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Abstract

Ordinal regression (OR) is an important research topic in machine learning and has attracted extensive attention due
to its wide applications. So far, a variety of methods have been proposed to perform OR, in which the class-center-
induced threshold methods (like KDLOR and MOR) have received more attention, for their simplicity and promising
performance. The class-center-induced ORs typically calculate the ordinal thresholds with class centers, which are
typically derived from the l;-norm. Unfortunately, in such a way, the class means may be biased when the data is
corrupted with outliers (i.e., non-i.i.d. noises) such that the resulting OR accuracy will be deteriorated. Motivated by
the success of /,-norm in applications against noises, in this paper we propose a novel type of class centroid derived
from the I,-norm (coined as /,-centroid) to overcome the drawbacks above, and provide an optimization algorithm
and corresponding convergence analysis for computing the /,-centroid. To evaluate the effectiveness of /,-centroid in
OR context against noises, we then combine the /,-centroid with two representative class-center-induced ORs, namely
discriminant learning based and manifold learning based ORs. Finally, extensive OR experiments on synthetic and
real-world datasets demonstrate the effectiveness and superiority of the proposed methods to related existing methods.

Keywords: Ordinal regression (OR), class-center-induced threshold OR, /,,-centroid, discriminant learning, manifold
learning.

1. Introduction

Ordinal regression (OR) is an interesting machine learning paradigm which aims at learning a prediction function
on a set of categories so that them can be predicted with ordinal (i.e., ordered) labels, such as the grade sequence:
poor, average, good, very good and excellent. It can be seen that compared with normal regression with continuous
regression values, the regression values of OR are discrete and finite. On the other hand, OR is also different from
the nominal classification learning as the latter does not care about the order of class labels, that is, the class labels
are disordered. Therefore, OR is a new learning paradigm sharing the properties of both traditional classification and
regression. In the past decades, OR has attracted increasing researches due to its wide applications in recommender
systems [1], page ranking [44], image retrieval [40], medical image diagnosis [32], human age estimation [16], [39],
etc.

To implement OR, so far a variety of models have been derived or generated. According to their modeling
strategy, they generally fall in three groups. The first type of OR models are native methods. That is, they treat
OR as standard classification or regression. Along this line, off-the-self classifiers like multi-SVMs [19] and neural
networks [7] or regressors such as support vector regressor [15] and regression trees [22] have been adopted to perform
OR. However, a main problem with these methods is that they routinely ignore the ordering information of the data
labels. The second OR modeling manner is achieved by binary decompositions. That is, the original OR problem is
decomposed into a set of binary problems, and then the outputs of the binary problems is integrated as the OR result.
In such a setting, Frank [14] and Waegeman [41] decomposed the ordinal class labels into a sequence of binary-valued
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labels, and then combined the binary classification results as the final OR output. To decrease the number of binary
problems, Cardoso [3] achieved the goal of OR learning by means of designing an augmented binary classifier with
data duplication. Lin et al. [23] then proposed a unified modeling method by incorporating cost matrix in the objective
function. Although the second type of OR approaches attempt to take into account the ordering information of labels
by either coding or cost-sensitivity learning, the ordinal relationship among the labels still cannot be preserved well.
The third category of OR methods assumes that after ordinal projection learning the data classes can be separated
with a sequence of orderly-distributed thresholds along the projection direction. To this end, POM [28] is the first
work along this line by combining a sequence of ordinal odds models. Then, to cope with more complex data sets,
it was extended to nonlinear counterparts [27], [30]. Besides, the perception learning was also reconstructed for
online OR by imposing a series of ordinal thresholds on the decision-making direction [10]. Latter, motivated by
the success of SVM in classification, Chu et al. [8] extended it to its ordinal counterparts, i.e., SVOR-EXC and
SVOR-IMC, by introducing ordinal thresholds respectively in explicit and implicit manners. Then, the discriminant
statistics were adopted for modeling OR and the well-known KDLOR approach was developed [34]. Motivated by the
favorable performance of KDLOR, more efficient optimization approach [31] and prior knowledge embedding [38]
were successively introduced to improve it. Following the KDLOR, other ordinal versions of discriminant analysis
model were also presented [4]. Besides the discriminant models, the manifold learning was also adopted for modelling
OR. Along this line, the so-called MOR approach was developed [25]. To further improve its performance, several
variants of MOR with multiple OR projections [26], [24], [35] and class-sample-mixed thresholds [36] were developed
successively. A common characteristic of the KDLOR and MOR and their variants is that the ordinal thresholds are
induced by their class centers.

Although the threshold-based, especially the KDLOR and MOR like class-center-induced threshold ORs usually
yield more accurate OR performance than the other methods, their performance will be deteriorated dramatically when
the training data are corrupted with outliers, since these outliers usually bias the calculation of the class centers which
are typically computed with the Euclidean metric (i.e., squared /;-norm). Therefore, to perform robust class-center-
induced OR against those outliers, outlier-insensitive types of class centroid is desired to be constructed. Fortunately,
related research [17] shown that the [,-norm has promising robustness to data noises and has been successfully applied
in data clustering [18], filtering [21] and face recognition [43]. Motivated by these researches, in this paper, we propose
to construct the class centroid with the /,-norm (coined as /,-centroid) instead of the existing /,-norm. To the best
of our knowledge, although the [,-norm concept has been researched in previous literature, it has not been specially
adopted to construct class centroid, let alone incorporating in the class-center-induced OR. Therefore, this paper may
be the first work in attempting to perform outlier-insensitive (i.e., robust) OR ' associated with the centroid derived
from the unified /,-norm. Moreover, note that generating the /,-centroid is not trivial because it involves iterative
optimization algorithm together with theoretical convergence guarantee. In addition, the proposed /,-centroid is a
unified framework covering some existing algorithms, because when p = 2 then [,-centroid degenerates to the class
mean mostly used in existing class-center-induced ORs, and when p = 1 then /,-centroid reduces to the class median
[5], to name just a few. The main contributions of this work are four-fold as follows:

o A unified framework algorithm for /,-centroid is developed.
o The optimization and corresponding convergence analyses of /,-centroid algorithm are provided.

e Variants of representative class-center-induced ORs, i.e., KDLOR and MOR, are derived with the proposed
[,-centroid.

o Extensive experimental validations of the proposed methods in the presence of data outliers are conducted.

The remaining sections of this paper are organized below. Section 2 briefly reviews related works. Section 3
introduces the proposed algorithms and developed OR methods. Section 4 reports and analyzes the experimental
results to demonstrate the superiority of the proposed algorithm. Finally, Section 5 concludes the paper.

IPlease distinguish the so-called robust ordinal regression in [9], [20] from what we are studying in this paper, because the former concept was
defined to assist selecting their preference set in the field of fuzzy-decision-learning, but not to perform the referred outlier-insensitive OR of this
work.
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2. Related work

In this section, we first review two representative class-center-induced OR methods, namely KDLOR and MOR,
two mostly related methods to our work. For the sake of clarification, assume we are given N training samples
from totally K ordinal classes and Ny training samples from the k-th class, which are represented as X;. The class-
center-induced ORs typically seek for a projection direction along which the ordinal classes are separated orderly by
separation thresholds.

For KDLOR [34], it aims to seek for an optimal OR projection direction w along which the classes are distributed
orderly w.r.t. their labels while the within-class scatters are minimized, which is formulated as follows:

min w'S,w—Cp
" (€]
st. wi(mg —mp) =p, k=1,2,.,K-1,

where S, = % ZQ’ZI Dxex, (X —mp)(x— my)" indicates the entire within-class scatter matrix with my = Nik 2.xex, X being
the mean vector of the k-th class, p stands for the margin separating two neighboring classes, and C is a nonnegative
tradeoff parameter.

For MOR [25], it is intended to preserve the data manifold in the process of OR learning. To this end, its objective
function is formulated below:

min w' XLX"w - Cp
w 2)
st wl(mgyy —my) > p, k=1,2,.,K—-1,

in which X stands for the set of N training samples, L is the Laplacian matrix [2], the other notations are defined as in
KDLOR above.

For both KDLOR and MOR, the optimal projection direction w can be obtained through optimizing their objective
functions in the same manner, respectively. With the obtained w, the label f(x) of a test instance x can be predicted
by

fx) = ke}lﬁi'[}m{k cwlx = by <0}, 3)

where {bk}kK: , are the OR thresholds, defined as

by = w! (Nesimyer + Nkmk). @
Niv1 + Ni

It can be seen from Eq. (4) that the OR thresholds are dominated by the mean vectors of the classes. In other
words, the prediction accuracy of the class-center-induced ORs like KDLOR and MOR is seriously affected by the
calculation of class means. Thus, if the the data set contains many unknown noisy outliers, then the obtained class
means will be unreliable and distribution-biased, resulting in low OR accuracy. Therefore, other type of robust class
centroid is required to alleviate the effect of noisy outliers to OR.

3. Proposed methodology

As shown in Egs. (3) and (4), the prediction accuracy of class-center-induced OR is essentially dominated by the
class mean vectors {mk}kK: |- as defined in [34], [25]. In essence, the class mean vector my 2 is obtained by optimizing

2For the sake of clarification, we take the k-th class mean vector iy as an example, the mean vectors of other classes can be calculated similarly.
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the below objective function:

Ni
: 2
(m)" = arg min Dl = xil}
=
Ni
= argmin )" (m; = x)" (mj = x) ®)
k
i=1

| &

= — xi
N &

1
which is convex and can be easily solved with analytical solution.

As shown in Eq. (5), the computation of the squared /,-norm class mean my is contributed with the same weight
by all training samples from the k-th class. Unfortunately, if the samples are mixed with outliers, especially far from
the normal class distribution center, the obtained class mean will be biased greatly and the subsequent OR accuracy
will be dramatically reduced. To alleviate the drawbacks of /,-norm against noises (outliers), recent researches [42],
[29] constructed various /;-norm-based algorithms to handle the so-called Laplacian noise. They shown that the
undesirable influence of noise can be alleviated by substituting the /;-norm with /;-norm, since the latter is less
sensitive to Laplacian-type noise. However, in real scenarios, the type of noises (outliers) is usually not known and
their distributions do not necessarily satisfy the Laplacian distribution, resulting in the performance of /;-norm based
methods is not always superiority to other algorithms.

3.1. l,-centroid algorithm

To deal with distribution-unknown outliers/noises in OR, motivated by the success of /,-norm in face recognition
[43], filtering [21] and data clustering [18], we propose to construct a unified type of class centroid, coined as /-
centroid, which is derived from the /,-norm and automatically-robust to the noise/outliers in OR. In brief, the /,-

centroid can be obtained by substituting the /,-norm in Eq. (5) with the /,-norm. Formally, the /,-centroid, denoted as
lP

m,’, can be derived from the objective function below:
Nk
Ip\s . I
(m{)" = argmin Y I = x|}, p e (0,21, ©)
m i

in which ||- ||§ is called /,-norm 3. To address various types of outliers/noises with unknown distributions in subsequent
OR process, the hyper-parameter p is assigned in the range (0,2]. From Eq. (6), we can find that the normal class
mean (as shown in Eq. (5)) and the /;-norm-based class centroid are special cases of the proposed /,-centroid with
p =2 and p = 1, respectively. Therefore, the /,-centroid is a unified framework for calculating class centroid.

Unlike the [-norm wich has analytical solution (see Eq. (5)), the [,-centroid in Eq. (6) does not have closed-form
solution except p = 2. However, through algebraic transformations, Eq. (6) can be converted as

Ni
Ip\ s . /
(m¢)" = argmin " |m! = x|
m{ =1
Ny

. L T I
= argmin Z tr ((mkp - x,-) D; (mk” - x,-))
m 3 @
Ny
= arg min Z (ml” - x')T D; (ml” - x')
> k i i\ i
me =1

Ny N
= O @O D) x),
i=1 i=1

3To show the calculation of [ p-norm, we take one d-dimensional vector x as an example, then its /,,-norm is defined as [|x]|, = Zle |x%1P.

4
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(7) also has closed-form solution, but D; is coupled with the variable mip to be solved. Fortunately, we can adopt
an iterative optimization strategy to overcome it by calculating D{"" = diag{l(mip YO — x;|P72), with (mip)(” denoting
the solution of Eq. (7) after ¢ iterations. That is, mip of D; is substituted with the latest iteration solution. Then, we
repeat the procedure until convergence. The complete algorithm for /,-centroid is summarized in Table 1, where f(1)

indicates the 7-th iteration objective value of Eq. (7), and {(mf(p )(”],f=1 denote the generated centroid of all classes.

Table 1: Iterative Optimization Algorithm for /,-centroid.

Input: Training set {Xk},{,(:1 C RY, hyper-parameter p, and convergence threshold €.
Output:  /,-centroid {mip g
l.fork=1,..,K do

2. t=1;
3. (m;p)(” = ﬁk DI
4. fa=1)=1" f() = 4 T emH® = xil};
e LU=D-f@O)

5. while f(r——l)[ > edo
6. fa=1) = f@);
7. fori=1,..., N, do
8. (D) = diagll(m)" ~ x|");
9. end for

IP\(+1) .
10. Calculate (m,) through Eq. (7);
11. J@a+1) = 4 2% on)ED = x|
12. t=1+1.
13. end while
14. end for

3.2. Convergence guarantee for the l,-centroid algorithm

The I,-centroid of the K classes can be respectively obtained via the algorithm in Table 1 in finite iterations of
optimization according to the following Theorem 1.

Theorem 1. Let { (mip )(”}tT=1 denote the generated centroid sequence of the k-th class using the l,-centroid algorithm

summarized in Table 1, then we have f(t+ 1) < f(0),t = 1,....,T. Once f(t + 1) = f(r) happens, then (mif)* = (mi,p)(’)
is a stable minimizer * of Eq. (6). (The proof is given in the Appendix.)

3.3. Advantages of tuning the p of l,-centroid through cross-validation instead of optimization

We can see from the algorithm in Table 1 that the p in /,-centroid is not optimized with the class centroid. Instead,
we choose to tune its value through cross-validation due to two-fold considerations: 1) the objective function of the
1,-centroid (see Eq.(6)) is not convex when 0 < p < 1, implying it is likely to be trapped by local optimums with sub-
optimal or even ill-posed centroid solutions in an optimizing manner; however, if we tune p through cross-validation
with proper grid search scale, nearly or even globally optimal solutions can be obtained with high probabilities; and
more importantly, 2) by means of tuning the p in cross-validation manner, we can straightforward explore the effort
rules of p on the performance of the /,-centroid algorithm by tuning its value from O to 2, which will be analyzed in
the experiment section.

*When p € (0, 1), then Eq. (6) is non-convex and (mi”)* is its local minimizer; when p € [1,2], then Eq. (6) is convex and (mi")* is thus its
global minimizer.
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3.4. Ordinal regression with l,-centroid

After the I,-centroid of the data classes is obtained through the optimization algorithm in Table 1, we can then
substitute the class means involved in the class-center-induced OR approaches with the /,-centroid. To evaluate the
effectiveness of the proposed /,-centroid, we respectively substitute the class mean vectors ny, of Egs. (1) and (2) with
[,-centroid m,l(p ,k=1,..., K. Consequently, reconstructed KDLOR and MOR with /,-centroid can be formulated as

min w'S,w—Cp
w

)]
s.t. WT(mﬁf_’H - mip) >p, k=1,2,..K-1,
and
min w' XLXTw - Cp
" )]

st wiml, —mly>p, k=12.,K-1,

respectively. For the optimization, Eq. (8) and Eq. (9) can be solved similarly using the implementations for Eq. (1)
and Eq. (2), respectively.

3.5. Comparison between the remodeled KDLOR (MOR) with 1 ,-centroid and the standard with l,-centroid

By comparing Egs. (1) ((2)) with (8) ((9)), we can easily find that the computational cost difference between the
remodeled KDLOR (MOR) with [,-centroid and the standard ones with /,-centroid essentially lies in the difference
in computing the centroid of their classes. That is, it lies in the computational cost difference between the /,-centroid
and the l,-centroid, which are respectively formulated in Eq. (7) and Eq. (5). To be specific, the /,-centroid can be
obtained directly with analytical solution (as shown in Eq. (5)); in contrast, although the proposed /,-centroid is being
calculated in an iterative manner (as the Algorithm shown in Table 1), it in practice converges efficiently within about
4 iterations (as shown in Figure 13), and more importantly, it is more robust to data outliers and superior in ordinal
regression accuracy compared with the /;-centroid (as shown in Figure 12). So, in summary, for real applications
especially these corrupted with outliers and implemented in high-performance platforms (in real world, most of the
tasks are in such a case), the l,-centroid is very preferable to the /;-centroid; while for simple tasks with limited
computing resources, we refer the researchers to the /,-centroid.

4. Experiment

To evaluate the effectiveness and superiority of the proposed /,-centroid to class-center-induced ORs, we conduct
experiments on a toy data, eight benchmark datasets and a large real-world face dataset.

4.1. Toy data

To intuitively demonstrate the robustness of the proposed [,-centroid to outliers, we first perform comparative
cxperiment on a 2D toy data. The obtained class centers derived from [,-centroid with varying p values are shown in
Figure 1. We can see from Figure 1 that with the decreasing p from 2 (equal to the widely-used I,-mean as in [34] and
[25]), to 1.5 and to 1 (equal to the l,-median as in [5]), the class centroid derived with [,-centroid tends to approach
the dense distributions of corresponding class samples. That is, assigning p with relatively small values can reduce
the undesirable influence of outliers. For the specific value of p, we should tune it according to the data distributions
no matter outliers are involved or not.
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Figure 1: An intuitive comparison between class centers derived from /,-centroid with varying p values. Totally,
four class samples (indicated respectively with triangle, square, diamond and circle) are denscly distributed in the
bottom-left area of the figure, while some fewer outliers are distributed in the top-right area.

4.2. Benchmark datasets

To extensively evaluate the performance of the proposed algorithm to class-center-induced OR, we conduct ex-
periments for KDLOR and MOR, in which the involved class centers are derived from the /,-centroid as formulated
in Egs. (8) and (9). To be specific, we adopt the eight benchmark datasets used in [8] and [34] for experiment. We
respectively chose 300x5, 300x5, 305, 2005, 2005, 300x5, 30x5 and 60x5 samples from the Abalone, Bank,
Boston, California, Census, Computer, MachineCPU and Pyrimidines datasets for model training and the remaining
as test set. All the hyper-parameters involved were tuned through 5-fold cross-validation. To practically evaluate the
proposed [,-centroid algorithm in OR, we tune p in the range of {0.1,0.2, ..., 2}. we uniformly take the Mean Absolute
Error  MAE) (MAE = % Zﬁl |lA,-— 1;| with [; and’ll\- denoting the ground-true and regressed values, respectively) as the
OR performance criterion. And, we repeated the experiments 5 times on each dataset with random data splitting and
show the results from Figure 2 to Figure 9.

We can find from the comparative results from Figures 2 to 9 that, with increasing noise (i.c., outlicrs) ratio from
0% to 20%, the OR MAEs (the lower the better) of either MOR or KDLOR are increasing. It shows that outliers
deteriorate the OR accuracy, which coincides with the our knowledge. Another finding is that no matter how high is
the outliers ratio, MOR (KDLOR) yields the lower MAEs with the proposed /,-centroid. It shows the superiority of
the proposed method in OR accuracy and its robustness to outliers. It should be noted that the proposed /,-centroid
covers the /-mean (when p=2) and /;-median (when p=1) as its special cases.

4.3. Cross-Age Celebrity Dataset

To evaluate the efficiency of the proposed method to outliers in real world applications, we also make evaluations
on the Cross-Age Celebrity Dataset (CACD) [6]. Taking the CACD database, which consists of more than 160,000
face images of 2,000 celebrities drawn from 2004 to 2013, aged 16 to 62, for evaluation is due to that it is the largest
cross-age face data set widely adopted for ordinal age estimation tasks. More importantly, the age labels of CACD
are imprecise since they were annotated by anonymous picture uploaders. In other words, the CACD is naturally
corrupted with outliers. Face examples of the CACD databse are demonstrated in Figure 10. We randomly take 5%
to 20% percentage of samples by extracting HOG features [11] from CACD for training with the rest for testing.

7
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Figure 9: Comparison of OR with varying class centroid in MOR (a) and KDLOR (b) on Pyrimidines.

Figure 10: Face examples of the CACD database.
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Moreover, we take the same experimental settings as in the previous sections for experiment. The experimental
results averaged over ten random data partition are presented in Tables 3 and 2. From them, we can find that: 1) with
increasing percentage of training samples, the MAEs yielded via both KDLOR and MOR are generally decreasing,
validating the benefit of increasing training samples to improving the generalization ability of estimators; 2) the age
estimation MAEs evaluated with /;-centroid and /; s-centroid are generally much lower than those either by Iy s-
centroid or /;-centroid. It is due to that although /y 5-centroid itself can significantly remove the effort of distribution-
outliers to centroid calculation, it tends to warp the natural distributions of clean data, while the /;-centroid tends to
be sensitive to the outliers; 3) the MAESs of age estimation with the [,-centroid are significantly the lowest, showing
the effectiveness and superiority of the proposed /,-centroid method. Moreover, by comparing the results between on
the eight benchmark datasets and on the CACD database, we can find that the proposed /,-centroid seemingly does
not always show significant performance superiority to other norms induced centroid including the l,-centroid. This
is partly due to the randomness of selected data for model training and testing, as well as the limited scale of the eight
benchmark datasets. Because the extended experimental results on the large-scale CACD database show significant
performance superiority of the proposed /,-centroid to other types of centroid. In addition, we also explore the impact

Table 2: Evaluation results (MAE+STD, in years) yielded by MOR on CACD. The bold results indicate the best in
each row.

Training samples percentage

from each class

lp.5 — centroid

Iy — centroid

1,5 — centroid

b, — centroid

1, — centroid

5% 16.17+1.34 17.69+1.52 21.81+2.47 21.96+1.91 14.95+1.39
10% 16.42+1.26 18.21+1.42 19.72+1.34 21.47+1.18  14.83+1.24
15% 16.85+1.18 17.90+1.38 19.08+1.42 21.89+1.38  14.62+1.20
20% 16.78+1.26 19.57+1.29 19.45+1.20 20.29+1.21 14.59+1.15

Table 3: Evaluation results (MAE+STD, in years) yielded by KDLOR on CACD. The bold results indicate the best

in each row.

Training samples percentage
from each class

ly5s — centroid

Iy — centroid

I 5 — centroid

I, — centroid

1, — centroid

5% 15.20+1.53 17.76+1.34 23.80+2.33 1991+1.78  14.51+1.83
10% 15.97+1.26 17.82+1.55 19.72+1.86 20.09+2.07  15.12+1.52
15% 16.88+1.18 17.98+1.81 19.08+1.69 19.98+1.88  14.86+1.47
20% 16.32+1.31 17.72+1.68 19.02+1.26 19.81+1.59  13.56+1.28

of p in /,-centroid on its performance. Without loss of generality, we randomly take 150 samples from each class of
the CACD database for training and rest for testing, and display the results in Figure 11. It can be found that the
performance variation is large when O < p < 1, and is severely worse than that when 1 < p < 2. On one hand, this
is partly resulted from the non-convexity of /,-centroid (0 < p < 1), likely to result in non-optimal solutions. On the
other hand, when 1 < p < 2, the ordinal regressors, KDLOR and MOR, with [,-centroid achieve stable, lower MAEs.
This implies the robust characteristic and desirable performance of /,-centroid (1 < p < 2) in handing real large-scale
ordinal problems involved with outliers.

4.4. Performance significance of the proposed l,-centroid algorithm

Through the experimental comparisons in Section 4.2 and 4.3, we have shown the superiority of the /,-centroid
algorithm in performance. To evaluate the performance statistical significance of the proposed algorithm, we perform
non-parametric statistical tests, i.e., the Friedman and Nemenyi tests [12], for the results in Figures 2 to 9 and Tables
3 and 2. The performance ranks and non-parametric rank statistical tests of different methods are shown in Figure
12. From them, we can see that the /o 5-centroid method on both MOR and KDLOR ranks the worst among all the
methods, it is resulted from that the nonconvex objective function of /y 5-centroid tends to induce suboptimal centroid

11
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Figure 11: Performance rule of KDLOR (a) and MOR (b) with varying p of /,-centroid on the CACD database.

solution. Moreover, /| s-centroid is in performance averagely better than /,-centroid and more robust to outliers with
comparable rank to the />-centroid. Most interestingly, the proposed /,-centroid ranks the best with the smallest rank
variance (sce Figure 12 (a-b)) and significantly the best rank position (see Figure 12 (c-d)). In other words, the /-
centroid is not only the most robust to outliers but also significantly superior in performance to the other types of
centroid.

0
5-centroid | -centroid |, -centroid | -centroid | -centroid [
. . p

s-centroid | -centroid |, ;-centroid I,-centroid | -centroid
. . p

0. 0.

(a) Performance Rank on MOR (b) Performance Rank on KDLOR

I I I I I 1 I
I I I I I 1 I
Ip»centroid e ] [ 1 Ip-centroid e o] 1 |
I I I I I 1 I
: I ] I I i I I
1,-centroid H —— | 1,-centroid | —.—: '
I I I I I 1 I
1, .-centroid ! | 1, .-centroid | |
15 1 —— 1 i 1 _._: 1
I I I I I 1 I
1,-centroid | || —— 1,-centroid | ] ey
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. I I I | : I 1

o 5-centroid \ | @ |, 5-centroid | h +
I I I I I 1 I
I P I R T 1 R I
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rank rank

(c) Non-Parametric Statistical Test on MOR (d) Non-Parametric Statistical Test on KDLOR

Figure 12: Performance ranks (a-b) and non-parametric statistical tests (c-d) of different centroid on MOR and KD-
LOR methods. For the non-parametric statistical tests, the Friedman and Nemenyi tests were adopted. In (c-d), the
horizontal axis represents the values of mean rank of different methods, while the vertical axis represents the methods.
For each method, e represents its mean rank value, while the line segment represents the critical difference domain.
Two methods have a significant difference, if their critical domains are not overlapped; not so, otherwise.
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4.5. Convergence efficiency of the proposed l,-centroid algorithm

Besides the theoretical convergence guarantee for the proposed [,-centroid algorithm in Theorem 1, we also e-
valuate its convergence efficiency experimentally. Without loss of generality, we follow the experimental settings in
section 4.2, and conduct convergence experiment on the eight benchmark datasets (each corrupted with 10% outlier-
s) and the large-scale CACD database, with results shown in Figure 13. We can see that the /,-centroid algorithm

%104 x10° x10*

g S ., g S119
S s = 6480 21.
S 443 S g g
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Figure 13: Objective function value convergence rule of the proposed /,-centroid algorithm. Note that since the
objective function value convergence rules of the /,-centroid algorithm on classes of the datasets are quite similar,
so their average rule is demonstrated here, and that the /,-centroid on all classes of both Abalone and Computer
degenerated to /,-centroid with closed-form solution, so their convergence rules are not shown.

converges stably and efficiently within about 4 iterations.

5. Conclusion

In this paper, we presented a unified framework algorithm to calculate preferable class centers against outlier-
s/noises, coined as [,-centroid which covers the traditional /;-norm centroid (which is typically adopted in existing
class-center-induced OR) and the /;-norm centroid (which is frequently used to handle Laplacian-type noises) as spe-
cial cases. Then, we specially designed an iterative optimization algorithm to generate the /,-centroid, and provided
theoretical analyses about the convergence of the /,-centroid algorithm. To evaluate the proposed /,-centroid, we
substituted it into two representative class-center-induced OR approaches KDLOR and MOR. Finally, extensive ex-
periments on toy data, benchmark datasets and large-scale real-world database demonstrated the effectiveness and
superiority of the proposed methods in OR accuracy and robustness to outliers. Actually, besides the ordinal estima-
tion tasks, the proposed method can also be applied in machine learning scenarios such as clustering [13], k-nearest
classification [33]. To regularize the space distributions of the samples, in the future we will consider to extend the
proposed method to cross-data scenarios [37].
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Appendix:

Lemma 1. Let (1) = A — ad® with a € (0,1). Then for any 1 > 0, we have ¢(1) < 1 —a and A = 1 is the unique
maximizer.

Proof: By taking the derivative of ¢(1) with respective to A and set it to zero, we get
g =1-r"=0, (10)
which has the unique solution A = 1, given that a € (0,1) and 4 > 0. U

Lemma 2. Let {x; }fi‘l denote the Ny samples of the k-th class, {(mip)(’)}[T:1 indicates the generated l,-centroid sequence

of the class using the l,-centroid algorithm in Table 1, and f(t) is the objective function value of Eq. (6) after the t-th
optimization iteration. Then, we have

Ni
Nef(t+1) - ’5’ DD =) DO = ) < (1= §)Nkf<r). (11)
i=1

(om0 -x)) P

. _ D 1 < =
Proof: Leta = § € (0, 1) with p € (0,2), and 2 |(<m’k”)“’—x,)j|f’ s

5 Jj=1,....d, with (-); denoting the j-th clement of a

d-dimensional vector. Then, we have
(DD = x) 7 p (D) D = x7) 2
GO = x) b 2 (om0 = x) P

which is equivalent to

p
<l-=, 12
2 12)

IP\(t+1) N2
N+ _ oy _ P Iy O i) N7 NN
I((mk ) xl)jl 3 |((m§(p)(’) ~ xl-)i|2'P <d 2)|((mk ) xl)jl . (13)

Summing (13) up for j=1,...,d and i=1, ..., N}, we have
Ny Ni Ni
Z ”((mip)(m-l) _ XL)”z _ %) Z ((miﬁ)(wl) _ xi)T(Di)(t)((miﬁ)(Hl) -x) < (1- %)) Z ||((m217)(t) - xl)||§ (14)
i=1 i=1 i=1
That is,
Ni
Nef(t+1) - § DD =) (YO = ) < (1= §)Nkf<r). (15)
i=1

!
(om0, 7

Moreover, according to Lemma 1, the equation part in (15) holds if and only if 1 = (o) ¥
o) I

-1, j=1,...d,
implying (mi,p YD = (mip Yo, O

Proof of Theorem 1:

Since (mi,’} )@ D is the minimizer of the #-th iteration of the /,-centroid algorithm, i.e., (mip ) = argmin, Zfikl ((mip -
2

)T (D)’ - x)), then we have

Ny

Ny
DD =) @YD = ) < (DO = ) (DY) = x) = Nef 0. (16)

i=1 i=1
By combining the above Lemma 2 and formulation (16), we have (1 + 1) < f(¢), meaning that the objective function
value of Eq. (6) is being reduced with the increasing iterations of the /,-centroid algorithm. Furthermore, when f(r +

1) = f(¢) happens, then (m;(p Y1) = (mip )®, which implies that (m;{p YO = arg minmlkp Z?ﬁl ((mip - x,-)T(D,v)(’)(mip - X)).
That means that the minimizer (mf(p )= (mi,’7 )® is obtained. O
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