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Abstract

Feature selection is a dimensionality reduction technique that selects a subset of representative features from high-

dimensional data by eliminating irrelevant and redundant features. Recently, feature selection combined with sparse

learning has attracted significant attention due to its outstanding performance compared with traditional feature selec-

tion methods that ignores correlation between features. These works first map data onto a low-dimensional subspace

and then select features by posing a sparsity constraint on the transformation matrix. However, they are restricted by

design to linear data transformation, a potential drawback given that the underlying correlation structures of data are

often non-linear. To leverage a more sophisticated embedding, we propose an autoencoder-based unsupervised feature

selection approach that leverages a single-layer autoencoder for a joint framework of feature selection and manifold

learning. More specifically, we enforce column sparsity on the weight matrix connecting the input layer and the hid-

den layer, as in previous work. Additionally, we include spectral graph analysis on the projected data into the learning

process to achieve local data geometry preservation from the original data space to the low-dimensional feature space.

Extensive experiments are conducted on image, audio, text, and biological data. The promising experimental results

validate the superiority of the proposed method.

Keywords: Unsupervised Feature Selection, Autoencoder, Manifold Learning, Spectral Graph Analysis, Column

Sparsity

1. Introduction

In recent years, high-dimensional data can be found in many areas such as computer vision [1–3], pattern recog-

nition [4–7], data mining [8], etc. High dimensionality enables data to include more information. However, learning

high-dimensional data often suffer from several issues. For example, with a fixed number of training data, a large

data dimensionality can cause the so-called Hughes phenomenon, i.e., a reduction in the generalization of the learned
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models due to overfitting during the training procedure compared with lower dimensional data [9]. Moreover, high-

dimensional data tend to include significant redundancy in adjacent features, or even noise, which leads to large

amounts of useless or even harmful information being processed, stored, and transmitted [10, 11]. All these issues

present challenges to many conventional data analysis problems. Moreover, several papers in the literature have shown

that the intrinsic dimensionality of high-dimensional data is actually small [7, 12–14]. Thus, dimensionality reduction

is a popular preprocessing step for high-dimensional data analysis, which decreases time for data processing and also

improves generalization of learned models.

Feature selection [15–20] is a set of frequently used dimensionality reduction approaches that aim at selecting

a subset of features. Feature selection has the advantage of preserving the same feature space as that of raw data.

Feature selection methods can be categorized into groups based on different criteria summarized below; refer to [21]

for a detailed survey on feature selection.

• Label Availability. Based on the availability of label information, feature selection algorithms can be classified

into supervised [15–17], semi-supervised [18–20], and unsupervised [22–38] methods. Since labeled data are

usually expensive and time-consuming to acquire [39, 40], unsupervised feature selection has been gaining

more and more attention recently and is the subject of our focus in this work.

• Search Strategy. In terms of selection strategies, feature selection methods can be categorized into wrapper,

filter, and embedded methods. Wrapper methods [41, 42] are seldom used in practice since they rely on a

repetition of feature subset searching and selected feature subset evaluation until some stopping criteria or

some desired performance are reached, which requires an exponential search space and thus is computationally

prohibitive when feature dimensionality is high. Filter feature selection methods, e.g. Laplacian score [22] and

SPEC [23], assign a score (measuring task relevance, redundancy, etc.) to each feature and select those with

the best scores. Though convenient to computation, these methods are often tailored specifically for a given

task and may not provide an appropriate match to the specific application of interest [21]. Embedded methods

combine feature selection and model learning and provide a compromise between the two earlier extremes, as

they are more efficient than wrapper methods and more task-specific than filter methods. In this paper, we focus

on embedded feature selection methods.

In recent years, feature selection algorithms aiming at selecting features that preserve intrinsic data structure (such

as subspace or manifold structure) [24–38] have attracted significant attention due to their good performance and

interpretability [21]. In these methods, data are linearly projected onto new spaces through a transformation matrix,

with fitting errors being minimized along with some sparse regularization terms. Feature importance is usually scored
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using the norms of corresponding rows/columns in the transformation matrix. In some methods [28–33, 36–38],

the local data structure, which is usually characterized by nearest neighbor graphs, is also preserved in the low-

dimensional projection space. A more detailed discussion on this type of methods is in Section 2.1. One basic

assumption of these methods is that the data to be processed lie in or near a completely linear low-dimensional

manifold, which is then modeled as a linear subspace.1 However, this is not always true in practice, in particular with

more sophisticated data.

In the case when data lies on or close to more generalized or non-linear manifolds, many approaches for di-

mensionality reduction have been proposed that leverage the data local geometry using neighborhood graphs, such

as ISOMAP [43], Laplacian eigenmaps [44], locally linear embedding [45], etc., but few developments have been

reported in feature selection. In this paper, we propose a novel algorithm for graph and autoencoder-based feature

selection (GAFS). The reason we choose an autoencoder for the underlying manifold learning is because of its broader

goal of data reconstruction, which is a good match in spirit for an unsupervised feature selection framework: we expect

to be able to infer the entire data vector from just a few of its dimensions. In this method, we integrate three objective

functions into a single optimization framework: (i) we use a single-layer autoencoder to reconstruct the input data;

(ii) we use an `2,1-norm penalty on the columns of the weight matrix connecting the autoencoder’s input layer and

hidden layer to provide feature selection; and (iii) we preserve the local geometric structure of the data through to the

corresponding hidden layer activations. To the best of our knowledge, we are the first to combine unsupervised feature

selection with an autoencoder design and the preservation of local data structure. Extensive experiments are conducted

on image data, audio data, text data, and biological data. Many experimental results are provided to demonstrate the

outstanding performance achieved by the proposed method compared with other state-of-the-art unsupervised feature

selection algorithms.

The key contributions of this paper are highlighted as follows.

• We propose a novel unsupervised feature selection framework which is based on an autoencoder and graph data

regularization. By using this framework, the information of the underlying data subspace can be leveraged,

which loosens the assumption of linear manifold in many relevant techniques.

• We present an efficient solver for the optimization problem underlying the proposed unsupervised feature selec-

tion scheme. Our approach relies on an iterative scheme based on the gradient descent of the proposed objective

function.

1People also refer to linear manifold as subspace or linear subspace in the literature. In the sequel, we refer to such a linear manifold or subspace
as a subspace for conciseness.
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• We provide multiple numerical experiments that showcase the advantages of the flexible models used in our

feature selection approach with respect to the state-of-the-art approaches from the literature.

The rest of this paper is organized as follows. Section 2 overviews related work. The proposed framework and the

corresponding optimization scheme are presented in Section 3. Experimental results and the corresponding analysis

are provided in Section 4. Section 5 includes conclusion and future work.

2. Related Work

In this section, we provide a review of literature related to our proposed method and introduce the paper’s notation

standard. Datasets are denoted by X = [X(1),X(2), · · · ,X(n)] ∈ Rd×n, where X(i) ∈ Rd is the ith sample in X for

i = 1, 2, · · · , n, and where d and n denote data dimensionality and number of data points in X, respectively. For a

matrix X, X(q) denotes the qth column of the matrix, while X(p,q) denotes the entry of the matrix at the pth row and qth

column.

The `r,p-norm for a matrix W ∈ Ra×b is denoted as

‖W‖r,p =

 b∑
j=1

 a∑
i=1

|W(i, j)|r

p/r
1/p

. (1)

Two common norm choices in optimization are the `2,1-norm and the Frobenius norm (e.g., r = p = 2). Note that

unlike most of the literature, our outer sum is performed over the `r-norms of the matrix columns instead of its rows;

this is done for notation convenience of our subsequent mathematical expressions.

The trace of a matrix L ∈ Ra×a is defined as

Tr(L) =

a∑
i=1

L(i,i), (2)

which is the sum of elements on the main diagonal of L.

We use 1 and 0 to denote an all-ones and all-zeros matrix or vector with of the appropriate size, respectively.

2.1. Sparse Learning-Based Unsupervised Feature Selection

Many unsupervised feature selection methods based on subspace structure preservation have been proposed in the

past decades. For classes missing labels, unsupervised feature selection methods select features that are representative

of the underlying subspace structure of the data [24]. The basic idea is to use a transformation matrix to project data to

a new space and guide feature selection based on the sparsity of the transformation matrix [25]. To be more specific,
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the generic framework of these methods is based on the optimization

min
W
L(Y,WX) + λR(W), (3)

where Y = [Y(1),Y(2), · · · ,Y(n)] ∈ Rm×n (m < d) is an embedding matrix in which Y(i) ∈ Rm for i = 1, 2, · · · , n

denotes the representation of data point X(i) in the obtained low-dimensional subspace. L(·) denotes a loss function,

and R(·) denotes a regularization function on the transformation matrix W ∈ Rm×d. The methods differ in their choice

of embedding Y and loss and regularization functions; some examples are presented below.

Multi-cluster feature selection (MCFS) [26] and minimum redundancy spectral feature selection (MRSF) [27] are

two long-standing and well-known subspace learning-based unsupervised feature selection methods. In MCFS, the

embedding Y ∈ Rm×n of each data X is first learned based on spectral clustering. To be more concrete, a graph is

first constructed on training data. Then spectral clustering is performed on data points using the top eigenvectors of

graph Laplacian. We refer readers to [26] for more details on this spectral clustering procedure. Details on the graph

Laplacian are discussed in Section 3.1. After that, all data points are regressed to the learned embedding through a

transformation matrix W ∈ Rm×d. The loss function is set to the Frobenius norm of the linear transformation error and

the regularization function is set to the `1,1 norm of the transformation matrix, which promotes sparsity. Thus, MCFS

can be formulated mathematically as the following optimization problem

min
W
‖Y −WX‖2F + λ‖W‖1,1. (4)

A score for each feature is measured by the maximum absolute value of the corresponding column of the transforma-

tion matrix:

MCFS (p) = max
q=1,2,··· ,m

|W(q,p)|, (5)

where p = 1, 2, · · · , d. This score is then used in a filter-based feature selection scheme. MRSF is an extension of

MCFS that changes the regularization function to an `2,1-norm that enforces column sparsity on the transformation

matrix. Ideally, the selected features should be representative enough to keep the loss value close to that obtained

when using all features. In order to achieve feature selection, we expect that W holds a sparsity property with its

columns, which means only a subset of the columns are nonzeros. We use the `2-norm of a W column to measure

the importance of the corresponding feature, leading to an `2,1-norm regularization function. Furthermore, MRSF

ranks the importance of each feature according to the `2-norm of the corresponding column of the transformation

matrix. Compared with MCFS, the use of `2,1-norm in MRSF can provide the learned subspace with consistent
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column sparseness. MRSF can be formulated as

min
W
‖Y −WX‖2F + λ‖W‖2,1, (6)

where ‖W‖2,1 is the `2,1−norm of W. A score is assigned to each feature based on the following scheme

MRS F(p) = ‖W(p)‖2 (7)

Both MCFS and MRSF are able to select features that provide a suitable subspace approximation to the spectral

clustering embedding that detects cluster structure. However, the performance of these two methods is often degraded

by the separate nature of subspace learning and feature selection [37]. In order to address this problem, many ap-

proaches on joint subspace learning and feature selection have been proposed. For example, Gu et. al. [28] proposed

a joint framework that combines subspace learning and feature selection. In this framework, data are linearly pro-

jected to a low-dimensional subspace with a transformation matrix, and the local data structure captured by a nearest

neighbor graph is preserved in data embeddings on low-dimensional subspace. Meanwhile, an `2,1−norm penalty is

applied to the transformation matrix to guide feature selection simultaneously. That is, subspace learning and feature

selection are not two separate steps but combined into a single framework. Studies like [29–33] made further modi-

fications to [28]: besides combining subspace learning and feature selection into a single framework, these methods

also exploit the discriminative information of the data for unsupervised feature selection. For example, in unsuper-

vised discriminative feature selection (UDFS) [29], data instances are assumed to come from c classes. Furthermore,

a linear classifier W ∈ Rc×d is assumed to project data X onto a c-dimensional subspace which captures the discrimi-

native information of data, which can be written as G = WX, where G ∈ Rc×n denotes the data representation of X on

low-dimensional subspace. Furthermore, for each data point X(i), a local set Nk(X(i)) is constructed, which contains

X(i) and its k nearest neighbors X(i)
1 ,X

(i)
2 , · · · ,X

(i)
k . Denoting Xi = [X(i),X(i)

1 ,X
(i)
2 , · · · ,X

(i)
k ] ∈ Rd×(k+1) as the local data

matrix containing X(i) and its k nearest neighbors, we define the local total scatter matrix Sti = X̃iX̃T
i ∈ Rd×d and

interclass scatter matrix Sbi = X̃iGT
i GiX̃T

i ∈ R
d×d, where Gi = [G(i),G(i)

1 ,G
(i)
2 , · · · ,G

(i)
k ] ∈ Rc×(k+1) and X̃i = XiHk+1.

To be more specific, G(i) = WX(i) and G(i)
j = WX(i)

j for j = 1, 2, · · · , k, and X̃i is a centered version of Xi and

Hk+1 = Ik+1 −
1

k+1 11T ∈ R(k+1)×(k+1). We can also define a selection matrix Pi ∈ {0, 1}n×(k+1) so that Gi = GPi. The

local discriminative score DS i for X(i) is DS i = Tr
[
(Sti + λId)−1 Sbi

]
= Tr

[
WXPiX̃T

i

(
X̃iX̃T

i + λId

)−1
X̃iPT

i XT WT
]
,

where λ is a parameter to make the term
(
X̃X̃T + λId

)
invertible. A larger DS i value means a higher discriminative ca-

pability W has with respect to X(i). The objective of UDFS is to train a W corresponding to the highest discriminative
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scores for data X. Therefore the following objective function is optimized

W∗ =arg minWWT =I

n∑
i=1

{
Tr

[
GiHk+1GT

i

]
− DS i

}
+ γ‖W‖2,1

=arg minWWT =ITr(WMWT ) + γ‖W‖2,1,

(8)

where M = X
[∑n

i=1

(
PiHk+1

(
X̃T

i X̃i + λIk+1

)−1
Hk+1PT

i

)]
XT and γ is a balancing parameter. The orthogonal constraint

is to avoid both arbitrary scaling and the trivial solutions of all zeros. We refer readers to [29] for more details on

UDFS. Though unsupervised, one drawback of these discriminative exploitation feature selection methods is that the

feature selection performance relies on an accurate estimation of the number of classes.

Instead of projecting data onto a low-dimensional subspace, some approaches consider combining unsupervised

feature selection methods with self-representation. In these methods, each feature is assumed to be representable as a

linear combination of all (other) features, i.e., X = WX + E, where W ∈ Rd×d is a representation matrix and E ∈ Rd×n

denotes a reconstruction error. That is, the data are linearly projected into the same data space so that the relationships

between features can be gleaned from the transformation matrix. This type of method can be regarded as a special

case of subspace learning-based feature selection methods where the embedding subspace is equal to the original

space. Zhu et. al. [34] proposed a regularized self-representation (RSR) model for unsupervised feature selection that

sets both the loss function and the regularization function to `2,1-norms on the representation error E (for robustness

to outlier samples) and transformation matrix W (for feature selection), respectively. RSR can therefore be written as

min
W
‖X −WX‖2,1 + λ‖W‖2,1. (9)

RSR has been extended to non-convex RSR [35], where the regularization function is instead set to an `2,p-norm for

0 < p < 1. Unsupervised graph self-representation sparse feature selection (GSR SFS) [36] further extends [35]

by changing the loss function to a Frobenius norm, as well as by considering local data structure preservation on

embedding WX through spectral graph analysis. GSR SFS can be written in the following formulation

min
W

1
2
||X −WX||2F + λ1Tr(XTWTLWX) + λ2||W||2,1, (10)

where L is the graph Laplacian matrix, which will be elaborated in Section 3.1. Self-representation based dual-

graph regularized feature selection clustering (DFSC) [37] considers the error of self-representation for both the

columns and the rows of X (i.e., both for features and data samples). Moreover, spectral graph analysis on both

domains is considered. Subspace clustering guided unsupervised feature selection (SCUFS) [38] combines both
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self-representation and subspace clustering with unsupervised feature selection. In addition, SCUFS also exploits

discriminative information for feature selection.

2.2. Single-Layer Autoencoder

A single-layer autoencoder is an artificial neural network that aims to learn a function h(x;Θ) ≈ x with a single

hidden layer, where x ∈ Rd is the input data, h(·) is a nonlinear function, and Θ is a set of parameters. To be more

specific, the workflow of an autoencoder contains two steps:

• Encoding: mapping the input data x to a compressed data representation y ∈ Rm:

y = σ(W1x + b1), (11)

where W1 ∈ Rm×d is a weight matrix, b1 ∈ Rm is a bias vector, and σ(·) is an elementary nonlinear activation

function. Commonly used activation functions include the sigmoid function, the hyperbolic tangent function,

the rectified linear unit, etc.

• Decoding: mapping the compressed data representation y to a vector in the original data space X̄ ∈ Rd:

X̄ = σ(W2y + b2), (12)

where W2 ∈ Rd×m and b2 ∈ Rd are the corresponding weight matrix and bias vector, respectively.

The optimization problem brought by the autoencoder is to minimize the difference between the input data and the

reconstructed/output data. To be more specific, given a set of data X = [X(1),X(2), · · · ,X(n)], the parameters W1, W2,

b1, and b2 are adapted to minimize the reconstruction error
∑n

i=1 ‖X(i) − X̄(i)‖22, where X̄(i) is the output of autoencoder

to the input X(i). The general approach to minimize the reconstruction error is by selecting the parameter values via

the backpropagation algorithm [46].

The data reconstruction capability of the autoencoder makes it suitable to capture the essential information of

the data while discarding information that is not useful or redundant. Therefore, it is natural to assume that the

compressed representation in the hidden layer of a single-layer autoencoder can capture the manifold structure of the

input data when such manifold structure exists and is approximated well by the underlying weighting and nonlinearity

operations. There are many variations of autoencoders, e.g., sparse autoencoder, denoising autoencoder, variational

autoencoder, contractive autoencoder, etc. In this paper we only consider the baseline (standard) autoencoder model,

which will be elaborated in Section 3. We will explore the combination of unsupervised feature selection and other

specific variations of autoencoder in future work.
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3. Proposed Method

In this section, we introduce our proposed graph autoencoder-based unsupervised feature selection (GAFS). Our

proposed framework performs broad data structure preservation through a single-layer autoencoder and also preserves

local data structure through spectral graph analysis. In contrast to existing methods that exploit discriminative infor-

mation for unsupervised feature selection by imposing orthogonal constraints on the transformation matrix [29] or

low-dimensional data representation [30, 31], GAFS does not include such constraints. More specifically, we do not

add orthogonal constraints on the transformation matrix because feature weight vectors are not necessarily orthogonal

with each other in real-world applications [47], allowing GAFS to be applicable to a larger set of applications [25].

Furthermore, methods posing orthogonal constraints on low-dimensional data representations require accurate esti-

mates of the number of classes in order to obtain reliable label indicators for those algorithms; such estimation is

difficult to achieve in an unsupervised framework.

3.1. Objective Function

The objective function of GAFS includes three parts: a term based on a single-layer autoencoder promoting broad

data structure preservation; a regularization term promoting feature selection; and a term based on spectral graph

analysis promoting local data structure preservation. As mentioned in Section 2.2, a single-layer autoencoder aims

at minimizing the reconstruction error between output and input data by optimizing a reconstruction error-driven loss

function:

L(Θ) =
1
2n

n∑
i=1

‖X(i) − h(X(i);Θ)‖22 =
1

2n
‖X − h(X;Θ)‖2F , (13)

where Θ = [W1,W2,b1,b2], h(X(i);Θ) = σ
(
W2 · σ(W1X(i) + b1) + b2

)
. We use the sigmoid function as the activa-

tion function: σ(z) = 1/(1 + exp(−z)).

Since W1 is a weight matrix applied directly on the input data, each column of W1 can be used to measure the

importance of the corresponding data feature. Therefore, R(Θ) = ‖W1‖2,1 can be used as a regularization function

to promote feature selection as detailed in Section 2.1. The objective function for the single-layer autoencoder based

unsupervised feature selection can be obtained by combining this regularization function with the loss function of

(13), providing us with the optimization

min
Θ

1
2n
‖X − h(X;Θ)‖2F + λ‖W1‖2,1, (14)

where λ is a balance parameter.
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Local geometric structures of the data often contain discriminative information of neighboring data point pairs [26].

They assume that nearby data points should have similar representations. It is often more efficient to combine both

broad and local data information during low-dimensional subspace learning [48]. In order to characterize the local

data structure, we construct a k-nearest neighbor (kNN) graph G on the data space. The edge weight between two

connected data points is determined by the similarity between those two points. In this paper, we choose cosine dis-

tance as similarity measurement due to its simplicity. Therefore the adjacency matrix A for the graph G is defined

as

A(i, j) =


X(i)T X( j)

‖X(i)‖2‖X( j)‖2
if X(i) ∈ Nk(X( j)) or X( j) ∈ Nk(X(i)),

0 otherwise,
(15)

whereNk(X(i)) denotes the k-nearest neighborhood set for X(i), and X(i)T refers to the transpose of X(i). The Laplacian

matrix L of the graph G is defined as L = D − A, where D is a diagonal matrix whose ith element on the diagonal is

defined as D(i,i) =
∑n

j=1 A(i, j).

In order to preserve the local data structure in the learned subspace (i.e., if two data points X(i) and X( j) are

close in original data space then the corresponding low-dimensional representations Y(i) and Y( j) are also close in the

low-dimensional embedding space), we set up the following minimization objective:

G(Θ) =
1
2

n∑
i=1

n∑
j=1

‖Y(i) − Y( j)‖22A(i, j)

=
1
2

n∑
i=1

n∑
j=1

(Y(i)T Y(i) − Y(i)T Y( j) − Y( j)T Y(i) + Y( j)T Y( j))A(i, j)

=

n∑
i=1

Y(i)T Y(i)D(i,i) −

n∑
i=1

n∑
j=1

Y(i)T Y( j)A(i, j)

= Tr(Y(Θ)DY(Θ)T) − Tr(Y(Θ)AY(Θ)T) = Tr(Y(Θ)LY(Θ)T),

(16)

where Tr(·) denotes the trace operator, Y(i)(Θ) = σ(W1x(i) + b1) for i = 1, 2, · · · , n (and we often drop the dependence

on Θ for readability), and Y(Θ) = [Y(1)(Θ),Y(2)(Θ), · · · ,Y(n)(Θ)].

Therefore, by combining the single-layer autoencoder based feature selection objective (14) and the local data

structure preservation into consideration, the resulting objective function of GAFS can be written in terms of the

following minimization with respect to the parameters Θ = [W1,W2,b1,b2]:

Θ̂ = arg min
Θ
F (Θ) = arg min

Θ
L(Θ) + R(Θ) + G(Θ)

= arg min
Θ

[
1

2n
‖X − h(X;Θ)‖2F + λ‖W1‖2,1 + γTr(Y(Θ)LY(Θ)T)

]
,

(17)
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Algorithm 1 GAFS Algorithm

Inputs: High-dimensional dataset X = [X(1),X(2), · · · ,X(n)] ∈ Rd×n; neighborhood size k ; hidden layer size m;
balance parameters λ and γ; number of features to keep nF .

Outputs: Selected feature index set {r1, r2, · · · rnF }.

Stage 1: Graph construction

1: Construct a kNN graph G with adjacency matrix A described in (15);
2: Calculate the Laplacian matrix L of the graph G from the obtained adjacency matrix A;

Stage 2: Objective optimization

3: Optimize (17) by using the scheme described in Section 3.2;

Stage 3: Feature selection

4: Compute the scores for all features GAFS (p) = ‖W(p)
1 ‖2 for p = 1, 2, · · · , d;

5: Sort these scores and return the indices of the nF features with largest score values.

where λ and γ are two balance parameters. Filter-based feature selection is then performed using the score function

GAFS (q) = ‖W(q)
1 ‖2 based on the weight matrix W1 from Θ̂. The pseudocode of GAFS is listed in Algorithm 1.

3.2. Optimization

The objective function of GAFS shown in (17) does not have a closed-form solution. By following [49], we use a

limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm to do the optimization. Compared with the

predominant stochastic gradient descent methods used in neural network training, the L-BFGS algorithm can provide

great simplification in parameter tuning and parallel computation. For example, the dimensionality of the parameter

Θ is the sum of the dimensionalities of W1 ∈ Rm×d, W2 ∈ Rd×m, b1 ∈ Rm, and b2 ∈ Rd, which is 2md + d + m. Then

compared with conventional BFGS algorithm, which requires the computing and storing of (2md+d+m)×(2md+d+m)

Hessian matrices, the L-BFGS algorithm saves a few vectors2 that represent the approximations implicitly. Therefore,

the computational complexity of L-BFGS algorithm are nearly linear in 2md + d + m, which makes it suitable for

optimization problems with large datasets. To be more specific, L-BFGS algorithm save the past l updates of Θ and

corresponding gradients. Therefore, denoting the number of iterations in the optimization by t, the corresponding

computational complexity of L-BFGS is O(tlmd). We refer readers to [50] for more details on L-BFGS algorithm.

In this paper, we implement the L-BFGS algorithm using the minFunc toolbox [51] to solve the GAFS optimization

problem. We set number of iterations t to be 400 and number of storing updates l to be 100. The solver requires the

gradients of the objective function in (17) with respect to its parameters Θ.

2The number of saved vectors is a parameter that can be adjusted.
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The gradients for the loss term L(Θ) can be obtained through a back-propagation algorithm. We skip the details

for the derivation of the gradients of the error term, which are standard in the formulation of backpropagation for an

autoencoder. The resulting gradients are as follows:

∂L(Θ)
∂W1

=
1
n
∆2XT ,

∂L(Θ)
∂W2

=
1
n
∆3YT ,

∂L(Θ)
∂b1

=
1
n

n∑
i=1

∆2
(i) =

1
n
∆21,

∂L(Θ)
∂b2

=
1
n

n∑
i=1

∆3
(i) =

1
n
∆31.

(18)

Each column ∆(i)
2 and ∆(i)

3 of ∆2 ∈ Rm×n and ∆3 ∈ Rd×n, respectively, contains the error term of the corresponding data

point for the hidden layer and the output layer, respectively,

∆
(q,i)
2 =

 d∑
p=1

W(q,p)
2 ∆

(p,i)
3

 · Y(q,i) · (1 − Y(q,i)),

∆
(p,i)
3 = (X̄(p,i) − X(p,i)) · X̄(p,i) · (1 − X̄(p,i)),

(19)

for p = 1, 2, · · · , d, q = 1, 2, · · · ,m, and i = 1, 2, · · · , n, and where X̄ denotes the reconstructed data output of the

autoencoder. We can rewrite (19) in matrix form as

∆3 = (X̄ − X) • X̄ • (1 − X̄),

∆2 = (WT
2∆3) • Y • (1 − Y),

(20)

where • denotes the element-wise product operator.

The regularization term R(Θ) = ‖W1‖2,1 and its derivative do not exist for its ith column W(i)
1 when W(i)

1 = 0 for

i = 1, 2, · · · , d. In this case,
∂R(Θ)
∂W1

= W1U, (21)

where U ∈ Rd×d is a diagonal matrix whose ith element on the diagonal is

U(i,i) =


(
‖W(i)

1 ‖2 + ε
)−1

, ‖W(i)
1 ‖2 , 0,

0, otherwise.
(22)

where ε is a small constant added to avoid overflow [37]. Since elements in ‖W1‖2,1 are not differentiable if their

12



values are 0, we calculate the subgradient for each element in W1 in that case. That is, for each element in W1, the

subgradient at 0 can be an arbitrary value in the interval [−1, 1], and so we set the gradient to 0 for computational

convenience. In summary, the gradients for the regularization term is:

∂R(Θ)
∂W1

= λW1U,

∂R(Θ)
∂W2

= 0,

∂R(Θ)
∂b1

= 0,

∂R(Θ)
∂b2

= 0,

(23)

The gradients of the graph term G(Θ) = γTr(YLYT) can be obtained in a straightforward fashion as follows:

∂L(Θ)
∂W1

=
∂Tr(γYLYT)

∂Y
·
∂Y
∂W1

= 2γ (YL • Y • (1 − Y)) XT ,

∂L(Θ)
∂b1

=
∂Tr(γYLYT)

∂Y
·
∂Y
∂b1

= 2γ (YL • Y • (1 − Y)) 1,

∂L(Θ)
∂W2

= 0,

∂L(Θ)
∂b2

= 0.

(24)

To conclude, the gradients of the GAFS objective function with respect to Θ = [W1,W2,b1,b2] can be written as

∂F (Θ)
∂W1

=
1
n
∆2XT + λW1U + 2γ (YL • Y • (1 − Y)) XT ,

∂F (Θ)
∂W2

=
1
n
∆3YT ,

∂F (Θ)
∂b1

=
1
n
∆21 + 2γ (YL • Y • (1 − Y)) 1,

∂F (Θ)
∂b2

=
1
n
∆31

(25)

3.3. Computational Complexity Analysis

In this subsection, we provide the computational complexity analysis of the proposed GAFS algorithm.

The time complexity for calculating the similarity values for a single instance in dataset X ∈ Rd×n is O(dn), where

n is the number of instances in the dataset and d is data dimensionality. Therefore, the computational complexity of

kNN graph construction for the whole dataset is O(dn2).

As mentioned in Section 3.2, the time complexity of using L-BFGS algorithm to optimize (17) is O(tlmd), where

t is the number of iterations for parameter updating and l is the number of steps stored in memory. If the hidden

13



layer size of the autoencoder we use is m, then in each iteration, parameter updating requires an operation of time

complexity O(mdn2), which leads to a time complexity of O(tmdn2) for t optimization iterations. Therefore, the time

complexity of objective function optimization is O(tmdn2 + tlmd).

After we obtain W1, the computation of score for each feature requires a O(dn) operation. After that, we use a

quick sort algorithm with time complexity O(nlogn) to sort the obtained scores.

Therefore, the overall time complexity of GAFS is O(tmdn2 + tlmd). It is obvious that the time complexity of

GAFS largely depends on the objective optimization stage.

4. Experiments

In this section, we evaluate the feature selection performance of GAFS in terms of both supervised and unsuper-

vised tasks, e.g. clustering and classification, on several benchmark datasets. We also compare GAFS with other

state-of-the-art unsupervised feature selection algorithms. To be more specific, we first select p representative fea-

tures and then perform both clustering and classification on those selected features. The performance of clustering

and classification is used as the metric to evaluate feature selection algorithms.

4.1. Data Description

We perform experiments on 10 benchmark datasets,3 including 5 image datasets (MNIST, COIL20, Yale, Cal-

tech101, CUB200), 3 text datasets (PCMAC, BASEHOCK, RELATHE), 1 audio dataset (Isolet), and 1 biological

dataset (Prostate GE). For all datasets except Caltech101 and CUB200, we use the original features for feature se-

lection. For both Caltech101 and CUB200, we do not use pixels as features due to the high dimensionality of each

image and the differences between image sizes. Because of the significant success of deep convolutional neural net-

work (CNN) features on computer vision, we also adopt CNN features in our experiments for both Caltech101 and

CUB200. To be more specific, we use the Keras tool [52] with the pre-trained VGG-19 model [53]. We use the

4096-dimensional output of the second fully connected layer as the feature vector.

In order to eliminate the side effects caused by imbalanced classes, for each dataset we set the number of instances

from each class to be the same for both training and testing sets. For example, when an experiment is conducted on

Yale, for each class 6 instances are used for training and 5 instances are used for testing. The Caltech101 dataset

contains both a “Faces” and “Faces easy” class, with each consisting of different versions of the same human face

images. However, the images in “Faces” contain more complex backgrounds. To avoid confusion between these

3Caltech-UCSD Birds 200 is downloaded from http://www.vision.caltech.edu/visipedia/CUB-200.html.
Caltech101 is downloaded from http://www.vision.caltech.edu/Image_Datasets/Caltech101/.
All other datasets are downloaded from http://featureselection.asu.edu/datasets.php.
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Dataset Features Training Instances Testing Instances Classes Type
MNIST 784 1000 27100 10 Hand Written Digit Image
COIL20 1024 720 720 20 Object Image
Yale 1024 90 75 15 Human Face Image
PCMAC 3289 960 960 2 Text
BASEHOCK 4862 994 994 2 Text
RELATHE 4322 648 648 2 Text
Prostate GE 5966 50 50 2 Biology
Isolet 617 780 780 26 Audio
Caltech101 4096 2000 1000 100 Natural Image
CUB200 4096 7800 1950 195 Natural Image

Table 1: Details of datasets used in our experiment.

two similar classes of images, we drop the “Faces easy” class from consideration. Therefore, we keep 100 classes

for Caltech101. For CUB200, we removed 5 classes with sample sizes smaller than 50, with 195 remaining for

experiments. Properties of these datasets are summarized in Table 1.

4.2. Evaluation Metric

We perform both supervised (i.e., classification) and unsupervised (i.e., clustering) tasks on datasets formulated

by the selected features in order to evaluate the effectiveness of feature selection algorithms. For classification, we

employ softmax classifier due to its simplicity and compute the classification accuracy as the evaluation metric for

feature selection effectiveness. For clustering, we use k-means clustering on the selected features and use two different

evaluation metrics to evaluate the clustering performance of all methods. The first is clustering accuracy (ACC),

defined as

ACC =
1
n

n∑
i=1

δ(gi,map(ci)),

where n is the total number of data samples, δ(a, b) = 1 when a = b and 0 when a , b, map(·) is the optimal

mapping function between cluster labels and class labels obtained using the Hungarian algorithm [54], and ci and gi

are the clustering and ground truth labels of a given data sample xi, respectively. The second is normalized mutual

information (NMI), which is defined as

NMI =
MI(C,G)

max(H(C),H(G))
,

where C and G are clustering labels and ground truth labels, respectively, MI(C,G) is the mutual information between

C and G, and H(C) and H(G) denote the entropy of C and G, respectively. More details about NMI are available

in [55]. For both ACC and NMI, 20 clustering processes are repeated with random initialization for each case follow-

ing the setup of [26] and [29], and we report the corresponding mean values of ACC and NMI.
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Method Time Complexity
GAFS O(tmdn2 + tlmd)
LapScore O(dn2)
SPEC O(rn3 + dn2)
MRSF O(mn3 + dn2)
UDFS O(n2 + td3)
RSR O(td2n + td3)

Table 2: Computational Complexity of GAFS and Five Comparing Methods. In this table, d denotes data dimensionality, n denotes number of
samples, t denotes number of iterations for optimization. For SPEC, r is a parameter that controls the use of graph Laplacian matrix L. We refer
readers to [23] for more details on the definition of r. For MRSF, m denotes subspace dimensionality.

4.3. Experimental Setup

In our experiment, we compare GAFS with LapScore4 [22], SPEC5 [23], MRSF6 [27], UDFS7 [29], and RSR8 [34].

Among these methods, LapScore and SPEC are filter feature selection methods which are based on data similarity.

LapScore uses spectral graph analysis to set a score for each feature. SPEC is an extension to LapScore and can be

applied to both supervised and unsupervised scenarios by varying the construction of graph. Details on MRSF, UDFS,

and RSR can be found in Section 2.1. Details on the computational complexity of GAFS and these five methods are

listed in Table 2. Besides the five methods, we also compare GAFS with the performance of using all features as the

baseline.

Both GAFS and the compared algorithms include parameters to adjust. In this experiment, we fix some parameters

and tune others according to a “grid search” strategy. For all algorithms, we select p ∈ {2%, 4%, 6%, 8%, 10%, 20%,

30%, 40%, 50%, 60%, 70%, 80%} of all features for each dataset. For all graph-based algorithms, the number of near-

est neighbor in a kNN graph is set to 5. For all algorithms projecting data onto a low-dimensional space, the space di-

mensionality is set in the range of m ∈ {10, 20, 30, 40}. In GAFS, the range for the hidden layer size is set to match that

of the subspace dimensionality m,9 while the balance parameters are given ranges λ ∈ {10−4, 10−3, 10−2, 10−1, 1} and

γ ∈ {0, 10−4, 5×10−4, 10−3, 5×10−3}, respectively. For UDFS, we use the range γ ∈ {10−9, 10−6, 10−3, 1, 103, 106, 109},

and λ is fixed to 103. For RSR, we use the range λ ∈ {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1, 1, 5, 10, 102}.

For each specific value of p on a certain dataset, we tune the parameters for each algorithm in order to achieve

the best results among all possible combinations. For classification, we report the highest classification accuracy. For

clustering, we report the highest average values for both ACC and NMI from 20 repetitions.

4Available at http://www.cad.zju.edu.cn/home/dengcai/Data/code/LaplacianScore.m
5Available at https://github.com/matrixlover/LSLS/blob/master/fsSpectrum.m
6Available at https://sites.google.com/site/alanzhao/Home
7Available at http://www.cs.cmu.edu/ yiyang/UDFS.rar
8Available at https://github.com/guangmingboy/githubs doc
9We will alternatively use the terminologies subspace dimensionality and hidden layer size in descriptions of GAFS.
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4.4. Parameter Sensitivity

We study the performance variation of GAFS with respect to the hidden layer size m and the two balance param-

eters λ and γ. We show the results on all the 8 datasets in terms of ACC.

We first study the parameter sensitivity of GAFS with respect to the subspace dimensionality m. Besides the

aforementioned manifold dimensionality range m ∈ {10, 20, 30, 40}, we also conducted experiments with hidden

layer size values of m ∈ {100, 200, 300, 400} to investigate the performance change for a larger range of reduced

dimensionality values. The results in Fig. 1 show that the performance of GAFS is not too sensitive to hidden layer size

on the given datasets, with the exception of Yale, where the performance with hidden layer size of m ∈ {10, 20, 30, 40}

is apparently better than that with reduced dimensionality m ∈ {100, 200, 300, 400}, while the performance variations

are small in the latter set. One possible reason behind this behavior is that for a human face image dataset like

Yale, the differences between data instances can be subtle since they may only lie in a small area of relevance such

as eyes, mouth, nose, etc. Therefore, in this case a small subspace dimensionality can be enough for information

preservation, while a large subspace dimensionality may introduce redundant information that may harm feature

selection performance.

We also study the parameter sensitivity of GAFS with respect to the balance parameters λ and γ, under a fixed

percentage of selected features and hidden layer size. We set p = 20%, as Fig. 1 shows that the performance stabilizes

starting at that value of p. For subspace dimensionality, we choose m = 10 since Fig. 1 shows that the performance

of GAFS is not sensitive to the value of m. The performance results are shown in Fig. 2, where we find that different

datasets present different trends on the ACC values with respect to λ and γ. However, we also find that the perfor-

mance differences on PCMCA, BASEHOCK, and RELATHE are not greater than 0.8%, 0.8%, and 0.4%, respectively.

Therefore we cannot make any conclusion on the influence from two balance parameters on ACC based on these 3

datasets. For the parameter λ, which controls the column sparsity of W1, we can find that for Yale the performance

monotonically improves as the value of λ increases for each fixed value of γ, even though the number of selected

features m is fixed. We believe this is further evidence that a small number of selected features receiving large score

(corresponding to large λ) is sufficient to obtain good learning performance, while having a large number of highly

scoring features (corresponding to small λ) may introduce irrelevant features to the selection. We also find a similar

behavior for Prostate GE and Isolet. For both MNIST and COIL20, we can find that the overall performance is best

when λ = 10−2 and both smaller and larger values of λ degrade the performance. This is because the diversity among

instances of these two datasets is large enough: a large value of λ may remove informative features, while a small

value of λ prevents the exclusion of small, irrelevant, or redundant features. For the parameter γ, which controls local

data structure preservation, we can find that both large values and small values of γ degrade performance. On one
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Figure 1: Performance of GAFS in clustering as a function of the percentage of features selected p (%) for varying sizes of the autoencoder hidden
layer m. Clustering accuracy is used as the evaluation metric.
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(a) MNIST (b) COIL20 (c) Yale (d) PCMAC

(e) BASEHOCK (f) RELATHE (g) Prostate GE (h) Isolet

(g) Caltech101 (h) CUB200

Figure 2: Performance of GAFS in clustering as a function of the percentage of features selected p (%) for varying values of the balance parameters
λ and γ. Clustering accuracy is used as the evaluation metric.

hand, we can conclude that local data structure preservation does help improve feature selection performance to a

certain degree. On the other hand, large weights on local data structure preservation may also harm feature selection

performance.

4.5. Feature Selection Illustration

We randomly select five samples from the Yale dataset to illustrate the choices made by different feature selection

algorithms. For each sample, p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%} features are selected. Figure

3 shows images corresponding to the selected features (i.e., pixels) for each sample and value of p, with unselected

pixels shown in white. The figure shows that GAFS is able to capture the most discriminative parts on human face

such as eyes, nose, and mouse.

4.6. Performance Comparison

We present the classification accuracy, ACC, and NMI results of GAFS and the comparison feature selection

algorithms on all datasets in Fig. 4, Fig. 5, and Fig. 6, respectively. From these figures, we can find that GAFS
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Figure 3: Feature selection illustration on Yale. Each row corresponds to a sample human face image and each column refers to percentages of
features selected p ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 100%} from left to right.

performs better than other compared algorithms in most cases. There exist some cases that GAFS does not provide

the best performance (e.g. PCMAC in classification tasks), but it defeats all its competitors in clustering tasks on

PCMAC. We can also observe that GAFS can defeat most competing methods in most cases for both classification

and clustering. Therefore, we can say that GAFS provides the best overall performance among the methods that

we consider in those figures. Providing a justification for the degradation in performance can be complicated because

many factors such as the number of features, evaluation metric, dataset properties, etc. can affect the final performance.

Comparing the performance of GAFS with that of using all features, which is represented by a black dashed line in

each figure, we can find that GAFS can always achieve better performance with far less features. Meanwhile, with

fewer features, the computational load in corresponding classification and clustering tasks can be decreased. These

results demonstrate the effectiveness of GAFS in terms of removing irrelevant and redundant features in classification

and clustering tasks.

4.7. Convergence Analysis

In this section, we study the convergence performance of our proposed algorithm. The convergence curves of

GAFS on all datasets are shown in Fig. 7. Each figure displays the objective function value as a function of the

number of iterations under 4 parameter combinations. The maximum number of iterations in each figure is 400. In
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(g) Prostate GE

10 20 30 40 50 60 70 80

40

50

60

70

80

90

p (%)

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y
 R

a
te

 (
%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(h) Isolet
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Figure 4: Performance of GAFS and competing feature selection algorithms in classification as a function of the percentage of features selected p
(%). Classification accuracy is used as the evaluation metric.
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Figure 5: Performance of GAFS and competing feature selection algorithms in clustering as a function of the percentage of features selected p (%).
Clustering accuracy is used as the evaluation metric.

22



10 20 30 40 50 60 70 80

15

20

25

30

35

40

45

50

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(a) MNIST

10 20 30 40 50 60 70 80

50

55

60

65

70

75

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(b) COIL20

10 20 30 40 50 60 70 80
50

52

54

56

58

60

62

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(c) Yale

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(d) PCMAC

10 20 30 40 50 60 70 80
0

2

4

6

8

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(e) BASEHOCK

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(f) RELATHE

10 20 30 40 50 60 70 80

4

6

8

10

12

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(g) Prostate GE

10 20 30 40 50 60 70 80

45

50

55

60

65

70

75

80

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(h) Isolet

10 20 30 40 50 60 70 80

65

70

75

80

85

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(g) Caltech101

10 20 30 40 50 60 70 80

60

62

64

66

68

70

p (%)

N
M

I 
(%

)

 

 

GAFS
LapScor
MRSF
RSR
SPEC
UDFS
All Features

(h) CUB200

Figure 6: Performance of GAFS and competing feature selection algorithms in clustering as a function of the percentage of features selected p (%).
Normalized mutual information is used as the evaluation metric.
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some cases the curves do not reach the maximum number of iterations because they meet the stopping criterion, i.e.,

the relative difference of objective function values between two iterations is less than 10−5. We can find that the

overall convergence rates on MNIST, COIL20, Yale, and Isolet are slower than other datasets. The reason may be

the redundancy between features. For PCMAC, BASEHOCK, RELATHE, and Prostate GE, the input features have

little connections between each other. Though both Caltech101 and CUB200 are natural image datasets, we employ

VGG19 to generate features, which also reduces redundancy among features. But for MNIST, COIL20, Yale, and

Isolet, we use the original visual and audio features for feature selection. The high spatial or temporal redundancy

among features may reduce the convergence rate.

For most datasets, the choice of parameters does not affect convergent results. However, for MNIST, COIL20,

Yale, and Isolet, the condition of λ = 0, which implies the abandon of `2,1−norm term, can lead to a faster convergence

rate. This may be due to the use of subgradients during optimization. Since we set the gradient value to be 0 when the

elements in the corresponding column of W1 are all zeros. The setup of gradients can lead to suboptimality during

optimization, which may reduce the speed of convergence. However, when λ , 0 (λ = 10−2 in this illustration),

the objective function can be optimized to smaller values. This indicates that the introduction of `2,1-norm leads to

reduction in reconstruction errors.

4.8. Training Time Analysis

In this section we study the training costs of GAFS as well as competing methods. We record the training time

for each method as well as the corresponding feature selection performance. Due to limited space, we only show the

results generated from the MNIST dataset mentioned in Section 4.1. We use classification accuracy on 10% of all

features as the evaluation metric. For Laplacian Score, SPEC, and MRSF, we report the training time and classification

accuracy. For GAFS, RSR, and UDFS, we fixed the number of iterations in the optimization procedure from 20 to 400

with a step of 20, while also limiting execution times to a maximum of 50 seconds. We recorded training time for each

number of iterations and the corresponding classification rates. The results are displayed in Fig. 8. Though Laplacian

Score and SPEC have the smallest training times, they cannot provide comparable classification performance. The

performance of GAFS starts to stabilize when the training time is around 5 seconds, which corresponds to 60 iterations.

After that, GAFS consistently provides the best performance among all methods. The performance of RSR is better

than GAFS for small training times, but its upper limit in terms of classification accuracy is lower than that of GAFS.

MRSF provided satisfactory classification performance (72.44%) with a short training time (4.70s). However, it is

also outperformed by GAFS.
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Figure 7: Value of the GAFS objective function as a function of the number of iterations for several values of the balance parameters.
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Figure 8: Classification performance on the MNIST dataset as a function of training time for GAFS and competing feature selection algorithms for
p = 10%.
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5. Conclusion

In this paper, we proposed a graph and autoencoder-based unsupervised feature selection (GAFS) method. Unlike

similar existing techniques that combine sparse learning and feature selection, the proposed method projects the

data to a lower-dimensional space using a single-layer autoencoder, in contrast to the linear transformation used by

most existing methods. With our proposed framework, we bypass the limitation of existing methods with linear

dimensionality reduction schemes, which may lead to performance degradation for datasets with richer structure that

is predominant in modern datasets. Experimental results demonstrate the advantages of GAFS versus methods in the

literature for both classification and clustering tasks.

The work we present here is our first attempt to leverage autoencoders for unsupervised feature selection purposes.

Therefore, we use the most standard setting for the construction of the autoencoder, e.g., there is no desired or partic-

ular structure to the activations or the reconstruction error. In the future, we plan to explore the effectiveness of more

elaborate versions of an autoencoder for feature selection purposes. Furthermore, by employing label information, we

can also extend our work to a supervised feature selection framework.
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