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Abstract

In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image
classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and
weight sharing, can reduce the number of parameters and increase processing speed during training and inference.
However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-
to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN’s
further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first
summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research
papers. We propose a taxonomy in terms of three levels, i.e. structure level, algorithm level, and implementation level,
for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression,
algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives
of these acceleration and optimization methods within each level. The discussion shows that the methods in each
level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a
comprehensive reference for researchers who are interested in CNN acceleration.
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1. Introduction

Convolutional neural network (CNN) architectures
have been around for over two decades. Compared with
other neural network models such as multiple layer per-
ceptron (MLP), CNN is designed to take multiple arrays
as input and then process the input using convolution
operator within a local field by mimicking eyes perceiv-
ing images. Therefore, it shows excellent performance
in solving computer vision problems such as image clas-
sification, recognition and understanding [1, 2, 3]. It is
also effective for a wide range of fields such as speech
recognition that requires correlated speech spectral rep-
resentations [4], VLSI physical design [5], multi-media
compression [6] comparing with the traditional DCT
transformation and compressive sensing methods [7, 8],
and cancer detection from a series of condition changing
images [9]. Moreover, many top players have been in a
fever to play Go match with alphaGo recently, which
has CNN implemented.
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However, in order to receive good performance of
prediction and accomplish more difficult goals, CNN
architecture becomes deeper and more complicated. At
the same time, more pixels are packed into one image
thanks to high resolution acquisition devices. As a re-
sult, CNN training and inference are very computation-
ally expensive and become limited for implementation
due to its slow speed. Although acceleration and op-
timization for CNN have been explored since it was
brought up, recently this seems to be keener as it has
such good industrial impact.

Some companies have unveiled accelerators for deep
learning inference that can be extensively used for
CNN. Google’s second generation Tensor Processing
Unit (TPU) is designed for TensorFlow framework
that has the increased performance of 92TFLOPS in
peak and on-chip memory of 28MiB. It not only
supports integers but also floating point calculations,
which makes it more powerful in deep learning training
[10]. NVIDIA launches an open source project called
NVIDIA Deep Learning Accelerator (NVDLA) along
with an open license that is ready for people who are
interested in data intensive automotive products. It in-
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Figure 1: Illustration of LeNet-5.

cludes Verilog and C-model for the chip, Linux drivers,
test suites, and kernel and user based software with de-
velopment tools [11]. Intel’s Nervana Neural Network
Processor (NNP) has been announced recently for deal-
ing with neural network matrix multiplications and con-
volutions. The memory architecture is designed for ef-
ficient operations and data movements without cache
hierarchy, which improves the training performance of
deep learning [12].

In this paper, we review many recent works and sum-
marize acceleration methods not only in structure level
and algorithm level, but also in implementation level.
This paper differs from other deep neural network re-
view papers in three aspects. 1) Topic: Some review pa-
pers summarize the relevant work regarding deep neu-
ral networks in different applications such as computer
vision, natural language processing and acoustic sig-
nal processing, among which CNN is only a compo-
nent [13, 14, 15, 16, 17, 18]. They make systematic
introduction for various kinds of neural networks that
are fit for specific applications and provide a guide for
people who want to implement deep neural networks in
their fields. However, few of them mention acceleration
methods, while our paper focuses on CNN and its accel-
eration methods. 2) Time: Recent deep learning review
papers are mostly historical [19, 20, 21]. They usually
trace back the origins through over fifteen years to form
a big picture of the neural network development, which
is very inspiring to think over the origins. Our paper
focuses on researches recently when hardware becomes
limited and efficiency becomes the priority. 3) Taxon-

omy: There are no reviews that incorporate hardware
into algorithms since they are different disciplines. In
this paper, we talk about the acceleration methods in
three levels, because they are interwoven and highly de-
pendent.

This survey paper is organized as following. In Sec-
tion 2, an overview of modern CNN structure is given
with different typical layers that the improvement is
focused on. In Section 3 we present our taxonomy
for recent CNN acceleration methods followed by the
overview in three categories, including CNN compres-
sion in Section 4, algorithm optimization in Section 5,
and hardware-oriented acceleration in Section 6. After
that, in Section 7 a discussion is given on these meth-
ods from different perspectives. Finally, Section 8 con-
cludes this paper with some future challenges.

2. Convolutional Neural Network

The modern convolutional neural networks proposed
by LeCun [22] is a 7-layer (excluding the input layer)
LeNet-5 structure. It has the following structure Cl,
S2, C3, S4, C5, F6, OUTPUT as shown in Figure 1,
where C indicates convolutional layer, S indicates sub-
sampling layer, and F indicates fully-connected layer.
There are many modifications regarding the structure of
CNNs in order to handle more complicated datasets and
problems, such as AlexNet (8 layers) [23], GoogLeNet
(22 layers) [27], VGG-16 (16 layers) [25], and ResNet
(152 layers) [26]. Table 1 summarizes the state-of-the-
art CNNSs. In this table, Feature column summarizes the



Model Layer Size ~ Configuration Feature Parameter Size  Application

LeNet 7 layers 3C-2S-1F-RBF out- 60,000 Document recog-

[22] put layer nition

AlexNet 8 layers 5C-3S-3F Local response 60,000,000 Image classifica-

[23] normalization tion

NIN [24] - 3mlpconv-global av-  mlpconv layer: - Image classifica-
erage pooling (S can 1C-3MLP; global tion

be added in between
the mlpconv)

average pooling

VGG [25] 11-19 VGG-16: 13C-5S- Increased depth  133,000,000to Image classifica-
layers 3F with stacked 3 x 3 144,000,000 tion and localiza-
kernels tion
ResNet Can be very ResNet-152: 151C- Residual module ResNet-20: Image classifica-
[26] deep (152 2S-1F 270,000; tion, object detec-
layers) ResNet-1202:  tion
19,400,000
GoogLeNet 22 layers 3C-9Inception-5S- Inception module 6,797,700 Image classifica-
[27] 1F tion, object detec-
tion
Xception 37 layers 36C-5S-1F Depth-wise sepa- 22,855,952 Image classifica-
[28] rable convolutions tion

Table 1: CNN model summary.
C: convolutional layer, S: subsampling layer, F: fully-connected layer

most important parts in each model [29, 30, 31]. Appli-
cation column provides the fields that the methods were
proposed for the first time. Fully-connected layer is fol-
lowed by the Softmax layer except for LeNet and NIN.
As we can see from the table, the number of parameters
in modern CNNss is large, which usually takes a long
time for training and for inference. Plus, higher dimen-
sional input, large number of parameters, and complex
CNN configuration challenge hardware in terms of pro-
cessing element efficiency, memory bandwidth, off-chip
memory, communication and so on.

Among these different structures, they share four
key features including weight sharing, local connec-
tion, pooling, and the use of many layers [20]. There
are some commonly used layers such as convolutional
layers, subsampling layers (pooling layers), and fully-
connected layers. Usually, there is a convolutional layer
after the input. The convolutional layer is often fol-
lowed by a subsampling layer. This combination repeats
several times to increase the depth of CNN. The fully-
connected layers are designed as the last few layers in
order to map from extracted features to labels. These
four layers are introduced as follows.

a) Input Layer: In CNNs, input layers usually take
multiple arrays and are often size-fixed. Comparing to

ordinary fully-connected neural networks, the CNN in-
put do not need size-normalization and centralization,
because CNN enjoys the characteristic of translation in-
variance [32].

b) Convolutional Layer: As a key feature layer
that makes CNNs different from other ordinary neu-
ral networks, neuron units of convolutional layers are
first computed by convolution operation over small local
patches of input, and then followed by activation func-
tions (tanh, sigmoid, ReLU, etc.), and form a 2D feature
map (3D feature map channel). In general, we have that

Zj=) Xi+K;+B; 1)
A; = f(Z)), 2

where Z; represents the output from the convolution
operation, X; denotes the input to the convolutional
layer, K;; is the convolution kernel, and B; is the ad-
ditive bias. In the following equation, A; is the output
feature map of the convolutional layer and f(-) is an ac-
tivation function.

Activation functions are mathematical operations
over the input, which introduces non-linearity into neu-
ral networks and help catch non-linear features of the
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Figure 2: Activation function plot.

Function Saturation Definition Parameter « Plot
Sigmoid Saturated f=1/(1+¢e™) - (a)
Tanh Saturated f(x)=2/(1+ 6*2") -1 - (b)
>0
ReLLU Non-saturated fx) = rors - (c)
0 x<0
x x=0
LeakyReLU Non-saturated fx) = a<(0,1) (d)
ax x<0
x x=0 .
PReLU Non-saturated fx) = { a is a learned parameter (d)
ax x<0
x x>0 .
RReLU Non-saturated fx) = { a ~ uniform(a, b) (d)
ax x<0
X x>0 .
ELU Non-saturated  f(x) = a is a predefined parameter (e)
ale®*-=1) x<0

Table 2: Activation function summary.

input data. There are various types of activation func-
tions as summarized in Table 2 and Figure 2.

Sigmoid and Tanh are called saturated functions. As
we can see from their definitions or plots, when the in-
put is very small or very large, the output saturates at
0 or 1 for Sigmoid and -1 or 1 for Tanh. There are
two problems with saturation. The gradients at satu-
rated regions are almost zero, which dramatically de-
creases neurons backpropagation and makes it difficult
to converge in the training phase. Furthermore, more

attention needs to be paid in weight initialization when
using saturated activation functions for the neural net-
works may not learn in the first place. To alleviate satu-
ration problem, many non-saturated activations are pro-
posed such as Rectified Linear Unit (ReLU) [33], Leaky
ReLl.U [34], Parametric ReLU (PReLU) [35], Random-
ized Leaky ReLU (RReLU) [36], and Exponential Lin-
ear Unit (ELU) [37].

Convolution plays a very important role in CNN. On
one hand, by weight sharing, neurons in the same fea-



ture map share the same parameters, which reduces dra-
matically the total number of parameters. In different
spatial location, input may have some same features
such as edges, points, angles, etc. Weight sharing makes
the CNN less sensitive to location and shifting. On the
other hand, since each convolution operation is targeted
for a small patch of input, the extracted features remain
intrinsic topology of the input that helps recognize pat-
terns.

¢) Subsampling Layer (pooling layer): Convolu-
tional layers are usually followed by subsampling layers
to reduce the feature map resolution. The amount of pa-
rameters and computation are also reduced accordingly.
More formally,

Z; = down(X;), (3)

where down(-) represents a subsampling method.

Maximum operation and average operation are two
typical subsampling methods and have been imple-
mented in CNNs. In spite of max pooling and average
pooling, some methods that work better in mitigating
overfitting problems in CNN are proposed such as Lp
pooling [38], stochastic pooling [39], and mixed pool-
ing [40]. He et al. propose a pooling method called
spatial pyramids pooling (SPP) that can output a fixed-
length feature map and therefore can deal with various
input image sizes [41]. Spectral pooling is a pooling
method to reduce dimensionality in frequency, which
preserves more information than spacial domain, and
can be implemented in Fast Fourier Transform (FFT)
based CNNs [42]. While multi-scale orderless pooling
proposed by Gong et al. outperforms other methods in
highly variable scene matching [43].

Different from convolution kernels, subsampling ker-
nels are often hand-picked and remain unchanged dur-
ing training and inference. There are two main reasons
for subsampling. One is that by maximizing or aver-
aging over the previous feature map, the size of feature
map reduces. The other one is that by subsampling, the
output feature map is more robust to distortions and er-
rors of individual neuron units [44].

d) Fully-connected Layer: After several layers,
high-level features are extracted and require mapping to
labels. In fully-connected layer, neuron units are trans-
formed from 2D into 1D. Each unit in the current layer
is connected to all the units in the previous layer such
like regular neural networks. It not only extracts fea-
tures in a more complex way in order to dig deep for
more information, but patterns in different locations are
connected as well.

e) Output Layer: As a feed-forward neural network,
the output layer neuron units are fixed. They are usually

linked with previous neurons in a fully-connected way
and they are the final threshold for predicting.

In general, CNNs have gained a lot of interest in re-
searching the meaning behind the combination of those
different layers. The advantages brought by the struc-
ture of CNNs include reduced number of parameters
and translation invariance.

3. Acceleration Method Taxonomy

Our taxonomy is shown in Figure 3. The philos-
ophy behind the taxonomy is the order from design-
ing, to training a CNN and finally to implementing it
on hardware. For the CNN structure, there is redun-
dancy in both weights and the number of bits for rep-
resentation. For the redundancy in weights, layer de-
composition, network pruning, block-circulant projec-
tion and knowledge distillation methods can be applied.
For the redundancy in representation, using fixed-point
representation is the mainstream. Once the structure is
decided, CNN adopts training algorithms that are gen-
erally used in other neural networks for training pro-
cess. The most popular training method is gradient de-
cent based back-propagation algorithm. By propagat-
ing errors back from output to input and by adjusting
weights wired in the network, errors can be reduced to
an acceptable degree. The criterion for algorithm op-
timization is convergence speed with proper stability.
Considering that convolutional layers are computation-
ally intensive, we are also interested in the convolution
operation complexity. Therefore, we also summarize
some efficient convolution methods that are adopted in
the CNN. As for the implementation level, the main-
stream GPU, FPGA, ASIC are discussed. Recently,
people see a promising future for fast implementation
of CNN as neuromorphic engineering develops. Some
new devices are also presented in this paper. The accel-
eration approaches of each level is orthogonal and can
be combined with those in other levels. By researching
such a wide range of methods, we expect to provide a
general idea on CNN acceleration, especially for deep
CNN, from the perspectives of structure, algorithm, and
hardware.

4. Structure Level

Many training and inference process can be accel-
erated by reducing redundancy in network structures.
There is redundancy both in weights and in the way how
weights are represented. Two perspectives of accelera-
tion methods will be summarized as follows in terms
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Figure 3: Taxonomy of CNN acceleration methods.

of redundancy in weights and redundancy in represen-
tations.

4.1. Redundancy In Weights

There is significant redundancy in the parameteri-
zation of some neural networks. As Denil er al. and
Sainath et al. observe that some weights learned in net-
works are correlated with each other, they demonstrate
that some of the weights can either be predicted or be
unnecessary to learn [45, 46].

4.1.1. Layer Decomposition

Low-rank approximation can be adopted to reduce
redundancy in weights [47]. For one layer, the input-
output relationship can be described by

y=g8x-W), “4)

where W is the weight matrix with size m xn. W can be
replaced by the product of two full rank matrices U - V
with size m X r and r X n respectively. The number of
parameters in W can be reduced to 1/d if the following
inequality holds, d(mr+rn) < mn. An efficient low-rank
approximation of kernels can be applied in first few con-
volutional layers of CNN to exploit the linear structure
of the over-parameterization within a filter. For exam-
ple, Denton et al. reduce the computation work for re-
dundancy within kernels. It achieves 2 ~ 2.5X speedup

with less than 1% drop in classification performance
for a single convolutional layer. It uses singular value
decomposition method to exploit the approximation of
kernels with assumptions that the singular values of the
kernels decay rapidly so that the size of the kernels can
be reduced significantly [48].

Instead of treating kernel filters as different matri-
ces, kernels in one layer can be treated as a 3D ten-
sor with two spatial dimensions and the third dimen-
sion representing channels. Lebedev et al. use CP-
decomposition for convolutional layers, which achieves
8.5% CPU speedup at the cost of 1% error increase [49].
Tai et al. utilize tensor decomposition to remove the re-
dundancy in the convolution kernels, which achieves
twice more efficiency of inference for VGG-16 [50].
Wang et al. propose to use group sparse tensor decom-
position for each convolutional layer, which achieves
6.6x speed-up on PC and 5.91x speed-up on mobile de-
vice with less than 1% error rate increase [51]. Tucker
decomposition is also used recently to decompose pre-
trained weights with fine-tuning afterwards [52, 53].

Weight matrix decomposition method can not only be
applied to convolutional layers, but also fully-connected
layers. Applying the low-rank approximation to the
fully-connected layer weight can achieve a 30 ~ 50%
reduction of number of parameters with little loss in
accuracy, which is roughly an equivalent reduction in



training time [46]. In spite of using two full rank matri-
ces

W=U"-V, (5)

some works have proposed different decomposition
forms
W=D,-H-P-D,-H-Dj, (6)

with diagonal matrices D;,3 and Hadamard matrix H
[54], and
W=A.-C-D-C!, (7

with diagonal matrices A, D and DCT matrix C [55].
This method can be used during training the CNN,
which is very meaningful. The CNN efficiency can be
further improved if the training complexity can be re-
duced as well. Ioannou ef al. propose to learn some ba-
sis small filters that can describe the more complex fil-
ters from the scratch. By carefully choosing the initial-
ization status, the new method can be used during train-
ing [56]. Wen et al. force more weight information into
the filters to get more efficient CNNs. With its help, the
training process converges faster during the fine-tuning
phase. In the experiments, it obtains 2x faster on GPU
without accuracy loss [57].

The decomposition technique is layer oriented and
can be interleaved with other modules such as ReLU
modules in CNN. It can also be applied to the structure
of neural networks. Rigamonti et al. apply this tech-
nique to the general frameworks and reduce the com-
putational complexity by using linear combinations of
fewer separable filters [58]. This method can be ex-
tended for multiple layers (e.g. > 10) by utilizing low-
rank approximation for both weights and input [59]. It
can achieve 4x speedup with 0.3% error increase for
deep network models VGG-16 by focusing on reducing
accumulated error across layers using generalized sin-
gular value decomposition.

The methods above can be generalized as layer de-
composition for filter weight matrix dimension reduc-
tion, while pruning is another method for dimension re-
duction.

4.1.2. Network Pruning

Network pruning originates as a method to reduce the
size and over-fitting of a neural network. As neural net-
work implementation on hardware becomes more pop-
ular, it is necessary to reduce the limitation such as its
intensive computation and large memory bandwidth re-
quirement. Nowadays, pruning is usually adopted as a
method to reduce the network size and to increase the
network inference speed so that it can be applied in spe-
cific hardware such as embedded systems.

There are many pruning methods in terms of weights,
connections, filters, channels, feature maps, and so
on. Unlike layer decomposition in which computa-
tional complexity is reduced through reducing the total
size of layers, selected neurons are removed in prun-
ing. For pruning weights, the unimportant connections
of weights with magnitudes smaller than a given thresh-
old are dropped. Experiments are taken on NVIDIA Ti-
tanX and GTX980 GPUs, which achieves 9% and 13x
parameter reduction for AlexNet and VGG-16 models
respectively with no loss of accuracy [60]. Zhou et
al. incorporate sparse constraints to decimate the num-
ber of neurons during training, which reduces the 70%
number of neurons without accuracy sacrifice [61]. Be-
sides the method to eliminate least influential neurons,
another method is to merge selected and the rest of neu-
rons to maintain diversity in the information. Mariet et
al. succeed in merging the qualified neurons with un-
qualified ones and reduce the network complexity [62].
By trading off the training error with the remaining hid-
den neurons, they achieve 25% reduction of the original
number of parameters with 0.04 accuracy reduction in
MNIST dataset. Channel pruning method is to elimi-
nate lowly active channels, which means filters are ap-
plied in fewer number of channels in each layer. Polyak
et al. propose a channel-pruning based method Inbound
Prune to compress a redundant network. Their exper-
iment is taken on the platform of Samsung Galaxy S6
and it achieves 1.59x speedup [63]. Recently, pruning is
combined with other acceleration techniques to achieve
speedup. For example, Han ef al. combine pruning with
trained quantization and Huffman coding to deep com-
press the neural networks in three steps. It achieves
3x layer-wise speedup on fully-connected layer over
benchmark on CPU [60].

Some of these pruning methods result in structured
sparsity, while others cause unstructured sparsity such
as weight-based pruning. Many techniques are pro-
posed to deal with problems of unstructured sparsity be-
ing unfriendly to hardware. Wen et al. propose a method
called Structured Sparsity Learning (SSL) for regulariz-
ing compressed structures of deep CNNs and speeding
up convolutional computation by group Lasso regular-
ization and locality optimization respectively. It im-
proves convolutional layer computation speed by 5.1x
and 3.1x over CPU and GPU [64]. He el al. propose a
channel pruning method by iteratively reducing redun-
dant channels through solving LASSO and reconstruct-
ing the outputs with linear least squares. It achieves
5% speed increase in VGG-16 and 2X speedup in
ResNet/Xception [65]. Liu et al. also impose channel-
based pruning. They use L1 regularization and achieve



20x reduction in model size and 5x reduction in com-
puting operations for VGG model [66]. Li et al. prune
whole filters as well as their related feature maps and re-
duce inference cost of VGG-16 by 34% and ResNet-110
by 38% [67]. Their method uses sum of filter’s absolute
values as a measurement of filter importance, which is
filter-based and avoids sparse connectivity. Based on
Taylor expansion of cost function between pruning and
non-pruning situations, Molchanov et al. reduce feature
maps from convolutional layers and implement the it-
erative pruning method in transfer learning setting [68].
ASIC based methods dealing with irregular sparsity are
proposed as well and will be discussed in Section 6.3.

4.1.3. Block-circulant Projection

A square matrix could be represented by a one-block-
circulant matrix, while a non-squared matrix could be
represented by block-circulant matrix. Block-circulant
matrix is one of the structured matrices that is usually
used in paradigms such as dimension reduction [69],
since it can represent an unstructured matrix with a vec-
tor. A one-block-circulant matrix is defined as

ro rd-1 r r
. n ro rg-1 0 2
R = cire(r) =| . ) )
. r 1o ‘. .
rqa-1 Ya-2 - r. n

which can be represented by a vector r =
(ro,r1,...,r4—1). Block-circulant based CNN has
been explored nowadays as it has small storage
requirements.

Cheng et al. apply the circulant matrix in the fully
connected layer and achieve significant gain in effi-
ciency with little decrease in accuracy [70]. Yang et
al. focus on reducing the computational time spent in
fully-connected layer by imposing the circulant struc-
ture on the weight matrix for dimension reduction with
little loss in performance [71]. Ding et al. propose to use
block-circulant structure in both fully-connected lay-
ers and convolutional layers in non-square-matrix sit-
uations to further reduce the storage waste. They also
mathematically prove that fewer weights in circulant
form do not harm the ability of a deep CNN without
weight redundancy reduction [72].

4.1.4. Knowledge Distillation

Knowledge distillation is a concept that information
obtained from a large complex ensemble neural net-
works can be utilized to form a compact neural network

ini . Ensemble
Heue Network < abel
Data
Distillation
Synthetic Ensemble Out-
Data —P™ Network — i

Transfer

Synthetic > Compact > Out-
Data Network put

Figure 4: Illustration of knowledge distillation.

[73]. The way that knowledge is transferred can be de-
picted in the following Figure 4. Information flow from
one complex network to a simpler one by training the
latter one with data labeled by the former network. By
using synthetic data generated from a complex network
to train a compact model, it is less likely to cause overfit-
ting and can approximate the functions very well. More
importantly, it provides a new perspective for model
compression and complicated neural network acceler-
ation.

Synthetic data is very important in succeeding model
compression. If it matches well with the true distri-
bution from the functions of a complex model, it usu-
ally takes less data for training to mimic it with high-
fidelity. Furthermore, the compact model has good gen-
eralization characteristics in some missions as it reduces
overfitting. Bucilu et al. lay a foundation for mimick-
ing a large machine learning model by experimenting
three ways to generate pseudo data, which are random,
naive bayes estimation, and MUNGE respectively [74].
Some researches propose teacher-student format, which
also adopts knowledge distillation concepts with differ-
ent methods for synthesizing data. For example, Hinton
et al. compress a deep teacher network into a student
network using data combined from teacher network out-
come and the true labeled data [75]. The student net-
work can achieve very high accuracy on MNIST dataset
with less run time of inference. Romero ef al. mimic
a wider and shallower teacher neural network with a
thinner and deeper network called a student network by
learning an intermediate representation that is predicted
by the teacher network [76]. The depth of the student
network ensures its performance, while its thin charac-



teristic reduces the computation complexity.

4.2. Redundancy in Representations

Many weights in neural networks have very small
values. For example, the first non-zero digit of many
weights occurs in the eighth decimal place, which re-
quires more precise way to record them. Most arith-
metic operations in neural networks use 32-floating
point representation in order to achieve a good accuracy.
As a trade-off, that increases the computation workload
and memory size for the neural networks. However,
arithmetic operations in fixed-point instead of floating-
point can achieve enough good performance for neu-
ral networks [77]. A 16-bit fixed-point representation
method is proposed by using stochastic rounding for
training CIFAR-10 dataset [78]. A further compression
of 10-bit dynamic fixed-point is also explored [79]. Han
et al. quantize pruned CNNs to 8-bit and achieve further
storage reduction with no loss of accuracy [60].

For now, representation in one bit is the simplest
form. In terms of binarization, there can be three forms,
binary input, binary weights of the network, and bi-
nary operations. Courbariaux et al. propose a Bina-
ryConnect method to use 1-bit fixed-point weights to
train a neural network [80]. Rastegari et al. come up
with a XNOR-Nets with binary weights and binary in-
put fed to convolutional layers [81]. It results in 58x
speedup of convolutional operations. Kim et al. pro-
pose a Bitwise Neural Network, which takes everything
as binary such as weights, bias terms, input, output,
and basic logic operations instead of floating or fixed-
point arithmetic operations [82]. Zhou et al. propose
to train CNN using binary and stochastically quantized
low bit-width gradients and achieve comparable perfor-
mance as 32-bit counterparts [83]. Hubara et al. pro-
pose training methods for quantized neural networks
that use low precision including 1-bit weights and ac-
tivations, and replace most arithmetic operations with
bit-wise operations [84]. Kim et al. compress binary
weight CNNs by decomposing kernels into sub-kernels
with common parts. They reduce the operation of each
image by 47.7% [85]. Ternary CNNs are proposed re-
cently as a more expressive method comparing to binary
CNNs, which seeks to achieve a balance between binary
networks and full precision networks in terms of com-
pression rate and accuracy [86, 87, 88].

Stochastic computing (SC) is a type of technique that
simplifies numerical computations into bit-wise opera-
tions by representing continuous values with random bit
streams. It provides many benefits for neural networks
such as low computation footprint, error tolerance, sim-
ple implementation in circuits and better trade-off be-

tween time and accuracy [89]. Many works contribute
to exploring potential space in optimization and in deep
belief networks [90, 91, 92]. Recently it starts to gain at-
tentions in CNN field and regarded as a promising tech-
nique for deep CNN implementation on ASIC (Section
6.3) and on embedded portable devices as it can signifi-
cantly reduce resource consumption with high accuracy.

SC is first adopted in deep CNN by Ren ef al. with
proposed method called SC-DCNN. They design both
function blocks and feature extraction blocks that help
SC efficiently implemented in deep CNN. It success-
fully achieves the lowest resource consumption of
LeNet5 with optimized configurations among many
state-of-the-art software and hardware platforms [93].
Li et al. further improve SC based DCNN by introduc-
ing normalization in the hardware implementation and
dropout in DCNN software training. They design the
stochastic normalization circuit by decoupling complex
normalization into three units, namely, square and sum-
mation, activation and division. Their proposed method
improves the SC-based DCNN with 3.26% top-1 accu-
racy and 3.05% top-5 accuracy [94].

Although errors may accumulate due to representa-
tion approximation, its hardware implementation can
achieve a much faster speed and lead to less energy con-
sumption.

5. Algorithm Level

In the training process, gradient-based method is
widely used in multi-layer feedforward neural networks
(FNN), while some other models use analytically de-
termined methods to minimize the cost function [95].
In the forward pass, the output of CNN is calculated,
while in the backward pass, weights and bias are ad-
justed. By reducing the number of iterations to con-
verge, training time can be decreased. Therefore, opti-
mizing gradient decent algorithm is very important for
improving the performance in training. For CNN, con-
volution computation reduces the amount of weights
dramatically because it focuses on a local perception
field. But repeated mathematic addition and multipli-
cation increase the computation intensity. Therefore, in
the forward process, convolution operation workloads
are computationally intensive and become constrained
for implementation. In the following, we discuss the al-
gorithm optimization of the two directions of data flow,
which are gradient-based backward training methods
and convolution-based forward inference methods. We
summarize distributed gradient descent methods, hybrid
variants of the gradient decent and the improvement in



terms of self-adaptive learning rates, momentum fac-
tors, and partial gradients. We also give an overview on
im2col-based algorithms, Winograd based algorithms,
and FFT, all of which address the convolution cost prob-
lem in CNN.

5.1. Gradient Decent Optimization

Gradient decent is one of the most popular algorithms
for optimization. It has been largely used in finding
global minima for error functions during training neu-
ral networks, because it is simple and empirical to im-
plement. The core of mathematical model of gradient
decent algorithm is the update rule @ = 8 — 1 - VoJ(6),
where the parameters are updated in the opposite direc-
tion of the gradient of the error function VyJ(6).

Distributed gradient decent methods have been pro-
posed to alleviate hardware workload. Take Google
training CNN [75] as an example. As illustrated in Fig-
ure 5, there are two types of parallelism for the distribu-
tion. (a) Replica of CNNs are trained through a server
using averaging gradients and different batches of data.
Parameters are updated based on all the average gradi-
ents, which indicates that new parameters reflect the fea-
tures from the whole data. (b) For each replica of CNN,
it distributes the computation into different cores with
different subset of neurons. Its implementation will be
introduced in Section 6.1.

Back-propagation algorithm is a form of gradient de-
cent algorithm that is implemented in the neural net-
works. Some hybrid variants of back-propagation have
been proposed in order to take advantage of the bene-
fits from other algorithms. For example, combining it
with cuckoo search algorithm can increase the search-
ing speed for optimal solutions [96]. The combina-
tion with ant colony algorithm can decrease the com-
putational cost with increased stability of convergence
[97]. Pan et al. introduce three stages in the back-
propagation with genetic algorithms and steepest decent
methods combined together to achieve a fast and stable
goal [98]. Ding et al. use genetic algorithms to optimize
the weights of a back-propagation neural network by en-
coding and thresholding the connection weights [99].

For deep CNN, as errors accumulate layer by layer,
the gradient either decays rapidly to zero or increases
out of bound. Researchers focus on making changes
in error functions, learning rates and incorporating mo-
mentum [100] to reduce the derivative vanishing ef-
fects and to improve the speed of convergence in the
1990’s, while in the recent 7 years, incorporating var-
ious factors with momentum factors, introducing self-
adaptive learning rates, and using partial gradients are
mainstreams to improve the gradient algorithms.
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For example, adapting learning rate to parameters
with exponentially decaying average of squared gradi-
ents leads to a varying learning rate, which depends on
each current and past parameter instead of being a con-
stant [101, 102, 103]. Hamid et al. incorporate the mo-
mentum factor and give control over it, which acceler-
ates the convergence speed especially for oscillating sit-
uations in ravine [104]. Nesterov et al. have proposed
to use partial gradient to update each parameter rather
than using the whole gradient [105, 106]. They ran-
domly collect feature dimensions by sampling a block
of coordinates and taking partial derivatives over this
block, which can dramatically reduce the gradient com-
putation complexity. As a result, it is much faster than
the regular stochastic gradient decent method especially
for high-dimensional dataset.

For deep neural networks, gradient descent with
back-propagation is not guaranteed to find the global
minimum of the error function, and is subject to weight
vanishing or exploding. The former issue is due to
the non-convexity of error functions in neural net-
works. Some works focus on non-gradient-based meth-
ods, such as ant bee colony algorithms and genetic algo-
rithms. They are usually for simple dataset like Boolean
dataset and simple neural network structures with one
to two hidden layers. In practical, local minimum prob-
lem can be leveraged by a deep architecture [20]. The
second issue that weight vanishes or explodes when the
amount of layers accumulates is still an open problem
and has much potential to explore.

5.2. Feed-forward Efficient Convolution

Three methods are summarized for the feed-forward
efficient convolution including im2col-based algorithm,
Winograd based method, and FFT based method, with
the most commonly used one being introduced firstly.
For the direct convolution in the CNN, convolution ker-
nels slide over the two dimensions of the input and
the output is obtained by dot product between the ker-
nels and the input. While for the im2col-based algo-
rithms, the input matrix is linearized into multiple low-
ered vectors, which can be later efficiently computed
[107, 108, 109]. Cho et al. further reduce the lineariza-
tion memory-overhead and improve the computational
efficiency by modifying both the lowered vectors and
the vectorized kernels [110]. Winograd based meth-
ods are to incorporate Winograds minimal filtering al-
gorithms to compute minimal convolution over small
filters. Coppersmith Winograd algorithm is known as
a fast matrix multiplication algorithm. Winograd based
convolution reduces the multiplications by increasing
the number of additions and it reduces the memory
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Figure 5: Illustration of CNN distributed system.

consumption on GPU [111, 112]. Winograd’s minimal
filtering algorithms can help reduce convolution com-
putation at the expense of memory bandwidth. Xiao
et al. utilize Winograd’s minimal filtering theory com-
bined with heterogeneous algorithms for a fusion archi-
tecture to mitigate memory bandwidth problem [113].

Based on the experiment that FFT can be applied in
MLP to accelerate the first layer inference [114], Math-
ieu et al. first apply FFT on weights of CNN and achieve
good performance and speedup for large perceptive ar-
eas [115]. For using FFT in CNN, it is necessary to
transform back and forth between time domain and fre-
quency domain, which consumes a lot of resources and
takes time. Therefore, it needs delicate balance between
the benefits of computation in frequency domain and
the drawbacks of transforming back and forth. Large
perception areas have better performance, which results
in limitation in the neural network with small convolu-
tion filters. In order to solve this problem, one of the
solutions is to train weights directly in frequency do-
main [116]. Ko et al. train the CNNs entirely in the
frequency domain with approximate frequency-domain
nonlinear operations, sinc interpolation and Hermitian
symmetry. By eliminating Fourier transforms at each
layer, they achieve significantly training time reduction
for CIFAR-10 recognition [117].

6. Implementation Level

Neural networks regain their vigor due to high per-
formance hardware recently. CPU used to be the main
stream for implementing machine learning algorithms
about twenty years ago, because matrix multiplica-
tion and factorization techniques were not popular back
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then. Nowadays, GPU, FPGA, and ASIC are utilized
for accelerating training and predicting process. Be-
sides, much new device technology is proposed to meet
requirement for very large models and large training
datasets. In the following, hardware based accelera-
tors are summarized in terms of GPU, FPGA, ASIC and
frontier new device that is promising for accelerating
deep convolutional neural networks.

6.1. GPU

In terms of GPU, clusters of GPUs can accelerate
very large neural networks with over one billion pa-
rameters in a parallel way. The mainstream of GPU
cluster neural networks usually work with distributed
SGD algorithms as illustrated in Section 5.1. Many
researches further exploit the parallelism and make ef-
forts on communication among different clusters. For
example, Baidu Heterogeneous Computing Group uses
two types of parallelism called model-data parallelism
and data parallelism to extend CNN architectures to 36
servers, each with 4 NVIDIA Tesla K40m GPUs and
12GB memory. The strategies include butterfly syn-
chronization and lazy update, which makes good use of
overlapping in computation and communication [118].
Coates et al. propose a clustering of GPU servers us-
ing Commodity Off-The-Shelf High Performance Com-
puting (COTS HPC) technology and high-speed com-
munication infrastructure for parallelism in distributed
gradient decent algorithm, which reduces 98% number
of machines used for training [119]. In terms of non-
distributed SGD algorithms, Imani et al. propose a near-
est content addressable memory block called NNCAM,
which stores highly frequent patterns for reusing. It ac-
celerates CNNs over general purpose GPU with 40%
speedup [120].



6.2. FPGA

There are many parallelism levels in hardware accel-
eration, such as coarse-grain, medium-grain, fine-grain,
and massive [121]. FPGA outperforms in terms of its
fine grain and coarse grain reconfiguration ability and
its hierarchical storage structure and scheduling mech-
anism can be optimized flexibly. Flexible hierarchical
memory systems can support complex data access mode
of CNN. It is often used to improve the efficiency of on-
chip memory and to reduce the energy consumption.

Peemen et al. experiment on Virtex 6 FPGA board
and show that the accelerator design can achieve 11x
speedup with very complicated address mapping of data
access [122]. Zhang et al. take data reuse, parallel pro-
cessing, and off-chip memory bandwidth into consid-
eration in FPGA accelerator. The accelerator achieves
17.42x faster speed than CPU in AlexNet CNN archi-
tecture [123]. Martnez et al. take advantage of the
FPGA reconfiguration characteristics by unfolding the
loop execution on different cascading stages. As the
number of multipliers for convolution increases, the
proposed method can achieve 12 GOPS at most [124].
A hardware acceleration method for CNN is proposed
by combining fine grain in operator level parallelism
and coarse grain parallelism. Compared with 4xIntel
Xeon 2.3 GHz, 1.35 GHz C870, and a 200 MHz FPGA,
the proposed design achieves a 4x to 8x speed boost
[125]. Wang et al. propose an on-chip memory design
called Memsqueezer that can be implemented on FPGA.
They shrink the memory size by compressing data,
weights, and intermediate data from the perspectives of
hardware, which achieves 80% energy reduction com-
pared with conventional buffer designs [126]. Zhang
et al. design an FPGA accelerator engine called Caf-
feine that decreases underutilized memory bandwidth.
It reorganizes the memory access according to their
proposed matrix-multiplication representation applied
to both convolutional layers and fully-connected layers.
Caffeines implementation on Xilinx KU060 and Virtex
7690t FPGA achieves very high peak performance of
365 GOPS and 636 GOPS respectively [127]. Rahman
et al. present a 3D array architecture, which can benefit
all layers in CNNs. With optimization of on-chip buffer
sizes for FPGAs, it can outperform the state-of-the-art
solutions by 22% in terms of MAC [128]. Alwani et
al. explore the design space of dataflow across multi-
ple convolutional layers, where a fused layer accelerator
is designed that reduces feature map data transfer from
and to off-chip memory [129].
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6.3. ASIC

For ASIC design, despite of using methods in struc-
ture level such as block-circulant projection in Section
4.1.3 and SC in Section 4.2, to improve the design in im-
plementation level, memory can be expanded and local-
ity can be increased to reduce data transporting within
systems for deep neural network accelerating. Tensor
Processing Unit (TPU) is designed for low precision
computation with high efficiency. It uses a large on-chip
memory of 28MiB to execute the neural network appli-
cations, which can achieve at most 30x faster speed than
an Nvidia K80 GPU [10]. TETRIS is an architecture
using 3D memory proposed by Gao et al. It saves more
area for processing elements and leaves more space for
accelerator design [130].

Luo et al. create an architecture of 64-chip system
that minimizes data moving between synapses and neu-
rons by storing them closely. It reduces the burden on
external memory bandwidth and achieves a speedup of
450x over a GPU with 150x energy reduction [131].
Wang et al. propose to group adjacent process engines
(PEs) into dual-channel PEs called Chain-NN to miti-
gate huge amount of data movements. They simulate it
under TSMC 28nm process and achieve a peak through-
put of 806.4 GOPS in AlexNet [132]. Single instruction
multiple data (SIMD) processors are used on a 32-bit
CPU to design a system targeted for ASIC synthesis to
perform real-time detection, recognition and segmen-
tation of mega-pixel images. They optimize the oper-
ation in CNN with available parallelism in hardware.
The ASIC implementations outperform the CPU con-
ventional methods in terms of frames/s [133].

Recently, some ASIC designs target at sparse net-
works with irregularity. For example, Zhang et al. pro-
pose an accelerator called Cambricon-X that can reach
544 GOP/s in 6.38mm? [134]. It consists an Indexing
Module, which can efficiently schedule processing el-
ements that store irregular and compressed synapses.
Kwon et al. design a reconfigurable accelerator called
MAERI to adapt various layer dataflow patterns. They
can efficiently utilize compute resources and provides
6.9x speedup at 50% sparsity [135]. Network prun-
ing could induce sparsity and irregularity as discussed
in Section 4.1.2. With such designs, better performance
is expected to achieve when combined.

6.4. New Devices

As new device technology and circuits arise, deep
convolutional neural networks can be potentially accel-
erated by orders of magnitude. In terms of new de-
vice, very large scale integration systems are explored
to mimic complex biological neuron architectures.



Some of them are in their theoretical demonstration
state for training deep neural networks. For example,
Gokmen and Vlasov from IBM research center propose
aresistive processing unit (RPU) device, which can both
store and compute parameters in this unit. It has ex-
tremely high processing speed with 30000x higher than
state-of-the-art microprocessors (84000 GigaOps/s/W)
[136]. As neuromorphic engineering develops, more
new devices emerge to handle high frequency and high
volume information transformation through synapses.
Some are in theoretical state that have not been imple-
mented on neural networks for classification and recog-
nition, such as nano-scale phase change device [137]
and ferroelectric memristors [138].

Resistive memories are treated as one of the promis-
ing solutions for deep neural network accelerations due
to its nonvolatility, high storage density, and low power
consumption [139]. Its architecture mimics neural net-
works, where weight storage and computation can be
done simultaneously [140, 141]. As CMOS memo-
ries become larger, its scale becomes limited. There-
fore, besides the main stream CMOS based memory,
nonvolatile memory becomes more popular in stor-
ing weights, such as resistive random access memory
(RRAM) [142, 143, 144, 145] and spin-transfer torque
random access memory (STT-RAM) [146].

Memristor crossbar array structures can deal with
computational expensive matrix multiplication and have
been explored in CNN hardware implementations. For
example, Hu et al. develop a Dot-Product Engine (DPE)
utilizing memristor crossbar, which achieves 1000x to
10, 000x speed-efficiency product compared with a dig-
ital ASIC [147]. Xia et al. address energy consump-
tion problem between crossbars and ADC/DAC and can
save more than 95% energy with similar accuracy of
CNN [148]. Ankit et al. propose a hierarchical recon-
figurable architecture with memristive crossbar arrays
called RESPARC, which is 15x more energy efficient
and has 60x more throughput for deep CNNs [149].

In general, for any CNN hardware implementation,
there are a lot of potential solutions to be explored in
design space. It is not trivial to design a general hard-
ware architecture that can be applied to every CNN, es-
pecially when limitations on computation resource and
memory bandwidth are considered.

7. Discussion

Researches have different flavors over dataset, model,
and implementation platforms. Many datasets and mod-
els are treated as benchmarks based on previous re-
searches. But different benchmarks and their combi-
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nations make it difficult to compare the method in one
level with one in other levels. In the following discus-
sion, we constrain our comparison and analysis within
each level.

7.1. Structure Level

We have summarized methods of layer decomposi-
tion and pruning in Table 3. Some of the layer de-
composition and pruning methods focus on inference,
because pre-trained CNNs are required before apply-
ing the corresponding methods. It is a limitation com-
paring to other acceleration methods. For example,
some large scale networks still need training for weeks
or months before layer decomposition method imple-
mentation [47, 48]. Pruning by sparsified weights and
their connections require pre-training on the original
full model and fine-tuning [150, 151].

Many layer decomposition and pruning methods are
layer-wised and optimized for specific layer when they
are first time proposed. For example, Sainath et
al. demonstrate significant reduction in parameters in
the output softmax layer [46]. Mariet et al. successfully
prune 25% of the parameters with good performance in
the fully connected layer [62]. Denton et al. success-
fully reduce a large magnitude number of parameters in
the convolutional layer [48]. As these methods focus
on different types of layers, there is exploration space
about how to combine them for further acceleration.

After reducing redundancy in representation, the size
of neural networks can reduce dramatically. However,
specific hardware is required to achieve a speedup in
training and testing, since currently most GPUs are im-
proved to suit for floating-point performance. For ex-
ample, using BinaryConnect method [152] to train a
Torch7 frame ConvNet on GPU takes more time. The
time complexity can be reduced theoretically by 60% if
using dedicated hardware.

We have summarized methods of reducing redun-
dancy in representation in Table 4 and Table 5. The
Note column in these two tables provide important in-
formation that needs to be distinguished among difter-
ent methods. Low-bit representation methods are tar-
geted for both large and small models. Various bit-width
representation results in different performance depen-
dent on different models and datasets. Many experi-
ments are conducted based on small datasets with low
resolution (e.g. 32 x 32) such as CIFAR10, and usually
achieve less than 5% error rate increase. For image clas-
sification at large scale (e.g. ImageNet), low-bit repre-
sentation method is difficult to achieve the same perfor-
mance as that for small dataset.



Method  Target Layer

Pre-training

Performance

Layer decom- [47] Convolutional layers required 2.5% speedup with no loss
position in accuracy
[48] Convolutional layers required 2x speedup with < 1% ac-
curacy drop
[52] Whole network required 1.09% reduction in
weights & 4.93x speedup
in VGG-16
[56] Convolutional layers not required 76% reduction in weights
in VGG-11
Pruning [150] Whole network required prune 90% parameters of
the convolutional kernels
[151] Whole network required prune 13X parameters in
VGG-16
[64] Whole network not required 5.1x (CPU) & 3.1x
(GPU) speedup in convo-
lutional layers
[67] ‘Whole network required 34% inference FLOP re-
duction in VGG-16
Table 3: Layer decomposition and pruning methods analysis
Bit-width ~ Method Model Error rate  Note
increase
Binary BinaryConnect Self-designed  ~ 2% error rate  Binary weights during train-
[80] (e.g. 6C-3S- drop ing and testing
2F-L2SVM)
Binarynet [152] Self-designed  10.15% ab- Binary weights & activations
solute error  during forward pass
rate
Ternary TWN [86] VGG-7 < 1% Ternary weights in forward &
backward pass
Ternary Connect 6C-1F- ~ 3% error rate  Ternary weights during train-
[87] 1softmax drop ing
TNN [88] VGG-variant  12.11% ab- Teacher-student approach
solute error based ternary input & activa-
rate tions during training
Others 12/14/16-bit [78]  3C-3S- <5% Fixed-point number represen-
Isoftmax tation with stochastic round-
ing
10-bit [79] Maxout < 5% Dynamic 10-bit fixed point
networks precision during training

Table 4: Representation Reduction Methods (CIFAR10)
C: convolutional layer, S: subsampling layer, F: fully-connected layer

7.2. Algorithm Level derivatives gradient descent and second-order deriva-
tives gradient decent. Compared with first-order deriva-
tives based gradient decent algorithm, the second-order

one is faster to converge. But it is more complex to

7.2.1. Information for Updating

According to the cost function of gradient descent al-
gorithm, there are two categories, which are first-order

14



Bit- Method Model Error rate Note
width increase
Binary QNN [84] GoogLeNet, > 10% Binary weights & activations
AlexNet during training and testing
XNOR-net AlexNet, > 10% Binary weights & input to con-
[81] ResNet, volutional layers
GoogleNet-
variation
BWN [81] AlexNet, < 10% Binary weights in forward &
ResNet, backward pass
GoogLeNet-
variation
DoReFa-Net AlexNet around Binary weights & 2-bit activa-
[83] 10% tions & 6-bit gradients
Ternary TWN [86] ResNet <5% Ternary weights in forward &

backward pass

Table 5: Representation Reduction Methods (ImageNet).

utilize the second order information, which makes it
prohibitive in practice for deep large neural networks.
Therefore, more emphasis has been put on how to ap-
proximate the Hessian matrices, which consists of the
second-order derivatives for simplicity [153].

7.2.2. Data for Training

According to the update amount of data, there are
three variants of the algorithms, which are batch, mini-
batch, and online. The batch method uses whole dataset
to update the gradient in one iteration. The mini-batch
uses randomly picked small amount of data to update
the gradient while the online method uses new incom-
ing subset of data once to update the gradient and stops
at any time.

For batch gradient decent, it is guaranteed to con-
verge to the global minimum for convex surfaces. But it
can be very slow and requires very large memory stor-
age. The mini-batch can avoid redundant gradient com-
putation using shuffled examples. As a result, it usu-
ally shoots the minimum faster than the batch gradient.
With delicate picked learning rate, its fluctuation per-
formance decreases. The online method can be used for
designing a light-weight algorithm in terms of memory
and speed for handling a stream of data. Since the data
is updated frequently, it can be used to predict the most
recent state of the trend. But as data is discarded after
gradient update, online method is considered to be more
difficult and unreliable [154].
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7.2.3. Asynchronous Updating

Asynchronous training algorithms help improve the
efficiency on large-scale clusters of machines for dis-
tributed training and inference. Proposed asynchronous
stochastic gradient decent algorithms such as Downpour
SGD and AASGD help improve neural network perfor-
mance in classification problems with a large amount of
high dimensional data. But more attention is needed on
communication among different workers in the clusters,
since suboptimal communication can result in parame-
ters diverging [155, 156].

7.2.4. From Frequency Perspective

Table 6 summarizes methods of FFT based CNNs.
The concept of implementing CNN in frequency is to
replace convolution operation in time domain with mul-
tiplication in frequency domain. It takes time to trans-
form back and forth. As a result, it performs well on
large feature maps. Development is made to suit for
small feature maps such as training network directly in
frequency domain. Compared with other algorithms,
FFT method requires additional memory for padding
the filters to the same size of the input and storing fre-
quency domain intermediate results. This leads to a
trade-off for hardware implementation. On one hand, it
can take use of power in GPU parallelism to speedup
convolution computation dramatically. On the other
hand, more delicate GPU memory allocation is required
due to limit memory.



Method Platform Feature Additional Complexity of Complexity of Add &
Memory Fourier = Trans- Mul in Frequency Do-
form & Inverse main & Extra Complexity
Mathieu GeForce Perform  con- Yes QC -n’logn)(S - 4S - f - f-n?
[115] GTX volutions as f+f-f+S-1)
Titan products in
GPU frequency
domain
Rippel Xeon Phi Pooling in fre- Yes
[157] coproces-  quency domain
sor
Ko ASIC Train the net- No 2Cn? logn(S - f) 3B/2-P-a)+a)-S -f-
[117] work  entirely f+3/2-n2 k- f-f
in  frequency
domain

S: mini-batch size, f: input feature map depth, f’: output feature map depth, n: feature map dimension
k: kernel dimension, C: hidden constant in the O notation, @: 1 for odd and 4 for even n

Table 6: FFT based method analysis.

Method Platform Memory Frequency Performance
Minwa [118] GPUs 6.9 TB host mem- - 0.6 PFlops single
ory & 1.7 TB device precision at peak
memory
Roofline-model-based VC707 - 100MHz 61.62 GFLOPS
accelerator [123] FPGA
Caffeine [127] Xilinx - 200MHz 365 GOPS
KU060
FPGA
ICAN accelerator [128] Virtex-7 Memory bandwidth 160MHz 147.82 GOPS
FPGA 6.2 GB/s
Dadiannao [131] ASIC 36MB node eDRAM 606 MHz 2.09 TeraOps/s of a
node at peak
Chain-NN [132] ASIC 352KB on-chip 700MHz 806.4 GOPS at
memory peak
Cambricon-X [134] ASIC 56KB on-chip 1GHz 544 GOPS
SRAM

Table 7: Performance comparison among GPU, FPGA, and ASIC.

7.3. Implementation Level

As CNN becomes more and more complex, general
purpose processors cannot exploit the inherent paral-
lelism for matrix or tensor operations and therefore be-
comes bottleneck when performing large deep convolu-
tional neural networks. Various designs for accelerat-
ing network training and inference have been proposed
based on GPU, ASIC, and FPGA. Table 7 gives a perfor-
mance comparison of different methods implementing
on GPU, FPGA, and ASIC. Figure 6 shows the compar-
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ison among CPU, GPU, FPGA, and ASIC in terms of
power and throughput [158, 159, 160, 161, 162].

GPU supports several teraFLOPS throughput and
large memory access, but consumes a lot of energy. In
terms of economy, GPU costs to set up for large deep
convolutional neural networks.

Comparing to GPU, ASIC is specialized hardware
and can be delicately designed to maximize its benefits
such as power-efficiency and large throughput in CNN
implementation. However, once CNN algorithms are
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Figure 6: Power and throughput among CPU, GPU, FPGA, and ASIC.

implemented on ASIC, it is difficult to change the hard-
ware design. On the other hand FPGA is easy to be pro-
grammed and reconfigured. It is more convenient for
prototyping.

Compared with GPU, FPGA throughput is tens of gi-
gaFLOPS and it has limited memory access. In addi-
tion, it does not support floating-point natively. But it
is more power-efficient. Due to its limited memory ac-
cess, many proposed methods are focused on acceler-
ating inference time of neural network since inference
process requires less memory access comparing to train-
ing process. Others are emphasized on external mem-
ory optimization for large neural network acceleration.
Different models need different hardware optimization
and even for the same model, different designs result in
quite various acceleration performance [60]. In terms
of economy, FPGA is reconfigurable and is easier to
evolve hardware, frameworks and software. Especially
for various models of neural networks, its flexibility
shortens design cycle and costs less.

8. Conclusion

In this paper, we have summarized recent advances
in CNN acceleration methods from all structure level,
algorithm level, and implementation level. In structure
level, CNN is compressed without losing significant ac-
curacy since there is redundancy in most of the CNN
architectures. For training algorithms, besides conver-
gence speed, convolution calculation is also an impor-
tant factor for CNN. FFT method introduces a frequency
perspective for training neural networks. In implemen-
tation level, characteristics for different hardware such
as FPGA and GPU are explored combined with CNN
features. CNN performs better in computer vision field
as its structure goes deeper and the amount of data be-
comes larger, which makes it time consuming and com-
putationally expensive. It is imperative and necessary
to accelerate CNN for its further implementation in life.
For now, there is no generalized evaluation system to

test the acceleration performance for comparison among
different methods in different levels. Researches use
case by case dataset benchmark and different criterion
in each level. Therefore, it is challenging in accelera-
tion performance evaluation as well.
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