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a b s t r a c t 

This paper explores widely the data preparation stage within the process of knowledge discovery and 

data mining via feature subset selection in the context of two very well-known neural models: radial 

basis function neural networks and multi-layer perceptron. It is known the best performance of wrap- 

per attribute selection methods based on the evaluation measure provided by a classifier, although the 

temporal complexity of learning neural networks practically precludes the use of wrapper techniques, es- 

pecially in complex databases with high dimensionality and a large number of labels. In this paper, we 

propose the use of the Naïve Bayes classifier as a fitness function within a semi-wrapper feature selec- 

tion approach. The Naïve Bayes classifier is a good fast approach to a neural network and utilising it as a 

measure of goodness in a backward search on a ranking provides a specific attribute selection method for 

neural networks in complex data. The test-bed consists of 34 binary and multi-class classification prob- 

lems and 7 feature selectors. Of these, there are 6 data sets with upwards of 5 classes. According to the 

reported accuracy results that have been supported by non-parametric statistical tests in different sce- 

narios, our method has been shown to be very suitable for both kinds of neural networks. Moreover, the 

reduced feature-space is around 20% of the full attribute space. The speedup with the aforementioned 

semi-wrapper is very outstanding and its value fluctuates, on average, from about 1.5 with radial basis 

function neural networks to around 30 with multi-layer perceptron. 

© 2019 Published by Elsevier B.V. 
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1. Introduction 

Neurocomputing deals with information processing. It involves

a learning procedure within artificial neural network architecture.

The trained networks can be utilised to perform certain tasks

depending on the particular application that we are coping with.

Processing in neurons can be very complex, although with the

basic limitations of speed and accuracy imposed by the biophysical

properties of ions and membranes. Integration of information in

dendrites is often non-linear [1] . Neurocomputing can play an

important role to solve certain difficult problems in science and

engineering such as pattern recognition, optimisation, control

and identification of nonlinear systems, and statistical analysis

[2] . Computational neuroscience is a field that strives to simulate

and understand the function of the nervous system. Among its
∗ Corresponding author. 
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isciplines, it encompasses artificial neural networks (also called

eural networks) [3] . Neural networks tie, to some extent, with

xpert systems in the sense that for concrete domains a knowl-

dge base in terms of rules could be incorporated to the initial

eural networks [4] . The application scope of neural networks is

ery broad and we can find some degree of success in finances,

ngineering diagnosis, intelligent manufacturing, human resource

anagement, medicine, failure detection and biology [5] . In this

orld of digital data, now more than ever, it is important to

istinguish the most relevant properties or attributes, in order to

aximise the objective, we are pursuing in the learning that we

ntend to carry out from the data. The advantages that can be

btained are already widely agreed, such as obtaining simpler and

learer learning models; equalise, and even improve, the results

f the model, classification in our case; accelerate the learning

rocess, although the cost of the selection in the pre-processing is

dded; and once the chosen attributes have been tested, it could

e proposed for future cases, to capture only these attributes

aving the effort of entering and storing the rest of the properties. 

https://doi.org/10.1016/j.neucom.2018.05.133
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.05.133&domain=pdf
mailto:atallon@us.es
https://doi.org/10.1016/j.neucom.2018.05.133
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We have performed a scrupulous review of the research within

he area bearing in mind feature selection and at the same time

he application domain of classifiers based on neural networks.

ccording to the study, we must state that most of the existing

ublications are focused on a specific type of classifier or just

 few methods to reduce the input space have been reported.

his paper aims to shed light on the performance of different

lter-based selection methods, to suggest which pathways will

e most promising conducting future experiments in the scope

f aforementioned neural approaches. Particularly, we propose

 semi-wrapper approach by means of a Naïve Bayes classifier

hat could help the neural network models to process only the

ubset of inputs which are the most relevant. At the same time,

t promotes a way to overcome the performance of feature subset

election implemented as filters and a faster solution to wrapper

ethods, which are very specific with limited application to other

ariations or topologies of neural networks, and would require

igh amounts of memory and computing time. 

In the context of feature selection there is a trade-off between

fficacy and efficiency; some methods pick up a reduced number

f features but the accuracy does not improve in comparison to the

ull set of features, whilst conversely some methods select a larger

umber of features and give an excellent classifier performance.

lternatively, some methods may even worsen the accuracy.

onetheless the important issue is to demonstrate if there are

ignificant differences. As proof of the research conducted, we can

ssert that feature selection is always convenient, especially in the

omputation of neural networks and semi-wrappers are strong

pproaches to deal with complex problems. It is also crucial to

omplete the paper with some prospective works. 

As a test-bed for this paper, we consider two outstanding mod-

ls of feed-forward neural networks: Multi-layer Perceptron (MLP)

nd Radial Basis Function Neural Networks (RBFNN) averaged with

0 runs into 34 binary and multi-class classification problems

aking into account both full and reduced feature space. Seven

eature selection approaches based on subset of attributes have

een conducted. 

The remaining part of this paper is organised as follows:

ection 2 describes briefly the methods that are the core elements

o follow easily the forthcoming parts of this paper. Section 3 starts

ith a motivation to the approach and introduces the proposal.

ection 4 details the experimentation. Section 5 reports on the

esults and also undergoes with non-parametric statistical tests.

ection 6 draws the conclusions. Lastly, Section 7 opens new

esearch lines upon the basis of all that this paper concludes. 

. Methods 

.1. Neural networks 

Artificial neural networks are computational models that em-

late the human brain. The complexity of the brain is such that

round 10 11 neurons are present, on average, in the human brain.

t also means that a huge amount of connections govern the body

6] . Furthermore, the word connectionism has been applied to

he neural networks due to storage of the knowledge in a neural

etwork as a set of connections with weights to excite or inhibit

he signals coming from the previous layer [7] . Connectionist

ramework was one of the two main approaches in the 1950 ′ s and

arly 1960 ′ s within the emerging field of artificial intelligence [8] .

earning plays a crucial role in neural networks [9] . Firstly, the first

ask within neural networks is to train or learn the model to rep-

esent the input patterns. Secondly, the model should be assessed

ith unseen data; this phase is known as the generalisation task

10] . 
Neural networks could be divided into two types: feed-forward

eural networks and feed-back or recurrent neural networks [11] .

owadays, the latter type is the subject of many control systems

nd also lot of dynamic environments, whereas the former has

ainly widespread applications in the areas of pattern recognition

nd business intelligence just to name a few. On the one hand,

eed-forward neural networks are categorised mainly into three

ariations: (a) Single-layer perceptron that consists of one input

ayer and one output layer; nowadays this approach is rarely

onsidered in practice, (b) multi-layer perceptron, typically this

odel follows a three-layered structure with an input layer, a

idden layer and an output layer, (c) radial basis function nets

ith a structure similar to that of the previous type. In particular,

e adopt two forms of very well-known universal approximators

amely MLP [12] and RBFNN [13] . 

The most popular class of multi-layer feed-forward networks is

ulti-layer perceptron in which each computational unit (or node)

tilises either the threshold function or the sigmoid function [13] .

here are a great number of different approaches to train an MLP

rchitecture but all of them are based on gradients or sometimes

n heuristics. Generally speaking, the basis of MLP is the Back-

ropagation (BP) learning algorithm to determine weights. We

tilises the BP approach with momentum which is superior to the

sual BP algorithm. 

The Radial Basis Function (RBF) neural network consists of two

ayers and is a special type of multi-layer feed-forward network.

ach unit in the hidden layer uses a radial basis function, repre-

ented by a Gaussian kernel, as its activation function [14] . The

adial basis function (or kernel function) is centred at the point

ndicated by the weight vector associated with the unit. Both the

ositions and the widths of these kernels must be learned from

raining patterns. There are usually fewer kernels in the RBF net-

ork than there are training patterns. Each output unit performs

 linear combination of these radial basis functions. From the

iewpoint of function approximation, the hidden units construct

 set of functions that constitute a base set for representing input

atterns in the space spanned by the hidden units. The training is

one by a K -means algorithm [16] . 

.2. Feature selection 

Feature selection pursues to determine a subset of variables

rom the input which can efficiently describe the input data and

t the same time reducing effects from noise or irrelevant vari-

bles and still providing good prediction results. Articles such as

15,16] clearly expose different ways of classifying selection algo-

ithms, and include descriptions comparing advantages and disad-

antages. Feature selection algorithms have two essential elements,

he evaluation measure used to quantify the goodness of the sub-

ets of attributes, and the strategy followed by the search method

n order to locate a good subset that comes as close as possible to a

lobal maximum [17] . If we take into account the first component

f this type of algorithm, the evaluation function, we can distin-

uish selectors that use a metric that is unrelated to the type of

earning that we will later use, from selectors that use the learning

lgorithm itself as an evaluation measure for the subsets. The for-

ers are called filters, the latter wrappers. Some algorithms offer

 solution by selecting the attributes in the learning process itself,

nown as embedded methods. Within the filter category there

re several widely utilised metrics, such as correlation measures,

onsistency measures, information gain and dependency, among

thers. In the state-of-the-art of the selection of attributes, we can

nd many hybrid selection methods, the result of mixing different

ays of evaluating the subsets [18,19] . There are also different pos-

ibilities depending on the search strategy, the second component

f a selector algorithm: exhaustive, heuristic, random, etc. 
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In the experiments detailed in this document we see the results

obtained with different combinations of the following metrics: 

• CBF - Correlation-based filter [20] : CFS assesses the quality of a

feature subset bearing in mind the hypothesis that good feature

subsets contain features highly correlated to the class. 
• CNS - Consistency-based measure [21] : CNS is founded on the

consistency measure, which estimates, for a given subset of fea-

tures, the number of sources that matches all but their class la-

bels. The inconsistency rate is then utilised to evaluate its qual-

ity. 
• SOAP - Selection of attributes by projection [22] : It is a

non-stochastic feature selection criterion based on the basic

principle of counting the label changes of examples projected

onto each feature. If the attributes are sorted in ascending

order according to the number of label changes, we have a list

that defines the priority of selection, from greater to smaller

importance. The main advantages are its speed and simplicity

in the assessment of the attributes. 
• Naïve Bayes is a descriptive and predictive classification tech-

nique based on the probability theory of the analysis of Bayes

[23] . It calculates the probability distributions of each class to

establish the relationship between the attributes and the class.

The Bayesian classifier is a simple and fast method. 

From a different point of view, based on how the output of the

attribute selectors is produced, we find methods that at the end

of the process return a defined subset of attributes, compared to

other methods that perform the process of ordering the attributes

according to the criteria set, that is, the function that is used to

evaluate can only be applied to each attribute individually. Hybrid

algorithms use both types of output in different parts of the

process have been used for a little more than a decade [24–28] .

They usually start with a first ranking phase, which is followed by

another phase of subset formation. In some versions this process is

repeated whilst alternating both phases. As we can imagine, taking

into account the classifications of the aforementioned selectors,

there are numerous possible algorithms for each configuration. In

this sense, perhaps, the most referenced algorithm that follows

this type of hybrid strategy, FCBF - Fast Correlation-Based Filter

[29] . This selector establishes the concept of a Predominate feature

based on the non-linear correlation metric SU – Symmetrical

Uncertainty. 

3. Related works and contribution 

3.1. Neural networks and feature selection 

The topic of feature selection in the context of RBFNN and MLP

has been touched by some researches. The idea of accelerating

the training time by means of feature selection had an important

contribution in 1997 by Setiono and Liu; firstly, they proposed

to train the MLP neural network with an approach faster than

BP [30] and secondly they introduced a procedure to prune the

network which may be considered similar to a backward search

in the sense that for each attribute is computed the accuracy of

the whole network without the current attribute, later the feature

with the smallest decrease is removed and then the process is

repeated. This work tested the proposal with six artificial and

four binary real-world datasets and among them Sonar problem

that contains sixty feature and two labels is the most complex of

their study. One of the pioneered works for RBFNN was published

in 1999 by Basak and Mitra [31] , who made a contribution to

compute two new evaluation indices to select the optimal set of

features which were derived from the worsening of the separation

between and/or compactness of the classes due to the absence

from the feature set. They assessed the approach in a couple of
eal-life problems such as Iris and Vowel (six classes, one for

very of the Telugu vowel sounds) and provided desired feature

ankings. 

Probably, the work more connected to the sketch of the current

aper could be one that utilised MLP and RBFNN to train only

 concrete problem related with the security containing samples

rom four classes with a number of properties in the most difficult

ase around one hundred [32] ; the contribution is based on the

sage of a sequential forward selection to extract the relevant fea-

ures and also is important to remark that the search starts with

n empty candidate set and adds feature variables sequentially

ntil the halt. Nonetheless, the forthcoming pages talk about the

ew contribution that we propose and, of course, the experiments

o evaluate our proposal. We have found a contribution using

everal feature ranking methods and also testing two wrappers

pproach after an initial pre-screening in RBFNN [33] ; the idea

f this paper is to avoid one of the drawbacks of assessing the

ttributes individually because there are difficulties to get features

ith a good performance alone and also within a subset. This

aper has received a very good welcome from the data mining

ommunity since has been cited around fifty times at the written

ime of this manuscript. From previous works, it has been shown

34] that filters based on subsets which reduce the space attribute

oo much could lead to the deletion of relevant properties in terms

f entries to the neural network and also be accompanied by a not

o good performance compared to other approaches that chose a

oderate number of attributes. 

Shifting mainly to the wrapper model, some researches may be

ound. In 2002, Hsu et al. introduced a framework called ANNIGMA

35] , which stands artificial neural net input gain measurement

pproximation, and is founded in assigning a weight to every input

ccording to the information gain measure. Another interesting

ork from the previous decade suggested computing the relative

ontribution of each feature to the target label and reached to the

onclusions that not always an important reduction in the feature

pace is productive for the neural network model [36] . Yang et

l. [37] presented a wrapper for MLP which has been assessed

n eight problems and some of them are very remarkable such

s two data sets concerned with binary problems with up to one

undred and sixty six features and another one with seven labels

nd nineteen attributes. In the current decade, there have been

ome contributions in the field of neural networks using wrapper

pproaches. As an example, it is of special interest the constructive

pproach for feature selection (CAFS) [38] which is tested in

roblems with up to sixty features and three classes or eighteen

ttributes and four classes as two representative cases with the

ighest computational cost. Zeng et al. [39] has proposed very

ecently a wrapper based on sensitivity for RBFNN that has been

pplied in three classification problems and the most complex

ne has been waveform which has forty features and three labels.

 newly written review outlines further perspectives for feature

election and introduces an in-depth study about unsupervised

eature selection both for the case of the filter and wrapper models

40] . 

We have explored many more contributions although the real

ovelty is more limited compared to all the papers cited below.

hus, scenarios with hundreds of features and more than five

lasses, which may be considered to have higher complexities

hat the aforementioned ones, have not been addressed yet in the

ontext of wrapper-based feature selection. Moreover, the limited

pplicability to other classifiers, even to those following the same

trategy of coping with the data representation or the elements

o conduct the decision-making procedure, make the wrappers

aid to be as too specific approaches; for example, a solution for

n RBF neural network is not valid for other RBF with a different

ernel or even for an MLP. 
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Feature Selection

Target classifier Any classifier Classifier Y Classifier Y

Type of method

Feature fitness

Filter

Classifier-independent 
measure

Semi-Wrapper

Classifier X

Wrapper

Classifier Y

Fig. 1. Taxonomy of feature selection: filter, semi-wrapper and wrapper. 
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.2. Proposal 

Bearing in mind all the previous studies, we contemplate the

ossibility of incorporating intermediate methods between both

xtremes of the classical splitting of feature selection approaches

nto two large groups, namely, the filters and the wrappers. As

 result of it, we propose the semi-wrapper feature selector as a

aster method than wrappers and, at the same time, more accurate

nd reliable than filters. Additionally, a solution reached using a

lassifier to compute the feature fitness is suitable to be taken

s the input for a target classification algorithm which must be

ifferent, falling in the same or a different category within the

axonomy of classifiers. Having said the above, we may apply a fast

nd, optionally, very competitive classification algorithm to get a

ood score with the available data and then to feed the target clas-

ifier with a very robust subset of attributes. To a certain extent,

he semi-wrapper may promote the hybridisation at the classifier

evel within the feature selection task. Fig. 1 depicts the taxonomy

f feature selection with the inclusion of the semi-wrapper in

etween the classical approaches such as filter and wrapper. 

It is important to stress that we are contending with two types

f feed-forward models independently. Thus, we are working not

nly with one neural approach but also with two different archi-

ectures and very extensively according to the test-bed which adds

n extra contribution to this paper. Our focus is primarily on fea-

ure subset selection due to its better performance in comparison

ith feature ranking methods. Once we have considered working

ith feature subset selection, we have proposed an intermediate

olution between filter and wrappers since the former are not

ble to reach solutions close to the optimal ones and the latter

equire an important computational burden for the neural network

odels. 

The main idea that guides this work is to have a good method

f feature selection that allows optimising the application of neu-

al networks in high-dimensional environments. In recent years

he common way of grouping feature selection algorithms has

ot changed much, and from above mentioned studies [15 , 16] , we

ould gather: 

1. First, feature selection, as a dimensionality reduction technique,

focuses on choosing a subset of the relevant attributes of

the original set, discarding irrelevant, redundant and noisy

attributes . 

2. Wrapper methods obtain better results from a classification

accuracy point of view, using much more time [41] , becoming

prohibitive in the case of heavy classifiers as it happens with

neural networks. 

3. As regards the selector output, ranking type are much faster

than those that provide subsets, but their drawback is that
catches only the relationship of each individual attribute with

the class, rather than the interrelationships between attributes.

In addition, we have the issue of knowing how many attributes

of the ranking we are left to form the subset of final attributes.

Hybrid algorithm (ranking + subset) performs more agile

searches, obtaining good results even in large data sets in

which the algorithms of subsets may not arrive. 

4. Regarding the search direction when the search space is tra-

versed, that is, the relationship between the attributes of a

subset with the next subset, backward direction approach

remedies a disadvantage of the forward path, such as not

detecting interesting basic interactions between attributes from

a classification point of view. This is achieved by eliminating

from the subset the least relevant attribute of all. 

Taking into account the four aforementioned items, and espe-

ially the ideas outlined in bold, we propose a semi-wrapper ver-

ion of the hybrid algorithm BIRS (Best Incremental Ranked Subset)

25] that we have called BIRS SW 

and is introduced concretely for

he particular scenario for a feature selection prior to a classifica-

ion process with neural networks. Fig. 2 shows the proposal. 

The first part of the algorithm would be similar to other hybrid

pproaches; it generates a ranking where the attributes can be

rdered according to any type of metric. The proposal is neverthe-

ess to modify conveniently the second part of the algorithm. First,

s noted above, the direction of the search algorithm is changed,

tarting with the complete set of features and through a backward

earch are successively eliminated. To do this, the attributes are

hosen one by one in the reverse order of the previous ranking

nd if the evaluation of the subset without the attribute is greater

r equal than with it, it is removed. 

Due to the impossibility of using the neural networks them-

elves as an evaluation measure in the selection of subsets of

ttributes, we use a learning algorithm, Naïve Bayes (NB), as an

valuation metric providing a lower temporal cost. The benefits

f the Naïve Bayes classifier are widely known, as listed in [42] ,

omputational efficiency, low variance, incremental learning, direct

rediction of posterior probabilities, robustness in the face of

oise, and robustness in the face of missing values. In our work,

B has been chosen as a subset evaluator mainly because of its

imilarity to neural networks. The resulting NB classifier uses a

inear model, equivalent to that used by logistic regression (and

herefore single-layer neural nets), differing only in the manner in

hich the parameters are chosen [42,43] . Because NB is not the

nal destination classifier, our proposal cannot be considered a

rapper, which is why we call it a semi-wrapper. 

In addition, as discussed earlier in the first point, the use

f NB as subset evaluator in the second phase reinforces the

bjective of any attribute selector, choosing a subset of relevant
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Fig. 2. Proposed approach: BIRS SW 

. A semi-wrapper feature subset selector. 
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attributes of the original set by discarding irrelevant, redundant,

and noisy attributes. First, irrelevant features have a very small or

no correlation with the class variable, and so, have very little or

no predictive power. Liu and Motoda [44] and Kohavi [45] have

observed that theoretically, the irrelevant features should not

affect the classification outcome for Naïve Bayes classification.

They have argued that even though, theoretically, the removal

of any feature cannot affect the classification performance of the

(optimal) Bayesian classifier, the Naïve Bayes classifier should

perform better when irrelevant features are removed. John et al.

[46] have observed that in practice (empirically) the irrelevant

features lead to degradation in classification performance. Second,

NB is very sensitive to redundant attributes because if two or

more attributes are correlated they receive too much weight in

the final decision as to which class they belong to. 

4. Experimentation 

4.1. Data sets 

Table 1 reports the problems that we have used for the exper-

imentation and which are addressed to assess the performance of

the proposal as well as in comparison with other approaches. The

test-bed is very varied in terms of properties. The last row shows

the mean values of every property. The top part of the table (from

D1 to D22) is related mostly to real-world problems taken from the

International Repository hosted by the University of California at

Irvine (UCI) [47] . The bottom part of the table lists synthetic prob-

lems that are very challenging because although the goal is known,

the method that should be used to achieve this goal remains un-

solved. Third column provides some extra information about

the problem in order to ease the reproducibility of the experi-

ments: the original name for data sets from UCI as shown in the

repository (for those problems not available on this server some

additional details) and a brief description about synthetic ones. 

The comparison using artificial data sets has been previously

used in [4 8 , 4 9] . Each data set was constructed with n samples

represented by pairs ( x , y ) where each x is a vector described
i i i 
y d quantitative variables and its corresponding y i ∈ { −1 , 1 } is

 qualitative attribute that contains the class associated to the

ector. The x ij value represents the j th component of the i th

xample. Following the notation used in [45] the definition of

ach problem is based on 5 parameters and therefore a data set

s characterised by means of the elements (m,d,r,l,g) where m

epresents the number of samples, d the total number of features,

 the number of relevant features, l the type of classification rule,

nd g the noise rate in the features. 

A feature is considered to be relevant to the learning task if

t is present in the definition of the classification rule that has

een taken from [48] and to build the data set it was generated a

 × l ( c j,k ) random matrix with coefficients in [ −2 , −1 ] ∪ [ +1 , +2 ] .

e utilised this range to avoid coefficients with values close to

 , which would falsify the subset of relevant attributes. Then, a

olynomial of degree l is built, and for each example i we define: 

p i = 

l ∏ 

k =1 

( 

r ∑ 

j=1 

( c jk x i j ) + b k 

) 

; y i = 

{+1 if p i > μ

−1 otherwise 
. 

here b k is a random independent term to assure that all mono-

ials of a specific degree are generated, and μ is the median of

 i , i = 1,…,m . Each element x ij was drawn uniformly in [0, 1]. The

abel y i of each example x i was assigned considering the equations

or l = 1 (linear case). 

For the experiments conducted through this article, we used

ata sets with m = 500 samples, whilst the number of features

ere 50 and 100. The number of relevant features was fixed to

 = {5, 10} for d = 50 and r = {5, 10, 15, 20} for d = 100. Additionally,

n order to increase the difficulty, the input values of the data

ets were altered by adding label noise that consisted in flipping

he class value. The percentage of noise considered for the exper-

mentation was fixed to g = {0, 5}. To estimate the quality of the

ypothesis learned with each subset of features, we utilised the

verage classification success in a test set independently generated

ith one third of the size of the training set. 

A stratified holdout method has been applied to divide the

ata sets into two stratified sets, one with 3 out of 4 quarters (the
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Table 1 

Test-bed summary. 

Data set Problem Additional information Instances Perc_Training Features Classes 

D1 Batch Gas Sensor Array Drift, 2012 13,910 74.996 129 6 

D2 Breast Breast Cancer, 1988 286 75.174 9 2 

D3 Column Vertebral Column, 2011 310 74.830 6 2 

D4 Heart Statlog (Heart) 270 74.814 13 2 

D5 Hepatitis Hepatitis, 1988 155 75.483 19 2 

D6 Ionos Ionosphere, 1989 351 74.928 33 2 

D7 Labor Labor Relations, 1988 57 75.438 29 2 

D8 Leaves Data were collected on 16th July 2007; file is not currently stored on the server 180 75.0 0 0 43 3 

D9 Messidor Diabetic Retinopathy Debrecen, 2014 1151 74.978 19 2 

D10 OBS Burst Header Packet (BHP) flooding attack on Optical Burst Switching (OBS) 

Network, 2017 

1075 74.976 21 4 

D11 Parkinsons Parkinsons, 2008 195 74.871 23 2 

D12 Pasture From Agricultural researchers in New Zealand, Dave Barker, AgResearch Grasslands, 

Palmerston North, 1995 

36 75.0 0 0 21 3 

D13 Pima Pima Indians Diabetes, 1990 768 75.0 0 0 8 2 

D14 Pollen From David Coleman at RCA Laboratories in Princeton, N.J. 1372 75.0 0 0 47 7 

D15 Promoter Molecular Biology (Promoter Gene Sequences 106 75.471 58 2 

D16 Soybean Sample data set in Weka tool as soybean.arff 683 74.816 82 19 

D17 Squash Squash Harvest (unstored variation), Winna Harvey, Crop & Food Research, 

Christchurch, 1996 

52 75.0 0 0 23 3 

D18 Tokyo About hardware failures; not currently available on the server 959 49.947 44 2 

D19 Waveform Waveform (Version 2, 1988) 50 0 0 75.0 0 0 40 3 

D20 Winequality-red Wine Quality, 2009, red wine type 1599 74.796 11 6 

D21 Winequality-white Wine Quality, 2009, white wine type 4898 74.948 11 7 

D22 Yeast Yeast, 1996 1484 74.932 8 10 

D23 d50r5g0 Five relevant attributes 500 75.0 0 0 50 2 

D24 d50r5g5 Five relevant attributes and five noisy ones 500 75.0 0 0 50 2 

D25 d50r10g0 Ten relevant attributes 500 75.0 0 0 50 2 

D26 d50r10g5 Ten relevant attributes and five noisy ones 500 75.0 0 0 50 2 

D27 d100r5g0 Five relevant attributes 500 75.0 0 0 100 2 

D28 d100r5g5 Five relevant attributes and five noisy ones 500 75.0 0 0 100 2 

D29 d100r10g0 Ten relevant attributes 500 75.0 0 0 100 2 

D30 d100r10g5 Ten relevant attributes and five noisy ones 500 75.0 0 0 100 2 

D31 d100r15g0 Fifteen relevant attributes 500 75.0 0 0 100 2 

D32 d100r15g5 Fifteen relevant attributes and five noisy ones 500 75.0 0 0 100 2 

D33 d100r20g0 Twenty attributes 500 75.0 0 0 100 2 

D34 d100r20g5 Twenty attributes and five noisy ones 500 75.0 0 0 100 2 

Average 1202.9 74.3 49.9 3.4 

Table 2 

List of methods employed in the extensive experimentation with and without feature selection. 

Feature selector name Type of method Ranking method Subset evaluation Abb. Name 

– – None None F0 

spBI _CFS Filter SOAP CFS F1 

cfBI _CFS Filter CFS CFS F2 

spBI _CNS Filter SOAP CNS F3 

cnBI _CNS Filter CNS CNS F4 

FCBF Filter SU SU F5 

nbBI _NB Semi-wrapper NB NB F6 

cfBI _NB Semi-wrapper CFS NB F7 
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raining set) and other with the remaining quarter (the testing

et). We have specified the exact training percentage in order to

acilitate reproducibility. Hereinafter, we only mention results re-

ated to the testing set. Thus, in order to assess a classifier we train

he model with the training set, then we evaluate the achieved

odel with the unseen (testing) set. The exception is the compu-

ational cost which has been computed during the training phase

nd is the most time-consuming activity in supervised machine

earning tasks. Initial pre-processing even before feature selection

as been minimal in the sense that only the missing values have

een replaced by the mean or the mode within the same class

epending on whether the attribute is numerical or categorical. 

.2. Filters and semi-wrappers 

Table 2 shows the selection methods used in the experiments,

xcept for the first row which corresponds to the complete data
et. The first column indicates the name of the selector. As ex-

lained in previous paragraphs, all of the selectors, except the

ne that appears in the sixth row (FCBF), correspond to different

ariants of the BIRS (BI) algorithm, so that the letters that pre-

ede it affect the metric with the ordering of the attributes in

he initial phase is carried out (this is reaffirmed in the second

olumn), while the letters that appear behind BI refer to the

unction of subset evaluation applied in the second phase of

IRS (this is reaffirmed in the third column). The last column

hows the abbreviations with which we refer to the different

electors in the next sections, from F0 to F7, denoting that F0

orresponds to the absence of a selection method. Some prelim-

nary own works assessed BIRS in the context of neural networks

50,51] . 

With regards to the problem indicated in the first cell within

he row, every row in Table 3 shows the number of features of the

riginal training set (refer to column labelled F0) and those which
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Table 3 

Original and selected features. Scalar values and reduction percentage. 

Data set F0 F1 F2 F3 F4 F5 F6 F7 Red_F1 Red_F2 Red_F3 Red_F4 Red_F5 Red_F6 Red_F7 

D1 129 33 22 20 19 2 7 14 74.42 82.95 84.50 85.27 98.45 94.57 89.15 

D2 9 4 4 2 2 3 2 4 55.56 55.56 77.78 77.78 66.67 77.78 55.56 

D3 6 1 1 5 6 3 2 2 83.33 83.33 16.67 0.00 50.00 66.67 66.67 

D4 13 7 7 8 9 6 6 6 46.15 46.15 38.46 30.77 53.85 53.85 53.85 

D5 19 10 10 11 5 6 2 2 47.37 47.37 42.11 73.68 68.42 89.47 89.47 

D6 33 17 13 12 9 6 9 9 4 8.4 8 60.61 63.64 72.73 81.82 72.73 72.73 

D7 29 7 6 5 5 8 4 4 75.86 79.31 82.76 82.76 72.41 86.21 86.21 

D8 43 10 3 12 11 3 6 6 76.74 93.02 72.09 74.42 93.02 86.05 86.05 

D9 19 9 5 11 11 3 4 6 52.63 73.68 42.11 42.11 84.21 78.95 68.42 

D10 21 2 2 9 7 2 4 7 90.48 90.48 57.14 66.67 90.48 80.95 66.67 

D11 23 5 5 7 6 4 2 2 78.26 78.26 69.57 73.91 82.61 91.30 91.30 

D12 21 3 3 4 4 4 4 4 85.71 85.71 80.95 80.95 80.95 80.95 80.95 

D13 8 3 3 4 5 4 3 2 62.50 62.50 50.00 37.50 50.00 62.50 75.00 

D14 47 9 9 8 8 13 13 19 80.85 80.85 82.98 82.98 72.34 72.34 59.57 

D15 58 7 7 8 7 11 2 2 87.93 87.93 86.21 87.93 81.03 96.55 96.55 

D16 82 44 23 35 22 18 29 27 46.34 71.95 57.32 73.17 78.05 64.63 67.07 

D17 23 3 3 4 3 6 6 8 86.96 86.96 82.61 86.96 73.91 73.91 65.22 

D18 44 14 8 16 19 2 6 11 68.18 81.82 63.64 56.82 95.45 86.36 75.00 

D19 40 14 14 15 15 5 14 15 65.00 65.00 62.50 62.50 87.50 65.00 62.50 

D20 11 5 5 8 8 4 5 5 54.55 54.55 27.27 27.27 63.64 54.55 54.55 

D21 11 6 6 10 10 4 2 5 45.45 45.45 9.09 9.09 63.64 81.82 54.55 

D22 8 5 4 7 7 6 7 7 37.50 50.00 12.50 12.50 25.00 12.50 12.50 

D23 50 5 5 5 5 5 9 8 90.00 90.00 90.00 90.00 90.00 82.00 84.00 

D24 50 4 4 3 2 4 9 9 92.00 92.00 94.00 96.00 92.00 82.00 82.00 

D25 50 5 5 5 5 5 16 16 90.00 90.00 90.00 90.00 90.00 68.00 68.00 

D26 50 7 6 7 6 6 13 15 86.00 88.00 86.00 88.00 88.00 74.00 70.00 

D27 100 5 5 5 5 5 13 8 95.00 95.00 95.00 95.00 95.00 87.00 92.00 

D28 100 4 4 3 2 4 14 12 96.00 96.00 97.00 98.00 96.00 86.00 88.00 

D29 100 5 5 5 5 5 13 21 95.00 95.00 95.00 95.00 95.00 87.00 79.00 

D30 100 7 6 7 6 6 13 13 93.00 94.00 93.00 94.00 94.00 87.00 87.00 

D31 100 7 6 7 6 4 10 20 93.00 94.00 93.00 94.00 96.00 90.00 80.00 

D32 100 7 6 6 6 6 23 19 93.00 94.00 94.00 94.00 94.00 77.00 81.00 

D33 100 6 6 6 6 6 30 25 94.00 94.00 94.00 94.00 94.00 70.00 75.00 

D34 100 8 7 8 7 7 19 25 92.00 93.00 92.00 93.00 93.00 81.00 75.00 

Average 49.9 8.5 6.7 8.5 7.6 5.5 9.4 10.5 75.3 78.8 69.8 71.1 80.3 76.5 73.3 
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have been obtained, utilising only the training set, with seven

feature subset selection methods (see columns labelled F1–F7)

along with the reduction percentage in the feature space of each

feature subset selection procedure compared to the original data

set. The last row reports the average number of features and the

reduction percentage of the test-bed for each trialled method on

this paper. The reduction percentage of the number of features is

defined by Eq. (1) . 

Re duction _ of _ f eatur es ( % ) = 

(
1− F eatur es ( F i ) 

F eatur es ( F 0 ) 

)
100 ; i = 1 , ..., 7 

(1)

where i is the index of filter or feature selection procedure and

Features(j) represents the number of features of a given data set

with method j . 

In all registers, filter-based feature selection approaches suc-

cessfully and outstandingly reduce the data dimensionality by

choosing, on average, far less than a quarter of the number of

features originally available on the data set. F5 and F2 achieve

means reductions of 80.3% and 78.8%, respectively, which are the

highest overall average values obtained. The filter F7 keeps the

highest number of features from the full data set. 

4.3. Classifiers 

All the previous settings of the problems have been assessed

with two neural network-based classifiers, RBFNN and MLP, which

are the core methods for the research conducted and for this

reason we intend to shed light on the appropriateness of seven

feature subset selection approaches operating jointly. Moreover,
e have considered two powerful methods: the highly popular

ecision tree C4.5 and Support Vector Machines (SVM). We have

rialled with the available implementations in Weka [52] version

.7.10 of the aforesaid algorithms which are named MultilayerPer-

eptron (MLP), RBFNetwork (RBF), J48 and SMO. 

Neural networks performance is highly dependent on the pa-

ameter setting. We have conducted a preliminary experimentation

eeping in mind the training set to analyse the behaviour of some

arameter values. Firstly, in MLP the momentum and the learning

ate are two basic parameters; in a previous contribution we did a

rid search for them in a good number of problems and we deter-

ined that the best values are 0.3 and 0.2, respectively [53] . Going

urther, the training time (number of epochs) and the number of

odes in the hidden layer are of the utmost importance; for the

rst parameter we managed three options (250, 500 and 1000 fol-

owing similar paths as described in [54] ) and in accordance with

he initial experiments using only the training data we set it to

00; additionally, for the number of nodes in the hidden layer we

ave taken into account two possible values, (attributes + classes)/2

nd (attributes + classes), ultimately opting for the former although

he latter could be very convenient for problems with just a few

ttributes such as the classical Iris data set. Secondly, for RBF

he main parameter is the number of clusters. We tried with

alues from 2 to 5; the preliminary experimentation led us to

hoose 2 as the most suitable value. Finally, for J48 and SMO

e would like to remark that the behaviour of the former is

xcellent with the default values, with nothing new being found

nd for the latter it is very important to stress that we have kept

he kernel as the polynomial kernel (PolyKernel) with its default

alues. 
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. Results 

We have run the stochastic algorithms (RBF and MLP) using the

raining and testing sets 30 times just to smooth the results and to

educe bias as much as possible. Therefore, averages of the results

n the forthcoming tables have been taken and the mean (Avg)

nd the standard deviation (SD) are shown to reflect well on the

tability of the models achieved. Bearing in mind that there are 34

ata sets, one baseline method and 7 feature selection methods,

he total number of runs for each neural classifier is about 80 0 0. 

.1. Global results in the test-bed 

.1.1. Results and statistical analysis with RBFNN 

Table 4 reports the results obtained with RBFNN for every prob-

em given the original data set (column F0) and the reduced data
Table 4 

RBFNN test accuracy results with the whole test-bed. 

Data set Problem Accuracy F0 F1 F2

D1 Batch Avg 65.47 68.88 70

SD 0.91 1.20 0.7

D2 Breast Avg 68.78 67.46 67

SD 1.57 1.13 1.1

D3 Column Avg 81.15 79.62 79

SD 1.47 0.62 0.6

D4 Heart Avg 78.53 78.24 78

SD 1.92 1.98 1.9

D5 Hepatitis Avg 89.30 89.30 89

SD 2.29 2.76 2.7

D6 Ionos Avg 92.46 95.49 94

SD 0.70 0.21 0.6

D7 Labor Avg 71.67 71.43 85

SD 1.30 0.00 0.0

D8 Leaves Avg 67.48 65.19 67

SD 2.37 3.21 5.7

D9 Messidor Avg 59.92 60.94 60

SD 0.51 1.59 0.7

D10 OBS Avg 69.32 74.99 74

SD 1.68 2.45 2.4

D11 Parkinsons Avg 70.27 77.55 77

SD 1.67 0.00 0.0

D12 Pasture Avg 64.81 74.44 74

SD 11.70 10.98 10

D13 Pima Avg 77.34 79.17 79

SD 2.17 0.53 0.5

D14 Pollen Avg 91.73 91.89 91

SD 0.29 0.44 0.2

D15 Promoter Avg 79.36 83.46 83

SD 5.30 2.70 2.7

D16 Soybean Avg 93.84 93.47 93

SD 0.92 0.99 0.8

D17 Squash Avg 80.77 85.64 85

SD 6.92 3.90 3.9

D18 Tokyo Avg 89.56 88.76 87

SD 1.25 0.95 2.3

D19 Waveform Avg 82.14 82.24 82

SD 0.08 0.13 0.1

D20 Winequality-red Avg 57.11 59.00 57

SD 2.28 0.74 1.8

D21 Winequality-white Avg 48.04 51.39 51

SD 0.37 0.70 0.7

D22 Yeast Avg 58.33 58.41 54

SD 1.09 1.04 1.2

D23 d50r5g0 Avg 82.27 86.37 86

SD 2.57 2.24 2.2

D24 d50r5g5 Avg 78.60 80.83 80

SD 2.72 2.57 2.5

D25 d50r10g0 Avg 73.64 72.47 72

SD 2.75 2.01 2.0

D26 d50r10g5 Avg 76.88 68.63 66

SD 2.06 3.13 2.1

D27 d100r5g0 Avg 78.25 86.37 86
ets (columns labelled F1, F2,… F7). The top part shows quantita-

ive information, measured in test accuracy illustrating the mean

nd SD. For the mean higher is better, whereas for the SD lower

s better. The bottom part depicts qualitative information based on

tatistical tests; generally speaking, for this zone lower is better

e.g. rank and T). The results with F0 are taken as the baseline

pproach. Columns five to eleven represent the results with the ap-

lication of feature selection. On average, the best data preparation

ethod seems to be F7 for two reasons: the mean and the number

f wins. We need to swap to the qualitative perspective to get

ore substantial conclusions. An Iman-Davenport test is utilised to

rove the existence of significant differences according the ranks

f the feature selection approaches; a low value is indicative of

 good performance and a high value indicative of a poor perfor-

ance. Since the null-hypothesis is rejected, the performance of

very pair of classifiers is not significantly different and we cannot
 F3 F4 F5 F6 F7 

.01 65.19 66.79 69.67 76.77 75.25 

1 0.60 15.49 0.10 0.67 1.03 

.46 69.01 69.01 67.65 65.49 65.77 

3 0.00 0.00 1.50 0.72 1.70 

.62 83.93 81.15 80.77 82.86 82.86 

2 1.67 1.47 0.00 0.63 0.63 

.24 75.39 77.60 75.92 74.71 74.71 

8 1.22 1.43 1.57 2.02 2.02 

.30 89.91 88.42 89.53 88.42 88.42 

6 1.84 1.64 2.40 1.31 1.31 

.73 94.51 93.39 94.09 93.11 93.56 

3 0.79 1.84 0.63 0.29 1.56 

.71 64.29 64.29 67.56 71.43 71.43 

0 0.00 0.00 4.88 0.00 0.00 

.56 70.52 67.45 67.41 77.56 64.74 

9 2.97 5.36 2.63 3.42 2.84 

.17 60.07 63.68 61.50 59.06 59.25 

4 0.00 5.09 0.36 0.83 1.25 

.99 70.21 71.20 74.68 70.55 74.11 

5 0.59 0.95 3.25 1.46 2.61 

.55 74.56 73.47 81.42 81.63 83.67 

0 1.17 0.00 3.07 0.00 0.00 

.44 91.48 91.48 70.37 73.70 91.11 

.98 9.54 9.54 7.90 6.83 8.95 

.17 77.50 75.64 79.29 79.10 73.32 

3 0.52 1.07 2.29 0.53 1.37 

.21 89.72 89.72 92.03 89.66 93.27 

7 0.32 0.32 1.19 0.64 0.42 

.46 76.03 85.00 79.01 80.77 80.77 

0 4.70 4.33 4.20 0.00 0.00 

.20 92.81 89.61 91.38 93.24 94.17 

0 0.88 1.94 0.81 0.60 0.19 

.64 82.05 75.38 80.77 70.26 80.00 

0 5.83 5.85 4.76 5.62 4.78 

.94 88.35 89.65 89.65 89.49 91.45 

1 1.48 2.06 2.06 0.11 0.52 

.24 82.55 82.22 76.89 82.63 82.55 

3 0.08 0.05 1.42 0.03 0.07 

.53 59.19 59.19 58.88 57.59 57.59 

8 0.83 0.83 2.55 1.85 1.85 

.39 48.90 48.90 51.08 52.15 50.85 

0 0.56 0.56 0.44 0.56 0.72 

.97 58.90 58.90 58.48 54.97 54.97 

2 1.34 1.34 2.61 1.22 1.22 

.37 86.37 86.37 86.37 85.39 83.12 

4 2.24 2.24 2.24 2.17 2.73 

.83 75.78 67.56 80.83 83.25 81.55 

7 2.07 2.13 2.57 2.80 2.55 

.47 72.47 72.47 72.47 79.01 79.52 

1 2.01 2.01 2.01 2.31 2.11 

.40 68.63 66.40 66.40 75.41 73.89 

8 3.13 2.18 2.18 3.08 2.65 

.37 86.37 86.37 86.37 85.12 86.88 

( continued on next page ) 
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Table 4 ( continued ) 

Data set Problem Accuracy F0 F1 F2 F3 F4 F5 F6 F7 

SD 2.98 2.24 2.24 2.24 2.24 2.24 2.20 2.46 

D28 d100r5g5 Avg 76.61 80.83 80.83 75.78 67.56 80.83 81.47 83.12 

SD 2.73 2.57 2.57 2.07 2.13 2.57 2.96 2.92 

D29 d100r10g0 Avg 73.59 72.47 72.47 72.47 72.47 72.47 77.81 82.77 

SD 3.04 2.01 2.01 2.01 2.01 2.01 2.42 2.23 

D30 d100r10g5 Avg 74.63 70.04 66.40 70.04 66.40 66.40 75.41 70.72 

SD 2.44 3.32 2.18 3.32 2.18 2.18 3.08 2.66 

D31 d100r15g0 Avg 77.36 72.28 71.86 72.28 66.62 71.86 67.65 81.57 

SD 2.54 2.17 2.69 2.17 2.66 2.69 2.68 2.96 

D32 d100r15g5 Avg 75.84 67.01 67.83 63.67 67.83 67.83 73.44 70.51 

SD 2.70 2.41 3.06 2.52 3.06 3.06 2.28 3.16 

D33 d100r20g0 Avg 74.04 68.14 68.14 68.14 68.14 68.14 77.36 69.73 

SD 2.80 2.34 2.34 2.34 2.34 2.34 2.76 2.11 

D34 d100r20g5 Avg 76.45 64.52 65.43 64.52 65.43 65.43 68.35 75.23 

SD 2.59 2.70 2.93 2.70 2.93 2.93 2.93 2.94 

Average 75.16 75.50 75.65 74.75 73.99 74.81 76.32 77.13 

Wins 18 18 17 15 17 20 20 

Mean 

rank. 

4.75 4.19 4.44 4.82 5.10 4.63 4.26 3.79 

Pairwise comparison 

F0 vs F7 T = 220 F0 = F7 

F0 vs F1 T = 264 F0 = F1 

F4 vs F7 T = 139 ( ∗) F7 > F4 ( ∗) 

Compared methods Statistical test results Statistical conclusion 

Critical value: 201. 
∗ Statistically significant difference with α = 0 . 05 . 
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apply a post-hoc test. We apply other types of non-parametric

tests to add more discoveries to the experiments. Concretely, a

pairwise comparison following a Wilcoxon signed-ranks test is

conducted. We have taken as candidates for the statistical test the

baseline method and the two best filters according to their ranks;

then the best and worst filters are compared. Since there are 34

data sets, the T value at α = 0 . 05 should be less than or equal to

201 (critical value) to reject the null hypothesis. The condition is

met only in the comparison between F4 and F7 and therefore the

null hypothesis is rejected. It means that F7 is statistically better

than F4. The other comparisons state that F7 and F1, individu-

ally, get at least similar results to F0 from a statistical point of

view. 

5.1.2. Results and statistical analysis with MLP 

Table 5 depicts the results concerning the MLP classifier. From

the quantitative perspective, F7 appears to be the best although
Table 5 

MLP test accuracy results with the whole test-bed. 

Data set Problem Accuracy F0 F1 F2 

D1 Batch Avg 92.11 96.64 94.25 

SD 5.18 1.38 1.60 

D2 Breast Avg 61.13 69.01 69.01 

SD 3.87 1.81 1.81 

D3 Column Avg 82.44 80.68 80.68 

SD 2.02 2.28 2.28 

D4 Heart Avg 74.80 72.65 72.65 

SD 2.40 2.14 2.14 

D5 Hepatitis Avg 85.00 87.28 87.28 

SD 2.60 3.85 3.85 

D6 Ionos Avg 88.94 92.01 89.85 

SD 1.37 1.21 2.35 

D7 Labor Avg 69.52 64.29 78.57 

SD 3.21 0.00 0.00 

D8 Leaves Avg 71.48 70.89 68.07 

SD 3.87 4.68 5.61 

D9 Messidor Avg 72.53 71.82 71.40 

SD 2.24 1.33 0.89 

D10 OBS Avg 81.00 75.50 75.50 
he margin is closer than in the RBF (as depicted in Table 4 ,

alue 3.79 compared to 4.75) classifier because, now, the average

ifferences (3.63 com pared to 4.07) and the number of times

hat F7 performs better than F0 is lower (18). Moreover, there are

wo methods with a ranking over 5 and we need to study them

arefully. As a practical matter, we have now done five statistical

omparisons which are performed between F4 and F5 compared

o F0 and F7 and also the pairwise confrontation between the

aseline method (F0) and the approach which seems to be

he best (F7). The critical value is again 201 because compared

o the previous section, the only element that we have changed

s the supervised machine learning. F7 does not significantly

vercome F0. F4 and F5 should not be used with likelihood of

uccess because F0 is significantly better; another issue could

e the computational cost. As the reader may have thought, F7

nhances F4 and F5 with significant differences. The variety of

pproaches better than F0 has been outstandingly reduced to one
F3 F4 F5 F6 F7 

92.75 85.65 69.07 90.19 96.45 

1.45 4.41 1.81 1.62 1.04 

69.01 69.01 69.53 64.79 67.32 

0.00 0.00 1.46 0.00 1.67 

83.50 82.44 82.69 78.25 78.25 

2.35 2.02 3.85 2.64 2.64 

73.14 74.85 74.85 73.33 73.33 

1.81 2.57 2.63 1.38 1.38 

86.75 84.21 87.72 86.84 86.84 

2.01 0.00 1.44 0.00 0.00 

92.12 92.84 89.24 91.29 95.15 

1.23 1.58 1.73 1.50 0.79 

78.57 78.57 71.43 71.43 71.43 

0.00 0.00 0.00 0.00 0.00 

68.89 72.89 66.96 72.44 63.63 

2.86 4.34 2.59 2.71 2.64 

70.28 71.27 61.27 60.66 71.85 

1.67 2.08 0.93 1.31 1.72 

79.49 79.55 72.64 76.20 78.19 

( continued on next page ) 
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Table 5 ( continued ) 

Data set Problem Accuracy F0 F1 F2 F3 F4 F5 F6 F7 

SD 3.02 2.27 2.27 2.52 2.03 3.52 2.93 2.15 

D11 Parkinsons Avg 77.62 81.56 81.56 75.92 75.65 84.83 80.61 80.61 

SD 0.37 0.37 0.37 2.48 2.62 1.58 1.29 2.32 

D12 Pasture Avg 66.67 72.22 72.22 77.78 77.78 56.67 88.89 88.89 

SD 0.00 6.36 6.36 0.00 0.00 3.39 0.00 0.00 

D13 Pima Avg 76.74 78.18 78.18 74.27 76.91 79.03 76.04 78.25 

SD 1.60 1.23 1.23 1.73 1.43 1.49 2.25 1.04 

D14 Pollen Avg 96.39 91.67 91.59 88.74 88.74 92.84 93.51 94.65 

SD 0.69 0.82 0.86 1.75 1.75 0.92 1.13 0.80 

D15 Promoter Avg 86.03 84.49 84.49 65.00 75.51 78.46 80.77 80.77 

SD 2.14 0.70 0.70 2.34 1.89 2.39 0.00 0.00 

D16 Soybean Avg 92.87 92.13 90.72 92.44 88.93 88.78 92.69 92.27 

SD 1.14 1.19 1.10 0.73 1.70 1.47 1.14 1.16 

D17 Squash Avg 80.26 76.92 76.92 84.62 80.51 76.92 81.79 94.36 

SD 4.82 0.00 0.00 0.00 3.90 0.00 5.14 3.46 

D18 Tokyo Avg 91.37 91.92 91.13 91.44 90.05 90.05 90.74 92.15 

SD 0.78 0.78 0.54 0.89 0.71 0.71 0.80 0.46 

D19 Waveform Avg 80.41 83.24 83.24 83.42 83.13 77.58 82.81 82.64 

SD 0.77 1.79 1.79 1.18 1.13 0.99 1.35 1.17 

D20 Winequality-red Avg 56.22 59.45 58.95 57.04 57.04 59.61 59.04 59.04 

SD 1.63 1.52 2.02 1.61 1.61 1.19 1.07 1.07 

D21 Winequality-white Avg 52.21 53.02 53.02 52.65 52.65 51.40 51.80 51.41 

SD 1.74 1.86 1.86 1.98 1.98 1.68 1.63 1.91 

D22 Yeast Avg 59.84 60.10 55.11 60.06 60.06 59.01 55.11 55.11 

SD 2.18 1.50 1.85 2.00 2.00 1.60 1.85 1.85 

D23 d50r5g0 Avg 96.45 99.15 99.15 99.15 99.15 99.15 99.04 98.93 

SD 2.19 0.59 0.59 0.59 0.59 0.59 0.61 0.38 

D24 d50r5g5 Avg 88.75 84.24 84.24 75.71 6 8.4 8 84.24 92.08 89.55 

SD 1.60 0.79 0.79 2.44 2.76 0.79 1.14 1.89 

D25 d50r10g0 Avg 88.72 76.69 76.69 76.69 76.69 76.69 79.84 80.35 

SD 0.71 2.16 2.16 2.16 2.16 2.16 2.64 1.73 

D26 d50r10g5 Avg 77.79 70.24 68.32 70.24 68.32 68.32 84.64 77.33 

SD 1.44 2.84 2.76 2.84 2.76 2.76 1.85 2.39 

D27 d100r5g0 Avg 90.13 99.15 99.15 99.15 99.15 99.15 97.63 98.75 

SD 0.85 0.59 0.59 0.59 0.59 0.59 0.61 0.72 

D28 d100r5g5 Avg 83.01 84.24 84.24 75.71 6 8.4 8 84.24 88.67 88.32 

SD 2.77 0.79 0.79 2.44 2.76 0.79 1.84 2.04 

D29 d100r10g0 Avg 85.25 76.69 76.69 76.69 76.69 76.69 77.23 95.36 

SD 1.79 2.16 2.16 2.16 2.16 2.16 2.11 1.87 

D30 d100r10g5 Avg 78.67 69.65 68.32 69.65 68.32 68.32 84.64 69.71 

SD 1.52 2.12 2.76 2.12 2.76 2.76 1.85 2.59 

D31 d100r15g0 Avg 89.81 72.75 70.72 72.75 70.72 70.72 66.80 85.71 

SD 0.59 2.56 2.29 2.56 2.29 2.29 2.86 1.98 

D32 d100r15g5 Avg 80.43 65.44 62.64 62.53 62.64 62.64 77.87 70.24 

SD 1.45 1.69 2.75 1.91 2.75 2.75 2.25 3.44 

D33 d100r20g0 Avg 85.31 67.60 67.60 67.60 67.60 67.60 84.29 72.77 

SD 0.88 2.97 2.97 2.97 2.97 2.97 1.65 2.51 

D34 d100r20g5 Avg 78.77 63.52 61.57 63.52 61.57 61.57 70.21 81.55 

SD 1.97 3.89 3.47 3.89 3.47 3.47 2.50 1.87 

Average 79.96 77.50 77.17 76.68 76.06 75.29 79.48 80.62 

Wins 15 14 15 14 12 16 18 

Mean rank. 4.07 4.10 4.90 4.66 5.07 5.26 4.28 3.63 

Pairwise comparison 

F0 vs F7 T = 267 F0 = F7 

F5 vs F7 T = 105 ( ∗) F7 > F5 ( ∗) 

F4 vs F7 T = 124 ( ∗) F7 > F4 ( ∗) 

F5 vs F0 T = 129 ( ∗) F0 > F5 ( ∗) 

F4 vs F0 T = 178 ( ∗) F0 > F4 ( ∗) 

Compared methods Statistical test results Statistical conclusion 

Critical value: 201. 
∗ Statistically significant difference with α = 0.05. 
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ethod in terms of rank. Clearly, it may suggest seeking new ways

f feature selection for the MLP classifier. 

.2. Analysis of the results on real-world problems 

This section aims at extracting some extra conclusions focusing

nly on real-world problems. In particular, we carry out additional

omparisons for the most promising feature selection methods

ccording to the global results from both RBFNN and MLP 
.2.1. Results with RBFNN 

Table 6 shows the results regarding real-world problems in the

ontext of RBFNN. The top part indicates the information related

o a descriptive analysis of the results. As usual, the bottom part

eports qualitative information. For the section on global results

e observe two very strong candidates as feature selection ap-

roaches. Therefore, we must undergo tests at least for F1 and F7

ue to its superior performance within the feature selection arena

n the RBFNN scope. There are three methods with a performance

round 2 percentage units higher than F0 (baseline method). There
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Table 6 

Summary of RBFNN test accuracy results and statistical test results on real-world problems. 

Data sets Problems Average accuracy 

F0 F1 F2 F3 F4 F5 F6 F7 

D1-D22 Batch, Breast, Column, 

Heart, Hepatitis, Ionos, 

Labor, Leaves, Messidor, 

OBS, Parkinsons, 

Pasture, Pima, 

Pollen, Promoter, 

Soybean, Squash, 

Tokyo, Waveform, 

Winequality-red, 

Winequality-white, 

Yeast 

74.43 76.22 76.66 75.68 75.55 75.36 75.69 76.54 

Pairwise comparison 

F0 vs F7 T = 98 F0 = F7 

F0 vs F1 T = 61 ( ∗) F1 > F0 ( ∗) 

F0 vs F2 T = 65 ( ∗) F2 > F0 ( ∗) 

Compared methods Statistical test results Statistical conclusion 

Critical value: 75. 
∗Statistically significant difference with α = 0.05. 
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are 22 data sets and then the critical value at α = 0 . 05 is 75. F1

and F2 are significantly more accurate than F0. F7 has the second

best mean although there are not significant differences with F0.

F1 is not as good as F7 on average, but is statistically preferable to

F0. 

5.2.1.1. Computational cost. The comparison between the baseline

method and the filter-based selection methods using RBFNN is

completed by means of a computational cost analysis. Table 7 re-

ports the training time results concerning the average computa-

tional cost per run measured in seconds (s). Experiments have

been run in a server equipped with an Intel Xeon E5-2630 v3 pro-

cessor at 2.4 GHz. Columns five to eleven depict the training time,

although the time to apply the feature selection has not been taken

into account because it is insignificant (it may be no more than

10 s) and must only be done once, and not for every run. The last

row contains the sum of the average values reported in the col-

umn. Obviously, the weight of the Yeast problem is huge. Since F1

and F2 are the significant best methods with regards to accuracy,

we only stress them. F1 and F2 are around 3 or 4 times faster than

F0. 

5.2.2. Results with MLP 

Table 8 shows the results obtained on real-world problems

coming mostly from the UCI repository with an MLP neural ap-

proach. The best enhancement with feature selection is less than 2

percentage units. From a purely descriptive analysis of the results,

F7 seems the best option. We also picked up as a candidate from

Section 5.1.2 the feature selection approach F7. Moving to the

qualitative field of the results with MLP into real-worlds problem,

the critical value is 75 as aforementioned and T is equal to 97.

It means that there are not significant differences between F0

and F7. In practical terms, F7 could be safely applied because the

results are not going to be worse and the number of features is

considerably reduced in comparison to the original feature space

for every problem. 

5.2.2.1. Computational cost. Table 9 depicts the elapsed time to

train the neural network following the MLP algorithm. It has been

averaged on 30 runs. It is worth mentioning that the sum of every

average time is around one thousand seconds for all the problems

and Batch needs about 940 s. The speedup obtained with feature

selection is at least 8 times in the worst case (F1) and around 30

times in the best case (F7). Continuing in the line of the comments

about the best filter in terms of accuracy, we can assert that the
est feature selection method for MLP is also one of the top 3

astest. 

.3. Analysis of the results on synthetic data sets 

.3.1. Results with RBFNN 

Table 10 reports the results regarding the application of RBFNN

o synthetic data sets. F1 and F7 have been promising in certain

ontexts of the previous parts of this research such as the scenario

ith the whole test-bed and with real-world problems, both for

BFNN. We now move on to the significance angle. Since there 12

ata sets, the critical value is 17 at α = 0 . 05 significance level. It

eans that F1 is the closest method regarding T although its value

s greater than the critical value and we can assert that F1 and F0

xhibit a similar performance according to the statistical tests. 

.3.1.1. Computational cost. The total RBFNN learning time with the

riginal twelve data sets was 7570 ms. This time includes the gen-

ration of the thirty models, one for each execution with a differ-

nt seed for each of the data sets, reaching an average of 21.03 ms.

owever, the average of the same learning with the reduced data

ets is 6.33 ms, slightly less than a third of the previous time. 

.3.2. Results with MLP 

Table 11 shows the results obtained by MLP classifiers on

ynthetic data sets. The situation is very complex because not

any feature selection methods are able to maintain the perfor-

ance of the MLP models, bearing in mind the full feature space.

t the same time, it is proof that the chosen data sets are not

ery easy for feature selection and are important challenges. The

rst sights are for F7, especially to the behaviour in the previous

cenarios. From previous comparisons with MLP neural networks,

e also noticed that the single strong candidate for this type

f feed-forward neural networks is F7. Then, we conduct now

omparisons between F0 and F7. T is again higher than the critical

alue (17) and the conclusion drawn is that F7 is not significantly

etter than F0. The good news is that F7 is a strong candidate for

ost of the situations where feature selection is a very convenient

r even necessary initial step. 

.3.2.1. Computational cost. In this case, the total MLP learning

ime with the twelve original data sets was just over one hour. As

ith RBFNN, this time includes the generation of the thirty mod-

ls, one for each execution with a different seed for each of the

ata sets, reaching an average of 10.35 s. However, the average of
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Table 7 

Average RBFNN training time measured in seconds on real-worlds problems. 

Data set Problem t (s) F0 F1 F2 F3 F4 F5 F6 F7 

D1 Batch Avg 15.0579 9.5955 6.9001 6.5232 6.3569 3.7870 4.6443 4.3166 

SD 16.7654 1.6754 1.2056 2.7809 1.8018 0.3092 1.0197 0.9140 

D2 Breast Avg 0.0165 0.0047 0.0047 0.0048 0.0048 0.0038 0.0093 0.0043 

SD 0.0186 0.0 0 06 0.0 0 06 0.0044 0.0044 0.0 0 06 0.0104 0.0050 

D3 Column Avg 0.0141 0.0051 0.0051 0.0064 0.0141 0.0059 0.0065 0.0065 

SD 0.0210 0.0 0 07 0.0 0 07 0.0 0 09 0.0210 0.0 0 08 0.0 0 07 0.0 0 07 

D4 Heart Avg 0.0485 0.0061 0.0061 0.0059 0.0059 0.0185 0.0109 0.0109 

SD 0.0699 0.0 0 06 0.0 0 06 0.0019 0.0 0 09 0.0198 0.0123 0.0123 

D5 Hepatitis Avg 0.0303 0.0033 0.0033 0.0043 0.0022 0.0041 0.0080 0.0080 

SD 0.0434 0.0021 0.0021 0.0077 0.0 0 04 0.0040 0.0090 0.0090 

D6 Ionos Avg 0.0827 0.0135 0.0109 0.0083 0.0354 0.0078 0.0099 0.0073 

SD 0.1199 0.0054 0.0101 0.0079 0.0392 0.0080 0.0111 0.0079 

D7 Labor Avg 0.0174 0.0032 0.0046 0.0050 0.0050 0.0097 0.0026 0.0026 

SD 0.0242 0.0022 0.0042 0.0112 0.0112 0.0084 0.0059 0.0059 

D8 Leaves Avg 0.0629 0.0068 0.0063 0.0057 0.0099 0.0042 0.0083 0.0058 

SD 0.0905 0.0079 0.0078 0.0076 0.0077 0.0070 0.0079 0.0012 

D9 Messidor Avg 0.3713 0.0249 0.0181 0.0228 0.0427 0.0132 0.0162 0.0159 

SD 0.5500 0.0097 0.0012 0.0024 0.0515 0.0012 0.0037 0.0023 

D10 OBS Avg 0.9812 0.3162 0.3162 0.3581 0.2733 0.4864 0.2639 0.2749 

SD 0.3421 0.1835 0.1835 0.0998 0.1207 0.1913 0.1005 0.1205 

D11 Parkinsons Avg 0.0285 0.0070 0.0070 0.0049 0.0047 0.0106 0.0026 0.0032 

SD 0.0393 0.0119 0.0119 0.0017 0.0023 0.0035 0.0059 0.0064 

D12 Pasture Avg 0.0042 0.0026 0.0026 0.0019 0.0019 0.0025 0.0026 0.0031 

SD 0.0070 0.0011 0.0011 0.0 0 07 0.0 0 07 0.0011 0.0011 0.0063 

D13 Pima Avg 0.0960 0.0105 0.0105 0.0093 0.0138 0.0191 0.0098 0.0086 

SD 0.1356 0.0010 0.0010 0.0 0 08 0.0084 0.0098 0.0076 0.0063 

D14 Pollen Avg 5.8916 1.4760 1.2827 1.6599 1.6599 2.4699 2.5765 1.3287 

SD 3.3299 0.3615 0.2844 0.3144 0.3144 1.1121 0.6758 0.3378 

D15 Promoter Avg 0.0318 0.0023 0.0023 0.0020 0.0019 0.0084 0.0021 0.0021 

SD 0.0467 0.0 0 05 0.0 0 05 0.0 0 05 0.0 0 04 0.0010 0.0054 0.0054 

D16 Soybean Avg 26.8724 11.5601 16.6117 16.1181 10.4677 16.4179 10.1938 14.6807 

SD 23.4924 5.8328 8.8640 6.6383 6.7157 6.0535 4.7070 5.9496 

D17 Squash Avg 0.0606 0.0045 0.0045 0.0053 0.0047 0.0110 0.0088 0.0047 

SD 0.0892 0.0012 0.0012 0.0019 0.0020 0.0118 0.0098 0.0074 

D18 Tokyo Avg 0.3935 0.0173 0.0168 0.0152 0.0261 0.0161 0.0125 0.0141 

SD 0.5941 0.0018 0.0047 0.0026 0.0106 0.0011 0.0064 0.0171 

D19 Waveform Avg 1.0663 0.4367 0.4367 0.4729 0.4596 0.6779 0.3330 0.4006 

SD 1.3758 0.0583 0.0583 0.0168 0.0576 0.0852 0.0185 0.0308 

D20 Winequality-red Avg 0.9104 0.6398 0.5491 0.5862 0.5862 0.7121 0.6336 0.6336 

SD 0.6189 0.2073 0.1615 0.2157 0.2157 0.2500 0.2150 0.2150 

D21 Winequality-white Avg 6.5734 6.3958 6.3958 4.0289 4.0289 2.7704 3.2584 3.1167 

SD 3.8929 2.0864 2.0864 2.5913 2.5913 0.9692 1.1854 0.8499 

D22 Yeast Avg 691.2589 208.5572 149.2557 548.5572 548.1572 275.1067 548.5572 548.5572 

SD 413.7464 181.7115 135.1397 481.7115 481.1115 217.6527 481.7115 481.7115 

Sum 749.8702 239.0892 181.8508 578.4064 572.1630 302.5630 570.5707 573.4061 

Table 8 

Summary of MLP test accuracy results and statistical test results on real-world problems. 

Data sets Problems Average Accuracy 

F0 F1 F2 F3 F4 F5 F6 F7 

D1-D22 Batch, Breast, Column, 

Heart, Hepatitis, Ionos, 

Labor, Leaves, Messidor, 

OBS, Parkinsons, 

Pasture, Pima, 

Pollen, Promoter, 

Soybean, Squash, 

Tokyo, Waveform, 

Winequality-red, 

Winequality-white, 

Yeast 

77.07 77.53 77.47 77.18 77.19 74.57 77.24 78.75 

Pairwise comparison 

F0 vs F7 T = 97 F0 = F7 

Compared methods Statistical test results Statistical conclusion 

Critical value: 75. 
∗Statistically significant difference with α = 0.05. 
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Table 9 

Average MLP training time measured in seconds on real-worlds problems. 

Data set Problem t (s) F0 F1 F2 F3 F4 F5 F6 F7 

D1 Batch Avg 941.8999 82.7310 50.0339 44.7622 40.8820 11.1049 12.8499 24.3683 

SD 35.6358 1.6390 0.3410 0.8821 0.5209 0.1438 0.1827 0.1584 

D2 Breast Avg 0.4913 0.1415 0.1415 0.0984 0.0984 0.10 0 0 0.0808 0.1086 

SD 0.0351 0.0173 0.0173 0.0175 0.0175 0.0099 0.0342 0.0189 

D3 Column Avg 0.1503 0.0536 0.0536 0.1173 0.1503 0.0814 0.0881 0.0881 

SD 0.0202 0.0067 0.0067 0.0124 0.0202 0.0101 0.0187 0.0187 

D4 Heart Avg 0.3779 0.1785 0.1785 0.2119 0.2106 0.1536 0.1445 0.1445 

SD 0.0356 0.0143 0.0143 0.0157 0.0119 0.0123 0.0446 0.0446 

D5 Hepatitis Avg 0.3341 0.1739 0.1739 0.1713 0.0823 0.0996 0.0485 0.0485 

SD 0.0266 0.0275 0.0275 0.0115 0.0073 0.0083 0.0479 0.0479 

D6 Ionos Avg 1.5902 0.5672 0.3974 0.3823 0.2656 0.2042 0.2133 0.2205 

SD 0.0586 0.0451 0.0255 0.0238 0.0275 0.0142 0.0232 0.0220 

D7 Labor Avg 0.3778 0.0437 0.0416 0.0314 0.0314 0.0553 0.0198 0.0198 

SD 0.0513 0.0047 0.0101 0.0037 0.0037 0.0043 0.0072 0.0072 

D8 Leaves Avg 1.3469 0.1687 0.0787 0.2099 0.2011 0.0828 0.0888 0.0978 

SD 0.0570 0.0152 0.0113 0.0228 0.0223 0.0124 0.0114 0.0208 

D9 Messidor Avg 2.6802 0.9531 0.5232 1.2312 1.1879 0.3400 0.3879 0.4375 

SD 0.0491 0.0389 0.0214 0.0457 0.0472 0.0155 0.0367 0.0257 

D10 OBS Avg 3.9574 0.5740 0.5740 1.2605 1.0066 0.5707 0.5056 0.6360 

SD 0.0655 0.0323 0.0323 0.0472 0.0400 0.0241 0.0250 0.0124 

D11 Parkinsons Avg 0.5755 0.0955 0.0955 0.1229 0.1146 0.0838 0.0489 0.0521 

SD 0.0378 0.0037 0.0037 0.0151 0.0100 0.0106 0.0080 0.0139 

D12 Pasture Avg 0.1015 0.0147 0.0147 0.0262 0.0262 0.0165 0.0256 0.0260 

SD 0.0197 0.0026 0.0026 0.0044 0.0044 0.0028 0.0113 0.0085 

D13 Pima Avg 0.6158 0.2427 0.2427 0.3037 0.3230 0.3012 0.1827 0.1606 

SD 0.0267 0.0193 0.0193 0.0130 0.0134 0.0134 0.0201 0.0104 

D14 Pollen Avg 13.3768 1.9614 1.9735 1.7277 1.7277 2.6611 2.4610 3.6057 

SD 0.1831 0.0873 0.0935 0.0776 0.0776 0.1092 0.0458 0.0471 

D15 Promoter Avg 5.0274 0.0635 0.0635 0.0799 0.0624 0.1052 0.0250 0.0250 

SD 0.3795 0.0097 0.0097 0.0115 0.0049 0.0114 0.0088 0.0088 

D16 Soybean Avg 24.6388 11.1830 5.9164 8.7835 5.6115 4.8149 5.8995 5.4244 

SD 0.3836 0.1178 0.0722 0.0916 0.1076 0.0698 0.4022 0.1971 

D17 Squash Avg 0.5214 0.0234 0.0234 0.1735 0.1570 0.1912 0.0270 0.0484 

SD 0.0512 0.0090 0.0090 0.0203 0.0210 0.0229 0.0116 0.0119 

D18 Tokyo Avg 4.7027 0.8965 0.4767 1.0597 1.3050 0.1920 0.3411 0.6110 

SD 0.1588 0.0399 0.0283 0.0438 0.0492 0.0098 0.0294 0.0427 

D19 Waveform Avg 32.9012 7.7809 7.7809 8.9106 8.8561 3.1716 6.0376 7.3420 

SD 1.2880 0.1279 0.1279 0.1586 0.1198 0.0685 0.4422 0.3784 

D20 Winequality-red Avg 2.8236 1.7081 1.3979 2.5500 2.5500 1.7905 1.4393 1.4393 

SD 0.0469 0.0462 0.0260 0.0898 0.0898 0.0482 0.0521 0.0521 

D21 Winequality-white Avg 10.9337 6.6371 6.6371 9.5272 9.5272 5.4741 3.8583 5.3741 

SD 0.4309 0.1246 0.1246 0.0916 0.0916 0.0804 0.1504 0.1571 

D22 Yeast Avg 2.8817 2.0219 1.9156 2.4039 2.4039 2.4117 2.4039 2.4039 

SD 0.0892 0.0480 0.0371 0.0821 0.0821 0.1048 0.0821 0.0821 

Sum 1052.3062 118.2138 78.7341 84.1452 76.7809 34.0062 37.1773 52.6822 

Table 10 

Summary of RBFNN test accuracy results and statistical test results on synthetic data sets. 

Data sets Problems Average Accuracy 

F0 F1 F2 F3 F4 F5 F6 F7 

D23-D34 d50r5g0, d50r5g5, 

d50r10g0, d50r10g5, 

d100r5g0, d100r5g5, 

d100r10g0, d100r10g5, 

d100r15g0, d100r15g5, 

d100r20g0, d100r20g5 

76.51 74.16 73.78 73.04 71.14 73.78 77.47 78.22 

Pairwise Comparison 

F0 vs F7 T = 26 F0 = F7 

F0 vs F1 T = 21 F1 = F0 

Compared methods Statistical test results Statistical conclusion 

Critical value: 17. 
∗Statistically significant difference with α = 0.05. 
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lection method based on subsets. 
the same learning with the reduced data sets is 0.15 s, about sev-

enty times less. 

5.4. Joint results with state-of-the-art classifiers 

Table 12 depicts the RBF and MLP results alongside those ob-

tained with two typical methods within the data mining commu-
ity, one coming from decision tree approaches (J48) and another

hat is very popular due to its excellent performance (SMO). Ac-

ording to the aforesaid comments about neural classifiers, F7 is

ery convenient for RBF and MLP. For J48, the best option is F6 as

ell as some methods such as F3 in spite of the low performance

ith certain neural models. For SMO, F7 is again a good filter se-



A.J. Tallón-Ballesteros, J.C. Riquelme and R. Ruiz / Neurocomputing 353 (2019) 28–44 41 

Table 11 

Summary of MLP test accuracy results and statistical test results on synthetic data sets. 

Data sets Problems Average Accuracy 

F0 F1 F2 F3 F4 F5 F6 F7 

D23-D34 d50r5g0, d50r5g5, 

d50r10g0, d50r10g5, 

d100r5g0, d100r5g5, 

d100r10g0, d100r10g5, 

d100r15g0, d100r15g5, 

d100r20g0, d100r20g5 

85.26 77.45 76.61 75.78 73.98 76.61 83.58 84.05 

Pairwise comparison 

F0 vs F7 T = 27 F0 = F7 

Compared methods Statistical test results Statistical conclusion 

Critical value: 17. 
∗Statistically significant difference with α = 0.05. 

Table 12 

Joint test accuracy results with the whole test-bed for four classifiers. 

Data 

set Problem Classifier F0 F1 F2 F3 F4 F5 F6 F7 

D1 Batch RBF 65.47 68.88 70.01 65.19 66.79 69.67 76.77 75.25 

MLP 92.11 96.64 94.25 92.75 85.65 69.07 90.19 96.45 

J48 97.50 96.58 95.17 96.75 95.43 75.01 96.98 97.70 

SMO 97.21 87.67 81.66 81.97 69.84 58.97 80.07 88.70 

D2 Breast RBF 68.78 67.46 67.46 69.01 69.01 67.65 65.49 65.77 

MLP 61.13 69.01 69.01 69.01 69.01 69.53 64.79 67.32 

J48 70.42 69.01 69.01 69.01 69.01 69.01 64.79 69.01 

SMO 64.79 66.20 66.20 64.79 64.79 64.79 64.79 64.79 

D3 Column RBF 81.15 79.62 79.62 83.93 81.15 80.77 82.86 82.86 

MLP 82.44 80.68 80.68 83.50 82.44 82.69 78.25 78.25 

J48 80.77 78.21 78.21 80.77 80.77 71.79 71.79 71.79 

SMO 76.92 67.95 67.95 76.92 76.92 69.23 67.95 67.95 

D4 Heart RBF 78.53 78.24 78.24 75.39 77.60 75.92 74.71 74.71 

MLP 74.80 72.65 72.65 73.14 74.85 74.85 73.33 73.33 

J48 70.59 73.53 73.53 73.53 72.06 73.53 75.00 75.00 

SMO 76.47 76.47 76.47 76.47 76.47 77.94 75.00 75.00 

D5 Hepatitis RBF 89.30 89.30 89.30 89.91 88.42 89.53 88.42 88.42 

MLP 85.00 87.28 87.28 86.75 84.21 87.72 86.84 86.84 

J48 84.21 84.21 84.21 89.47 89.47 89.47 89.47 89.47 

SMO 89.47 86.84 86.84 89.47 89.47 89.47 86.84 86.84 

D6 Ionos RBF 92.46 95.49 94.73 94.51 93.39 94.09 93.11 93.56 

MLP 88.94 92.01 89.85 92.12 92.84 89.24 91.29 95.15 

J48 92.05 92.05 92.05 94.32 94.32 90.91 89.77 90.91 

SMO 88.64 87.50 88.64 84.09 82.95 82.95 86.36 88.64 

D7 Labor RBF 71.67 71.43 85.71 64.29 64.29 67.56 71.43 71.43 

MLP 69.52 64.29 78.57 78.57 78.57 71.43 71.43 71.43 

J48 85.71 85.71 85.71 85.71 85.71 85.71 85.71 85.71 

SMO 78.57 78.57 85.71 78.57 78.57 71.43 71.43 71.43 

D8 Leaves RBF 67.48 65.19 67.56 70.52 67.45 67.41 77.56 64.74 

MLP 71.48 70.89 68.07 68.89 72.89 66.96 72.44 63.63 

J48 71.11 64.44 4 4.4 4 66.67 62.22 57.78 60.00 57.78 

SMO 66.67 62.22 66.67 66.67 62.22 60.00 62.22 64.44 

D9 Messidor RBF 59.92 60.94 60.17 60.07 63.68 61.50 59.06 59.25 

MLP 72.53 71.82 71.40 70.28 71.27 61.27 60.66 71.85 

J48 62.15 59.03 57.99 62.85 62.15 60.76 59.38 62.15 

SMO 63.19 61.46 61.46 62.15 62.50 60.42 61.46 63.19 

D10 OBS RBF 69.32 74.99 74.99 70.21 71.20 74.68 70.55 74.11 

MLP 81.00 75.50 75.50 79.49 79.55 72.64 76.20 78.19 

J48 86.99 81.04 81.04 81.78 81.78 79.93 87.36 81.78 

SMO 75.84 73.61 73.61 71.00 72.49 59.85 72.12 71.00 

D11 Parkinsons RBF 70.27 77.55 77.55 74.56 73.47 81.42 81.63 83.67 

MLP 77.62 81.56 81.56 75.92 75.65 84.83 80.61 80.61 

J48 71.43 75.51 75.51 75.51 79.59 81.63 81.63 75.51 

SMO 75.51 75.51 75.51 75.51 75.51 79.59 79.59 81.63 

D12 Pasture RBF 64.81 74.44 74.44 91.48 91.48 70.37 73.70 91.11 

MLP 66.67 72.22 72.22 77.78 77.78 56.67 88.89 88.89 

J48 77.78 77.78 77.78 77.78 77.78 77.78 88.89 88.89 

SMO 77.78 77.78 77.78 77.78 77.78 66.67 77.78 66.67 

D13 Pima RBF 77.34 79.17 79.17 77.50 75.64 79.29 79.10 73.32 

MLP 76.74 78.18 78.18 74.27 76.91 79.03 76.04 78.25 

J48 74.48 76.04 76.04 69.79 74.48 76.04 75.52 73.96 

SMO 78.13 77.60 77.60 73.96 78.65 79.17 76.56 77.60 

D14 Pollen RBF 91.73 91.89 91.21 89.72 89.72 92.03 89.66 93.27 

MLP 96.39 91.67 91.59 88.74 88.74 92.84 93.51 94.65 

( continued on next page ) 
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Table 12 ( continued ) 

Data 

set 

Problem Classifier F0 F1 F2 F3 F4 F5 F6 F7 

J48 88.92 87.76 86.59 88.34 88.34 91.84 87.76 88.63 

SMO 93.88 88.34 88.05 78.72 78.72 89.50 88.34 93.59 

D15 Promoter RBF 79.36 83.46 83.46 76.03 85.00 79.01 80.77 80.77 

MLP 86.03 84.49 84.49 65.00 75.51 78.46 80.77 80.77 

J48 69.23 73.08 73.08 76.92 80.77 73.08 80.77 80.77 

SMO 88.46 84.62 84.62 76.92 84.62 73.08 80.77 80.77 

D16 Soybean RBF 93.84 93.47 93.20 92.81 89.61 91.38 93.24 94.17 

MLP 92.87 92.13 90.72 92.44 88.93 88.78 92.69 92.27 

J48 93.02 94.19 92.44 91.86 89.53 90.12 94.77 94.77 

SMO 93.60 94.19 94.19 94.77 93.02 93.02 95.35 95.35 

D17 Squash RBF 80.77 85.64 85.64 82.05 75.38 80.77 70.26 80.00 

MLP 80.26 76.92 76.92 84.62 80.51 76.92 81.79 94.36 

J48 69.23 76.92 76.92 76.92 76.92 76.92 76.92 84.62 

SMO 92.31 69.23 69.23 76.92 84.62 84.62 69.23 84.62 

D18 Tokyo RBF 89.56 88.76 87.94 88.35 89.65 89.65 89.49 91.45 

MLP 91.37 91.92 91.13 91.44 90.05 90.05 90.74 92.15 

J48 90.63 89.38 92.50 89.38 89.38 89.38 90.83 90.83 

SMO 91.67 92.08 90.83 91.67 91.04 91.04 90.21 91.46 

D19 Waveform RBF 82.14 82.24 82.24 82.55 82.22 76.89 82.63 82.55 

MLP 80.41 83.24 83.24 83.42 83.13 77.58 82.81 82.64 

J48 74.80 74.40 74.40 74.88 74.40 74.72 74.56 74.40 

SMO 86.24 86.88 86.88 87.12 87.12 78.80 85.52 85.92 

D20 Winequality-red RBF 57.11 59.00 57.53 59.19 59.19 58.88 57.59 57.59 

MLP 56.22 59.45 58.95 57.04 57.04 59.61 59.04 59.04 

J48 53.85 50.87 50.37 50.12 50.12 51.36 55.58 55.58 

SMO 59.55 59.80 57.07 58.81 58.81 59.31 59.06 59.06 

D21 Winequality-white RBF 48.04 51.39 51.39 48.90 48.90 51.08 52.15 50.85 

MLP 52.21 53.02 53.02 52.65 52.65 51.40 51.80 51.41 

J48 46.21 44.17 44.17 42.05 42.05 43.85 48.17 43.93 

SMO 52.97 52.57 52.57 52.89 52.89 51.83 52.24 50.94 

D22 Yeast RBF 58.33 58.41 54.97 58.90 58.90 58.48 54.97 54.97 

MLP 59.84 60.10 55.11 60.06 60.06 59.01 55.11 55.11 

J48 54.84 53.49 54.30 54.03 54.03 52.69 54.30 54.30 

SMO 55.91 54.03 53.76 54.84 54.84 51.61 53.76 53.76 

D23 d50r5g0 RBF 82.27 86.37 86.37 86.37 86.37 86.37 85.39 83.12 

MLP 96.45 99.15 99.15 99.15 99.15 99.15 99.04 98.93 

J48 76.00 80.00 80.00 80.00 80.00 80.00 76.80 76.80 

SMO 94.40 97.60 97.60 97.60 97.60 97.60 98.40 99.20 

D24 d50r5g5 RBF 78.60 80.83 80.83 75.78 67.56 80.83 83.25 81.55 

MLP 88.75 84.24 84.24 75.71 6 8.4 8 84.24 92.08 89.55 

J48 70.40 72.80 72.80 72.80 63.20 72.80 70.40 65.60 

SMO 87.20 85.60 85.60 74.40 68.80 85.60 89.60 91.20 

D25 d50r10g0 RBF 73.64 72.47 72.47 72.47 72.47 72.47 79.01 79.52 

MLP 88.72 76.69 76.69 76.69 76.69 76.69 79.84 80.35 

J48 64.00 71.20 71.20 71.20 71.20 71.20 76.00 69.60 

SMO 90.40 84.80 84.80 84.80 84.80 84.80 83.20 84.00 

D26 d50r10g5 RBF 76.88 68.63 66.40 68.63 66.40 66.40 75.41 73.89 

MLP 77.79 70.24 68.32 70.24 68.32 68.32 84.64 77.33 

J48 64.00 60.80 62.40 60.80 62.40 62.40 67.20 63.20 

SMO 79.20 68.80 71.20 68.80 71.20 71.20 80.80 75.20 

D27 d100r5g0 RBF 78.25 86.37 86.37 86.37 86.37 86.37 85.12 86.88 

MLP 90.13 99.15 99.15 99.15 99.15 99.15 97.63 98.75 

J48 71.20 80.00 80.00 80.00 80.00 80.00 76.00 79.20 

SMO 92.00 97.60 97.60 97.60 97.60 97.60 97.60 95.20 

D28 d100r5g5 RBF 76.61 80.83 80.83 75.78 67.56 80.83 81.47 83.12 

MLP 83.01 84.24 84.24 75.71 6 8.4 8 84.24 88.67 88.32 

J48 67.20 72.80 72.80 72.80 63.20 72.80 72.00 72.80 

SMO 79.20 85.60 85.60 74.40 68.80 85.60 89.60 92.80 

D29 d100r10g0 RBF 73.59 72.47 72.47 72.47 72.47 72.47 77.81 82.77 

MLP 85.25 76.69 76.69 76.69 76.69 76.69 77.23 95.36 

J48 60.00 71.20 71.20 71.20 71.20 71.20 74.40 65.60 

SMO 86.40 84.80 84.80 84.80 84.80 84.80 84.80 96.00 

D30 d100r10g5 RBF 74.63 70.04 66.40 70.04 66.40 66.40 75.41 70.72 

MLP 78.67 69.65 68.32 69.65 68.32 68.32 84.64 69.71 

J48 63.20 60.80 62.40 60.80 62.40 62.40 67.20 63.20 

SMO 76.00 70.40 71.20 70.40 71.20 71.20 80.80 67.20 

D31 d100r15g0 RBF 77.36 72.28 71.86 72.28 66.62 71.86 67.65 81.57 

MLP 89.81 72.75 70.72 72.75 70.72 70.72 66.80 85.71 

J48 66.40 67.20 68.00 67.20 61.60 68.00 67.20 63.20 

SMO 87.20 73.60 77.60 73.60 70.40 77.60 67.20 87.20 

D32 d100r15g5 RBF 75.84 67.01 67.83 63.67 67.83 67.83 73.44 70.51 

MLP 80.43 65.44 62.64 62.53 62.64 62.64 77.87 70.24 

J48 57.60 61.60 60.80 60.80 60.80 60.80 57.60 58.40 

SMO 82.40 70.40 69.60 66.40 69.60 69.60 80.80 74.40 

( continued on next page ) 
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Table 12 ( continued ) 

Data 

set 

Problem Classifier F0 F1 F2 F3 F4 F5 F6 F7 

D33 d100r20g0 RBF 74.04 68.14 68.14 68.14 68.14 68.14 77.36 69.73 

MLP 85.31 67.60 67.60 67.60 67.60 67.60 84.29 72.77 

J48 58.40 61.60 61.60 61.60 61.60 61.60 61.60 63.20 

SMO 88.00 75.20 75.20 75.20 75.20 75.20 85.60 74.40 

D34 d100r20g5 RBF 76.45 64.52 65.43 64.52 65.43 65.43 68.35 75.23 

MLP 78.77 63.52 61.57 63.52 61.57 61.57 70.21 81.55 

J48 55.20 64.00 64.00 64.00 64.00 64.00 56.80 60.00 

SMO 80.00 71.20 70.40 71.20 70.40 70.40 72.00 82.40 

Average RBF 75.16 75.50 75.65 74.75 73.99 74.81 76.32 77.13 

MLP 79.96 77.50 77.17 76.68 76.06 75.29 79.48 80.62 

J48 71.75 72.98 72.43 73.28 72.70 72.37 73.92 73.19 

SMO 80.77 77.26 77.48 76.21 76.01 75.43 77.85 78.90 
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. Conclusions 

This paper studied in detail the performance of two neural

odels, RBFNN and MLP, in the context of feature subset selection

ncluding filters and semi-wrappers. Experiments were conducted

n 34 data sets, pertaining to real-world problems and also to

ynthetic data sets. Seventeen statistical tests have been done to

xtract as many important facts as possible for future research on

his trending topic, namely, feature selection. 

In essence, F7 (an approach based on Best Incremental Ranked

ubset semi-wrapper -BIRS SW 

- with Naïve Bayes as a subset eval-

ator, under the framework of Correlation-based Feature Selection

s ranking method) is a good option for both RBFNN and MLP.

1 (Selection Of Attributes by Projection -SOAP- as a measure to

ssess the quality of the subsets within Best Incremental Ranked

ubset integrated into Correlation-based Feature Selection) would

e a secondary solution for RBFNN. In some specific scenarios, F2

similar to F1 with the difference that a correlation measure is

sed instead of SOAP) is a real alternative to F1 in the context

f RBFNN. For real-world problems F1 and F2 are significantly

ore accurate than F0. Synthetic data sets require F7 although for

BFNN F1 could be appropriate. The key issue for MLP is that an

utstanding reduction in computational cost has been achieved via

7. The results are kept compared to the full attribute space with

 lower computational cost. 

F4 (Consistency-based Feature Selection) and F5 (Fast

orrelation-based Feature Selection) are methods that could

e discarded in the context of feed-forward neural networks,

specially if any of the remaining feature selection methods are

vailable. The greater convenience to apply the classifier without

eature reduction either F4 or F5 could not be anticipated. It

epends on the goal: if the solution is required within a certain

ime frame or if there is no time frame on finding a solution. 

The application of the filter selection procedures to SMO

oncluded that F7 is a promising filter. J48 met a perfect subset

election procedure in F6 (a filter based on BIRS SW 

and Naïve

ayes as ranking method) and F3 (a feature subset selection based

n Consistency and also integrated with Best Incremental Ranked

ubset) as its follower. 

. Prospective works 

Since the research has been concluded it is important to now

emark upon some new research lines. F7 has exhibited a good

erformance. The number of selected attributes is the highest

ompared to the remaining feature selection methods. It could

raw the attention that a prune in the feature space is convenient

ut we need to be careful because the prune could accidentally

emove features that do not seem very important but contribute to

ave a strong solution. For the future, it could be very interesting
o attempt a strategy of merging solutions could be very interest-

ng to be applied to F7 or even F6, since these are the methods

ith the higher number of selected attributes. F7 probably could

eed some extra attributes that could be incorporated by adding

hem to features collected by another feature selection method. F4

nd F5 are methods whose performance is uncertain. 

For J48, F6 yields an appropriate number of features although

 higher number of features is not convenient. It may be that, a

eduction of attributes starting from the solution provided by F6

s a possible way forward. 
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