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a b s t r a c t 

Graph construction plays an important role in graph-oriented subspace learning. However, most existing

approaches cannot simultaneously consider the global and local structures of high-dimensional data. In

order to solve this deficiency, we propose a symmetric low-rank preserving projection (SLPP) framework

incorporating a symmetric constraint and a local regularization into low-rank representation learning for

subspace learning. Under this framework, SLPP-M is incorporated with manifold regularization as its lo- 

cal regularization while SLPP-S uses sparsity regularization. Besides characterizing the global structure

of high-dimensional data by a symmetric low-rank representation, both SLPP-M and SLPP-S effectively

exploit the local manifold and geometric structure by incorporating manifold and sparsity regulariza- 

tion, respectively. The similarity matrix is successfully learned by solving the nuclear-norm minimization

optimization problem. Combined with graph embedding techniques, a transformation matrix effectively

preserves the low-dimensional structure features of high-dimensional data. In order to facilitate classifi- 

cation by exploiting available labels of training samples, we also develop a supervised version of SLPP-M

and SLPP-S under the SLPP framework, named S-SLPP-M and S-SLPP-S, respectively. Experimental results

in face, handwriting and object recognition applications demonstrate the efficiency of the proposed algo- 

rithm for subspace learning.
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. Introduction

In many areas of machine learning, a vast amount of valuable

igh-dimensional data is available, such as images, videos, text

nd documents, as observations are usually embedded in a high-

imensional space, which is commonly referred to as the curse

f dimensionality [1] . This imposes a great burden on the analy-

is of high-dimensional data, e.g., classification and clustering tasks

2–8] . Simultaneously, the high dimensionality of data increases

he computational complexity of algorithms owing to the effect of

oise (e.g., occlusions, and illumination variations) and the ambi-

nt space dimension of the training samples. As shown in Fig. 1 ,

 number of data points are approximately drawn from a union of

hree subspaces, which usually refers to the ambient space. This

as naturally led to the challenging problem of high-dimensional

ata analysis, with the aim of exploiting and capturing the under-

ying structure of the high-dimensional data. 

In the literature, there is ample evidence showing that high-

imensional data often exhibit low-dimensional structures in the
� This work was supported by the National Science Foundation of China (Grant

os. 61602329 , 61502322 , 61432012 and U1435213 ) and Sichuan Science and Tech- 

ology Program (Grant No. 2017JY0258).
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mbient space [9,10] . There has also been substantially increased

nterest in subspace learning, primarily motivated by the develop-

ent of a number of linear and nonlinear dimensionality reduc-

ion techniques [11–15] . For efficient analysis of high-dimensional

ata, these techniques project the high-dimensional data into low-

imensional spaces while preserving the intrinsic features of the

ata. Such techniques can be employed in feature extraction, data

isualization and compression, and as an effective preprocessing

tep in many important machine learning methods [16–19] . 

Subspace learning has been studied extensively for several

ecades [20,21] . Generally, these methods can be divided into

wo categories, linear and nonlinear methods, according to differ-

nt assumptions regarding the underlying structure of the high-

imensional data. As linear subspace learning algorithms, princi-

al component analysis (PCA) [11] , which maximizes the sample

ariance to preserve the global Euclidean structure, linear discrim-

nant analysis (LDA) [12] , which maximizes the ratio of the inter-

nd intra-class scatters to find projection directions, locality pre-

erving projections (LPP) [22] , and their numerous variants have

hown their capabilities in many application domains [23–26] . Al-

hough these methods work well if the errors follow a Gaussian

istribution, they ignore the local manifold structure of data. By

inearly approximating the eigenfunctions of the Laplace Beltrami

perator on the manifold, LPP preserves its local relationships and

ncovers the essential manifold structure of the data. By combin-
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Fig. 1. Three subspaces in R 3 with a number of data points approximately in each

subspace.
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ing with kernel-based techniques, nonlinear mapping can be im-

plemented, such as kernel PCA and kernel LDA [27,28] . However,

most kernel-mapping functions do not explicitly consider the un-

derlying manifold structure. 

A variety of learning algorithms have been developed to dis-

cover the underlying nonlinear structure, i.e., embedded manifold

of the data, such as isometric feature mapping (ISOMAP) [29] , lo-

cally linear embedding (LLE) [30] , Laplacian Eigenmap (LE) [31] ,

and neighborhood preserving embedding (NPE) [14] . These tech-

niques usually first construct a similarity matrix, where each ele-

ment measures the similarity of a pair of data points. There are

several choices for the similarity strategy representing the mani-

fold geometry approximately, such as the local neighborhood re-

lationship in LLE, Gaussian similarity from Euclidean distance in

LE, k nearest neighbors in NPE, and the geodetic distance between

any pair of data points in ISOMAP. These methods typically employ

different local similarity strategies to preserve local neighborhood

information. However, estimating the correct size of the neighbor-

hood, which is closely related to the intrinsic dimension of the

manifold, remains an open question. 

Yan et al. [32] proposed the graph embedding framework for di-

mensionality reduction, under which most existing graph-oriented

subspace learning methods can be unified. This general framework

emphasizes the importance of constructing a similarity matrix, and

presents a novel formulation of graph embedding. Following the

idea of this framework, some studies on sparsity and rank min-

imization theory have recently been proposed to study subspace

learning [33–36] . Cheng et al. [33] proposed an l 1 -graph learning

method, which uses the sparsest representation of the data points

solved by l 1 -norm minimization techniques, to define a similarity

matrix combined with the embedding program of NPE for sub-

space learning. However, the lack of having a global structural con-

straint limits its availability in practice. Rank minimization tech-

niques have been proposed to alleviate these problems [37–40] .

The fact that the regularization terms of l 1 -norm and l ∗ -norm of-

ten needs hundreds of iterations before convergence may lead to

computationally impracticable for the computational complexity of

these methods. Fortunately, a great quantity of nonconvex opti-

mization techniques have been proposed to alleviate this problem,

e.g., nonconvex low-rank regularizers [38,40] . Low-rank represen-

tation (LRR)-based algorithms can capture globally linear structures

of data by solving the convex or nonconvex optimization prob-

lem of nuclear-norm minimization instead of rank minimization.

However, LRR ignores the local structure of high-dimensional data.

Moreover, the lack of a symmetric constraint on the low-rank rep-

resentation means that its ability to characterize the relationship

of a pair of data points is often limited in practical applications.

In addition, most existing LRR-oriented algorithms do not consider

taking advantage of the class label information of training samples,

which often provides discriminative information that facilitates the

subsequent classification task. 

Motivated by recent advancements in low-rank representation

and manifold learning, in this paper we propose a symmetric low-

rank preserving projection (SLPP) framework, which incorporates
 symmetric constraint and a local regularization into low-rank

epresentation for subspace learning. Specifically, SLPP first de-

ives the symmetric low-rank representation coefficients of high-

imensional data, i.e., a similarity matrix, which can be efficiently

alculated by solving the nuclear-norm minimization optimization

roblem. Then, the similarity matrix is used to construct an affinity

raph. Using the graph embedding framework, the affinity graph is

ombined with the notion of NPE to search for a transformation

atrix for dimensionality reduction. Under this framework, SLPP-

 is incorporated with manifold regularization as its local regular-

zation while SLPP-S uses sparsity regularization. Both SLPP-M and

LPP-S simultaneously consider the global structural constraint on

he low-rank representation as well as the local structure of high-

imensional data on the local regularization. The incorporation of

he symmetric low-rank representation with manifold or sparsity

egularization enriches the relationship of high-dimensional data

or robust subspace learning. In addition, with training sample la-

el information available, we further develop a supervised version

f SLPP-M and SLPP-S under the SLPP framework, named S-SLPP-

 and S-SLPP-S, respectively. In contrast to most existing subspace

earning algorithms, our proposed method simultaneously consid-

rs two cases of labeled and unlabeled training samples for sub-

pace learning. 

The proposed framework has the following advantages: 

(1) It successfully learns a symmetric similarity matrix. The

symmetric similarity matrix characterizes the global struc-

ture of high-dimensional data by inheriting the advantages

of the symmetric low-rank representation. Besides, it also

effectively reveals/uncovers the local intrinsic structure of

high-dimensional data using manifold or sparsity regulariza-

tion. 

(2) Combining the graph embedding framework with the simi-

larity matrix, it obtains a transformation matrix, which can

be employed to effectively preserve the low-dimensional

structure features of high-dimensional data for subspace

learning. 

(3) Using the symmetric low-rank representation model, it ex-

hibits general learning ability of subspace learning in a su-

pervised and an unsupervised manner. 

(4) Compared with several popular dimensionality reduction

methods, our experimental results on benchmark databases

demonstrate that the proposed method realizes competitive

performance, especially when a number of training sample

labels are available. 

The rest of the paper is organized as follows. In Section 2 , we

rovide a brief overview of related work on subspace learning and

ank minimization. Section 3 provides a detailed description of the

roposed SLPP framework for subspace learning. The experimental

esults on benchmark databases are presented in Section 4 . Finally,

ection 5 concludes the paper. 

. Related work

Here we briefly review some work closely related to the pro-

osed method for the sake of clarity. First, we provide a re-

iew of the graph embedding framework for subspace learning

n Section 2.1 . Then, some work on low-rank representation tech-

iques is reviewed in Section 2.2 . 

.1. Graph embedding framework 

Consider the data matrix, X = [ x 1 , x 2 , . . . , x n ] ∈ R 

m ×n , each col-

mn of which represents a training sample. For supervised learn-

ng problems, these training samples are assumed to belong to N

lasses. Without loss of generality, we assume a class label for each
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ample, l i ∈ { 1 , 2 , . . . , N} . The general purpose of subspace learn-

ng is to learn a transformation matrix, P ∈ R 

m × d , which transforms

he samples from the original high-dimensional space to a low-

imensional subspace. Given a test sample, x ∈ R 

m × n , the desired

ow-dimensional representation can be obtained as 

 = P T x ∈ R 

d , 

here d � m . 

Let G = { V, E} be an undirected weighted graph with the corre-

ponding adjacency matrix W , where V = { v 1 , v 2 , . . . , v n } is the set

f vertices, E = { e i j | i, j ∈ V } is the set of edges, and W = { w i j | i, j ∈
 } measures the similarity of a pair of vertices, i.e., vertices i and

 . The adjacency matrix W can be constructed using a variety of

riteria, such as Euclidean distance or local neighborhood relation-

hip. The Laplacian matrix L is defined as 

 = D − W, (1) 

here D = diag( d 1 , d 2 , . . . , d n ) is a diagonal matrix with its diago-

al element defined as d i = 

n ∑ 

j=1

w i j . Moreover, a transformation ma-

rix P can be obtained by solving the following minimization prob-

em [22] : 

rg min 

P
tr( P T X L X 

T P ) s.t. P T X D X 

T P = I. (2)

pecifically, the transformation matrix P can be given by the min-

mum eigenvalue solution to the generalized eigenvalue problem:

 L X 

T P = λX D X 

T P, (3)

here P consists of the r projection vectors corresponding to the r

mallest eigenvalues, i.e., λ1 ≤ λ2 ≤ · · · ≤ λr . 

According to graph embedding theory, a number of dimension-

lity reduction algorithms can be reformulated within the graph

mbedding framework [32] . First, we give a brief review of the

LE algorithm [30] . LLE constructs locally linear structures at each

oint x i by reconstructing x i only from its neighbors. The opti-

al combination weights are calculated by solving the constrained

east squares problem 

in 

∥∥∥∥∥x i −
∑ 

j∈ N i 
w ji x j 

∥∥∥∥∥ s.t. 
∑ 

j∈ N i 
w ji = 1 (4) 

here N i is an indices set composed of its selected neighbors. Then

LE computes the best low-dimensional embedding P based on the

eight matrix W by minimizing the following cost function: 

min 

=[ p 1 , p 2 , ... , p N ] 

∥∥∥∥∥p i −
∑ 

j∈ N i 
w ji p j 

∥∥∥∥∥
2

s.t. P P T = I. (5) 

n the following, we provide a review of NPE, which is closely re-

ated to the proposed method for subspace learning. NPE is a lin-

ar extension of the LLE algorithm, which also preserves the local

eighborhood structure on the data manifold. The reconstruction

rrors in NPE are measured by minimizing the following cost func-

ion: 

(W ) = 

∑ 

i

∥∥∥∥∥P T x i −
∑ 

j

W i j P 
T x j 

∥∥∥∥∥
2

, (6) 

here P is a transformation matrix. By certain algebraic formula-

ions, the objective function of NPE can be formulated as 

in 

P

∥∥P T X − P T X W 

∥∥2

F
s.t. P T X X 

T P = I. (7)

his optimization problem can be solved with a generalized eigen-

alue decomposition approach, 

 M X 

T p = λX X 

T p, (8)
here M = (I − W ) T (I − W ) and is an eigenvector. The transfor-

ation matrix P = [ p 0 , p 1 , . . . , p d−1 ] is composed of the d eigen-

ectors corresponding to the d smallest negative eigenvalues, i.e.,

0 ≤ λ1 ≤ · · · ≤ λd−1 . 

.2. Low-rank representation techniques 

The low-rank representation is one of the most effective tech-

iques to measure the relationship of high-dimensional data [37] .

RR seeks the lowest-rank solution by solving the following regu-

arized rank minimization problem: 

in 

Z,E
rank (Z) + λ‖ 

E ‖ l s.t. X = AZ + E, (9)

here A = [ a 1 , a 2 , . . . , a n ] ∈ R 

d×n is a basis, λ> 0 is a parameter to

alance the effects of the low-rank term and error term, and ‖·‖ l
ndicates a certain regularization strategy for characterizing vari-

us corruptions. As is known, Problem (9) is non-convex. By virtue

f the nuclear norm as a common surrogate for the rank function

nder certain conditions, Problem (9) can be rewritten as the fol-

owing convex optimization: 

in 

Z,E
‖ 

Z ‖ ∗ + λ‖ 

E ‖ l s.t. X = AZ + E, (10)

here ‖ · ‖ ∗ denotes the nuclear norm of a matrix, i.e., the sum

f its singular values. The optimal solution Z ∗ to Problem (10) can

e obtained by the inexact augmented Lagrange multipliers (ALM)

ethod. Then, we further construct the affinity matrix | Z ∗| + | Z ∗| T ,
mployed in the graph embedding framework, for subspace learn-

ng. 

To avoid the post-processing symmetrization step, LRRSC im-

oses a symmetric constraint, which guarantees weight consis-

ency of each pair of data points, on the representation coefficients

41] . The optimization problem of LRRSC is formulated as 

in 

Z,E
‖ 

Z ‖ ∗ + λ‖ 

E ‖ l s.t. X = X Z + E, Z = Z T , (11)

here the original data X is considered as the dictionary. The

bove optimization problem is efficiently solved in [41] . The op-

imal solution Z ∗ to Problem (11) leads to highly correlated data

oints of subspaces being represented together. 

. Symmetric low-rank preserving projections

In this section, we propose a symmetric low-rank preserving

rojection (SLPP) framework for subspace learning. This frame-

ork adopts a new similarity criterion that characterizes the ad-

acency relationship of point pairs. In particular, it incorporates a

ymmetric constraint and a local regularization into low-rank rep-

esentation learning to learn a symmetric similarity matrix. Un-

er this framework, SLPP-M is incorporated with manifold regu-

arization as its local regularization and SLPP-S uses sparsity reg-

larization. Then SLPP uses the similarity matrix to effectively

btain a transformation matrix for dimension reduction of high-

imensional data under the graph embedding framework. More-

ver, we take full advantage of training sample labels to develop

 supervised version of SLPP-M and SLPP-S under the SLPP frame-

ork, named S-SLPP-M and S-SLPP-S, respectively. 

.1. Symmetric low-rank representation with manifold regularization 

For a given data matrix X , each column can be represented by

he linear combination of the basis, where each column is a sam-

le. The representation coefficients of the data matrix X , which

hat is regarded as a similarity matrix, can be employed to mea-

ure the relationship between each pair of samples. We consider a

eneral model of data representation: 

in f ( Z ) s.t. X = AZ + E, (12)
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where f ( Z ) is a matrix function (e.g., ‖ Z ‖ 0 or ‖ Z ‖ ∗ , etc), and E is an

error term. The optimal solution Z ∗ is a special representation of

data X , which is closely related to the matrix function, with respect

to basis X . We denote the data matrix A = { a 1 , a 2 , . . . , a n } ∈ R 

m ×n ,

each column of which represents a corrected sample, i.e., a i = X z i . 

The fact that the local manifold structure of high-dimensional

data can be effectively modeled using a nearest neighbor graph,

has been demonstrated in recent studies of spectral graph and

manifold learning theory [42–44] . If any two data points a i and

a j recovered from x i and x j , respectively, are close in the intrin-

sic geometry of the data distribution, then the representations of

these two points, namely, z i and z j with respect to the same basis

X , are close to each other. For larger similarity between a i and a j ,

the distance between z i and z j should be smaller to minimize the

following objective function: 

� (Z) = 

1 

2 

n ∑ 

i, j=1

∥∥z i − z j 
∥∥2

W i j 

= 

n ∑ 

i =1

z T i z i D ii −
n ∑ 

i, j=1

z T i z j W i j (13)

= t r 
(
Z T DZ 

)
− t r 

(
Z T W Z 

)
= tr 

(
Z T LZ 

)
,

where tr ( ·) is the trace operator, and W can be constructed using

the Euclidean distance of data matrix X . This is called the mani-

fold regularization term, which is expected to maintain the local

manifold structure of the data. 

High-dimensional data often lie close to a low-dimensional

subspace of the ambient space. Although LRR exhibits the excel-

lent ability of capturing the global structure of high-dimensional

data, it does not consider the local manifold structure of high-

dimensional data. To do so, we consider the following convex op-

timization problem seeking a symmetric low-rank representation

Z : 

min 

Z
‖ 

Z ‖ ∗ + λ‖ 

X − AZ ‖ l + 

β

2 

tr 
(
Z T LZ 

)
s.t. Z = Z T , (14)

where β and λ are used to balance the effects of the low-rank

representation item, the error item, and the manifold regular-

ization item. Inclusion of the symmetric low-rank representation

with manifold regularization enriches the relationship of high-

dimensional data by simultaneously considering their global geo-

metric and local manifold structure. 

To obtain the graph Laplacian L , we must first calculate a

weight matrix W , where the definition of L is given in Section 2.1 .

In general, weight matrix W can be obtained using Gaussian simi-

larity from the Euclidean distance of the original data X . However,

the observations are often corrupted by noise. Hence, various re-

covery and completion techniques are adopted for different types

of noise. For example, we can use an alternative low-rank matrix,

recovered from the original data X using LRR [37] , instead of the

original data X , to calculate weight matrix W . 

3.2. Symmetric low-rank representation with sparsity regularization 

Sparse representation has been recognized as one of extremely

successful techniques for representation of data [33] . Each sample

is represented as a linear combination of a small number of other

samples in sparse representation. Intuitively, the sparsity of the

weight matrix can be measured by the l 0 -norm. Because l 0 -norm

minimization is an NP-hard problem, the l 1 -norm convex optimiza-

tion provides itself as a surrogate for l 0 -norm minimization. In

fact, the equivalence of l -norm and l -norm minimizations can be
0 1 
roved under certain conditions [45] . Hence, l 1 -norm minimization

s widely employed in sparse representation, which is an important

ay to improve the generalization capability of the data represen-

ation to design the weight matrix straightforwardly. Sparse rep-

esentation explicitly captures local geometrical structure of high-

imensional data with a very small number of non-zero elements.

o characterize the local geometrical structure of the data, we re-

lace the manifold regularization of Problem (14) using a sparse

enalty on symmetric low-rank representation as follows. 

min 

Z
‖ 

Z ‖ ∗ + γ ‖ 

Z ‖ 1 + λ‖ 

X − AZ ‖ l

s.t. Z = Z T , (15)

here λ> 0 is a sparsity parameter. 

By enhancing sparsity of the symmetric low-rank representa-

ion, the sparsity of the weight matrix Z can naturally preserve the

ocal geometric structure of the data. Thus, the global and local

tructures of high-dimensional data can be characterized in weight

atrix by incorporating a symmetric constraint and sparsity regu-

arization into low-rank representation learning. 

.3. Optimization procedure based on the augmented Lagrange 

ultipliers method 

We first apply the ALM method to Problem (14) [46] . To facil-

tate the optimization, we first convert Problem (14) into the fol-

owing equivalent problem by introducing an auxiliary variable J : 

min 

Z,E,J
‖ 

J ‖ ∗ + λ‖ 

X − AZ ‖ l + 

β

2 

tr 
(
Z T LZ 

)
s.t. Z = J, J = J T . (16)

The above optimization problem can be rewritten using (12) as

ollows: 

min 

Z,E,J
‖ 

J ‖ ∗ + λ‖ 

E ‖ l + 

β

2 

tr 
(
Z T LZ 

)
s.t. X = AZ + E, Z = J, J = J T . (17)

Then, we get the corresponding augmented Lagrangian func-

ion: 

min 

Z,E,J = J T , Y 1 , Y 2 
‖ 

J ‖ ∗ + λ‖ 

E ‖ l + 

β

2 

tr 
(
Z T LZ 

)
+ tr[ Y T 1 ( X − AZ − E ) ] + tr[ Y T 2 ( Z − J ) ]

+ 

μ

2 

(‖ 

X − AZ − E ‖ 

2 
F + ‖ 

Z − J ‖ 

2 
F 

)
, (18)

here Y 1 and Y 2 are Lagrange multipliers, μ is a positive penalty

arameter, and ‖·‖ F is the Frobenius norm. Using linear algebra

techniques, the above optimization problem can be rewritten as: 

min 

Z,E,J = J T , Y 1 , Y 2 
‖ 

J ‖ ∗ + λ‖ 

E ‖ l + 

β

2 

tr 
(
Z T LZ 

)
+ 

μ

2 

(∥∥∥X − AZ − E + 

Y 1 
μ

∥∥∥2

F

+ 

∥∥∥Z − J + 

Y 2 
μ

∥∥∥2 

F

)
. (19)

roblem (19) can be minimized separately with respect to variables

, Z and E . In particular, variables J, Z and E can be updated alter-

ately by fixing the other two variables, and then, the Lagrange

ultipliers Y 1 and Y 2 are updated separately. Because each variable

n Problem (19) can be solved iteratively, the updating schemes at

he (k + 1) th iteration are: 

 k +1 = arg min 

J = J T 
1 

μ
‖ 

J ‖ ∗ + 

1 

2 

∥∥∥J −
(

Z + 

Y 2 
μ

)∥∥∥2

F

(20)
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 k +1 = 

(
I + A 

T A + 

β

μ
L 

)−1 (
A 

T X − A 

T E + J + 

A 

T Y 1 − Y 2
μ

)
(21) 

 k +1 = arg min λ‖ 

E ‖ l + 

μ

2 

∥∥∥E −
(

X − AZ + 

Y 1 
μ

)∥∥∥2

F

(22) 

ote that Problems (20) and (22) have closed-form solutions. Prob-

em (20) can be solved using the following lemma. The choice

f ‖·‖ l is related to types of corruptions. For example, ‖·‖ 2, 1 is

dopted to characterize the sample-specific corruptions. Besides,

·‖ 1 is an appropriate choice for random corruptions, and ‖ ·‖ 2F
s chosen for small Gaussian noise. The complete optimization for

olving Problem (14) is summarized in Algorithm 1 . 

lgorithm 1 Solving Problem (14) by inexact ALM. 

nput: 

data matrix X , parameters λ > 0 , β > 0 . 

nitialize: Z = J = 0 , E = 0 , Y 1 = Y 2 = 0 , μ = 10 −2 , μmax = 10 10 , ρ =
 . 1 , ε = 10 −6 

1: while not converged do 

2: Update J with the other two variables Z and E fixed: 

J = arg min 

J = J T
1 
μ‖ J ‖ ∗ + 

1 
2 

∥∥∥J −
(

Z + 

Y 2 
μ

)∥∥∥2

F
.

3: Update Z with the other two variables J and E fixed: 

Z = 

(
I + X T X + 

β
μ L 

)−1 (
X T X − X T E + J + 

X T Y 1 −Y 2 
μ

)
. 

4: Update E with the other two variables J and Z fixed: 

E = arg min λ‖ E ‖ 2 , 1 + 

μ
2

∥∥∥E −
(

X − XZ + 

Y 1 
μ

)∥∥∥2

F
. 

5: Update the multipliers: 

Y 1 = Y 1 + X − XZ − E; 

Y 2 = Y 2 + X − μ(Z − J) . 

6: Update parameter μ by μ = min ( ρμ, μmax ) ; 

7: Check the convergence conditions 

‖ X − AZ − E ‖ ∞ 

< ε and ‖ Z − J ‖ ∞ 

< ε. 

8: end while 

utput: 

Z ∗, E ∗

emma 1 (Lemma 1 [41] ) . For any given square matrix Q ∈ R 

n × n ,

he minimizer of the following optimization problem is unique. 

 

∗ = arg min 

W

1 

μ
‖ 

W ‖ ∗ + 

1 

2 

‖ 

W − Q ‖ 

2 
F , W = W 

T . (23)

he minimizer has the following closed form 

 

∗ = U r 

(
�r − 1

μ
· I r

)
V 

T 
r , (24) 

here ˜ Q = U�V T is the singular value decomposition (SVD) of the

ymmetric matrix ˜ Q = (Q + Q 

T ) / 2 , �r = diag( σ1 , σ2 , . . . , σr ) where

 r : σr > 

1 
μ } are positive singular values, U r and V r are the corre-

ponding singular vectors of matrix ˜ Q , and I r is an r × r identity ma-

rix. 

Then we adopt ALM method to Problem (15) [46] . We first in-

roduce an auxiliary variable J to separate the variable in Problem

15) . 

min 

Z,E,J
‖ 

Z ‖ ∗ + γ ‖ 

J ‖ 1 + λ‖ 

E ‖ l

s.t. Z = J, J = J T . (25) 

The augmented Lagrange function of Problem (25) is 

L (Z, J, E, Y 1 , Y 2 , μ) 

= ‖ 

Z ‖ ∗ + γ ‖ 

J ‖ 1 + λ‖ 

E ‖ l + tr[ Y T 1 ( X − AZ − E ) ]
+ tr[ Y T 2 ( Z − J ) ] + 

μ

2 

(‖ 

X − AZ − E ‖ 

2 
F + ‖ 

Z − J ‖ 

2 
F 

)
= ‖ 

Z ‖ ∗ + λ‖ 

E ‖ l + γ ‖ 

J ‖ 1

+ 

μ

2 

(∥∥∥X − AZ − E + 

Y 1 
μ

∥∥∥2

F

+ 

∥∥∥Z − J + 

Y 2 
μ

∥∥∥2 

F

)
. (26) 

The updating schemes at the (k + 1) th iteration in Problem

19) are: 

 k +1 = arg min 

Z = Z T 
‖ 

Z ‖ ∗ + 〈 ∇ f ( Z k ) , Z − Z k 〉 + 

η

2 

‖ 

Z − Z k ‖ 

2
F

= arg min 

Z = Z T
‖ 

Z ‖ ∗ + 

μη

2 

∥∥∥Z − Z k + 

1

η

×
[
−A 

T 
(

X − A Z k − E + 

Y 1
μ

)
+ 

(
Z k − J + 

Y 2
μ

)] ∥∥∥2

F

, (27) 

 k +1 = arg min γ ‖ 

J ‖ 1 + 

μ

2 

∥∥∥J −
(

Z + 

Y 2 
μ

)∥∥∥2

F

, (28) 

E k +1 = arg min λ‖ 

E ‖ l + 

μ
2

∥∥E −
(
X − AZ + 

Y 1 
μ

)∥∥2

F
, (29) 

here f (Z) = 

μ
2 ( ‖ X − AZ − E + 

Y 1 
μ ‖ 2 F + ‖ Z − J + 

Y 2 
μ ‖ 2 F ) and ∇f is the

artial differential of f with respect to Z . The complete optimiza-

ion for solving (15) is similar to Problem (14) in Algorithm 1 . 

.4. Construction of a graph for subspace learning 

The general purpose of subspace learning is to learn a trans-

ormation matrix from the original high-dimensional data. By

ransforming the original high-dimensional data into the low-

imension subspace, the transformation matrix can be used to ex-

loit the intrinsic low-dimensional structure of high-dimensional

ata. The similarity between the vertex pairs is measured by a

raph that characterizes some of the geometric structures of the

igh-dimensional data. Therefore, the procedure for graph con-

truction has a great impact on the potential of the graph-oriented

ubspace learning algorithms. 

For SLPP-M and SLPP-S, the procedure for graph construction is

ery important. Each column of the symmetric low-rank represen-

ation matrix Z ∗ characterizes how the other samples contribute

o the reconstruction of a corresponding sample. In other words,

ach element z ij of matrix Z ∗ measures the relationship between

amples i and j . We consider an affinity graph, G = (V, E) , where

 = { v 1 , v 2 . . . , v n } is the set of vertices and E = { e i j | i, j ∈ V } is the

et of edges. Edge e ij connects vertices i and j . We adopt z ij to

epresent the weight of edge e ij . By solving Problem (8) , we can

se the affinity graph G to obtain a transformation matrix P . The

omplete procedure for SLPP-M is summarized in Algorithm 2 . The

omplete procedure for SLPP-M is similar to Algorithm 2 except

he first step of solving the optimization problem. A corresponding

ow-dimensional representation of samples X can be transformed

y 

Y = P T X, (30) 

sing transformation matrix P . Finally, the subsequent classification

ask can be performed using the low-dimensional representation Y

ith reduced computational cost. 

With class label information of samples available, SLPP-M and

LPP-S can easily be extended to two supervised versions, i.e., S-

LPP-M and S-SLPP-S, respectively. We take into account the class

abel information to adjust the weight between pairs of samples.

n particular, S-SLPP-M and S-SLPP-S encourage the coefficients of

ntra-class samples to be highly correlated, while making the coef-

cients of inter-class samples as independent as possible. To imple-

ent the intra-class attraction and inter-class repulsion of samples



386

Algorithm 2 SLPP-M algorithm. 

Input: 

data matrix X , parameters λ > 0 , β > 0 . 

1: Solve the following problem by Algorithm 1: 

min 

Z,E
‖ 

Z ‖ ∗ + λ‖ 

E ‖ 2 , 1 + 

β
2 

tr 
(
Z T LZ

)
s.t. X = X Z + E, Z = Z T , 

and obtain the optimal solution ( Z ∗, E ∗) . 
2: Construct the weight matrix W of an affinity graph G using Z ∗. 

3: Solve the following generalized eigenvalue decomposition 

problem: 

X M X 

T p = λX X 

T p, 

where M = ( I − W ) T ( (I − W ) and p is an eigenvector. The 

transformation matrix P = [ p 0 , p 1 , . . . , p d−1 ] is composed of the 

d eigenvectors corresponding to the d smallest negative eigen- 

values, i.e., λ0 ≤ λ1 ≤ ... ≤ λd−1 . 

Output: 

Matrix P 
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well, the weight matrix W of the affinity graph G is constructed as

follows: 

 = (1 − μ) 

⎡
⎢ ⎣

0 z 12 ... z 1 k 
z 21 0 ... z 2 k 
... ... ... ...

z k 1 z k 2 ... 0 

⎤
⎥⎦

+ (1 + μ) 

⎡
⎢ ⎣

z 11 0 ... 0 

0 z 22 ... 0 

... ... ... ...

0 0 ... z kk 

⎤
⎥ ⎦ 

,

where parameter μ is used to balance the effects of the intra-class

compactness and inter-class scantiness in the weight matrix. Us-

ing weight matrix W , S-SLPP-M and S-SLPP-S can obtain a transfor-

mation matrix by solving Problem (8) . If we set parameter μ = 0 ,

SLPP-M and SLPP-S can be regarded as special cases of S-SLPP-M

and S-SLPP-S, respectively. 

3.5. Computational complexity analysis 

We assume that matrix X of size m × n consists of n samples,

where each column of the matrix is an m -dimensional sample.

The computational complexity of the first step in Algorithm 1 is

O ( n 3 ) because it involves calculating the SVD of an n × n matrix.

The computational complexities of the second and third steps are

O ( n 3 ) and O ( mn 2 ), respectively. If we consider n > m , the computa-

tional complexity of Algorithm 1 for each iteration can be consid-

ered to be O ( n 3 ). The computational complexity of Algorithm 2 is

O (t n 3 ) + O ( n 3 ) , where t is the number of iterations. Therefore, the

final computational complexity of Algorithm 2 is O ( tn 3 ). In practi-

cal applications, Algorithm 2 generally converges well. 

3.6. Comparison with related data representation techniques 

The similarity matrix is used to measure the relationship be-

tween data points. The construction of a similarity matrix is a crit-

ical step in the graph embedding framework. NPE uses k -nearest-

neighbor method to construct a similarity matrix, where each ele-

ment is a pairwise Euclidean distance. However, a fixed number of

neighborhood lacks of adaptivity in real applications. Besides, the

data noises are inevitable in practice. Hence, the robustness for the

construction of a similarity matrix is a desirable property. 

Sparse representation-based techniques can adaptively deter-

mine number of neighbors and robust to noises by solving 1 -
1 
orm optimization problems. However, these techniques ignore the

nderlying global structural information of data. By inheriting the

dvantages of LRR, the SLPP framework considers the global struc-

ure of high-dimensional data. Besides, this framework further ex-

loits local structure by using manifold or sparsity regularization,

hich encourages the coefficients of samples from the same sub-

pace to be highly correlated. In addition, it imposes a symmet-

ic constraint on the low-rankness property of high-dimensional

ata representation. The symmetric similarity matrix obtained by

he SLPP framework characterizes the global and local structure of

igh-dimensional data, which acquires a better estimate of the un-

erlying subspace. 

. Experiments

In this section, we discuss the series of experiments con-

ucted to evaluate the performance of the proposed SLPP-M,

LPP-S, S-SLPP-M and S-SLPP-S algorithms on publicly available

atabases, namely, the extended Yale B, AR, Hopkins 155 and

OIL-20 databases. We compared these proposed algorithms with

CA, LPP, NPE, and neighborhood components analysis (NCA) [47] ,

hich are the most popular linear dimensionality reduction tech-

iques for publicly available databases. The source code for four

ompetitive algorithms was obtained from the Matlab toolbox of

imensionality reduction [48] . 

To further demonstrate the performance of the proposed algo-

ithms, we also considered the three special cases: 

1) a symmetric matrix of LRR, i.e., Z ∗ = Z + Z T , where Z is calcu-

lated by LRR, as a surrogate for the weight matrix of NPE, which

is denoted as LRR-NPE. 

2) only considering manifold constraint of Problem (22) without

symmetry, which is denoted as SLPP1. 

3) only considering symmetry of Problem (22) without manifold

constraint, which is denoted as SLPP2. 

This provided an intuitive evaluation baseline for evaluation.

ecause of the sample-specific corruptions in our experiments,

roblem (22) and (29) are solved using the l 2, 1 -norm minimiza-

ion operator [49] . 

For comparative purposes, the nearest neighbor (NN) classifier

ith Euclidean distance was employed in the subsequent classifi-

ation tasks after extracting the features of the high-dimensional

ata. To overcome the small sample size problem, we first applied

CA as preprocessing retaining almost 98% energy. All experiments

ere performed on a personal computer running Windows 7 with

n Intel Core i5-2300 CPU and 16 GB memory. The code was im-

lemented on Matlab R2013b. 

.1. Experimental settings 

.1.1. Databases 

Four benchmark databases were used in our experiments, that

s, the extended Yale B, AR, USPS and COIL-20 databases. Details of

he four databases are summarized below. 

• Extended Yale B database [50,51] . This database contains 38 in-

dividuals and about 2414 frontal images, captured under vari-

ous laboratory-controlled lighting conditions. There are around

59–64 images available for each individual. Each face image

was manually cropped and normalized to size 48 × 42 pixels.

Fig. 2 shows some image samples of five individuals from the

extended Yale B database. We randomly selected 20, 30, 40, and

50 face images for each individual as training samples. All the

remaining face images were used for testing.
• AR database [52] . This database contains over 40 0 0 face images

of 126 individuals. The images of each individual were taken
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Fig. 2. Sample images of five individuals from the extended Yale B database.

Fig. 3. Sample images of three individuals with illumination and expression variations, sunglasses and scarves from the AR database.

Fig. 4. Sample images of ten digit characters from the USPS database.

Fig. 5. Sample images of three objects from the COIL-20 database.
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in two separate sessions. In each session, there are 13 images

of each individual, consisting of three images with sunglasses,

three with scarves, and the remaining seven with illumination

and expression variations. We used a normalized face image

of size 165 × 120 pixels. Fig. 3 shows some image samples of

three individuals with illumination and expression variations,

sunglasses, and scarves from the AR database. We chose a sub-

set of the AR database containing 50 male individuals and 50

female individuals. We used the face images with illumination

and expression variations for training and testing. 
• USPS database [53] . The USPS handwritten digit database in-

cludes ten classes and 11,0 0 0 images in total. There are about

1100 images available for each digit character. In our experi-

ments, each digit image was manually cropped and normalized

to size 16 × 16 pixels. Fig. 4 shows some typical samples of 10

digit characters from the USPS database.
• COIL-20 database [54] . This database includes 1440 images with

black background for 20 different subjects. Each subject has 72

images captured in equally space views. In our experiments,

each object image was cropped to size 128 × 128 pixels. Fig. 5

shows some typical samples of three objects from the COIL-20

database.

.1.2. Parameter selection 

In our experiments, SLPP-M requires two key parameters: the

oise regularization parameter λ and the manifold regularization

arameter β . SLPP-S also includes two parameters: the noise reg-

larization parameter λ and the sparsity regularization parameter

. 

We need another parameter μ for S-SLPP-M and S-SLPP-S. The

election of λ is more complicated than that of β because λ is

losely related to the prior knowledge of different types of noise.

orrespondingly, β is used to measure the effects of the local man-

fold structure of the high-dimensional data. 

In the experiments, we obtained nearly satisfactory results

hen β was selected from the candidate value set { 1 e −8 , 1 e −7 ,

 e −6 }. Besides, the value of the parameter γ was selected from a

et { 1 e −4 , 1 e −3 , 1 e −2 }. Similarly, parameter μ for S-SLPP-M varied

etween 0.1 and 0.4. If the value of parameter μ was set too large

r too small, the class label information could not be utilized ef-

ectively in the construction of the graph. 

Besides, we need to determine the appropriate value for the

eature dimension r using an NN classifier. We can use a cross-

alidation mechanism to select r . The parameter settings for SLPP-

, SLPP-S, S-SLPP-M and S-SLPP-S are given for each experiment.
or the other algorithms, the parameters of each algorithm were

arefully chosen and their best recognition results are reported.

he bold numbers denote the highest recognition rates and the

owest standard deviations for each experiment. 

.2. Experiments on face recognition 

To extensively investigate the effectiveness and robustness of

he proposed methods as well as the other competing methods on

ace recognition, we conducted two kinds of experiments to ex-

mine the performance of these algorithms on the extended Yale

 and AR databases, respectively. In the experiments, random pro-

ection (RP) was also employed to reduce the dimensionality of the

acial images. We first applied the proposed algorithm to the orig-

nal facial images in Section 4.2.1 . Next, we considered actual oc-

lusion of facial images in Section 4.2.2 . 

.2.1. Face recognition on original facial images 

We first examined the performance of these algorithms on the

riginal facial images from the extended Yale database B. The SLPP-

 and S-SLPP-M parameters were set to λ = 5 e −3 and β = 1 e −7 .

he SLPP-S and S-SLPP-S parameters were set to λ = 0 . 1 and γ =
 e −4 . Parameter μ of S-SLPP-M and S-SLPP-S ranged from 0.1 to

.2 depending on the number of training samples. Fig. 6 shows

he influence of the feature dimension for identical λ, β and γ
alues using different numbers of training samples on the face

ecognition accuracies of SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S.

e observe that S-SLPP-M significantly outperformed SLPP-M in

ost cases. For example, the dimensionality is ranged from 20 to

00 using 20 randomly selected images of each individual as train-

ng samples. Besides, S-SLPP-S achieved better performance than

LPP-S. Then, the face recognition accuracies of SLPP-M, SLPP-S, S-

LPP-M and S-SLPP-S vary from 67.17% to 92.81%, 71.59% to 93.71%,

7.97% to 93.23% and 77.33% to 93.89%, respectively, as shown in

ig. 6 (a). The optimal results of SLPP-M, SLPP-S, S-SLPP-M and S-

LPP-S are obtained using 70, 90, 90 and 80 feature dimensions,

espectively. We also observed similar results in Fig. 6 (b)–(d). This

emonstrates that S-SLPP can effectively im prove the accuracy of

ace recognition when class label information of training samples

s available. 

We conducted 10 random experiments for each training size.

he final recognition result was computed by averaging the recog-

ition rates from these 10 experiments. Table 1 shows the face

ecognition accuracies and standard deviations of the different al-

orithms. The feature dimension for NN ranges from 70 to 90 ac-

ording to the number of training samples. It is clear that our
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Fig. 6. Changes for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S in recognition accuracy when varying feature dimension using different numbers of training samples in the

extended Yale B database.

Table 1

Face recognition rates and standard deviations (%) for different algorithms on the extended Yale B database.

Number ACC. SLPP-M S-SLPP-M SLPP-S S-SLPP-S SLPP1 SLPP2 LRR-NPE NPE LPP PCA RP NCA

20 Mean 91.95 92.48 93.07 93.48 91.77 91.85 91.57 91.34 91.4 67.5 59.98 90.16

Std. 0.82 0.74 0.4 0.67 0.48 0.51 0.68 0.66 0.57 0.98 2.24 0.94

30 Mean 95.21 95.28 95.4 95.96 94.92 94.61 94.18 94.14 94.14 75.11 67.67 94.07

Std. 0.55 0.5 0.43 0.45 0.46 0.47 0.6 0.66 0.5 0.89 1.37 0.5

40 Mean 96.25 96.42 96.53 97.11 95.76 95.6 95.21 95.02 95.08 79.22 71.09 95.83

Std. 0.38 0.33 0.35 0.42 0.44 0.38 0.52 0.48 0.64 1.29 1.86 0.7

50 Mean 96.73 97 97.08 98.05 96.32 96.2 96.09 95.45 95.51 82 72.9 96.69

Std. 0.76 0.52 0 0 0.49 0.34 0.55 0.62 0.49 1.53 2.42 0.75

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Changes for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S in recognition accuracy

when varying feature dimension on the AR database with the clean samples.

s  

t  

w  
proposed S-SLPP-S method has greater recognition accuracy than

the other algorithms. S-SLPP-S achieves face recognition accura-

cies of 93.48%, 95.96%, 97.11% and 98.05%, respectively, when ran-

domly selecting 20, 30, 40, and 50 face images as training samples

for each individual. In practice, class label information of training

samples is often unavailable. We also observed that SLPP-M and

SLPP-S still obtained competitive recognition results and outper-

formed the other unsupervised subspace learning algorithms. This

shows that SLPP-M and SLPP-S can characterize the intrinsic struc-

ture of high-dimensional data well. Besides, using LRR, the graph-

oriented methods (SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S, SLPP1,

SLPP2 and LRR-NPE) improved their recognition performance com-

pared with NPE using various similarity strategies. This shows that

SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S are effective robust meth-

ods for graph construction. 

Then, we evaluated the face recognition performance of SLPP-

M, SLPP-S, S-SLPP-M and S-SLPP-S as well as the other methods on

the AR database using the clean samples. For each individual, the

seven images from Session 1 were used for training, and the seven

images from Session 2 for testing. The SLPP-M parameters were

set to λ = 0 . 8 and β = 1 e −8 , while the S-SLPP-M parameters were

set to λ = 0 . 2 , β = 1 e −6 , and μ = 0 . 1 . The SLPP-S parameters were
et to λ = 4 . 5 and β = 1 e −4 , while the S-SLPP parameters were set

o λ = 5 e −3 , γ = 1 e −2 , and μ = 0 . 1 . The feature dimension for NN

as set to 100. Fig. 7 shows the changes in recognition accuracy
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Table 2

Face recognition rates (%) for different algorithms on the AR database using the clean samples.

Algorithm SLPP-M S-SLPP-M SLPP-S S-SLPP-S SLPP1 SLPP2 LRR-NPE NPE LPP PCA RP NCA

ACC. 80.57 83.43 79.86 85.14 77.71 75.57 74.86 69.57 63.43 71.71 69.57 67

Fig. 8. Changes for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S in recognition accuracy

when varying feature dimension on the AR database with the occlusion samples.
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or SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S with different feature

imensions. S-SLPPs still shows its distinct advantage as a super-

ised method. The recognition accuracies for SLPP-M and S-SLPP-M

ary from 77.86% to 80.57%, and 79.14% to 83.43% with their fea-

ure dimensions ranging from 80 to 120, respectively. The recogni-

ion accuracies of SLPP-S and S-SLPP-S vary from 74.71% to 79.86%,

nd 80.86% to 85.14%, respectively. This indicates that the recog-

ition performance of SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S re-

ained consistently stable for a large range of feature dimensions.

Table 2 shows the face recognition accuracies and standard

eviations of different algorithms. S-SLPP-S has better recogni-

ion performance than the other algorithms. For example, S-SLPP-

 significantly improved the recognition accuracy by at least 10%

hen compared with the other algorithms, i.e., NPE, PCA, RP, NCA,

chieving a high recognition accuracy of 85.14%. SLPP-M achieved

 recognition accuracy of 80.57%, and performed better than the

ther algorithms when considering only unsupervised execution.

he improvement by S-SLPP-M and S-SLPP-S indicates the impor-

ance of symmetric low-rank representation of high-dimensional

ata with local constraint, i.e., manifold or sparsity regularization,

n constructing the graph. 

.2.2. Face recognition on corrupt facial images 

We explored the performance and robustness of these methods

n a more challenging set of actual corrupt facial images. We se-

ected seven neutral images and two corrupted images (one with

unglasses and the other with a scarf) from Session 1 for training.

he rest of the images from Sessions 1 and 2 were used for testing.

he SLPP-M parameters were set to λ = 0 . 8 and β = 1 e −8 . The S-

LPP-M parameters were set to λ = 0 . 2 , β = 1 e −6 and μ = 0 . 1 . The

LPP-S parameters were set to λ = 3 and β = 1 e −2 . The S-SLPP-S

arameters were set to λ = 0 . 02 , β = 1 e −2 and μ = 0 . 1 . The fea-

ure dimensions of NN were set to 100, 90, 120 and 80 for SLPP-M,

LPP-S, S-SLPP-M and S-SLPP-S, respectively. 

Fig. 8 shows the comparative recognition accuracy for SLPP-M,

LPP-S, S-SLPP-M and S-SLPP-S with varying feature dimensions

n corrupt facial images. As expected, S-SLPP-S still significantly

utperforms the other methods for the different f eature dimen-

ions. As shown in Fig. 8 , S-SLPP-M and S-SLPP-S perform well for

 large range of feature dimensions. For example, letting the fea-

ure dimension range from 80 to 120 with λ and β set as men-
ioned above for S-SLPP-M and S-SLPP-S, the recognition accuracies

ary from 72.77% to 74%, and 78.18% to 81.06%, respectively. The

ecognition accuracies of SLPP-S and S-SLPP-S vary from 71.12% to

3.41%, and 77.88% to 82.24%, respectively. These recognition re-

ults show that SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S are ca-

able of preserving the embedded geometric structure of high-

imensional data. 

Table 3 shows the face recognition accuracies of different al-

orithms. S-SLPP-M and S-SLPP-S achieve a recognition accuracy

f 81.47% and 82.35%, respectively. It is clear that the recognition

ccuracy by S-SLPP-S significantly outperforms that of the other

ethods. For example, S-SLPP-S improved the recognition accuracy

y 15% compared with LRR-NPE. We also observed that the recog-

ition performance by LRR-NPE outperforms that of NPE by a very

mall margin. This further illustrates the robustness and effective-

ess of SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S. This confirms that

ur proposed method is very effective and robust when the data

re grossly corrupted by noise. In contrast, PCA and RP do not per-

orm well, because they are very sensitive to large errors, such as

cclusion and disguise. 

.3. Experiments on handwritten digit recognition 

We evaluated the recognition rates of the proposed SLPP-M,

LPP-S, S-SLPP-M and S-SLPP-S with different training sizes on the

SPS database. We designed six groups of training samples, with

ach group consisting of 30, 40, 50 60, 70, and 100 randomly se-

ected images of each digit character, respectively. The remaining

igit character images were used for testing. We repeated each

xperiment 10 times, and the final classification performance was

omputed by averaging the recognition rates over the standard de-

iation. 

The SLPP-M parameters were set to λ = 0 . 2 . The parameter β
or SLPP-M was set to 1 e −7 or 1 e −6 according to the different

raining sizes. The S-SLPP-M parameters were set to λ = 0 . 2 and

= 0 . 2 . The parameter β for S-SLPP-M was set to 1 e −8 or 1 e −7 ac-

ording to the different training sizes. The SLPP-S parameters were

et to λ = 0 . 3 and γ = 1 e −4 . The S-SLPP-S parameters were set to

= 0 . 1 and γ = 0 . 1 , and μ = 0 . 2 . The feature dimensions of NN

or both SLPP-M and S-SLPP-M were set to 15 and 25, respectively.

Fig. 9 shows comparative recognition accuracies of an exper-

ment for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S with different

umbers of feature dimensions using varied numbers of training

amples. As shown in Fig. 9 (a), S-SLPP-S achieves the best recogni-

ion results when feature dimension is more than 15. Moreover,

LPP-S performs better than SLPP-M when feature dimension is

ore than 20. However, SLPP-M can achieve similar performance

s S-SLPP-M for a large range of feature dimension sizes when in-

reasing the number of training samples, as shown in Fig. 9 (b)–

f). SLPP-M and SLPP-S realize improved recognition performance

hen more unlabeled training samples are available. 

The average recognition rates and standard deviations of the

ifferent algorithms are reported in Table 4 for various training

izes. We observed that the recognition rates of these algorithms

an be greatly improved with an increase in the number of train-

ng samples. It can be observed from the experimental results that

CA achieves the best recognition results. However, it is clear that

-SLPP-M and S-SLPP-S consistently obtained higher recognition

ates than the other algorithms for different numbers of training
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Table 3

Face recognition rates (%) for different algorithms on the AR database with the occluded samples.

Algorithm SLPP-M S-SLPP-M SLPP-S S-SLPP-S SLPP1 SLPP2 LRR-NPE NPE LPP PCA RP NCA

ACC. 74 81.47 74.41 82.35 72.29 72.53 67.35 65.65 61.94 60.65 58.88 64.49

Fig. 9. Changes in recognition accuracy for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S when varying the feature dimension for different numbers of training samples in the

USPS database.
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samples, except the NCA algorithm. By constructing the new simi-

larity matrix, the recognition accuracy of the proposed approaches

significantly outperforms that of NPE. For example, the recogni-

tion accuracy of S-SLPP-S is nearly 12% higher than NPE with 30

training samples. LRR-NPE has a lower standard deviation than the

other methods. However, the difference in standard deviation be-

 

S  
ween LRR-NPE and S-SLPP-S decreased gradually when the num-

er of training samples increased from 30 to 100. 

.4. Experiments on object recognition 

In this experiment, we evaluated the proposed SLPP-M, SLPP-

, S-SLPP-M and S-SLPP-S algorithm for object recognition on the
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Table 4

Recognition accuracies and standard deviations (%) for different algorithms on the USPS database.

Number Error SLPP-M S-SLPP-M SLPP-S S-SLPP-S SLPP1 SLPP2 LRR-NPE NPE LPP PCA NCA

30 Mean 81.21 83.4 81.93 87.51 81.05 81.1 80.98 75.69 73.21 78.78 89.52

Std. 1.13 1.68 0.9 0.67 0.92 0.99 1.27 1.11 1.73 1.91 0.81

40 Mean 83.84 85.57 84.55 89.84 83.39 83.66 83.13 78.63 76.05 81.33 90.84

Std. 0.96 1.2 0.77 0.7 0.72 0.79 0.64 1.2 1.68 1.78 0.76

50 Mean 85.6 86.52 86.18 90.86 85.28 85.45 85.09 81.05 78.63 83.13 91.76

Std. 0.62 1.08 0.79 0.58 0.61 0.76 0.68 0.87 1.62 1.62 0.65

60 Mean 86.86 87.44 87.29 91.66 86.3 86.72 86.64 82.54 80.48 84.27 92.7

Std. 0.7 0.64 0.73 0.49 0.6 0.7 0.63 0.73 1.01 1.28 0.39

70 Mean 87.7 88.71 88.1 92.13 87.34 87.57 87.46 84.12 82.03 85.3 93.35

Std. 0.52 0.67 0.52 0.45 0.56 0.53 0.5 0.89 1.15 1.18 0.69

100 Mean 89.65 90.21 90.01 93.76 89.43 89.51 89.27 87.33 85.78 87.13 94.5

Std. 0.54 0.74 0.44 0.37 0.46 0.5 0.53 0.61 0.85 1.25 0.48

Table 5

Recognition accuracies and standard deviations (%) for different algorithms on the COIL-20 database.

Number Error SLPP-M S-SLPP-M SLPP-S S-SLPP-S SLPP1 SLPP2 LRR-NPE NPE LPP PCA NCA

20 Mean 96.7 97.1 97.89 98.65 96.54 96.44 96.38 85.15 86.69 94.75 98

Std. 0.69 0.81 0.44 0.6 0.56 0.8 0.71 0.81 1 0.71 0.74

30 Mean 98.65 98.58 99.4 99.64 98.4 98.45 98.33 87.96 91.57 97.05 99.14

Std. 0.67 0.77 0.58 0.55 0.65 0.6 0.75 0.91 0.77 0.8 0.51

40 Mean 99.51 99.42 99.69 99.84 99.6 99.62 99.55 91.2 94.02 98.73 99.73

Std. 0.26 0.76 0.3 0.16 0.23 0.27 0.24 0.98 0.82 0.37 0.28

50 Mean 99.68 99.59 99.77 99.96 99.53 99.63 99.5 92.64 95.8 99.2 99.82

Std. 0.29 0.26 0.28 0.1 0.24 0.16 0.33 1.14 0.76 0.34 0.21
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OIL-20 database. Four groups of different numbers of object sam-

les, i.e., 20, 30, 40 and 50 randomly selected object images per

ach category, were used to construct the training sets. The rest of

he object images were contained in the test sets. Each experiment

s repeated 10 times, and we reported the average recognition rates

ver the standard deviation for each compared algorithm. The pa-

ameters λ and β for SLPP-M and S-SLPP-M were set to 1 e −3 and

 e −6 , respectively. The parameter μ for S-SLPP-M was set to 0.2.

he parameters λ and γ for SLPP-S was set to 1 and 1 e −2 , respec-

ively. The parameters λ and γ for S-SLPP-S was set to 1 and 1 e −2 ,

espectively. The parameter μ for S-SLPP-S varies from 0.2 to 0.4

epending on the number of training samples. The feature dimen-

ions for NN for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S were set

o 15. 

Fig. 10 shows comparative recognition accuracies of an exper-

ment for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S with different

umbers of feature dimensions using varying numbers of training

amples. The parameters λ and β for SLPP-M and S-SLPP-M were

et to the same values, i.e., λ = 1 e −3 and β = 1 e −6 . As shown in

ig. 10 , the increasing numbers of training samples can effectively

mprove the recognition performance of SLPP-M, SLPP-S, S-SLPP-M

nd S-SLPP-S. In addition, S-SLPP-S achieved best recognition per-

ormance under the different numbers of training samples. How-

ver, SLPP-M, SLPP-S, and S-SLPP-M achieve similar performance

s the number of training samples gradually increases. 

Table 5 shows the average recognition rates and standard de-

iations of all compared algorithms. It can be observed from

able 5 that S-SLPP-S achieves the best recognition results. Besides,

CA achieves higher recognition rates than the other algorithms

or different numbers of training samples, except the S-SLPP-S al-

orithm. However, the difference in the average recognition rates

mong SLPP-M, S-SLPP-M, SLPP-S and NCA was gradually reduced

hen the number of training samples increases from 20 to 50.

oreover, the recognition accuracy by SLPP-M, SLPP-S, S-SLPP-M

nd S-SLPP-S significantly outperforms that of NPE for different

umbers of training samples. For example, the recognition accu-

acies of SLPP-S are nearly 11% and 7% higher than NPE with 20

nd 50 training samples, respectively. Similarly, LRR-NPE also out-

erforms NPE in all cases. In contrast, NPE and LPP do not per-
orm well. We experimentally observed that similarity matrix can

ignificantly influence the recognition accuracy. Our SLPP-M, SLPP-

, S-SLPP-M and S-SLPP-S approaches consistently outperform NPE,

hich further demonstrates the importance of characterizing the

elationship among data samples. 

.5. Discussion 

First, local regularization is important for exploiting the un-

erlying subspace structure of high-dimensional data in the SLPP

ramework. In particular, the manifold regularization takes into ac-

ount the local manifold structure of high-dimensional data while

he sparsity regularization considers the local geometric struc-

ure of high-dimensional data. Therefore, it enables us to capture

he intrinsic structure information to learn multiple discriminative

ubspaces of high-dimensional data. Moreover, the recognition per-

ormance is robust to the setting of the manifold or sparsity regu-

arization parameter in the experiments. In other words, the incor-

oration of manifold or or sparsity regularization in the symmet-

ic low-rank representation only increases the new parameter set-

ing in the SLPP framework. On the contrary, in the experiments,

LPP-M, SLPP-S, S-SLPP-M and S-SLPP-S significantly improve their

ecognition performance compared with LRR-NPE. 

Second, we observed that NCA achieved the best recognition

esults on handwritten digit recognition. We elaborately choose

everal state-of-the-art algorithms to evaluate the performance of

he proposed algorithms on publicly available databases. This pro-

ided an intuitive evaluation baseline for comparison. The differ-

nce of digit recognition rates between NCA and S-SLPP-S de-

reased gradually when the number of training samples increased

rom 30 to 100. Hence, more training samples are needed in the

LPP framework since the proposed algorithms characterize the

ow-rank structure of the given samples. What’s more, we also ob-

erved that digit recognition rates by S-SLPP-S outperforms sig-

ificantly that of LRR-NPE and NPE. It further demonstrates that

he importance of graph construction in subspace learning and the

dvantages of exploiting the global and local structures of high-

imensional data in LRR. 
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Fig. 10. Changes for SLPP-M, SLPP-S, S-SLPP-M and S-SLPP-S in recognition accuracy when varying feature dimension using different numbers of training samples in the

COIL-20 database.
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Finally, the SLPP framework provides a more flexible model

of graph-oriented subspace learning, thereby unifying supervised

and unsupervised methods. Most existing graph-oriented subspace

learning algorithms either consider or ignore the advantages of

class label information during subspace learning. However, one

cannot confirm that training samples contain class label informa-

tion without prior knowledge. This means that their benefit may

be limited in practical applications. Since we adopted an intuitive

criterion for graph construction by making use of the class label

information of training samples, the recognition performance of S-

SLPP-M and S-SLPP-S almost outperform that of SLPP-M and SLPP-S

in the experiments, respectively. In addition, we found that more

training samples can improve the recognition performance of SLPP-

M and SLPP-S. 

5. Conclusions

In this paper, we presented a symmetric low-rank repre-

sentation framework incorporating the local structure of high-

dimensional data for robust subspace learning. The proposed

framework considers a local regularization with a symmetric low-

rank representation to learn a similarity matrix, which greatly en-

riches the relationship among high-dimensional data by solving

the low-rank optimization problem. The SLPP framework uses the

similarity matrix to construct an affinity graph and then effec-

tively obtains a transformation matrix for dimensionality reduc-

tion. Compared with other LRR-oriented subspace learning algo-

rithms, the proposed algorithms consider both the global struc-

ture and local manifold structure of high-dimensional data. This
nables the proposed algorithms to provide a more accurate data

epresentation than others. Hence, the transformation matrix ef-

ectively preserves the low-dimensional structure features of high-

imensional data. Experimental results on benchmark databases

emonstrated the effectiveness of the proposed methods for sub-

pace learning by comparison of several popular subspace learning

lgorithms. 

Although SLPP-M, SLPP-S and their variants are effective meth-

ds, they requires more computation time than NPE and LPP to

chieve a better similarity matrix, especially for subspace learn-

ng with large-scale high-dimensional samples. Nonconvex low-

ank optimization techniques may be good surrogates for solving

ow-rank optimization problem. In addition, estimating two proper

arameters of the proposed methods without prior knowledge of

oise is intractable. In future work, we will focus on these prob-

ems for practical applications. 
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