm into
generative networks. Isola et al. [S7] proposed the pix2pix
framework, which uses a conditional GAN to learn a mapping
from source to target images. Tzeng et al. [L17] utilized do-
main confusion loss and pairwise loss to adapt from simulation
to real-world data in a PR2 robot. However, several other
methods also address the unpaired setting, such as CoGAN
[70], cycle GAN [143], dual GAN [131]] and disco GAN [359].

Matching the statistical distribution by fine-tuning a deep
network is another way to achieve image-to-image translation.
Gatys et al. [27] fine-tuned the CNN to achieve DA by the
total loss, which is a linear combination between the content
and the style loss, such that the target image is rendered in the
style of the source image maintaining the content. The content
loss minimizes the mean squared difference of the feature
representation between the original image and generated image
in higher layers, while the style loss minimizes the element-
wise mean squared difference between the Gram matrix of
them on each layer. [68] demonstrated that matching the
Gram matrices of feature maps is equivalent to minimizing the
MMD. Rather than MMD, [87] proposed a deep generative
correlation alignment network (DGCAN) that bridges the
domain discrepancy between CAD synthetic and real images
by applying the content and CORAL losses to different layers.

F. Person Re-identification

In the community, person re-identification (re-ID) has be-
come increasingly popular. When given video sequences of

a person, person re-ID recognizes whether this person has
been in another camera to compensate for the limitations of
fixed devices. Recently, deep DA methods have been used in
re-ID when models trained on one dataset are directly used
on another. Xiao et al. [128] proposed the domain-guided
dropout algorithm to discard useless neurons for re-identifying
persons on multiple datasets simultaneously. Inspired by cy-
cle GAN and Siamese network, the similarity preserving
generative adversarial network (SPGAN) [21] translated the
labeled source image to the target domain, preserving self
similarity and domain-dissimilarity in an unsupervised manner,
and then it trains re-ID models with the translated images using
supervised feature learning methods.

G. Image Captioning

Recently, image captioning, which automatically describes
an image with a natural sentence, has been an emerging
challenge in computer vision and natural language processing.
Due to lacking of paired image-sentence training data, DA
leverages different types of data in other source domains
to tackle this challenge. Chen et al. [[L1] proposed a novel
adversarial training procedure (captioner v.s. critics) for cross-
domain image captioning using paired source data and un-
paired target data. One captioner adapts the sentence style from
source to target domain, whereas two critics, namely domain
critic and multi-modal critic, aim at distinguishing them. Zhao
et al. [[141] fine-tuned the pre-trained source model on limited
data in the target domain via a dual learning mechanism.

VII. CONCLUSION

In a broad sense, deep DA is utilizing deep networks to
enhance the performance of DA, such as shallow DA methods
with features extracted by deep networks. In a narrow sense,
deep DA is based on deep learning architectures designed for
DA and optimized by back propagation. In this survey paper,
we focus on this narrow definition, and we have reviewed deep
DA techniques on visual categorization tasks.

Deep DA is classified as homogeneous DA and heteroge-
neous DA, and it can be further divided into supervised, semi-
supervised and unsupervised settings. The first setting is the
simplest but is generally limited due to the need for labeled
data; thus, most previous works focused on unsupervised
cases. Semi-supervised deep DA is a hybrid method that
combines the methods of the supervised and unsupervised
settings.

Furthermore, the approaches of deep DA can be classified
into one-step DA and multi-step DA considering the distance
of the source and target domains. When the distance is
small, one-step DA can be used based on training loss. It
consists of the discrepancy-based approach, the adversarial-
based approach, and the reconstruction-based approach. When
the source and target domains are not directly related, multi-
step (or transitive) DA can be used. The key of multi-step
DA is to select and utilize intermediate domains, thus falling
into three categories, including hand-crafted, feature-based and
representation-based selection mechanisms.
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Although deep DA has achieved success recently, many
issues still remain to be addressed. First, most existing al-
gorithms focus on homogeneous deep DA, which assumes
that the feature spaces between the source and target domains
are the same. However, this assumption may not be true in
many applications. We expect to transfer knowledge without
this severe limitation and take advantage of existing datasets
to help with more tasks. Heterogeneous deep DA may attract
increasingly more attention in the future.

In addition, deep DA techniques have been successfully
applied in many real-world applications, including image
classification, and style translation. We have also found that
only a few papers address adaptation beyond classification
and recognition, such as object detection, face recognition,
semantic segmentation and person re-identification. How to
achieve these tasks with no or a very limited amount of data is
probably one of the main challenges that should be addressed
by deep DA in the next few years.

Finally, since existing deep DA methods aim at aligning
marginal distributions, they commonly assume shared label
space across the source and target domains. However, in
realistic scenario, the images of the source and target domain
may be from the different set of categories or only a few
categories of interest are shared. Recently, some papers [,
[7], [136] have begun to focus on this issue and we believe it
is worthy of more attention.
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