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Abstract

Feature selection problems arise in a variety of applications, such as microarray analysis, clinical predic-
tion, text categorization, image classification and face recognition, multi-label learning, and classification of
internet traffic. Among the various classes of methods, forward feature selection methods based on mutual
information have become very popular and are widely used in practice. However, comparative evaluations
of these methods have been limited by being based on specific datasets and classifiers. In this paper, we
develop a theoretical framework that allows evaluating the methods based on their theoretical properties.
Our framework is grounded on the properties of the target objective function that the methods try to ap-
proximate, and on a novel categorization of features, according to their contribution to the explanation of
the class; we derive upper and lower bounds for the target objective function and relate these bounds with
the feature types. Then, we characterize the types of approximations taken by the methods, and analyze
how these approximations cope with the good properties of the target objective function. Additionally, we
develop a distributional setting designed to illustrate the various deficiencies of the methods, and provide
several examples of wrong feature selections. Based on our work, we identify clearly the methods that should
be avoided, and the methods that currently have the best performance.
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1. Introduction

In an era of data abundance, of a complex nature, it is of utmost importance to extract from the data
useful and valuable knowledge for real problem solving. Companies seek in the pool of available information
commercial value that can leverage them among competitors or give support for making strategic decisions.
One important step in this process is the selection of relevant and non-redundant information in order to
clearly define the problem at hand and aim for its solution [see 1].

Feature selection problems arise in a variety of applications, reflecting their importance. Instances can
be found in: microarray analysis [see 2, 3, 4, 5, 6], clinical prediction [see 7, 5, 6], text categorization
[see 8, 9, 10, 11], image classification and face recognition [see 1], multi-label learning [see 12, 13], and
classification of internet traffic [see 14].

Feature selection techniques can be categorized as classifier-dependent (wrapper and embedded methods)
and classifier-independent (filter methods). Wrapper methods [15] search the space of feature subsets, using
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the classifier accuracy as the measure of utility for a candidate subset. There are clear disadvantages in using
such approach. The computational cost is huge, while the selected features are specific for the considered
classifier. Embedded methods [16, Ch. 5] exploit the structure of specific classes of classifiers to guide
the feature selection process. In contrast, filter methods [16, Ch. 3] separate the classification and feature
selection procedures, and define a heuristic ranking criterion that acts as a measure of the classification
accuracy.

Filter methods differ among them in the way they quantify the benefits of including a particular feature
in the set used in the classification process. Numerous heuristics have been suggested. Among these,
methods for feature selection that rely on the concept of mutual information are the most popular. Mutual
information (MI) captures linear and non-linear association between features, and is strongly related with the
concept of entropy. Since considering the complete set of candidate features is too complex, filter methods
usually operate sequentially and in the forward direction, adding one candidate feature at a time to the
set of selected features. Here, the selected feature is the one that, among the set of candidate features,
maximizes an objective function expressing the contribution of the candidate to the explanation of the class.
A unifying approach for characterizing the different forward feature selection methods based on MI has been
proposed by [17]. [18] also provide an overview of the different feature selection methods, adding a list of
open problems in the field.

Among the forward feature selection methods based on MI, the first proposed group [19, 20, 21, 22]
is constituted by methods based on assumptions that were originally introduced by [19]. These methods
attempt to select the candidate feature that leads to: maximum relevance between the candidate feature and
the class; and minimum redundancy of the candidate feature with respect to the already selected features.
Such redundancy, which we call inter-feature redundancy, is measured by the level of association between the
candidate feature and the previously selected features. Considering inter-feature redundancy in the objective
function is important, for instance, to avoid later problems of collinearity. In fact, selecting features that do
not add value to the set of already selected ones in terms of class explanation, should be avoided.

A more recently proposed group of methods based on MI considers an additional term, resulting from
the accommodation of possible dependencies between the features given the class [17]. This additional term
is disregarded by the previous group of filter methods. Examples of methods from this second group are
the ones proposed by: [23, 24, 25]. The additional term expresses the contribution of a candidate feature
to the explanation of the class, when taken together with already selected features, which corresponds to a
class-relevant redundancy. The effects captured by this type of redundancy are also called complementarity
effects.

In this work we provide a comparison of forward feature selection methods based on mutual informa-
tion using a theoretical framework. The framework is independent of specific datasets and classifiers and,
therefore, provides a precise evaluation of the relative merits of the feature selection methods; it also allows
unveiling several of their deficiencies. Our framework is grounded on the definition of a target (ideal) objec-
tive function and of a categorization of features according to their contribution to explanation of the class.
We derive lower and upper bounds for the target objective function and establish a relation between these
bounds and the feature types. The categorization of features has two novelties regarding previous works: we
introduce the category of fully relevant features, features that fully explain the class together with already
selected features, and we separate non-relevant features into irrelevant and redundant since, as we show,
these categories have different properties regarding the feature selection process.

This framework provides a reference for evaluating and comparing actual feature selection methods.
Actual methods are based on approximations of the target objective function, since the latter is difficult to
estimate. We select a set of methods representative of the various types of approximations, and discuss the
various drawbacks they introduced. Moreover, we analyze how each method copes with the good properties
of the target objective function. Additionally, we define a distributional setting, based on a specific definition
of class, features, and a novel performance metric; it provides a feature ranking for each method that is
compared with the ideal feature ranking coming out of the theoretically framework. The setting was designed
to challenge the actual feature selection methods, and illustrate the consequences of their drawbacks. Based
on our work, we identify clearly the methods that should be avoided, and the methods that currently have
the best performance.
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Recently, there has been several attempts to undergo a theoretical evaluation of forward feature selection
methods based on MI. [17] and [18] provide an interpretation of the objective function of actual methods
as approximations of a target objective function, which is similar to ours. However, they do not study
the consequences of these approximations from a theoretical point-of-view, i.e. how the various types of
approximations affect the good properties of the target objective function, which is the main contribution
of our work. Moreover, they do not cover all types of feature selection methods currently proposed. [26]
evaluated methods based on a distributional setting similar to ours, but the analysis is restricted to the
group of methods that ignore complementarity, and again, does not address the theoretical properties of the
methods.

The rest of the paper is organized as follows. We introduce some background on entropy andMI in Section
2. This is followed, in Section 3, by the presentation of the main concepts associated with conditional MI
and MI between three random vectors. In Section 4, we focus on explaining the general context concerning
forward feature selection methods based on MI, namely the target objective function, the categorization of
features, and the relation between the feature types and the bounds of the target objective function. In
Section 5, we introduce representative feature selection methods based on MI, along with their properties
and drawbacks. In Section 6, we present a distribution based setting where some of the main drawbacks of
the representative methods are illustrated, using the minimum Bayes risk as performance evaluation measure
to assess the quality of the methods. The main conclusions can be found in Section 7.

2. Entropy and mutual information

In this section, we present the main ideas behind the concepts of entropy and mutual information, along
with their basic properties. In what follows, X denotes the support of a random vector X. Moreover, we
assume the convention 0 ln 0 = 0, justified by continuity since x lnx → 0 as x → 0+.

2.1. Entropy

The concept of entropy [27] was initially motivated by problems in the field of telecommunications.
Introduced for discrete random variables, the entropy is a measure of uncertainty. In the following, P (A)
denotes the probability of A.

Definition 1. The entropy of a discrete random vector X is:

H(X) = −
∑

x∈X
P (X = x) lnP (X = x). (1)

Given an additional discrete random vector Y , the conditional entropy of X given Y is

H(X|Y ) = −
∑

y∈Y

∑

x∈X
P (X = x|Y = y)P (Y = y) lnP (X = x|Y = y).

Note that the entropy ofX does not depend on the particular values taken by the random vector but only
on the corresponding probabilities. It is clear that entropy is non-negative since each term of the summation
in (1) is non-positive. Additionally, the value 0 is only obtained for a degenerate random variable.

An important property that results from Definition 1 is the so-called chain rule [28, Ch. 2]:

H(X1, ...,Xn) =
n
∑

i=2

H(Xi|Xi−1, ...,X1) +H(X1), (2)

where a sequence of random vectors, such as (X1, ...,Xn) and (Xi−1, ...,X1) above, should be seen as the
random vector that results from the concatenation of its elements.
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2.2. Differential entropy

A logical way to adapt the definition of entropy to the case where we deal with an absolutely continuous
random vector is to replace the probability (mass) function of a discrete random vector by the probability
density function of an absolutely continuous random vector, as next presented. The resulting concept is
called differential entropy. We let fX denote the probability density function of an absolutely continuous
random vector X.

Definition 2. The differential entropy of an absolutely continuous random vector X is:

h(X) = −
∫

x∈X
fX(x) ln fX(x)dx. (3)

Given an additional absolutely continuous random vector Y , such that (X,Y ) is also absolutely continuous,
the conditional differential entropy of X given Y is

h(X|Y ) = −
∫

y∈Y
fY (y)

∫

x∈X
fX|Y =y(x) ln fX|Y =y(x)dx dy.

It can be proved [28, Ch. 9] that the chain rule (2) still holds replacing entropy by differential entropy.
The notation that is used for differential entropy, h, is different from the notation used for entropy,

H . This is justified by the fact that entropy and differential entropy do not share the same properties.
For instance, non-negativity does not necessarily hold for differential entropy. Also note that h(X,X)
and h(X|X) are not defined given that the pair (X ,X) is not absolutely continuous. Therefore, relations
involving entropy and differential entropy need to be interpreted in a different way.

Example 1. If X is a random vector, of dimension n, following a multivariate normal distribution with
mean µ and covariance matrix Σ, X ∼ Nn(µ,Σ), the value of the corresponding differential entropy is
1
2 ln ((2πe)

n|Σ|) [28, Ch. 9], where |Σ| denotes the determinant of Σ. In particular, for the one-dimensional
case, X ∼ N (µ, σ2), the differential entropy is negative if σ2 < 1/2πe, positive if σ2 > 1/2πe, and zero if
σ2 = 1/2πe. Thus, a zero differential entropy does not have the same interpretation as in the discrete case.
Moreover, the differential entropy can take arbitrary negative values.

In the rest of the paper, when the context is clear, we will refer to differential entropy simply as entropy.

2.3. Mutual information

We now introduce mutual information (MI), which is a very important measure since it measures both
linear and non-linear associations between random vectors.

2.3.1. Discrete case

Definition 3. The MI between two discrete random vectors X and Y is:

MI(X,Y ) =
∑

x∈X

∑

y∈Y
P (X = x,Y = y) ln

P (X = x,Y = y)

P (X = x)P (Y = y)
.

MI satisfies the following [cf. 28, Ch. 9]:

MI(X ,Y ) = H(X)−H(X|Y ); (4)

MI(X ,Y ) ≥ 0; (5)

MI(X ,X) = H(X). (6)

Equality holds in (5) if and only if X and Y are independent random vectors.
According to (4), MI(X,Y ) can be interpreted as the reduction in the uncertainty of X due to the

knowledge of Y . Note that, applying (2), we also have

MI(X,Y ) = H(X) +H(Y )−H(X,Y ). (7)
4



Another important property that immediately follows from (4) is

MI(X ,Y ) ≤ min(H(X), H(Y )). (8)

In sequence, in view of (4) and (5), we can conclude that, for any random vectors X and Y ,

H(X|Y ) ≤ H(X). (9)

This result is again coherent with the intuition that entropy measures uncertainty. In fact, if more informa-
tion is added, about Y in this case, the uncertainty about X will not increase.

2.3.2. Continuous case

Definition 4. The MI between two absolutely continuous random vectors X and Y , such that (X ,Y ) is
also absolutely continuous, is:

MI(X ,Y ) = −
∫

y∈Y

∫

x∈X
fX,Y (x,y) ln

fX,Y (x,y)

fX(x)fY (y)
dx dy.

It is straight-forward to check, given the similarities between this definition and Definition 3, that most
properties from the discrete case still hold replacing entropy by differential entropy. In particular, the only
property from (4) to (6) that cannot be restated for differential entropy is (6) since Definition 4 does not
cover MI(X ,X), again because the pair (X,X) is not absolutely continuous. Additionally, restatements of
(7) and (9) for differential entropy also hold.

On the whole, MI for absolutely continuous random vectors verifies most important properties from the
discrete case, including being symmetric and non-negative. Moreover, the value 0 is obtained if and only
if the random variables are independent. Concerning a parallel of (8) for absolutely continuous random
vectors, there is no natural finite upper bound for h(X) in the continuous case. In fact, while the expression
MI(X,Y ) = h(X)− h(X|Y ), similar to (4), holds, h(X|Y ) and h(Y |X) are not necessarily non-negative.
Furthermore, as noted in Example 1, differential entropies can be become arbitrarily small, which applies,
in particular, to the terms h(X|Y ) and h(Y |X). As a result, MI(X,Y ) can grow arbitrarily.

2.3.3. Combination of continuous with discrete random vectors

The definition of MI when we have an absolutely continuous random vector and a discrete random vector
is also important in later stages of this article. For this reason, and despite the fact that the results that
follow are naturally obtained from those that involve only either discrete or absolutely continuous vectors,
we briefly go through them now.

Definition 5. The MI between an absolutely continuous random vector X and a discrete random vector Y

is given by either of the following two expressions:

MI(X,Y ) =
∑

y∈Y
P (Y = y)

∫

x∈X
fX|Y =y(x) ln

fX|Y =y(x)

fX(x)
dx

=

∫

x∈X
fX(x)

∑

y∈Y
P (Y = y|X = x) ln

P (Y = y|X = x)

P (Y = y)
dx.

The majority of the properties stated for the discrete case are still valid in this case. In particular,
analogues of (4) hold, both in terms of entropies as well as in terms of differential entropies:

MI(X ,Y ) = h(X)− h(X|Y ) (10)

= H(Y )−H(Y |X). (11)

Furthermore, MI(X ,Y ) ≤ H(Y ) is the analogue of (8) for this setting. Note that (11), but not (10), can
be used to obtain an upper bound for MI(X ,Y ) since h(X|Y ) may be negative.
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3. Triple mutual information and conditional mutual information

In this section, we discuss definitions and important properties associated with conditional MI and
MI between three random vectors. Random vectors are considered to be discrete in this section as the
generalization of the results for absolutely continuous random vectors would follow a similar approach.

3.1. Conditional mutual information

Conditional MI is defined in terms of entropies as follows, in a similar way to property (4) [cf. 25, 29].

Definition 6. The conditional MI between two random vectors X and Y given the random vector Z is
written as

MI(X,Y |Z) = H(X|Z)−H(X|Y ,Z). (12)

Using (12) and an analogue of the chain rule for conditional entropy, we conclude that:

MI(X,Y |Z) = H(X|Z) +H(Y |Z)−H(X,Y |Z). (13)

In view of Definition 6, developing the involved terms according to Definition 3, we obtain:

MI(X,Y |Z) = EZ [MI(X̃(Z), Ỹ (Z)], (14)

where, for z ∈ Z, (X̃(z), Ỹ (z)) is equal in distribution to (X,Y )|Z = z.
Taking (5) and (14) into account,

MI(X ,Y |Z) ≥ 0, (15)

and MI(X,Y |Z) = 0 if and only if X and Y are conditionally independent given Z.
Moreover, from (12) and (15), we conclude the following result similar to (9):

H(X|Y ,Z) ≤ H(X|Z). (16)

3.2. Triple mutual information

The generalization of the concept of MI to more than two random vectors is not unique. One such
definition, associated with the concept of total correlation, was proposed by [30]. An alternative one,
proposed by [31], is called triple MI (TMI). We will consider the latter since it is the most meaningful in
the context of objective functions associated with the problem of forward feature selection.

Definition 7. The triple MI between three random vectors X, Y , and Z is defined as

TMI(X,Y ,Z) =
∑

x∈X

∑

y∈Y

∑

z∈Z
P (X = x,Y = y,Z = z)×

ln
P (X = x,Y = y)P (Y = y,Z = z)P (X = x,Z = z)

P (X = x,Y = y,Z = z)P (X = x)P (Y = y)P (Z = z)
.

Using the definition of MI and TMI, we can conclude that TMI and conditional MI are related in the
following way, which provides extra intuition about the two concepts:

TMI(X,Y ,Z) = MI(X ,Y )−MI(X,Y |Z). (17)

The TMI is not necessarily non-negative. This fact is exemplified and discussed in detail in the next section.

4. The forward feature selection problem

In this section, we focus on explaining the general context concerning forward feature selection methods
based on mutual information. We first introduce target objective functions to be maximized in each step;
we then define important concepts and prove some properties of such target objective functions. In the rest
of this section, features are considered to be discrete for simplicity. The name target objective functions
comes from the fact that, as we will argue, these are objective functions that perform exactly as we would
desire ideally, so that a good method should reproduce its properties as well as possible.
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4.1. Target objective functions

Let C represent the class, which identifies the group each object belongs to. S (F ), in turn, denote the
set of selected (unselected) features at a certain step of the iterative algorithm; in fact, S ∩ F = ∅, and
S ∪F is the set with all input features. In what follows, when a set of random variables is in the argument
of an entropy or MI term, it stands for the random vector composed by the random variables it contains.

Given the set of selected features, forward feature selection methods aim to select a candidate feature
Xj ∈ F such that

Xj = arg max
Xi∈F

MI(C,S ∪ {Xi}).

Therefore, Xj is, among the features in F , the feature Xi for which S ∪ {Xi} maximizes the association
(measured using MI) with the class, C. Note that we choose the feature that maximizes MI(C,Xi) in the
first step (i.e., when S = ∅).

Since MI(C,S∪{Xi}) = MI(C,S)+MI(C,Xi|S) [cf. 21], in view of (17), the objective function evaluated
at the candidate feature Xi can be written as

OF(Xi) = MI(C,S) +MI(C,Xi|S)
= MI(C,S) +MI(C,Xi)− TMI(C,Xi,S)

= MI(C,S) +MI(C,Xi)−MI(Xi,S) +MI(Xi,S|C). (18)

The feature selection methods try to approximate this objective function. However, since the term
MI(C,S) does not depend on Xi, most approximations can be studied taking as a reference the simplified
form of objective function given by

OF′(Xi) = MI(C,Xi)−MI(Xi,S) +MI(Xi,S|C).

This objective function has distinct properties from those of (18) and, therefore, deserves being addressed
separately. Moreover, it is the reference objective function for most feature selection methods.

The objective functions OF and OF′ can be written in terms of entropies, which provides a useful
interpretation. Using (4), we obtain for the first objective function:

OF(Xi) = H(C) −H(C|Xi,S). (19)

Maximizing H(C) − H(C|Xi,S) provides the same candidate feature Xj as minimizing H(C|Xi,S), for
Xi ∈ F . This means that the feature to be selected is the one leading to the minimal uncertainty of the
class among the candidate features. As for the second objective function, we obtain, using again (4):

OF′(Xi) = H(C|S)−H(C|Xi,S). (20)

This emphasizes that a feature that maximizes (19) also maximizes (20). In fact, the term that depends on
Xi is the same in the two expressions.

We now provide bounds for the target objective functions.

Theorem 1. Given a general candidate feature Xi:

1. H(C)−H(C|S) ≤ OF(Xi) ≤ H(C).
2. 0 ≤ OF′(Xi) ≤ H(C|S).

Proof. Using the corresponding representations (19) and (20) of the associated objective functions, the upper
bounds follow from H(C|Xi,S) ≥ 0. As for the lower bounds, in the case of statement 1, it comes directly
from the fact that OF′(Xi) = MI(C,Xi|S) ≥ 0. As for statement 2, given that, from (19), OF(Xi) = H(C)−
H(C|Xi,S) = H(C)−H(C|S)+MI(C,Xi|S), we again only need to use the fact that MI(C,Xi|S) ≥ 0.

The upper bound for OF, H(C), corresponds to the uncertainty in C, and the upper bound on OF′,
H(C|S), corresponds to the uncertainty in C not explained by the already selected features, S. This is
coherent with the fact that OF′ ignores the term MI(C,S). The lower bound for OF corresponds to the
uncertainty in C already explained by S.
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4.2. Feature types and their properties

Features can be characterized according to their usefulness in explaining the class at a particular step
of the feature selection process. There are two broad types of features, those that add information to the
explanation of the class, i.e. for which MI(C,Xi|S) > 0, and those that do not, i.e. for which MI(C,Xi|S) =
0. However, a finer categorization is needed to fully determine how the feature selection process should
behave. We define four types of features: irrelevant, redundant, relevant, and fully relevant.

Definition 8. Given a subset of already selected features, S, at a certain step of a forward sequential method,
where the class is C, and a candidate feature Xi, then:

• Xi is irrelevant given (C,S) if MI(C,Xi|S) = 0 ∧ H(Xi|S) > 0;

• Xi is redundant given S if H(Xi|S) = 0;

• Xi is relevant given (C,S) if MI(C,Xi|S) > 0;

• Xi is fully relevant given (C,S) if H(C|Xi,S) = 0 ∧ H(C|S) > 0.

If S = ∅, then MI(C,Xi|S), H(Xi|S), H(C|S), and H(C|Xi,S) should be replaced by MI(C,Xi), H(Xi),
H(C), and H(C|Xi), respectively.

Under this definition, irrelevant, redundant, and relevant features form a partition of the set of candidate
features F . Note that fully relevant features are also relevant since H(C|Xi,S) = 0 and H(C|S) > 0 imply
that MI(C,Xi|S) = H(C|S)−H(C|Xi,S) > 0.

Our definition introduces two novelties regarding previous works: first, we separate non-relevant features
in two categories, of irrelevant and redundant features; second, we introduce the important category of fully
relevant features.

Our motivation for separating irrelevant from redundant features is that, while a redundant feature
remains redundant at all subsequent steps of the feature selection process, the same does not hold necessarily
for irrelevant features. The following example illustrates how an irrelevant feature can later become relevant.

Example 2. We consider a class C = (X + Y )2 where X and Y are two independent candidate features
that follow uniform distributions on {−1, 1}. C follows a uniform distribution on {0, 4} and, as a result,
the entropies of X, Y and C are ln(2). It can be easily checked that both X and Y are independent of the
class. In the feature selection process, both features are initially irrelevant since, due to their independence
from C, MI(C,X) = MI(C, Y ) = 0. Suppose that X is selected first. Then, Y becomes relevant since
MI(C, Y |X) = ln(2) > 0, and it is even fully relevant since H(C|Y,X) = 0 and H(C|X) = ln(2) > 0.

The following theorem shows that redundant features always remain redundant.

Theorem 2. If a feature is redundant given S, then it is also redundant given S′, for S ⊂ S′.

Proof. Suppose that Xi is a redundant feature given S, so that H(Xi|S) = 0, and S ⊂ S′. This implies
that H(Xi|S′) = 0 by (16). As a result, Xi is also redundant given S′.

This result has an important practical consequence: features that are found redundant at a certain step
of the feature selection process can be immediately removed from the set of candidate features F , alleviating
in this way the computational effort associated with the feature selection process.

Regarding relevant features, note that there are several levels of relevancy, as measured by MI(C,Xi|S).
Fully relevant features form an important subgroup of relevant features since, together with already selected
features, they completely explain the class, i.e. H(C|S) becomes 0 after selecting a fully relevant feature.
Thus, all remaining unselected features are necessarily either irrelevant or redundant and the algorithm must
stop. This also means that detecting a fully relevant feature can be used as a stopping criterion of forward
feature selection methods. The condition H(C|S) > 0 in the definition of fully relevant feature is required
since an unselected feature can no longer be considered of this type after H(C|S) = 0.
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A stronger condition that could be considered as a stopping criterion is H(C|S) = H(C|S,F ), meaning
that the (complete) set of candidate features F has no further information to explain the class. As in
the previous case, the candidate features will all be irrelevant or redundant. However, since forward feature
selection algorithms only consider one candidate feature at each iteration, and the previous condition requires
considering all candidate features simultaneously, such condition cannot be used as a stopping criterion.

Regarding the categorization of features introduced by other authors, [17] considered only one category of
non-relevant features, named irrelevant, consisting of the candidate features Xi such that MI(C,Xi|S) = 0.
[32] and [18] considered both irrelevant and redundant features. The definition of irrelevant feature is the
one of [17]; redundant features are defined as features such that H(Xi|S) = 0. Since the latter condition
implies that MI(C,Xi|S) = 0 by (4) and (16), it turns out that redundant features are only a special case
of irrelevant ones, which is not in agreement with our definition.

According to the feature types introduced above, a good feature selection method must select, at a given
step, a relevant feature, preferably a fully relevant one, keep irrelevant features for future consideration and
discard redundant features. The following theorem relates these desirable properties with the values taken
by the target objective functions.

Theorem 3.

1. If Xi is a fully relevant feature given (C,S), then OF(Xi) = H(C) and OF′(Xi) = H(C|S), i.e., the
maximum possible values taken by the target objective functions are reached; recall Theorem 1.

2. If Xi is an irrelevant feature given (C,S), then OF(Xi) = H(C)−H(C|S) and OF′(Xi) = 0, i.e., the
minimum possible values of the target objective functions are reached; recall Theorem 1.

3. If Xi is a redundant feature given S, then OF(Xi) = H(C) − H(C|S) and OF′(Xi) = 0, i.e., the
minimum possible values of the target objective functions are reached; recall Theorem 1.

4. If Xi is a relevant feature, but not fully relevant, given (C,S), then H(C)−H(C|S) < OF(Xi) < H(C)
and 0 < OF′(Xi) < H(C|S).

Proof. The two equalities in statement 1 are an immediate consequence of equations (19) and (20), using
the fact that H(C|Xi,S) = 0 if Xi is fully relevant given (C,S).

Suppose that Xi is an irrelevant feature given (C,S), so that MI(C,Xi|S) = 0. Then, the relation
OF′(Xi) = 0 results directly from OF′(Xi) = MI(C,Xi|S). Conversely, the relation OF(Xi) = H(C) −
H(C|S) follows from the fact that OF(Xi) = H(C) −H(C|S) + MI(C,Xi|S). As a result, statement 2 is
verified.

The equalities in statement 3 follow likewise since MI(C,Xi|S) = 0 if Xi is a redundant feature given S.
As for statement 4, we need to prove that the objective functions neither take the minimum nor the

maximum value for a relevant feature that is not fully relevant. We start by checking that the minimum
values are not reached. The proof is similar to that of statement 2. Since OF′(Xi) = MI(C,Xi|S), and since
the assumption is that MI(C,Xi|S) > 0, then OF′(Xi) is surely larger than 0. Concerning OF(Xi), since
OF(Xi) = H(C)−H(C|S)+MI(C,Xi|S) and MI(C,Xi|S) > 0, OF(Xi) must be larger thanH(C)−H(C|S).
Concerning the upper bounds, the proof is now similar to that of statement 1. If the feature Xi is not fully
relevant given (C,S), meaning that H(C|S, Xi) > 0, the desired conclusions immediately follow from (19)
and (20).

Thus, fully relevant (irrelevant and redundant) features achieve the maximum (minimum) of the objective
functions, and relevant features that are not fully relevant achieve a value between the maximum and the
minimum values of the objective functions. These properties assure that the ordering of features at a given
step of the feature selection process is always correct. Note that irrelevant and redundant features can be
discriminated by evaluating H(Xi|S).

4.3. Complementarity

The concept of complementarity is associated with the TMI term of the target objective function, given
by TMI(C,Xi,S) = MI(Xi,S) − MI(Xi,S|C); recall (17). Following [29], we say that Xi and S are
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complementary with respect to C if −TMI(C,Xi,S) > 0. Interestingly, [33] refer to complementarity as the
existence of positive interaction, or synergy, between Xi and S with respect to C.

Given that MI(Xi,S) ≥ 0, a negative TMI is necessarily associated with a positive value of MI(Xi,S|C).
This term expresses the contribution of a candidate feature to the explanation of the class, when taken
together with already selected features. Following [23] and [34], we call this term class-relevant redundancy.
[17] calls this term conditional redundancy. Class-relevant redundancy is sometimes coined as the good
redundancy since it expresses an association that contributes to the explanation of the class. [16] highlights
that “correlation does not imply redundancy” to stress that association between Xi and S is not necessarily
bad.

The remaining term of the decomposition of TMI, MI(Xi,S), measures the association between the
candidate feature and the already selected features. Following [23], we call this term inter-feature redundancy.
It is sometimes coined as the bad redundancy since it expresses the information of the candidate feature
already contained in the set of already selected features.

Note that TMI takes negative values whenever the class-relevant redundancy exceeds the inter-feature
redundancy, i.e. MI(Xi,S|C) > MI(Xi,S). A candidate feature Xi for which TMI(C,Xi,S) is negative
is a relevant feature, i.e. MI(C,Xi|S) ≥ 0, since MI(C,Xi|S) = MI(C,Xi) − TMI(C,Xi,S) by (17), and
MI(C,Xi) ≥ 0. Thus, a candidate feature may be relevant even if it is strongly associated with the already
selected features. Moreover, class-relevant redundancy may turn a feature that was initially irrelevant into
a relevant feature, as illustrated in Example 2. In that example, the candidate feature Y was independent
of the already selected one, X , i.e. MI(Xi,S) = MI(Y,X) = 0, but Y taken together with X had a positive
contribution to the explanation of the class (indeed it fully explained the class), since the class-relevant
redundancy is positive, i.e. MI(Xi,S|C) = MI(Y,X |C) = ln(2) > 0.

Authors in [29] provided an interesting interpretation of complementarity, noting that

−TMI(C,Xi,S) = MI({Xi} ∪ S, C)−MI(Xi, C)−MI(S, C).

Thus, if −TMI(C,Xi,S) > 0, then MI({Xi}∪S, C) > MI(Xi, C)+MI(S, C). Therefore, −TMI(C,Xi,S) >
0 measures the gain resulting from considering Xi and S together, instead of considering them separately,
when measuring the association with the class C.

5. Representative feature selection methods

The target objective functions discussed in Section 4 cannot be used in practice since they require the
joint distribution of (C,Xi,S), which is not known and has to be estimated. This becomes more and more
difficult as the cardinality of S, denoted by |S| from here on, increases.

The common solution is to use approximations, leading to different feature selection methods. For the
analysis in this paper, we selected a set of methods representative of the main types of approximations to
the target objective functions. In what follows, we first describe the representative methods, and discuss
drawbacks resulting from their underlying approximations; we then discuss how these methods cope with the
desirable properties given by Theorem 1 and Theorem 3; finally, we briefly refer to other methods proposed
in the literature and how they relate to the representative ones. In this section, features are considered to
be discrete for simplicity.

5.1. Methods and their drawbacks

The methods selected to represent the main types of approximations to the target objective functions
are: MIM [35], MIFS [19], mRMR [20], maxMIFS [26], CIFE [23], JMI [24], CMIM [25], and JMIM [36].
These methods are listed in Table 1, together with their objective functions. Note that, for all methods,
including mRMR and JMI, the objective function in the first step of the algorithm is simply MI(C,Xi).
This implies, in particular, that the first feature to be selected is the same in all methods.

The methods differ in the way their objective functions approximate the target objective functions. All
methods except JMIM have objective functions that can be seen as approximations of the target OF′; the
objective function of JMIM can be seen as an approximation of the target OF. The approximations taken
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Table 1: Objective functions of the representative feature selection methods, evaluated at candidate feature
Xi.

Method Objective function evaluated at Xi

MIM MI(C,Xi)

MIFS MI(C,Xi)− β
∑

Xs∈S
MI(Xi, Xs)

mRMR MI(C,Xi)−
1

|S|

∑
Xs∈S

MI(Xi, Xs)

maxMIFS MI(C,Xi)−maxXs∈S MI(Xi, Xs)

CIFE MI(C,Xi)−
∑

Xs∈S
(MI(Xi, Xs)−MI(Xi, Xs|C))

JMI MI(C,Xi)−
1

|S|

∑
Xs∈S

(MI(Xi, Xs)−MI(Xi, Xs|C))

CMIM MI(C,Xi)−maxXs∈S {MI(Xi, Xs)−MI(Xi, Xs|C)}

JMIM MI(C,Xi)−maxXs∈S {MI(Xi, Xs)−MI(Xi, Xs|C) −MI(C,Xs)}

by the methods are essentially of three types: approximations that ignore both types of redundancy (inter-
feature and class-relevant), that ignore class-relevant redundancy but consider an approximation for the
inter-feature redundancy, and that consider an approximation for both the inter-feature and class-relevant
redundancies. These approximations introduce drawbacks in the feature selection process with different
degrees of severity, discussed next. The various drawbacks are summarized in Table 2.

The simplest method is MIM. This method discards the TMI term of the target objective function OF′,
i.e.

OF′(Xi) ≈ MI(C,Xi). (21)

Thus, MIM ranks features accounting only for relevance effects, and completely ignores redundancy. We
call the drawback introduced by this approximation redundancy ignored.

The methods MIFS, mRMR, and maxMIFS ignore complementarity effects, by approximating the TMI
term of OF′ through the inter-feature redundancy term only, i.e. by discarding the class-relevant redundancy.
Thus,

OF′(Xi) ≈ MI(C,Xi)−MI(Xi,S). (22)

In this case, the TMI can no longer take negative values, since it reduces to the term MI(Xi,S). As discussed
in Section 4.3, the complementarity expresses the contribution of a candidate feature to the explanation of
the class, when taken together with already selected features, and ignoring this contribution may lead to
gross errors in the feature selection process. This drawback will be called complementarity ignored, and it was
noted by [17]. These methods include an additional approximation, to calculate the TMI term MI(Xi,S),
which is also used by the methods that do not ignore complementarity, and will be discussed next.

The methods that do not ignore complementarity, i.e. CIFE, JMI, CMIM, and JMIM, approximate the
terms of the objective functions that depend on the set S, i.e. MI(C,S), MI(Xi,S), and MI(Xi,S|C), which
are difficult to estimate, through a function of the already selected features Xs, Xs ∈ S, taken individually.
Considering only individual associations neglects higher order associations, e.g. between a candidate and
two or more already selected features. Specifically, for CIFE, JMI, and CMIM,

OF′(Xi) ≈ MI(C,Xi)− Γ(TMI(C,Xi,S))

and for JMIM,
OF(Xi) ≈ MI(C,Xi)− Γ(TMI(C,Xi,S)−MI(C,S)),

where Γ denotes an approximating function. This type of approximation is also used by the methods that
ignore complementarity. Hereafter, we denote an already selected feature Xs ∈ S simply by Xs. Three types
of approximating functions have been used: a sum of Xs terms scaled by a constant (MIFS and CIFE), an
average of Xs terms (mRMR and JMI), and a maximization over Xs terms (maxMIFS, CMIM, and JMIM).
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MIFS and CIFE approximate the TMI by a sum of Xs terms scaled by a constant. In particular, for
CIFE,

TMI(C,Xi,S) ≈
∑

Xs∈S

TMI(C,Xi, Xs) =
∑

Xs∈S

[MI(Xi, Xs)−MI(Xi, Xs|C)]

=
∑

Xs∈S

MI(Xi, Xs)−
∑

Xs∈S

MI(Xi, Xs|C).

The MIFS approximation is similar, but without the class-relevant redundancy terms, and with the sum of
inter-feature redundancy terms scaled by a constant β. In both cases, a problem arises because the TMI is
approximated by a sum of terms which individually have the same scale as the term they try to approximate.
This results in an approximation of the TMI that can have a much larger scale than the original term. Since
these terms are both redundancy terms, we will refer to this as the redundancy overscaled drawback. It
becomes more and more severe as S grows. This drawback was also noted by [17], referring to it as the
problem of not balancing the magnitudes of the relevancy and the redundancy.

Two other approximating functions were introduced to overcome the redundancy overscaled drawback.
The first function, used by mRMR and JMI, replaces the TMI by an average of Xs terms. In particular, for
JMI,

TMI(C,Xi,S) ≈
1

|S|
∑

Xs∈S

TMI(C,Xi, Xs) =
1

|S|
∑

Xs∈S

[MI(Xi, Xs)−MI(Xi, Xs|C)]

=
1

|S|
∑

Xs∈S

MI(Xi, Xs)−
1

|S|
∑

Xs∈S

MI(Xi, Xs|C).

The mRMR approximation is similar, but without the class-relevant redundancy terms. This approx-
imation solves the overscaling problem but introduces another drawback. In fact, since MI(Xi,S) ≥
MI(Xi, Xs), implying that MI(Xi,S) ≥ 1

|S|
∑

Xs∈S MI(Xi, Xs), the approximation undervalues the inter-

feature redundancy; at the same time, given that MI(Xi,S|C) ≥ MI(Xi, Xs|C), implying MI(Xi,S|C) ≥
1
|S|
∑

Xs∈S MI(Xi, Xs|C), it also undervalues the class-relevant redundancy. We call this drawback redun-

dancy undervalued.
The second approximating function introduced to overcome the redundancy overscaled drawback is a

maximization over Xs terms. This approximation is used differently in maxMIFS and CMIM, on one side,
and JMIM, on the other. Methods maxMIFS and CMIM just replace the TMI by a maximization over Xs

terms. In particular, for CMIM,

TMI(C,Xi,S) ≈ max
Xs∈S

TMI(C,Xi, Xs) = max
Xs∈S

(MI(Xi, Xs)−MI(Xi, Xs|C)) .

The maxMIFS approximation is similar, but without the class-relevant redundancy terms.
The discussion regarding the quality of the approximation is more complex in this case. We start by

maxMIFS. In this case, since MI(Xi,S) ≥ MI(Xi, Xs),

MI(Xi,S) ≥ max
Xs∈S

MI(Xi, Xs) ≥
1

|S|
∑

Xs∈S

MI(Xi, Xs). (23)

Thus, this approximation still undervalues inter-feature redundancy, but is clearly better than the one
considering an average. Indeed, we may say that maximizing over Xs is the best possible approximation,
under the restriction that only one Xs is considered.

Regarding CMIM, we first note that a relationship similar to (23) also holds for the class-relevant
redundancy, i.e.

MI(Xi,S|C) ≥ max
Xs∈S

MI(Xi, Xs|C) ≥ 1

|S|
∑

Xs∈S

MI(Xi, Xs|C),
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since MI(Xi,S|C) ≥ MI(Xi, Xs|C). However, while it is true for the two individual terms that compose
the TMI that MI(Xi,S) ≥ maxXs∈S MI(Xi, Xs) and MI(Xi,S|C) ≥ maxXs∈S MI(Xi, Xs|C), it is no longer
true that TMI(C,Xi,S) ≥ maxXs∈S TMI(C,Xi, Xs). Thus, the maximization over Xs terms of CMIM is
not as effective as that of maxMIFS. Moreover, applying a maximization jointly to the difference between the
inter-feature and the class-relevant redundancy terms clearly favors Xs features that together with Xi have
small class-relevant redundancy, i.e. a small value of MI(Xi, Xs|C). This goes against the initial purpose
of methods that, like CMIM, introduced complementarity effects in forward feature selection methods. We
call this drawback complementarity penalized. We now give an example that illustrates how this drawback
may impact the feature selection process.

Example 3. Assume that we have the same features as in Example 2, plus two extra features W and Z,
independent of any vector containing other random variables of the set {W,Z,X, Y, C}. Moreover, consider
the objective function of CMIM.

In the first step, the objective function value is 0 for all features. We assume that W is selected first. In
this case, at the second step, the objective functions value is again 0 for all features. We assume that X is
selected. At the third step, Y should be selected since it is fully relevant and Z is irrelevant. At this step,
the objective function value at Z is 0. The objective function at Y requires a closer attention. Since Y is
independent of the class, MI(Y,C) = 0, the target objective function evaluated at Y is

−TMI(C, Y, {W,X}) = − [MI(Y, {W,X})−MI(Y, {W,X}|C)]

= − [0− (H(Y |C)−H(Y |W,X,C))] = −(0− ln(2)) = ln(2),

and the objective function of CMIM evaluated at Y is

−max{TMI(C, Y,W ),TMI(C, Y,X)}
= −max{MI(Y,W )−MI(Y,W |C),MI(Y,X)−MI(Y,X |C)}
= −max{0− 0, 0− (H(Y |C)−H(Y |X,C))} = −max{0− 0, 0− ln(2)}
= −max{0,− ln(2)} = 0.

This shows that, according to CMIM, both Y and Z can be selected at this step, whereas Y should be selected
first, as confirmed by the target objective function values. The problem occurs because the class-relevant
redundancy MI(Y,X |C) brings a negative contribution to the term of the maximization that involves X,
leading to TMI(C, Y,X) = −ln(2), thus forcing the maximum to be associated with the competing term,
since TMI(C, Y,W ) = 0. As noted before, the maximum applied in this way penalizes the complementarity
effects between Y and X that, as a result, are not reflected in the objective function of candidate Y ; contrarily,
the term that corresponds to an already selected feature that has no association with Y , i.e. the term involving
W , is the one that is reflected in the objective function of candidate Y .

Note that since MI(Xi,S) ≥ MI(Xi, Xs) and MI(Xi,S|C) ≥ MI(Xi, Xs|C), this approximation also
undervalues both the inter-feature and the class-relevant redundancies. However, since the maximum is
applied to the difference of the terms, it can no longer be concluded, as in the case of maxMIFS, that the
approximation using a maximum is better than the one using an average (the case of JMI). In this case,
the inter-feature redundancy term still pushes towards selecting the Xs that leads to the maximum value
of MI(Xi, Xs), since it contributes positively to the value inside the maximum operator; contrarily, the
class-relevant redundancy term pushes towards selecting Xs features that depart from the maximum value
of MI(Xi, Xs|C), since it contributes negatively.

JMIM uses the approximation based on the maximization operator, like maxMIFS and CMIM. However,
the maximization embraces an additional term. Specifically,

TMI(C,Xi,S)−MI(C,S) ≈ max
Xs∈S

{TMI(C,Xi, Xs)−MI(C,Xs)}.

The additional term of JMIM, i.e. MI(C,Xs), tries to approximate a term of the target objective function
that does not depend on Xi, i.e. MI(C,S), and brings additional problems to the selection process. We call
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Table 2: Drawbacks of the representative feature selection methods.

Drawback MIM MIFS mRMR maxMIFS CIFE JMI CMIM JMIM

Redundancy
ignored

X

Complementarity
ignored

X X X

Complementarity
penalized

X X

Redundancy
undervalued

X X X X X

Unimportant term
approximated

X

Redundancy
overscaled

X X

this drawback unimportant term approximated. JMIM inherits the drawbacks of CMIM, complementarity
penalized and redundancy undervalued. Moreover, the extra term adds a negative contribution to each
Xs term, favoring Xs features with small association with C, which goes against the whole purpose of the
feature selection process.

The representations of the objective functions of CMIM and JMIM in the references where they were
proposed [25, 36] differ from the ones in Table 1. More concretely, their objective functions were originally
formalized in terms of minimum operators:

OFCMIM(Xi) = min
Xs∈S

MI(C,Xi|Xs); (24)

OFJMIM(Xi) = min
Xs∈S

{MI(C,Xs) +MI(C,Xi|Xs)} . (25)

The representations in Table 1 result from the above ones using simple algebraic manipulation; recall (17).
They allow a nicer and unified interpretation of the objective functions. For instance, they allow noticing
much more clearly the similarities between maxMIFS and CMIM, as well as between CMIM and JMIM.

5.2. Properties of the methods

The drawbacks presented in Section 5.1 have consequences in terms of the good properties that forward
feature selection methods must have, as expressed by Theorem 1 and Theorem 3: (i) the existence of
meaningful bounds for the objective function, and (ii) the fact that fully relevant candidate features are the
only ones that reach the maximum value of the objective function, while irrelevant and redundant features
are the only ones to reach the minimum, which guarantees a perfect ordering of the features. With a few
exceptions, the approximations taken by the various methods make them lose these properties.

Concerning the preservation of the bounds stated by Theorem 1, it can be shown that MIFS, mRMR,
maxMIFS, and CIFE, do not preserve neither the lower bound nor the upper bound. Indeed, the objective
function of CIFE is unbounded, both superiorly and inferiorly, due to the overscaled redundancy drawback.
Moreover, the objective functions of MIFS, mRMR, and maxMIFS are unbounded inferiorly, due to the
complementarity ignored drawback, i.e. due to the lack of the compensation provided by the class-relevant
redundancy. For these methods, the upper bound of the objective function becomes H(C). This bound is
meaningless since it no longer expresses the uncertainty in C not explained by already selected features.

MIM, JMI, CMIM, and JMIM preserve one of the bounds: JMIM preserves the upper bound and the
remaining methods preserve the lower bound. MIM preserves the lower bound but just because its objective
function is too simplistic.

In order to see that JMI preserves the lower bound, note that, using (17), its objective function can also
be written as

OFJMI(Xi) =
1

|S|
∑

Xs∈S

MI(C,Xi|Xs). (26)
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For any candidate feature Xi, since MI(C,Xi|Xs) ≥ 0 for all Xs ∈ S, it follows that OFJMI(Xi) ≥ 0.
Similarly, using (24), it follows immediately from the non-negativity of MI(C,Xi|Xs) that OFCMIM(Xi) ≥ 0,
again for any candidate feature Xi.

To see that JMIM preserves the upper bound, note that, using (25), its objective function can also be
written as

OFJMIM(Xi) = min
Xs∈S

{MI(C,Xs) +MI(C,Xi|Xs)}

= min
Xs∈S

{H(C)−H(C|Xi, Xs)}

= H(C)− max
Xs∈S

H(C|Xi, Xs).

Hence, the objective function of JMIM has H(C) as upper bound for any candidate feature Xi since
H(C|Xi, Xs) ≥ 0 for all Xs ∈ S. This is the desired bound since this method has target objective function
OF as reference.

Despite maintaining one of the bounds stated by Theorem 1, MIM, JMI, CMIM, and JMIM, do not
preserve the bound that involves the conditional entropy H(C|S). For MIM the upper bound becomes H(C)
which, as in the case of methods ignoring complementarity, is meaningless. For the remaining methods, the
bound is lost due to the approximation that replaces the terms of the objective function that depend on set
S by a function of the already selected features Xs taken individually. As for the lower bound of JMIM and
the upper bounds of JMI and CMIM, they are now functions of H(C|Xs). As in the case of MIFS, mRMR,
and maxMIFS, the new bounds become meaningless: the upper bounds of JMI and CMIM no longer express
the uncertainty in C that is not explained by the complete set of already selected features; and the lower
bound of JMIM no longer expresses the uncertainty in C already explained by the complete set of already
selected features.

In Section 6 we will illustrate the loss of bounds by the various methods.
Regarding the connections between the bounds of the objective functions and the feature types, stated

by Theorem 3, these connections are lost for all methods, despite the fact that some bounds are preserved.
It is no longer possible to assure that fully relevant features reach the maximum value of the objective
function (when it exists) and that irrelevant and redundant features reach the minimum (when it exists).
Moreover, the stopping criterion is lost. We will provide several examples in Section 6. This is again due
to the approximation that replaces the dependencies on the whole set of already selected features, S, by
dependencies on individual features Xs ∈ S, which is shared by all methods.

It would be useful to have results similar to those of Theorem 3, if their validity given Xs would imply
their validity given S. This is only meaningful for feature types, such that if a feature has a type given Xs it
will have the same type given S. Unfortunately, this is only true for redundant features. In fact, according
to Theorem 2, a feature that is redundant given Xs will also be redundant given S. The same does not
hold for irrelevant and relevant features since, as discussed in Section 4.2, as S grows, relevant features can
become irrelevant, and vice-versa. Thus, only properties concerning redundancy given Xs are worth being
considered. In this respect, a weaker version of Theorem 3.3 can be proved for CMIM.

Theorem 4. If there exists Xs ∈ S such that Xi is a redundant feature given {Xs}, then OFCMIM(Xi) = 0,
i.e., the minimum possible value taken by the objective function of CMIM is reached.

Proof. Since Xi is a redundant feature given {Xs}, then MI(C,Xi|Xs) = 0 by (4) and (16). As a result,
OFCMIM(Xi) = 0 follows from (24). In fact, in order for minXs∈S MI(C,Xi|Xs) to be 0, it is enough that
MI(C,Xi|Xs) is 0 for one particularXs, since the terms involved in the minimization are all non-negative.

Theorem 4 states that the objective function of CMIM reaches the minimum for a feature that is redun-
dant given Xs. Note that a feature can be redundant given S but not redundant given Xs, which renders
this result weaker than that of Theorem 3.3. Theorems analogous to Theorem 4 cannot be proved for the
remaining methods, and we provide counter-examples in Section 6. In particular, the possibility to discard
redundant features from the set of candidate features is lost, except for CMIM in the weaker context of
Theorem 4.
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To summarize, the approximations taken by all methods make them lose the good properties exhibited
by the target objective functions, namely the assurance that features are correctly ordered, the existence of
a stopping criterion, and the possibility to discard redundant features (here the exception is CMIM, in the
weaker context of Theorem 4).

5.3. Other methods

We now briefly discuss other methods that have appeared in the literature, explaining why they have
not been included as part of the representative methods presented previously.

MIFS-U [37] differs from MIFS in the estimation of the MI between the candidate feature and the class—
this is a meaningless difference for the type of theoretical properties of the methods that we intend to address,
in which estimation does not play a role. MIFS-ND [38] considers the same reference terms as mRMR,
employing a genetic algorithm to select the features, thus again not changing anything in theoretical terms.
ICAP [39] is similar to CIFE, while forcing the terms TMI(C,Xi, Xs), Xs ∈ S, to be seen as redundancy
terms by only considering their contribution when they are positive (negative for the objective function).
IGFS [40] chooses the same candidate features in each step as JMI; and CMIM-2 [41] is also just the same
as JMI, as its objective function is defined exactly as (26).

A particular type of methods that were also not considered as representative is characterized by con-
sidering similar objective functions to those of the introduced representative methods, with the difference
that all MI terms are replaced by corresponding normalized MI terms. More concretely: NMIFS [42] is
an enhanced version of MIFS, MIFS-U, and mRMR; DISR [29] is adapted from JMI, and considers a type
of normalization called symmetrical relevance; NJMIM [36] is adapted from JMIM, using also symmetrical
relevance. Past experiments [cf. 17, 36] show that such normalizations make the methods more expensive,
due to associated extra computations, with no compensation in terms of performance. In fact, it is argued
in the mentioned experiments that the performance of such methods is actually worse than the performance
of the corresponding methods that do not use normalized MI, which should be, as added by [17], related to
the additional variance introduced by the estimation of the extra normalization term.

6. Comparison of feature selection methods on a distributional setting

This section compares the feature selection methods using a distributional setting, based on a specific
definition of class, features, and a performance metric. The setting provides an ordering for each of the
methods, which is independent of specific datasets and estimation methods, and is compared with the ideal
feature ordering. The aim of the setting is to illustrate how the drawbacks of the methods lead to incorrect
feature ordering and to the loss of the good properties of the target objective functions.

We start by introducing a performance measure for feature selection methods that does not rely on the
specificities of a fixed classifier—the minimum Bayes risk (MBR). We then describe the characteristics of
the setting, namely the definitions of class and features, and show how the quantities required to calculate
the objective functions of the methods, i.e. the various types of MI, are calculated. Finally, we present and
discuss the results.

6.1. Minimum Bayes risk

Commonly, the performance measures used to compare forward selection methods depend on how a
particular classifier performs for certain data sets. As a result, it is not clear if the obtained conclusions
are exclusively explained by the characteristics of the feature selection method, or if the specificities of the
classifier and/or the data under study create confounding effects. To overcome this limitation, we consider a
different type of performance measure that is computed at each step of the forward selection method under
consideration. Using the set of selected features until a given step, we obtain, for a fixed classifier, the
associated Bayes risk (BR) or total probability of misclassification [43, Ch. 11]. Bayes risk is a theoretical
measure in the sense that it does not rely on data but instead directly on the, assumed to be known,
distributions of the involved features into consideration [see 44, 45, for practical contexts where it was used].
The Bayes classifier [see 21, Ch. 1] is a classifier that defines a classification rule associated with the
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minimum Bayes risk, which will be our performance measure. The suitability of this measure to our setting
results from the fact that it relies on the distributions of the features, and also on their class-conditional
distributions.

6.1.1. Bayes risk and Bayes classifier

For a given class C, with values on the set {0, 1, ..., c}, and a set of selected features S, with support S,
a (C,S)-classifier g is a (Borel-)measurable function from S to {0, 1, ..., c}, and g(s) denotes the value of
C to which the observation s is assigned by the classifier. Then, the Bayes risk of the (C,S)-classifier g is
given by

BR(C,S, g) = P (g(S) 6= C)) =

c
∑

j=0

P (g(S) 6= j|C = j)P (C = j).

The proposed performance evaluation measure consists of the minimum possible value of the BR, called
minimum Bayes risk (MBR). Thus, for a given class C and a set of selected features S, the associated
minimum Bayes risk, MBR(C,S), is given by:

MBR(C,S) = min
g

BR(C,S, g).

The minimum Bayes risk corresponds to the Bayes risk of the so-called Bayes classifier. The (C,S)
Bayes classifier assigns an object s ∈ S to the value that C is most likely to take given that S = s. That is,
the (C,S) Bayes classifier g is such that

g(s) = argmax
j∈{0,1,...,c}

P (C = j|S = s)

= argmax
j∈{0,1,...,c}

P (C = j)fS|C=j(s).

Note that, in particular, when there are two possible values for the class, i.e. c = 1, the Bayes classifier g is
such that [see 43, Ch. 11]:

g(s) = 1 ⇐⇒ fS|C=0(s)

fS|C=1(s)
≤ P (C = 1)

P (C = 0)
. (27)

6.1.2. Properties of the minimum Bayes risk

We now discuss a few properties of the minimum Bayes risk, the proposed performance evaluation
criterion. In the following, measurable should be read as Borel-measurable.

Theorem 5. If C is a measurable function of S, then MBR(C,S) = 0.

Proof. Let g be the measurable function such that C = g(S). As C = g(S), it follows that BR(C,S, g) =
P (g(S) 6= C)) = 0. As MBR(C,S) is non-negative and MBR(C,S) ≤ BR(C,S, g), we conclude that
MBR(C,S) = 0, as intended.

Note that C being a measurable function of S is equivalent to saying that features in S fully explain the
class.

Theorem 6. If Xi is a measurable function of S, then MBR(C,S ∪ {Xi}) = MBR(C,S).

Proof. Let ξ be the measurable function such that Xi = ξ(S), and g be the (C,S ∪ {Xi}) Bayes classifier,
so that, in particular, MBR(C,S ∪ {Xi}) = BR(C,S ∪ {Xi}, g). Let g′ be the (C,S) classifier such that,
given an observation s ∈ S, g′(s) = j when g(s, ξ(s)) = j. Then BR(C,S ∪ {Xi}, g) = BR(C,S, g′).
As a consequence, by transitivity, MBR(C,S ∪ {Xi}) = BR(C,S, g′). This implies that MBR(C,S) ≤
MBR(C,S ∪ {Xi}). In turn, it always holds that MBR(C,S) ≥ MBR(C,S ∪ {Xi}) since S ⊂ S ∪ {Xi}.
Therefore, MBR(C,S ∪ {Xi}) = MBR(C,S).

Note that Xi being a measurable function of S is equivalent to saying that Xi is redundant given S.
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6.2. Setting description

We now describe the distributional setting used to illustrate the various deficiencies of the feature selection
methods. The class chosen for this setting is a generalization of the one proposed by [26], which was based
on the scenario introduced by [37] and later used by [21]. It is defined as

Ck =

{

0, X + kY < 0
1, X + kY ≥ 0

, (28)

where X and Y are independent features with standard normal distributions and k ∈ ]0,+∞[.
According to the discussion in Section 4, our scenario includes fully relevant, relevant, redundant, and

irrelevant features. Specifically, our features are X , X − k′Y , k′ > 0, Z and Xdisc. X and X − k′Y were
chosen as relevant features that, taken together, fully explain the class. As irrelevant feature, we chose Z,
independent of X and Y , which for simplicity is considered to follow a Bernoulli distribution with success
probability 1/2. Finally, as redundant feature we chose

Xdisc =

{

0, X < 0
1, X ≥ 0

, (29)

The first selected feature is the candidate Xi that has the largest value of MI(Ck, Xi). The possible
candidates are X , X − k′Y , and Xdisc, which are the initially relevant features. Z is an irrelevant feature
and, therefore, will not be selected first. We want X to be selected first to assure that, at the second step
of the algorithm, there will be, as candidates, one fully relevant, one redundant, and one irrelevant feature.
This provides an extreme scenario, where the relevancy level of the relevant feature is the maximum possible,
making a wrong decision the hardest to occur. We next discuss the conditions for selecting X before X−k′Y
and before Xdisc.

X is selected before X − k′Y if MI(Ck, X) > MI(Ck, X − k′Y ), which is equivalent to the condition

arctank < (π − arctank′)− arctank,

where the left term represents the angle between the lines X = 0 and X + kY = 0 and the right term
represents the angle between the lines X − k′Y = 0 and X + kY = 0, in the context of the two-dimensional
space defined by the pair of orthogonal vectors (X,Y ). The condition can be written in terms of k as

k < tan

(

π − arctank′

2

)

. (30)

Feature Xdisc is never selected before X since MI(Ck, Xdisc) ≤ MI(Ck, X) for all k > 0. To see this,
note that this inequality can be written, using (4), as H(Ck)−H(Ck|Xdisc) ≤ H(Ck)−H(Ck|X), which is
equivalent to H(Ck|Xdisc) ≥ H(Ck|X). This is equivalent to H(Ck|Xdisc) ≥ H(Ck|Xdisc, X), which holds
by (16). In turn, H(Ck|X) = H(Ck|Xdisc, X) is equivalent to MI(Ck, Xdisc|X) = 0 by (12). Finally, since
Xdisc is redundant given {X}, equations (12) and (16) can be used to verify that MI(Ck, Xdisc|X) = 0.

In view of the above discussion, the ideal feature ordering coming out of the distributional setting is X
in first place and X − k′Y in second place. Ideally, the feature selection method should stop at this step,
since a fully relevant feature has been found. However, further steps need to be considered, since actual
methods do not preserve the stopping criterion, as discussed in Section 5.2. Then, at the third step, the
remaining features, Z and Xdisc, must be equally likely to be selected since, according to Theorems 3.2 and
3.3, both their target objective functions reach the lower bound.

6.3. Required quantities

In order to be able to determine the order in which the features are selected by the different methods,
we have to derive expressions, depending on k and k′, needed for evaluating the corresponding objective
functions. We need: the MI between each candidate feature and the class, the MI between different pairs of
candidate features, and the class-conditional MI between pairs of candidate features. The computation of
these quantities require obtaining the univariate entropies of the candidate features and of the class. The
derivations of such expressions are provided in Appendix A.1 and their final forms are available in Tables 3
to 6.
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Table 3: Entropies of the class, Ck, and the input features.

Ck X X − k′Y Z Xdisc

Entropy ln(2) 1
2
ln(2πe) 1

2
ln(2πe(1 + k

′2)) ln(2) ln(2)

Table 4: MI between each input feature and the class, Ck.

A MI(Ck , A)

X 1
2
ln(2πe)− 1

2

∑1
j=0

∫
R
fX|Ck=j(u) ln fX|Ck=j(u)du

X − k′Y 1
2
ln(2πe(1 + k

′2))− 1
2

∑1
j=0

∫
R
fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du

a

Z 0

Xdisc 2 ln(2) + arctan k
π

ln( arctan k
2π

) + (1− arctan k
π

) ln( 1
2
− arctan k

2π
) b

a X|Ck = j ∼ SN(0, 1,
(−1)j+1

k
), j = 0, 1.

b X − k′Y |Ck = j ∼ SN(0,
√
1 + k′2, (−1)j+1( 1−kk′

k+k′
)), j = 0, 1.

Table 5: MI between pairs of input features.

A B MI(·, ·)

X X − k′Y 1
2
ln(1 + 1

k′2 )

X Xdisc ln(2)

X − k′Y Xdisc
1
2
ln(2πe) − 1

2

∑1
j=0

∫
R
fX|Ck′=j(u) ln fX|Ck′=j(u)du

a

Z B 0, B ∈ {X,X − k′Y,Xdisc}

a X|Ck′ = j ∼ SN(0, 1, (−1)j+1

k′
), j = 0, 1.

Univariate entropies. We start with a summary of the univariate entropies of the different features and of
the class presented in Table 3. The corresponding derivations can be found in Appendix A.1.

MI between input features and the class. As for the MI between input features and the class, they are
provided in Table 4. The corresponding derivations can be found in Appendix A.2.

It must be added that the notation W ∼ SN(µ, σ, α) (where µ ∈ R, σ > 0, and α ∈ R), means that the
random variable W follows a skew-normal distribution, so that it has probability density function [46]

fW (w) =
2

σ
φ(

w − µ

σ
)Φ(

α(w − µ)

σ
), w ∈ R, (31)

where Φ(z) denotes the value of the standard normal distribution function at point z, while φ(z) denotes
the probability density function, for the same distribution, also at z.

MI between pairs of input features. As for the MI between the different pairs of input features, they are
provided in Table 5. The corresponding derivations can be found in Appendix A.3.

Class-conditional MI between pairs of input features. As for the class-conditional MI between the different
pairs of input features, they are provided in Table 6. The corresponding derivations can be found in Appendix
A.4.

6.4. Applying the different feature selection methods

We now present the results of applying the various feature selection methods to the distributional setting.
The feature ordering will be discussed for different values of k and k′. Taking the objectives of this study
into consideration, for fixed k′, the most interesting case is that where X alone leaves the largest possible
amount of information undetermined about the class; this leads to X − k′Y having the most importance in
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Table 6: Class-conditional MI between pairs of input features.

A B MI(·, ·|Ck)

X X − k′Y

1
2

∑1
j=0

∫
R
fX|Ck=j(u) ln fX|Ck=j(u)du+

1
2

∑1
j=0

∫
R
fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du−

(1 + lnπ + lnk′)a,b

X Xdisc − arctan k
π

ln( arctan k
π

)− (1 − arctan k
π

) ln(1− arctan k
π

)

X − k′Y Xdisc
1
2

∑1
j=0

∫
R
fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du − h(X − k′Y |Xdisc, Ck)

b,c

Z B 0, B ∈ {X,X − k′Y,Xdisc}
a X|Ck′ = j ∼ SN(0, 1,

(−1)j+1

k′
), j = 0, 1. b X−k′Y |Ck = j ∼ SN(0,

√
1 + k′2, (−1)j+1( 1−kk′

k+k′
)),

j = 0, 1. c h(X − k′Y |Xdisc, Ck) in (40).

the explanation of the class, making the error of not choosing it after X the worst possible. According to
the performance metric introduced in Section 6.1, we want to choose a value of k that leads to a large MBR
when X is the only selected feature, MBR(Ck, {X}), which is given by (see B):

MBR(Ck, {X}) = arctank

π
. (32)

Since MBR(Ck, {X}) is an increasing function of k, we want k to be as large as possible, under the restriction
(30). We consider k = tan

(

(π − arctank′ − 10−6)/2
)

.
Given that, in our setting, the features X and X − k′Y fully explain the class, and that, according to

Theorem 5, MBR(Ck, {X,X − k′Y }) = 0, it makes sense to take the MBR based on the first two selected
features as performance measure for characterizing each forward feature selection method. This measure is
denoted by MBR2.

We will carry out two different studies. In the first one, we concentrate on the methods that ignore
complementarity; i.e. MIFS, mRMR, and maxMIFS, and study the feature ordering as a function of k′.
The purpose of this study is to highlight the consequences of ignoring complementarity. In the second study,
we compare the feature ordering of all methods under analysis, for fixed k and k′. The goal is to provide
examples showing wrong decisions made by the various methods.

6.4.1. The consequences of ignoring complementarity

In this section, we address the consequences of ignoring complementarity, as a function of k′; thus, we
concentrate on methods MIFS (β = 1), mRMR, and maxMIFS. The motivation for scanning k′ is that
it provides different levels of association between the already selected feature X and the candidate feature
X−k′Y . For small values of k′, X and X−k′Y are strongly associated, and the level of association decreases
as k′ increases.

Scanning k′ from 0 to +∞ defines three regions, each corresponding to a specific feature ordering. This
is shown in Figure 1, where k′ was scanned with a step size of 0.01, starting at 0.01. To complete the
discussion, we include the objective function values in the second step of the algorithms in Figure 2, and
the corresponding MBR2 values in Figure 3. Note that, at this step, the objective function takes the same
value for all candidate features and methods and MBR2 takes the same value for all methods.

For small values of k′, smaller than 0.565 for MIFS and maxMIFS, and than 0.575 for mRMR—region
(a)—the feature ordering is X , Z, Xdisc, X − k′Y . In this region, X − k′Y is chosen last due to a large
inter-feature redundancy with X . As shown in Figure 2, in this region, the objective function values of
X − k′Y and Xdisc at the second step are negative and smaller than that of Z, which explains why Z is
selected in second place. At the third step, the objective function values of X − k′Y and Xdisc are exactly
the same as in the second step for MIFS and maxMIFS, and only slightly different for mRMR. Thus, in this
region, the objective functions of X − k′Y are more negative than those of Xdisc, which explains why Xdisc

is selected in third place.
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k′ ≈ 0.575
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Figure 1: Regions associated with a specific ordering of the features, defined by the values of k′. In this
representation, k′ is defined through the line x−k′y = 0. For region (a), the ordering is {X,Z,Xdisc, X−k′Y };
for (b), it is {X,Z,X − k′Y,Xdisc}; and for (c), the ordering is already correct since X is chosen first and
X − k′Y second. For methods MIFS and maxMIFS (resp. mRMR), represented in the left (resp. right),
(a) is associated with 0 < k′ < 0.575 (resp. 0 < k′ < 0.565) and (b) with 0.575 < k′ < 2.115 (resp.
0.565 < k′ < 2.115). Region (c) is associated with k′ > 2.115 for the three methods.

For intermediate values of k′, smaller than 2.115, and larger than 0.565 for MIFS and maxMIFS and than
0.575 for mRMR—region (b)—the feature ordering is X , Z, X − k′Y , Xdisc. In this region, the objective
functions of X − k′Y are larger than those of Xdisc, but smaller than those of Z.

For large values of k′, larger than 2.115—region (c)—the correct feature ordering is achieved sinceX−k′Y
is selected in second place. Note that in this region, there are two possible orderings for Z and Xdisc, but
this issue is not relevant for our discussion.

The problem of these methods in regions (a) and (b) is due to the lack of the class-relevant redundancy
term in their objective functions, which expresses the complementarity effects. In fact, the association
between X and X − k′Y , as measured by MI(X − k′Y,X), grows significantly as k′ approaches 0, but so
does the class-relevant redundancy, which is given by MI(X − k′Y,X |Ck). Ignoring the compensation given
by the latter term leads to objective function values that can take negative values. Moreover, this explains
why the lower bound of 0 from Theorem 1, associated with the target objective function, is lost for these
methods. Also, in contradiction with the good properties of the target objective function, the objective
functions of these methods do not take the same (minimum) values at Xdisc and Z. The MBR2 values of
these methods (see Figure 3) confirm that the performance is very poor in regions (a) and (b): it is above
0.4 in region (a) and above 0.3 in region (b). These results show that ignoring complementarity is a severe
drawback that can lead to gross errors in the feature selection process.

Figure 2 also shows that results analogous of Theorem 4 do not hold for MIFS, mRMR, and maxMIFS.
In fact, the objective function at Xdisc, a redundant feature, is not necessarily the minimum; in particular,
this happens for small values of k′, where the objective function at X − k′Y takes lower values than that at
Xdisc.

6.4.2. Feature ordering

We now compare the feature ordering of all methods, for fixed k and k′. In order to place the methods in
a challenging situation, we use k and k′ values that maximize the MBR. Per (32) we need to maximize k and
per (30) we need to minimize k′. We choose for k′ the first value of the grid used in the context of Figure 1,

i.e. k′ = 0.01. In this case, k = tan(π−arctank′−10−6

2 ) = 199.985 and MBR(Ck, {X}) ≈ 0.498. Recall that,
since (30) holds, and therefore MI(Ck, X) > MI(Ck, X − k′Y ), X is always selected in first place.

Table 7 shows the feature ordering and the associated values of MBR2. The ordering of features relates to
the concrete values of the terms that compose the objective functions. These are provided in Table 8, which
contains the values of MI between each candidate feature and the class; Table 9, which contains the values
of MI between the different features; and Table 10, which contains the values of the class-conditional MI
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Figure 2: Evaluation of the objective function for the different candidate features in the second step of the
algorithms (MIFS, mRMR, and maxMIFS) depending on the value of k′.
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Figure 3: MBR2 for the different algorithms (MIFS, mRMR, and maxMIFS) depending on the value of k′.

For k′ < 2.115, MBR2 = π−arctan k′−10−6

2π using k = tan
(

(π − arctank′ − 10−6)/2
)

and (32); for k′ > 2.115,
the right second feature is chosen, X − k′Y , so that MBR2 = 0.

Table 7: Feature ordering and corresponding MBR2, for k = 199.985 and k′ = 0.01.

Methods Order of feature selection MBR2

MIM X X − k′Y Xdisc Z 0
MIFS (β = 1) X Z Xdisc X − k′Y 0.498

mRMR X Z Xdisc X − k′Y 0.498

maxMIFS X Z Xdisc X − k′Y 0.498

CIFE X X − k′Y Xdisc Z 0

JMI X X − k′Y Xdisc Z 0

CMIM X X − k′Y Z/Xdisc Xdisc/Z 0

JMIM X X − k′Y Xdisc Z 0

between the different input features. Note that, in Table 8, MI(Ck, X), MI(Ck, X−k′Y ), and MI(Ck, Xdisc)
are all shown as taking approximately the value 0, but actually MI(Ck, X) is the largest one.

Table 7 shows that all methods, except MIFS, mRMR, and maxMIFS, achieve an MBR2 of 0. However,
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Table 8: MI between the class and each input feature, for k = 199.985 and k′ = 0.01.

X X − k′Y Z Xdisc

MI(·, Ck) ≈ 0 ≈ 0 0 ≈ 0

Table 9: MI between pairs of input features, for k = 199.985 and k′ = 0.01.

MI(·, ·) X X − k′Y Z

X − k′Y 4.605
Z 0 0

Xdisc 0.693 0.686 0

Table 10: Class-conditional MI between pairs of input features, for k = 199.985 and k′ = 0.01.

MI(·, ·|Ck) X X − k′Y Z

X − k′Y 5.298
Z 0 0

Xdisc 0.693 0.689 0

the third step of the algorithm is only completely correct for CMIM. In fact, it should be equally likely to
choose Z or Xdisc, but CIFE, JMI, JMIM, and MIM select Xdisc first.

MIM suffers from redundancy ignored drawback. The fact that the selection is correct at the first two
steps of the feature selection process is meaningless; it only happens because MI(Ck, X − k′Y ) is slightly
larger than MI(Ck, Xdisc).

The methods that ignore complementarity, i.e. MIFS, mRMR, and maxMIFS, fail at the second step
of the feature selection process, by not selecting X − k′Y . For all methods, the objective function is 0 for
Z, MI(Ck, X − k′Y )−MI(X − k′Y,X) = −4.605 for X − k′Y , and MI(Ck, Xdisc)−MI(Xdisc, X) = −0.693
for Xdisc, which explains why Z is selected at this step. Adding the class-relevant redundancy term to
the objective functions, would make them take the value ln(2) for X − k′Y and 0 for Xdisc, leading to the
selection of X−k′Y . In fact, the class-relevant redundancy term is MI(X−k′Y,X |Ck) = 5.298 for X−k′Y ,
and MI(Xdisc, X |Ck) = 0.693 for Xdisc. Note that ln(2) is precisely the maximum of the target objective
function, which is achieved for fully relevant features (the case of X− k′Y ), and the minimum is 0, achieved
by irrelevant and redundant features (the cases of Z and Xdisc). Thus, accounting for the class-relevant
redundancy compensates the potentially large negative values associated with the inter-feature redundancy.

With the exception of CMIM, the methods that do not ignore complementarity, fail at the third step of
the feature selection process by preferring Xdisc over Z, as shown in Table 7.

As discussed in Section 5, CIFE suffers from overscaled redundancy drawback. At the third step of the
feature selection process, after selecting X and X − k′Y , the objective function for candidate feature Xi is

MI(Ck, Xi)−MI(Xi, X) +MI(Xi, X |Ck)−MI(Xi, X − k′Y ) +MI(Xi, X − k′Y |Ck), (33)

while the associated target objective function is

MI(Ck, Xi)−MI(Xi, {X,X − k′Y }) +MI(Xi, {X,X − k′Y }|Ck). (34)

Both objective functions take the value 0 for the candidate feature Z. For the candidate Xdisc, the target
objective function (34) can be written as

MI(Ck, Xi)−MI(Xi, X) +MI(Xi, X |Ck), (35)

given that MI(Xdisc, {X,X − k′Y }) = MI(Xdisc, X) and MI(Xdisc, {X,X − k′Y }|Ck) = MI(Xdisc, X |Ck).
Concerning the first condition, note that MI(Xi,S) = MI(Xdisc, {X,X−k′Y }) = H(Xdisc)−H(Xdisc|X,X−
k′Y ) = H(Xdisc)−H(Xdisc|X) = MI(Xdisc, X), since H(Xdisc|X) = 0 implies that H(Xdisc|X,X−k′Y ) = 0
also, by (16); a similar reasoning can be used to show that the second condition also holds.
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Thus, in the case of Xdisc, we see that, when comparing the objective function of CIFE, given by (33),
with the target objective function, given by (35), CIFE includes an extra part with two terms, −MI(Xi, X−
k′Y ) +MI(Xi, X − k′Y |Ck), which is responsible for increasing the redundancy scale. In our case, the extra
term takes the value −MI(Xdisc, X − k′Y ) +MI(Xdisc, X − k′Y |Ck) = −0.686+ 0.689 = 0.003; recall Tables
9 and 10. This is exactly the value of the objective function at Xdisc, since the remaining terms sum to 0,
which explains why Xdisc is selected before Z. To see that the remaining terms sum to 0, note that these
terms correspond exactly to the evaluation of the target objective function OF’, and recall that the target
objective function value must be 0 for a redundant feature.

The amount of overscaling is relatively modest in this example but, clearly, the problem gets worse as
S increases, since more terms are added to the objective function. We also note that, while in this case
the objective function has been overvalued, it could have equally been undervalued. This fact together with
the overscaling problem is what makes the objective function of CIFE not bounded, neither from below nor
from above.

JMI tried to overcome the problem of CIFE by introducing the scaling factor 1/|S| in the TMI approx-
imation. However, as discussed in Section 5, this leads to redundancy undervalued drawback. At the third
step of the feature selection process, the objective function of JMI is

MI(Ck, Xi)−
1

2
MI(Xi, X) +

1

2
MI(Xi, X |Ck)−

1

2
MI(Xi, X − k′Y ) +

1

2
MI(Xi, X − k′Y |Ck)

for the candidate Xi. Its value equals 0 for the candidate Z, but for candidate Xdisc it equals 0 − 0.5 ×
0.693 + 0.5× 0.693− 0.5× 0.689 + 0.5× 0.686 = 0.0015, which explains why Xdisc is selected before Z.

This results directly from the undervaluing of the terms MI(Xi,S) and MI(Xi,S|C) of the target ob-
jective function at Xi = Xdisc. In fact, MI(Xi,S) = MI(Xdisc, X) = 0.693, but JMI approximates it
by a smaller value, i.e. 1

2MI(Xdisc, X) + 1
2MI(Xdisc, X − k′Y ) = 1

2 × 0.693 + 1
2 × 0.686 = 0.6895. Simi-

larly, MI(Xdisc,S|Ck) = MI(Xdisc, X |Ck) = 0.693, but again JMI approximates it by a smaller value, i.e.
1
2MI(Xdisc, X |Ck) +

1
2MI(Xdisc, X − k′Y |Ck) =

1
2 × 0.693 + 1

2 × 0.689 = 0.691.
JMIM introduced an additional term in the objective function which, as discussed in Section 5, is

unimportant and may lead to confusion in the selection process—unimportant term approximated drawback.
At the third step of the selection process, the objective function of JMIM is

MI(Ck, Xi)−max {MI(Xi, X)−MI(Xi, X |Ck)−MI(Ck, X),

MI(Xi, X − k′Y )−MI(Xi, X − k′Y |Ck)−MI(Ck, X − k′Y )} ,

for candidate feature Xi. In this case, the objective function for candidate feature Z is

0−max {0− 0−MI(Ck, X), 0− 0−MI(Ck, X − k′Y )} ,

and for candidate Xdisc it is 0 − max {0.693− 0.693−MI(Ck, X), 0.686− 0.689−MI(Ck, X − k′Y )}. We
first note that MI(Ck, X) and MI(Ck, X − k′Y ) are both approximately 0, while MI(Ck, {X,X − k′Y }), the
quantity they try to approximate, takes the value ln(2). Since, per design of our experiment MI(Ck, X) >
MI(Ck, X − k′Y ), it turns out that the objective function of Z equals MI(Ck, X − k′Y ), and that of Xdisc

equals MI(Ck, X), leading to the selection of Xdisc. There are two observations that should be pointed
out. First, contrarily to the previous cases of CIFE and JMI, the objective function for Z takes a value
that is no longer according to the corresponding target objective function, which in this case should be
MI(Ck, {X,X − k′Y }) = ln(2). Second, the choice between the two features, Z and Xdisc, is being done by
two terms, MI(Ck, X) and MI(Ck, X − k′Y ), that try to approximate a term that does not depend on the
candidate features, MI(C,S), and therefore should take the same value for both features and not become a
deciding factor.

The results regarding MIM, CIFE, JMI, and JMIM provide counter-examples showing that theorems
analogous to Theorem 4 do not hold for these methods. Indeed, in all cases, the objective function at Xdisc,
a redundant feature, takes values different from the minimum of the corresponding objective function.

CMIM is the only method that performs correctly in the distributional setting. At the third step of the
feature selection process, the objective function is 0 for both Z and Xdisc. The latter result can be obtained
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from Theorem 4, since Xdisc is redundant given {X}. This can be confirmed numerically. The objective
function of CMIM at the third step of the feature selection process is

MI(Ck, Xi)−max {MI(Xi, X)−MI(Xi, X |Ck),MI(Xi, X − k′Y )−MI(Xi, X − k′Y |Ck)} ,

for candidate feature Xi. In this case, the objective function for candidate feature Z is 0, and the same
holds for Xdisc since 0 − max {0.693− 0.693, 0.686− 0.689} = 0. Note however that this does not mean
that CMIM always performs correctly. As discussed in Section 5.1, CMIM suffers from the problems of
redundancy undervalued and complementarity penalized, and Example 3 provides a case where CMIM
decides incorrectly.

7. Conclusions

This paper carried out an evaluation and a comparison of forward feature selection methods based on
mutual information. For this evaluation we selected methods representative of all types of feature selection
methods proposed in the literature, namely MIM, MIFS, mRMR, maxMIFS, CIFE, JMI, CMIM, and JMIM.
The evaluation was carried out theoretically, i.e. independently of the specificities of datasets and classifiers;
thus, our results establish unequivocally the relative merits of the methods.

Forward feature selection methods iterate step-by-step and select one feature at each step, among the
set of candidate features, the one that maximizes an objective function expressing the contribution each
candidate feature to the explanation of the class. In our case, the mutual information (MI) is used as the
measure of association between the class and the features. Specifically, the candidate feature selected at
each step is the one that maximizes the MI between the class and the set formed by the candidate feature
and the already selected features.

Our theoretical evaluation is grounded on a target objective function that the methods try to approximate
and on a categorization features according to their contribution to the explanation of the class. The features
are categorized as irrelevant, redundant, relevant, and fully relevant. This categorization has two novelties
regarding previous works: first, we introduce the important category of fully relevant features; second, we
separate non-relevant features in two categories of irrelevant and redundant features. Fully relevant features
are features that fully explain the class and, therefore, its detection can be used as a stopping criterion of
the feature selection process. Irrelevant and redundant features have different properties, which explains
why we considered them separately. In particular, we showed that a redundant feature will always remain
redundant at subsequent steps of the feature selection process, while an irrelevant feature may later turn into
relevant. An important practical consequence is that redundant features, once detected, may be removed
from the set of candidate features.

We derive upper and lower bounds for the target objective function and relate these bounds with the
feature types. In particular, we showed that fully relevant features reach the maximum of the target
objective function, irrelevant and redundant features reach the minimum, and relevant features take a value
in between. This framework (target objective function, feature types, and objective function values for each
feature type) provides a theoretical setting that can be used to compare the actual feature selection methods.
Under this framework, the correct decisions at each step of the feature selection process are to select fully
relevant features first and only afterwards relevant features, leave irrelevant features for future consideration
(since they can later turn into relevant), and discard redundant features (since they will remain redundant).

Besides the theoretical framework, we defined a distributional setting, based on the definition of specific
class, features, and a performance metric, designed to highlight the various deficiencies of methods. The
setting includes four features, each belonging to one of the feature types defined above, and a class with two
possible values. As performance metric, we introduced the minimum Bayes risk, a theoretical measure that
does not rely on specific datasets and classifiers. The metric corresponds to the minimum total probability
of misclassification for a certain class and set of selected features.

Actual feature selection methods are based on approximations of the target objective function. The
target objective function comprises three terms, expressing the association between the candidate feature
and the class (the relevance), the association between the candidate feature and the already selected features
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(the inter-feature redundancy), and the association between the candidate feature and the already selected
features given the class (the class-relevant redundancy). The class-relevant redundancy is sometimes coined
as the good redundancy, since it expresses the contribution of the candidate feature to the explanation
of the class, when taken together with already selected features. We also say that this term reflects the
complementarity between the candidate and the already selected features with respect to the class.

Method MIM was the first method to be proposed, and completely ignored redundancy. Methods
MIFS, mRMR, and maxMIFS ignored complementary effects, i.e. they did not include the class-relevant
redundancy term in their objective functions. These methods lose both the upper and lower bounds of the
target objective function and, more importantly, lose the connection between the bounds and the specific
feature types, i.e. it is no longer possible to guarantee that fully relevant and relevant features are selected
before redundant and irrelevant features, or that fully relevant come before relevant.

Methods CIFE, JMI, CMIM, and JMIM considered complementarity effects, but in different ways. The
main difference between these methods lies in the approximation of the redundancy terms (the ones related
with inter-feature and class-relevant redundancies). These terms depend on the complete set of already
selected features and are difficult to estimate. To overcome this difficulty, the methods approximate the
redundancy terms by a function of already selected features taken individually. In particular, CIFE uses
the sum of the associations with the individual already selected features, JMI uses the average, and both
CMIM and JMIM use the maximum. In relation to other methods, JMIM introduced an extra term in its
objective function, which is unimportant and leads to confusion in the selection process. The approximations
of the remaining methods lead to the following problems: CIFE overscales the redundancy, JMI undervalues
the redundancy, and CMIM undervalues the redundancy in a lower extent than JMI but penalizes the
complementarity. The consequences of these approximations are that CIFE loses both the upper and lower
bound of the target objective function, JMI and CMIM preserve only the lower bound, and JMIM preserves
only the upper bound. Moreover, as in the case of the methods that ignore complementary, the methods lose
the connection between the bounds of the target objective function and the specific feature types, except in
a specific case for CMIM. The drawbacks of the various methods were summarized in Table 2.

These results show that, for all methods, it is always possible to find cases where incorrect decisions are
produced, and we have provided several examples throughout the paper and as part of our distributional
setting. However, the drawbacks of the methods have different degrees of severity. MIM is a very basic
method that we only considered for reference purposes. Ignoring complementary is a severe drawback that
can lead to gross errors in the selection process. Thus, MIFS, mRMR, and maxMIFS, should be avoided.
Regarding the methods that include complementarity effects, CIFE and JMIM should also be avoided, CIFE
because its objective function is unbounded both inferiorly and superiorly due to the overscaled redundancy
drawback, and JMIM because its objective function includes a bad approximation of an unimportant term
that leads to confusion. Thus, the methods that currently have superior performance are JMI and CMIM.
There is no clear-cut decision between these two methods, since both present drawbacks of equivalent
degree of severity. JMI undervalues both the inter-feature and the class-relevant redundancy. CMIM also
undervalues both types of redundancy. However, it tends to approximate better the inter-feature redundancy,
but worse the class-relevant redundancy due to the problem of complementarity penalized.

A. Computation of the terms in the tables of Section 6.3

In this section, we derive the expressions required for completing the tables given in Section 6.3.

A.1. Values in Table 3

Univariate differential entropies (continuous features).. The entropy of X is obtained from Example 1, in
Section 2.2, considering n = 1. As for the entropy of the other continuous feature, X − k′Y , the same
expression can be used since it is widely known that linear or affine combinations of independent univariate
features following normal distributions also follow normal distributions. All we need are the variances of
these two features. The variance ofX is 1 and the variance ofX−k′Y is 1+k

′2. Therefore, the corresponding
entropies are h(X) = 1

2 ln(2πe) and h(X − k′Y ) = 1
2 ln(2πe(1 + k

′2)), respectively.
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α

X

Y

Figure 4: Angle between two rays starting from the origin; α/(2π) is the probability that (X,Y ) belongs
to the region delimited by the two rays, when X and Y are two independent random variables following
standard normal distribution.

Univariate entropies (discrete features and class).. Concerning Z, applying Definition 1, H(Z) = ln(2).
We now discuss the values ofH(Xdisc) andH(Ck). Given that X and Y are independent and individually

follow standard normal distributions, the joint density function of (X,Y ) is

fX,Y (x, y) =
1

2π
exp(−(x2 + y2)) = φ(x)φ(y).

Therefore, the density at point (x, y) only depends on the distance from this point to the origin,
√

x2 + y2,
in the context of the two-dimensional space defined by (X,Y ). As a consequence, the probability of (X,Y )
taking values in a region limited by two rays having the origin as starting point is given by α/(2π), with α
denoting the angle between the two rays, as illustrated in Figure 4. The circle is dashed in the figure since
we can consider an infinite radius.

Considering an infinite radius is in fact what we need. Both Ck and Xdisc are characterized by a partition
of R2 in two regions separated by a line that crosses the origin. Therefore, each region covers an angle α = π,
so that each region has associated probability 1/2. Thus, Ck and Xdisc follow a Bernoulli distribution with
success probability 1/2, just as Z. As a result, H(Ck) = H(Xdisc) = H(Z) = ln(2).

A.2. Values in Table 4

Continuous features.. In order to derive MI(Ck, X) and MI(Ck, X − k′Y ), expression (10) should be, in
general, preferred over (11). In fact, the entropy of a feature given the class can be obtained through the
corresponding probability density functions; recall (3). These, in turn, are possible to derive easily in our
setting. Therefore, we calculate the MI of interest using the representation

MI(Xi, Ck) = h(Xi)−
1
∑

j=0

∫

fXi|Ck=j(u)P (Ck = j) ln fXi|Ck=j(u)du, (36)

where P (Ck = j) = 1/2, j = 0, 1. It all comes down to determining fXi|Ck=j(u), j = 0, 1, as h(Xi) is known
(vide Table 3).

Given that the features follow a normal distribution, the conditional distribution of interest is the well-
known skew-normal distribution [vide 22, Ch. 5]. Therefore, we only need to determine, in each case, the
parameters of the mentioned distribution; recall (31).
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In the case of MI(Ck, X), it was proved [22, Ch. 5] that X |Ck = j, j = 0, 1, follow skew-normal

distributions with parameters (0, 1, (−1)j+1

k
); i.e. X |Ck = j ∼ SN(0, 1, (−1)j+1

k
), j = 0, 1.

As for MI(Ck, X−k′Y ), we use the procedure used for the determination of MI(Ck, X) [see 22, Ch. 5] to

prove that X−k′Y |Ck = j ∼ SN(0,
√
1 + k′2, (−1)j+1(1−kk′

k+k′
)), j = 0, 1. The procedure consists of obtaining

the conditional distribution functions of the feature given the two different possible values of the class, taking
then the corresponding derivatives in order to obtain the associated probability density functions.

In this context, we will need the probability density function fX+kY,X−k′Y (z, w). This can be obtained
from the joint density of the pair (X,Y ). In fact, there is a way to obtain the probability density function of
g(X,Y ), with g being a bijective function, from the probability density function of (X,Y ), using the general
well-known expression [47, Ch. 2]

fg(X,Y )(z, w) = fX,Y (g
−1(z, w))

∣

∣

∣

∣

dg−1(z, w)

d(z, w)

∣

∣

∣

∣

, (37)

where |dg
−1(z,w)
d(z,w) | denotes the absolute value of the Jacobian of the inverse of the function g.

As for the inverse function of the transformation g(X,Y ) = (X + kY,X − k′Y ), it is given by

g−1(z, w) =

(

kz + k′w

k + k′
,
w − z

k + k′

)

.

The absolute value of its Jacobian is |1/(k + k′)|. As both k and k′ are non-negative, this can be simply
written as 1/(k + k′).

As a result, we have

fX+kY,X−k′Y (z, w) =
1

k + k′
φ

(

kz + k′w

k + k′

)

φ

(

w − z

k + k′

)

, (z, w) ∈ R
2.

We can now proceed with the derivation of the distribution functions of interest. From now on, the
distribution function of Z at z will be represented by FZ(z).
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We start with the case Ck = 0:

FX−k′Y |X+kY <0(u) = P (X − k′Y ≤ u|X + kY < 0)

=
P (X − k′Y ≤ u,X + kY < 0)

P (X + kY < 0)

= 2

∫ 0

−∞

∫ u

−∞
fX+kY,X−k′Y (z, w)dw dz

= 2

∫ 0

−∞

∫ u

−∞

1

k + k′
φ(

kz + k′w

k + k′
)φ(

w − z

k + k′
)dw dz

= 2

∫ 0

−∞

∫ u

−∞

1

k + k′
1

2π
exp

{

−1

2

(k2 + 1)z2

(k + k′)2

}

exp

{

−1

2
(k′2 + 1)[w − z(1− kk′)

1 + k′2
]2+

z2[
(1 + k2)(1 + k′2)− (1− kk′)2

1 + k′2
]

}

dw dz

=

∫ u

−∞

1√
π
exp

{

−1

2

(k + k′)2z2

(k + k′)2

}
∫ 0

−∞

1√
π(k + k′)

×

exp{−1

2

(1 + k′2)(w − z(1−kk′)
1+k′2 )2

(k + k′)2
}dz dw

=
√
2

∫ u

−∞

1√
2π

√
2√

1 + k′2

∫ 0

−∞

1
√
2π(k+k′)√
1+k′2

exp

{

−1

2

z2(k + k′)2

1 + k′2

}

dz dw

=

√
2√

1 + k′2

∫ u

−∞

1√
2π

√
1 + k′2(k + k′)

exp

{

−1

2

z2

1 + k′2

}

Φ(− (1− kk′)z

(k − k′)
√
1 + k′2

)dz

=

∫ u

−∞

2√
1 + k′2

φ(
z√

1 + k′2
)Φ(− (1− kk′)z

(k − k′)
√
1 + k′2

)dz.

Hence, X − k′Y |X + kY < 0 ∼ SN(0,
√
1 + k′2, −(1−kk′)

k+k′
).

Some auxiliary steps were required in the first step of the derivation above in which 1
k+k′

φ(kz+k′w
k+k′

)φ( z−w
k−k′

)
was transformed significantly. The main technicality about such steps was the algebraic manipulation

(kz + k′w)2 + (w − z)2

= (1 + k2)z2 − 2wz(1− kk′) + (k′2 + 1)w2

= (1 + k′2){w2 − 2w
z(1− kk′)

1 + k′2
+ [

z(1− kk′)

1 + k′2
]2 − [

z(1− kk′)

1 + k′2
]2}+ (1 + k2)z2

= (1 + k′2){[w − z(1− kk′)

1 + k′2
]2 − [z(1− kk′)]2

(1 + k′2)2
}+ (1 + k2)z2

= (1 + k′2)[w − z(1− kk′)

1 + k′2
]2 + z2

(k + k′)2

1 + k′2
.

As for the conditional case in which Ck = 1, we provide a briefer version of the computation as most
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steps are the same as for Ck = 0.

FX−k′Y |X+kY ≥0(u)

= P (X − k′Y ≤ u|X + kY ≥ 0)

=
P (X − k′Y ≤ u,X + kY ≥ 0)

P (X + kY ≥ 0)

= 2

∫ +∞

0

∫ u

−∞
fX+kY,X−k′Y (z, w)dw dz

= 2

∫ +∞

0

∫ u

−∞

1

k + k′
φ(

kz + k′w

k + k′
)φ(

w − z

k + k′
)dw dz

= 2

∫ 0

−∞

∫ u

−∞

1

k + k′
1

2π
exp

{

−1

2

(k2 + 1)z2

(k + k′)2

}

exp

{

−1

2
(k′2 + 1)[w − z(1− kk′)

1 + k′2
]2+

z2[
(1 + k2)(1 + k′2)− (1− kk′)2

1 + k′2
]

}

dw dz

=

∫ u

−∞

2√
1 + k′2

φ(
z√

1 + k′2
)[1− Φ(− (1− kk′)z

(k − k′)
√
1 + k′2

)]dz.

Given the symmetry of the normal distribution, we know that (1 − Φ(−x)) = Φ(x). This allows reducing
the expression to

∫ u

−∞

2√
1 + k′2

φ(
z√

1 + k′2
)Φ(

(1 + kk′)z

(k − k′)
√
1 + k′2

)dz.

Thus, X − k′Y |X + kY ≥ 0 ∼ SN
(

0,
√
1 + k′2, (1−kk′)

k+k′

)

.

Discrete features.. In order to obtain MI(Ck, Xdisc), we use (7). We have MI(Ck, Xdisc) = H(Ck) +
H(Xdisc) − H(Ck, Xdisc). We only need to compute H(Ck, Xdisc) since the required univariate entropies
are known from Table 3. From Definition 1, this requires obtaining the probabilities of the four possible
combinations of values associated with the pair (Ck, Xdisc). We represent the regions associated with such
values in Figure 5, considering the two-dimensional space defined by the pair (X,Y ). Considering the rea-
soning used to obtain H(Ck) and H(Xdisc), associated with Figure 4, we only need the four angles covered
by the associated four regions in order to compute their corresponding probabilities. The determination of
such angles only requires the knowledge of θ, represented in Figure 5 since the remaining angles consist of
its supplementary, its opposite, and the opposite of its supplementary.

In the end, there are two angles (associated with regions (a) and (b) in Figure 5) whose value is arctank,
while the other two (associated with regions (c) and (d) in Figure 5) have the value (π− arctank), implying
that

P (Xdisc = u,Ck = j) =

{

π−arctan k
2π , u = 0, j = 0 and u = 1, j = 1

arctank
2π , u = 0, j = 1 and u = 1, j = 0

. (38)

As a result,

H(Ck, Xdisc) = −2×
(

arctank

2π
ln(

arctank

2π
) + (

1

2
− arctank

2π
) ln(

1

2
− arctank

2π
)

)

.

We obtain

MI(Ck, Xdisc) = 2 ln(2) +
arctank

π
ln(

arctank

2π
) + (1− arctank

π
) ln(

1

2
− arctank

2π
).

As for MI(Ck, Z), its value is 0 since Ck and Z are independent.
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(c)

(b)

(a)

(d)
θ

X

Y

Figure 5: Four regions associated with the joint distribution of (Xdisc, Ck), where θ = arctank, when X and
Y are two independent random variables following standard normal distribution.

A.3. Values in Table 5

We start with MI(X,Xdisc). Xdisc is redundant given {X}, so that H(Xdisc|X) = 0. Additionally,
H(Xdisc) = ln(2) (vide Table 3), so that, by (4), MI(X,Xdisc) = H(Xdisc)−H(Xdisc|X) = ln(2)−0 = ln(2).

As for MI(X−k′Y,Xdisc), we first note that the deduction of MI(Ck, X) [22, Ch. 5] can be similarly done
for the case where k in (28) is allowed to be negative, from which one would conclude that MI(C−k′ , X) =
MI(Ck′ , X). In turn, Xdisc and X − k′Y are obtained from Ck′ and X , respectively, by rotating k′ degrees
anticlockwise, considering the two-dimensional space defined by the pair (X,Y ). As a result, MI(Xdisc, X −
k′Y ) = MI(Ck′ , X). In fact, MI is invariant under one-to-one transformations [see 48, for more details].
Finally, by transitivity, MI(X − k′Y,Xdisc) = MI(Ck′ , X).

As for MI(X,X − k′Y ), we use (7). We have MI(X,X − k′Y ) = h(X) + h(X − k′Y ) − h(X,X − k′Y ).
We only need to compute h(X,X − k′Y ) since the univariate entropies are known (vide Table 3). As both
features follow normal distributions, the joint distribution is a bivariate normal distribution, whose entropy
depends on the determinant of the covariance matrix, as described in Example 1. The value of the mentioned
determinant is k′2, so that MI(X,X − k′Y ) = 1

2 ln
(

1 + 1/k′2
)

.
The MI terms involving Z do not require any calculation given that Z is independent of X , Xdisc, and

X − k′Y , implying that MI(Z,X) = MI(Z,Xdisc) = MI(Z,X − k′Y ) = 0.

A.4. Values in Table 6

For deriving MI(X,Xdisc|Ck), we use (12). We have MI(X,Xdisc|Ck) = H(Xdisc|Ck)−H(Xdisc|X,Ck) =
0. Noting that H(Xdisc|X,Ck) = 0 since H(Xdisc|X) = 0, using (16), we have MI(X,Xdisc|Ck) =
H(Xdisc|Ck). In turn, H(Xdisc|Ck) = H(Xdisc)−MI(Xdisc, Ck), where the valuesH(Xdisc) and MI(Xdisc, Ck)
have been obtained; recall Tables 3 and 5, respectively. We conclude that

MI(X,Xdisc|Ck) = −arctank

π
ln(

arctank

π
)− (1− arctank

π
) ln(1− arctank

π
).

Concerning MI(X,X−k′Y |Ck), we use (13). We have MI(X,X−k′Y |Ck) = h(X |Ck)+h(X−k′Y |Ck)−
h(X,X − k′Y |Ck). The first two terms were obtained in the context of the determination of MI(X,Ck) and
MI(X − k′Y |Ck); they consist of the second term in (36).

As in the computation of class-conditional entropies for univariate continuous features, recall (36), we
only need the joint probability density functions of (X,X − k′Y ) conditioned on the two possible values of
the class to determine h(X,X−k′Y |Ck). These are obtained from the corresponding conditional probability
density functions associated with the pair (X,Y ), using (37).
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We first need to derive the probability density functions associated with the distributions (X,Y )|Ck = j,
j = 0, 1. These are obtained starting from the corresponding distribution functions, as done in the context
of the determination of the probability density functions needed in sequence of (36).

We start with Ck = 1. We have

F(X,Y )|Ck=1(x, y) =
P (X ≤ x, Y ≤ y,X + kY ≥ 0)

P (X + kY ≥ 0)

=2P (X ≤ x, Y ≤ y,X + kY ≥ 0).

In order to proceed, we separate the expression in two cases. In fact, if x < −ky, the value is simply 0.
If, instead, x ≥ −ky, we have

2P (X ≤ x, Y ≤ y,X + kY ≥ 0) =2

∫ x

−∞

∫ y

−u
k

φ(u)φ(v)dv du

=2

∫ x

−∞
φ(u)[Φ(v) − Φ(−u

k
)]du

=2Φ(y)Φ(x)− FSN(0,1,− 1
k
)(x).

Thus, the corresponding density is given by

f(X,Y )|Ck=1(x, y) =

{

2φ(y)φ(x), x ≥ −ky
0, x < −ky

.

We now make the same type of deduction for Ck = 0. We have

F(X,Y )|Ck=0(x, y) =
P (X ≤ x, Y ≤ y,X + kY < 0)

P (X + kY < 0)

=2P (X ≤ x, Y ≤ y,X + kY < 0).

If x < −ky, we obtain

2P (X ≤ x, Y ≤ y,X + kY < 0) =2

∫ x

−∞

∫ y

−∞
φ(u)φ(v)dv du

=2Φ(y)Φ(x).

If, instead, x ≥ −ky, we have

2P (X ≤ x, Y ≤ y,X + kY ≥ 0) =2

[

∫ x

−∞

∫ y

−∞
φ(u)φ(v)du dv −

∫ x

−∞

∫ y

−u
k

φ(u)φ(v)dv du

]

=2Φ(y)Φ(x)− [2Φ(y)Φ(x)− FSN(0,1,− 1
k
)(x)]

=FSN(0,1,− 1
k
)(x).

Thus, the corresponding density is given by

f(X,Y )|Ck=0(x, y) =

{

0, x ≥ −ky
2φ(y)φ(x), x < −ky

.

We can now obtain fX,X−k′Y (u, v) using (37). In this case, g−1(z, w) = (z, z−w
k′

). The determinant
of the corresponding Jacobian is 1/k′. Therefore, we have f(X,X−k′Y )|Ck=c(u, v) = f(X,Y )|Ck=c(u,

u−v
k′

) 1
k′
,

c = 0, 1. Thus, we obtain

f(X,X−k′Y )|Ck=1(u, v) =

{

2φ(u)φ(v−u
k′

) 1
k′
, u > k

k′+k
v

0, u ≤ k
k′+k

v
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and

f(X,X−k′Y )|Ck=0(u, v) =

{

0, u > k
k′+k

v

2φ(u)φ(v−u
k′

) 1
k′
, u ≤ k

k′+k
v

,

where we note that φ(v−u
k′

) 1
k′

can be also seen as the density for a normal distribution with parameters
(u, k′2) evaluated at v.

We have

h(X,X − k′Y |Ck = 1) = −
∫ +∞

−∞

∫ +∞

k

k′+k
v

2φ(u)φ(
v − u

k′
)
1

k′
ln(2φ(u)φ(

v − u

k′
)
1

k′
)dv du

and

h(X,X − k′Y |Ck = 0) = −
∫ +∞

−∞

∫ k

k′+k
v

−∞
2φ(u)φ(

v − u

k′
)
1

k′
ln(2φ(u)φ(

v − u

k′
)
1

k′
)dv du.

This implies that

h(X,X − k′Y |Ck) = −
∫ +∞

−∞

∫ +∞

−∞
φ(u)φ(

v − u

k′
)
1

k′
ln(2φ(u)φ(

v − u

k′
)
1

k′
)dv du.

The part inside the logarithm can be re-written considering the explicit expression of the density of a
standard normal distribution. We have

ln(2φ(u)φ(
v − u

k′
)
1

k′
) = ln(

1

πk′
exp(− 1

2k′2
[(1 + k′)u2 − 2uv + v2]))

= − ln(πk′)− 1

2k′2
[(1 + k′)u2 − 2uv + v2].

We can still write this as

h(X,X − k′Y |Ck) =

∫ +∞

−∞

∫ +∞

−∞
φ(u)φ(v)[ln(πk′) +

1

2k′2
[(1 + k′)u2 − 2uv + v2]]dv du.

The final result is ln(πk′) + 1
2 + 1

2 = lnπ + ln k′ + 1. In fact, the first term is a double integral in the
whole space of a probability density function, associated with (X,Y ), times a constant, so that the result
is such constant, ln(πk′); while the remaining terms are also easy to obtain since they consist of constants
multiplied with first and second order moments from the normal distribution with parameters (u, k′).

As for MI(X−k′Y,Xdisc|Ck), we compute it, using (12), through its representationMI(X−k′Y,Xdisc|Ck) =
h(X − k′Y |Ck)− h(X − k′Y |Xdisc, Ck). Note that h(X − k′Y |Ck) has already been derived, in the context
of the determination of MI(X − k′Y,Ck); recall (36). Thus, we only need to derive h(X − k′Y |Xdisc, Ck).

We need to obtain fX−k′Y |Xdisc=u,Ck=j(v) for each possible combination of pairs (u, j). We first note
that

fX−k′Y |Xdisc=u,Ck=j(v) =
d

dv
FX−k′Y |Xdisc=u,Ck=j(v)

=
d

dv

P (X − k′Y ≤ v,Xdisc = u,Ck = j)

P (Xdisc = u,Ck = j)

=
1

P (Xdisc = u,Ck = j)

d

dv
P (X − k′Y ≤ v,Xdisc = u,Ck = j).

The values P (Xdisc = u,Ck = j), u = 0, 1 and j = 0, 1, can be found in (38).
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Therefore, we only need to obtain P (X − k′Y ≤ v,Xdisc = u,Ck = j). We start with u = 1 and j = 1.
We have to split in two cases. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 1)

=

∫ 0

− v

k′+k

∫ v+k′z

−kz

φ(w)φ(z)dw dz +

∫ +∞

0

∫ v+k′z

0

φ(w)φ(z)dz dw

=

∫ 0

− z

k′+k

φ(z)[Φ(v + k′z)− Φ(−kz)]dz +

∫ +∞

0

φ(z)[Φ(v + k′z)− 1

2
]dz

=

∫ 0

− v

k′+k

φ(z)Φ(v + k′z)dz − 1

2
[FSN(0,1,−k)(0)− FSN(0,1,−k)(−

v

k′ + k
)]

+

∫ +∞

0

φ(z)Φ(v + k′z)dz − 1

4

=

∫ +∞

− v

k′+k

φ(z)Φ(v + k′z)dz − 1

2
FSN(0,1,−k)(0) +

1

2
FSN(0,1,−k)(−

v

k′ + k
)− 1

4
.

In turn, for v < 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 1)

=

∫ +∞

− v

k′

∫ v+k′z

0

φ(w)φ(z)dz dw

=

∫ +∞

− v

k′

φ(z)[Φ(v + k′z)− 1

2
]dz

=

∫ +∞

− v

k′

φ(z)Φ(v + k′z)dz − Φ(
v

k′
).

We now need to take the derivative of the two expressions with respect to v to obtain the corresponding
conditional density functions. In the case of v ≥ 0,

d

dv

[

∫ +∞

− v

k′+k

φ(z)Φ(v + k′z)dz − 1

2
FSN(0,1,−k)(0) +

1

2
FSN(0,1,−k)(−

v

k′ + k
)− 1

4

]

=

∫ +∞

− v

k′+k

φ(z)φ(v + k′z)dz +
1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k

− 1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k

=

∫ +∞

− v

k′+k

φ(z)φ(v + k′z)dz;

while, for v < 0,

d

dv

[

∫ +∞

− v

k′

φ(z)Φ(v + k′z)dz − 1

2
Φ(

v

k′
)

]

=

∫ +∞

− v

k′

φ(z)φ(v + k′z)dz +
1

2
φ(

v

k′
)
1

k′
− 1

2
φ(

v

k′
)
1

k′

=

∫ +∞

− v

k′

φ(z)φ(v + k′z)dz.
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Note that the following important result [49, Ch. 3] was required in order to obtain both final expressions
above:

d

dx

∫ b(x)

a(x)

g(x, y)dy =

∫ b(x)

a(x)

dg(x, y)

dx
dy + g(x, b(x))b′(x) − g(x, a(x))a′(x). (39)

This result was applied to d
dv

∫ +∞
− v

k′+k

φ(z)Φ(v+k′z)dz, in the expression for v ≥ 0, and also to d
dv

∫ +∞
− v

k′

φ(z)Φ(v+

k′z)dz, concerning the case v < 0.
The desired probability density function is

fX−k′Y |Xdisc=1,Ck=1(v) =







2π
π−arctank

∫ +∞
− v

k′+k

φ(z)φ(v + k′z)dz, v ≥ 0

2π
π−arctank

∫ +∞
− v

k′

φ(z)φ(v + k′z)dz, v < 0
.

We now consider u = 0 and j = 1. We have to split again in two cases. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 1) =

∫ +∞

0

∫ 0

−kz

φ(w)φ(z)dz dw

=

∫ +∞

0

φ(z)[
1

2
− Φ(−kz)]dz

=
1

2
FSN(0,1,−k)(0)−

1

4
.

For v < 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 1)

=

∫ − v

k′

− v

k′+k

∫ v+k′z

−kz

φ(w)φ(z)dw dz +

∫ +∞

− v

k′

∫ 0

−kz

φ(w)φ(z)dz dw

=

∫ − v

k′

− v

k′+k

φ(z)[Φ(v + k′z)− Φ(−kz)]dz +

∫ +∞

− v

k′

φ(z)[
1

2
− Φ(−kz)]dz dw

=

∫ − v

k′

− v

k′+k

φ(z)Φ(v + k′z)dz − 1

2
[FSN(0,1,−k)(−

v

k′
)− FSN(0,1,−k)(−

v

k′ + k
)] +

1

2
[1− Φ(− v

k′
)]

− 1

2
[1− FSN(0,1,−k)(−

v

k′
)]

=

∫ − v

k′

− v

k′+k

φ(z)Φ(v + k′z)dz +
1

2
FSN(0,1,−k)(−

v

k′ + k
) +

1

2
Φ(

v

k′
).

We now need to take the derivative of the two expressions with respect to v to obtain the corresponding
conditional density functions. In the case of v ≥ 0, it is simply 0 since there is no dependency on v. As for
v < 0,

d

dv

[

∫ − v

k′

− v

k′+k

φ(z)Φ(v + k′z)dz +
1

2
FSN(0,1,−k)(−

v

k′ + k
) +

1

2
Φ(

v

k′
)

]

=

∫ − v

k′

− v

k′+k

φ(z)φ(v + k′z)dz +
1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k
− 1

2
φ(

v

k′
)
1

k′

− 1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k
+

1

2
φ(

v

k′
)
1

k′

=

∫ − v

k′

− v

k′+k

φ(z)φ(v + k′z)dz.
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Once again, (39) was applied, in this case to
∫ − v

k′

− v

k′+k

φ(z)Φ(v + k′z)dz.

The desired probability density function is

fX−k′Y |Xdisc=0,Ck=1(v) =

{

0, v ≥ 0
2π

arctank

∫ − v

k′

− v

k′+k

φ(z)φ(v + k′z)dz, v < 0
.

We now consider u = 1 and j = 0. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 0)

=

∫ − v

k′+k

− v

k′

∫ v+k′z

0

φ(w)φ(z)dw dz +

∫ 0

− v

k′+k

∫ −kz

0

φ(w)φ(z)dz dw

=

∫ − v

k′+k

− v

k′

φ(z)[Φ(v + k′z)− 1

2
]dz +

∫ 0

− v

k′+k

φ(z)[Φ(−kz)− 1

2
]dz dw

=

∫ − v

k′+k

− v

k′

φ(z)Φ(v + k′z)dz − 1

2
[Φ(− v

k′ + k
)− Φ(− v

k′
)]

+
1

2
[FSN(0,1,−k)(0)− FSN(0,1,−k)(−

v

k′ + k
)]− 1

2
Φ(

v

k′ + k
)

=

∫ − v

k′+k

− v

k′

φ(z)Φ(v + k′z)dz − 1

2
Φ(

v

k′ + k
)

+
1

2
FSN(0,1,−k)(0)−

1

2
FSN(0,1,−k)(−

v

k′ + k
).

As for the case v < 0, P (X − k′Y ≤ v,Xdisc = 1, Ck = 0) = 0.
We now need to take the derivative with respect to v of the expression obtained for v ≥ 0 (the derivative

of the one for v < 0 is 0) to obtain the corresponding conditional density functions. We have

d

dv

[

∫ − v

k′+k

− v

k′

φ(z)Φ(v + k′z)dz − 1

2
Φ(− v

k′ + k
) +

1

2
FSN(0,1,−k)(0)−

1

2
FSN(0,1,−k)(−

v

k′ + k
)

]

=

∫ − v

k′+k

− v

k′

φ(z)φ(v + k′z)dz − 1

2
φ(− v

k′ + k
)− 1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k

+
1

2
φ(− v

k′ + k
) +

1

2
fSN(0,1,−k)(−

v

k′ + k
)

1

k′ + k

=

∫ − v

k′+k

− v

k′

φ(z)φ(v + k′z)dz.

We again applied (39), in this case to
∫ − v

k′+k

− v

k′

φ(z)Φ(v + k′z)dz.

The desired probability density function is

fX−k′Y |Xdisc=1,Ck=0(v) =

{

2π
π−arctan k

∫ − v

k′+k

− v

k′

φ(z)φ(v + k′z)dz, v ≥ 0

0, v < 0
.
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We finally consider u = 0 and j = 0. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 0)

=

∫ 0

−∞

∫ +∞

−∞
φ(w)φ(z)dw dz −

∫ +∞

0

∫ 0

−kz

φ(w)φ(z)dz dw

−
∫ − v

k′

−∞

∫ 0

v+k′z

φ(w)φ(z)dz dw

=
1

2
−
∫ 0

−∞
φ(z)

[

Φ(−kz)− 1

2

]

dz −
∫ − v

k′

−∞

[

1

2
− Φ(v + k′z)

]

φ(z)dz

=
3

4
− 1

2
FSN(0,1,−k)(0)−

1

2
Φ
(

− v

k′

)

+

∫ − v

k′

−∞
Φ(v + k′z)φ(z)dz.

As for the case v < 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 0)

=

∫ − v

k′+k

−∞

∫ v+k′z

−∞
φ(w)φ(z)dw dz +

∫ +∞

− v

k′+k

∫ −kz

−∞
φ(w)φ(z)dz dw

=

∫ − v

k′+k

−∞
Φ(v + k′z)φ(z)dw dz +

∫ +∞

− v

k′+k

Φ(−kz)φ(z)dz

=

∫ − v

k′+k

−∞
Φ(v + k′z)φ(z)dz +

1

2
− 1

2
FSN(0,1,−k)

(

− v

k′ + k

)

.

We again need to take the derivative of the two expressions with respect to v to obtain the corresponding
conditional density functions. In the case of v ≥ 0,

d

dv

[

1

4
+

1

2
FSN(0,1,k)(0)−

1

2
Φ(− v

k′
) +

∫ v

k′

−∞
Φ(v + k′z)φ(z)dz

]

=

∫ v

k′

−∞
φ(v + k′z)φ(z)dz − 1

2
φ(− v

k′
)
1

k′
+

1

2
φ(− v

k′
)
1

k′

=

∫ v

k′

−∞
φ(z)φ(v + k′z)dz;

while, for v < 0,

d

dv

[

∫ − v

k′+k

−∞
Φ(v + k′z)φ(z)dz +

1

2
− 1

2
FSN(0,1,−k)(−

v

k′ + k
)

]

=

∫ − v

k′+k

−∞
φ(z)φ(v + k′z)dz − 1

2
fSN(0,1,−k)(−

v

k′ + k
)

v

k′ + k

+
1

2
fSN(0,1,−k)(−

v

k′ + k
)

v

k′ + k

=

∫ − v

k′+k

−∞
φ(z)φ(v + k′z)dz.

We applied (39) to
∫ v

k′

−∞ Φ(v + k′z)φ(z)dz and
∫ − v

k′+k

−∞ Φ(v + k′z)φ(z)dz.
The desired probability density function is

fX−k′Y |Xdisc=0,Ck=0(v) =

{

2π
π−arctank

∫ v

k′

−∞ φ(z)φ(v + k′z)dz, v ≥ 0

2π
π−arctan k

∫ − v

k′+k

−∞ φ(z)φ(v + k′z)dz, v < 0
.
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We can finally obtain an expression for h(X − k′Y |Xdisc, Ck):

−π − arctank

2π

(

∫ 0

−∞
(

∫ +∞

− v

k′

2π

π − arctank
ζ(z, v)dz) ln(

∫ +∞

− v

k′

2π

π − arctank
ζ(z, v)dz)dv+

∫ +∞

0

(

∫ +∞

− v

k′+k

2π

π − arctank
ζ(z, v)dz) ln(

∫ +∞

− v

k′+k

2π

π − arctank
ζ(z, v)dz)dv+

∫ 0

−∞
(

∫ v

k′+k

−∞

2π

π − arctank
ζ(z, v)dz) ln(

∫ v

k′+k

−∞

2π

π − arctank
ζ(z, v)dz)dv+

∫ +∞

0

(

∫ v

k′

−∞

2π

π − arctank
ζ(z, v)dz) ln(

∫ v

k′

−∞

2π

π − arctank
ζ(z, v)dz)dv

)

−arctank

2π

(

∫ 0

−∞
(

∫ − v

k′

− v

k′+k

2π

arctank
ζ(z, v)dz) ln(

∫ − v

k′

− v

k′+k

2π

arctank
ζ(z, v)dz)dv+

∫ +∞

0

(

∫ − v

k′+k

− v

k′

2π

arctank
ζ(z, v)dz) ln(

∫ − v

k′+k

− v

k′

2π

arctank
ζ(z, v)dz)dv

)

, (40)

where ζ(z, v) is the function φ(v + k′z)φ(z).
As for the class-conditional MI values that involve Z, MI(Z,X |Ck) = MI(Z,X−k′Y |Ck) = MI(Z,Xdisc|Ck) =

0. This requires checking that pairwise class-conditional independence holds for the three involved pairs.
This follows, as argued in Section 6.2, from the fact that Z is independent of the pair composed by Ck and
any other input feature.

B. Calculations of MBR values in Section 6.4

In this section, we start by obtaining the value of MBR(Ck, {X}). We then prove that MBR(Ck, {X,Z}) =
MBR(Ck, {X}).

Concerning the computation of MBR(Ck, {X}), the (C, {X}) Bayes classifier assigns x, x ∈ X , to 1 if
and only if, recall (27),

fX|X+kY <0(x)

fX|X+kY ≥0(x)
≤ 1.

The required densities fX|X+kY≥0 and fX|X+kY <0 are known from Appendix A.2. We take this into account
to re-write the expression above as

2 exp
{

−x2

2σ2
X
σ2
X+kY

}

1√
2πσX

Φ

(

− ρ
√

σ2
X+kY

x√
σ2
X

1√
σ2
X+kY

(1−ρ2)

)

2 exp
{

−x2

2σ2
X
σ2
X+kY

}

1√
2πσX

Φ

(

ρ
√

σ2
X+kY

x√
σ2
X

1√
σ2
X+kY

(1−ρ2)

) ≤ 1,

where σ2
X = 1 is the variance of X , σ2

X+kY = 1+ k2 is the variance of X + kY , and ρ = 1
k
is the correlation

between X and X − k′Y .
Many terms cancel out, and we get simply

Φ

(

− x

k(1− 1
k2 )

)

≤ Φ

(

x

k(1− 1
k2 )

)

.

As Φ is a non-decreasing function, this condition is the same as

− x

k(1− 1
k2 )

≤ x

k(1− 1
k2 )

.
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After further cancellations of the denominators, we simply obtain the condition −x ≤ x, which holds if and
only if x ≥ 0. As a result, the classifier assigns x to 1 if x is non-negative, and to 0 otherwise; note that the
classifier applied to X gives Xdisc.

Therefore, MBR(Ck, {X}) depends on the angle, in the two-dimensional space defined by the pair (X,Y ),
between the lines associated with X and X + kY , arctank. Note that the only knowledge of X needed
concerns the value that Xdisc takes; recall (29). As a result, Figure 5 also illustrates the regions where a
wrong classification will occur, which are the regions (a) and (b). The probabilities associated with the
different regions have been given in (38), allowing us to obtain

MBR(Ck, {X}) = 2
arctank

2π
=

arctank

π
.

We now verify that MBR(Ck, {X,Z}) = MBR(Ck, {X}). By (27), the (Ck, {X,Z}) Bayes classifier
associated with the MBR takes the value 1 if and only if

f(X,Z)|X+kY <0(x, z)

f(X,Z)|X+kY ≥0(x, z)
≤ 1.

Using the facts that Z and X are class-conditionally independent and that Z is independent of Ck, the
condition above reduces to

fX|X+kY <0(x)

fX|X+kY ≥0(x)
≤ 1.

As a result, the points (x, z) assigned by the classifier to the value 1 are those that verify x ≥ 0. As a result,
MBR(Ck, {X,Z}) = MBR(Ck, {X}).
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[18] J. R. Vergara, P. A. Estévez, A review of feature selection methods based on mutual information, Neural Computing and
Applications 24 (1) (2014) 175–186.

[19] R. Battiti, Using mutual information for selecting features in supervised neural net learning, IEEE Transactions on Neural
Networks 5 (1994) 537–550.

[20] H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance,
and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 1226–1238.

[21] J.-J. Huang, N. Lv, S.-Q. Li, Y.-Z. Cai, Feature selection for classificatory analysis based on information-theoretic criteria,
Acta Automat. Sinica 34 (3) (2008) 383–392. doi:10.3724/SP.J.1004.2008.00381.
URL http://dx.doi.org/10.3724/SP.J.1004.2008.00381

[22] C. Pascoal, Contributions to variable selection and robust anomaly detection in telecommunications, Ph.D. thesis, Instituto
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