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Abstract: Entropy models the added information associated to data uncertainty, proving that 10 
stochasticity is not purely random. This paper explores the potential improvement of machine 11 
learning methodologies through the incorporation of entropy analysis in the learning process. A 12 
multi-layer perceptron is applied to identify patterns in previous forecasting errors achieved by a 13 
machine learning methodology. The proposed learning approach is adaptive to the training data 14 
through a re-training process that includes only the most recent and relevant data, thus excluding 15 
misleading information from the training process. The learnt error patterns are then combined with 16 
the original forecasting results in order to improve forecasting accuracy, using the Rényi entropy to 17 
determine the amount in which the original forecasted value should be adapted considering the 18 
learnt error patterns. The proposed approach is combined with eleven different machine learning 19 
methodologies, and applied to the forecasting of electricity market prices using real data from the 20 
Iberian electricity market operator – OMIE. Results show that through the identification of patterns 21 
in the forecasting error, the proposed methodology is able to improve the learning algorithms’ 22 
forecasting accuracy and reduce the variability of their forecasting errors.   23 

Keywords: Artificial Neural Networks, Electricity Market Prices, Entropy, Forecasting, Information 24 
Theory, Machine Learning 25 

 26 

1. Introduction 27 

Machine learning (and time series forecasting, in particular) is an attractive domain in the power 28 
and energy systems field, as it is essential to enable an adequate energy resources management [1]. 29 
With the increase of renewable generation, with an intermittent nature, and the consequent need for 30 
the increase in consumers’ flexibility; forecasting energy generation, consumption and energy market 31 
prices, becomes crucial [2]. Regression approaches and Artificial Intelligence (AI) based methods, 32 
such as Artificial Neural Networks (ANN) are the most common approaches. 33 

Several relevant advances have been accomplished in forecasting energy market prices. A novel 34 
learning algorithm based on improvement of conventional extended Kalman filter is proposed in [3], 35 
with the purpose of surpassing the limitations of feedforward ANN when training data contains a 36 
certain number of outliers. In [4] authors propose a model that estimates the speed of energy price 37 
adjustment to its target level by extracting energy price bubbles and showing that bubbles help 38 
explaining price adjustment. The work presented in [5] includes a study on the impact of intra-day 39 
price relationships and market fundamentals for short and mid-term forecasting of electricity prices. 40 
Market price forecasting models for India are proposed in [6], using Model Confidence Set (MCS) 41 
approach to test the utility of these models and picking up the "best" models. Other domain-specific 42 
market price forecasting approach is proposed in [7], with focus on the identification of market price 43 
spikes in the Ontario electricity market. The work presented in [8], on the other hand, studies the 44 
influence of specificities of the market and weather conditions on the electricity price. [9] addresses 45 
the perspective of market integration in the scope of day-ahead market price forecasting. 46 



 

 

A review that reports the current state on the subject of extreme learning machine (ELM) is 47 
presented in [10]. ELM is used for classification, regression, clustering, feature selection, 48 
representational learning and many other learning tasks. Hardware implementation and parallel 49 
computation techniques have substantially sped up the training of ELM, making it feasible for big 50 
data processing and real-time reasoning. ELM are also used in [11] to improve wavelet neural 51 
networks in probabilistic forecasting of hourly electricity prices (please refer to [12] for a complete 52 
review on probabilistic forecasting of electricity market prices). ELM are also being used as core 53 
components of hybrid methods, such as [13], which combines ELM with Seasonal and Trend 54 
decomposition using Loess (STL). In fact, the trend for methods’ hybridization is gaining significant 55 
strength in recent years; see e.g. [14], which proposes a hybrid multi-step ahead forecasting method 56 
for the energy system; [15], which proposes a novel method combining interval Holt's exponential 57 
smoothing method (HoltI) and multi-output support vector regression (MSVR) for interval-valued 58 
time series; [16], in which a hybrid forecasting approach is used for multi-objective optimization; or 59 
[17], which proposes a hybrid combination between wavelet-particle swarm optimization and 60 
adaptive neuro-fuzzy inference systems for short-term electricity prices forecasting. This type of 61 
hybridization generally shows good performance in dealing with multiple input variables. Also, with 62 
the objective of facilitating the combination of multiple variables, in [18], authors propose a clustering 63 
based methodology to identify similar days and time periods concerning solar intensity. Using this 64 
identification, the training process of forecasting methodologies is adapted in order to achieve better 65 
forecasting results.  66 

In fact, identifying relevant data values and how these influence the variability of the data series, 67 
leads to the concept of entropy [19]. Entropy usually refers to stochasticity or uncertainty, and aims 68 
to measure the amount of information brought by each data point. The concept of information 69 
entropy was introduced by C. Shannon in [19]. Entropy has been often explored as a means of 70 
improving machine learning methodologies. The work proposed in [20] uses an entropy based 71 
method to process initial data of photovoltaic power generation and unify these data according to 72 
their expected information gain. The refined data is used to train an ELM for short-term forecasting. 73 
In [21] fast ensemble empirical mode decomposition and sample entropy are used to pre-process 74 
data. The prediction model is then built to forecast the sub-series, whose inputs and outputs are 75 
obtained in accordance to phase space reconstruction. This work uses real wind speed data for short-76 
term wind speed forecasting. Also for wind speed forecasting, [22] proposes a novel hybrid model 77 
that uses wavelet decomposition based on entropy to create a set of data subseries and estimate their 78 
uncertainty. AdaBoost and wavelet filters are then used to forecast the wind speed values. Another 79 
hybrid methodology, this time for load forecasting, combining entropy based feature selection, fuzzy 80 
inductive reasoning, random forest and ANN is proposed in [23].  81 

Entropy proves that stochasticity is not random; and the improvement of forecasting results 82 
when incorporating entropy analysis shows that uncertainty is associated to a degree of added 83 
information. Learning error is therefore also not random, and thereby it should possible to identify 84 
error patterns and extract further relevant information to improve the learning process. However, as 85 
identified in this related work review, the existing forecasting methods focus on maximizing the 86 
forecasting performance by minimizing the prediction error according to the input data. There is no 87 
explicit work on analysing the tendencies of forecasting errors throughout the time, in order to 88 
identify patterns in these errors and incorporate these patterns as a way to reduce the original 89 
forecasting results. On the other hand, entropy is traditionally used in the feature extraction process, 90 
but this concept is not extended or applied to analysing the divergence/convergence between the 91 
forecasting errors and the actual forecasting values. 92 

This work contributes to surpassing the identified gap by proposing an adaptive entropy-based 93 
learning methodology based on the analysis of the forecasting error, instead of using entropy to 94 
model and select training data, as performed by current entropy based forecasting models. A 95 
dynamic feedforward ANN with backpropagation is modelled to analyse and learn patterns in the 96 
historical set of forecasting errors achieved by a learning methodology. The proposed learning 97 
approach is adaptive to the training data through a re-training process that includes only the most 98 
recent and relevant data, thus excluding misleading information from the training process. Three 99 



 

 

dynamic training strategies are proposed to model training data according to different perspectives 100 
when analysing the historical data patterns. The learnt error patterns are then combined with the 101 
original forecasting results in order to improve forecasting accuracy, using the Rényi entropy as 102 
measure to determine the amount in which the original forecast should be adapted taking into 103 
account the perceived error values. The proposed approach is combined with eleven different 104 
machine learning methodologies, and applied to the forecasting of electricity market prices using real 105 
data from the Iberian electricity market operator – OMIE [24]. Results show that through the 106 
identification of patterns in the forecasting error, the proposed methodology is able to improve the 107 
learning algorithms’ forecasting accuracy. 108 

After this introductory section, section 2 describes the proposed dynamic learning approach, 109 
including the proposed learning model using the considered entropy measures, and the dynamic 110 
training process. Section 3 presents the case study based on real electricity markets data, and section 111 
4 presents the most relevant conclusions from this work. 112 

2. Proposed methodology 113 

1. Overview 114 

The proposed learning model aims at identifying patterns in the history log of forecasting errors 115 
measured through the application of a given machine learning methodology. The objective is, 116 
therefore, to enable reaching predictions on the expected error of future forecasts provided by the 117 
supporting learning method, as depicted in Fig. 1. 118 

 119 

 120 

Figure 1. Flowchart of the proposed methodology 121 

Fig. 1 shows that an initial prediction of the target output is provided by a supporting forecasting 122 
algorithm (which may be any forecasting method). In order to reach this prediction, the forecasting 123 
method analyses the historical data (in the case of the particular case study depicted in this paper, 124 
the historical electricity market data).  125 

On the other hand, a historical log of the forecasting errors achieved by the same forecasting 126 
method is maintained, and updated every time the accuracy of a new forecast may be evaluated. The 127 
ANN described in section 2.2 is then applied in order to find patterns in the historical forecasting 128 



 

 

errors, and trained according to the dynamic training process explained in section 2.3. This ANN 129 
provides as output the predicted/expected error associated to the most recent forecast that has been 130 
achieved.  131 

Considering the expected error of the initial prediction, the initial forecasted value is updated 132 
according to the entropy based process explained in section 2.2, thus resulting in the final, updated, 133 
prediction that is the final output of the proposed learning approach. 134 

2. Learning model 135 

The forecasting errors may be positive if the predicted value is higher than the actual real value; 136 
or negative, if the predicted value is lower than the actual target value. The predicted/expected 137 
forecasting error yt provided by the proposed learning model is used to adapt the initial forecasted 138 
value Ft, in order to make it converge towards the actual target value, at each time t. In order to 139 
determine the amount in which yt should influence Ft, the Rényi entropy 𝐻𝛼(𝑋) is used [25]. Rényi 140 
entropy is applied because it enables representing the amount of gained information by reflecting the 141 
difference between the reality and the forecast results. Among the several entropy and divergence 142 
methods available in the literature [26-31], Rényi entropy is the best solution for this problem, as it 143 
generalizes several of the most widely used entropy measures, namely the Hartley entropy [32], the 144 
Shannon entropy [19], the collision entropy and the min entropy. The Rényi entropy of order α is 145 
applied as in (1). 146 

𝐻𝛼(𝑦𝑡) =
1

1 − 𝛼
log ∑ 𝑝𝑦𝑡

𝛼  
(1) 

where α ≥ 0 and α ≠ 1. pyt is the probability associated to the predicted/expected forecasting error yt in 147 
time t. 148 

By using entropy as a measure for calculating the amount in which a new event should affect an 149 
already accomplished forecasted value, the proposed methodology enables adapting the current 150 
forecast and reaching a new forecasted value that is closer to the real value, as in (2). 151 

𝐹′𝑡 = 𝐹𝑡 −  𝑦𝑡  𝐻𝛼(𝑦𝑡) (2) 

The adapted forecasting value F’t is therefore achieved by subtracting the expected error from 152 
the given original forecast, in a measure given the calculation of the Rényi entropy.  153 

The learning process and prediction of the expected error yt at each time is performed using a 154 
feedforward ANN, receiving as inputs the historic of forecasting errors achieved by the supporting 155 
forecasting methodology. The ANN considers two nodes in the intermediate layer (as result of 156 
extensive preliminary sensitivity analysis), and one output – the predicted forecasting error.  157 

Backpropagation using the gradient descent method [33] has been used as training algorithm 158 
for the ANN. This requires calculating the derivative of the squared error function with respect to 159 
the weights of the network. The squared error function E for the single output neuron is defined as 160 
in (3). 161 

𝐸 =
1

2
(𝑡 − 𝑦)2 (3) 

where t is the target output for a training sample, and y is the actual output of the output neuron.  162 

For each neuron j, its output oj is defined by feedforward calculation, as in (4). 163 

𝑜𝑗 = 𝑓 (∑ 𝑤𝑘𝑗𝑥𝑘

𝑛

𝑘=1

) (4) 

where n is the number of input units to neuron j, and wkj is the weight between neurons k and j. Hence, 164 

the input for the activation function f of a neuron is the weighted sum of outputs ok of the previous 165 

neurons. The used activation function f is the logistic function, a log-sigmoid function, which can be 166 



 

 

defined as in (5). 167 

𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 (5) 

The backpropagation algorithm is used as the training method of the designed artificial neural 168 
network. The backpropagation algorithm includes the following steps [33]: 169 

1. Initialize weights as small random numbers;  170 

2. Introduce training data to the ANN and calculate the output by propagating the input 171 

forward through the network using (4);  172 

3. Calculate the error using (3); 173 

4. Propagate the sensitivities backward through the network by simply taking the derivative 174 

of the activation function (5) with respect to the network parameters; 175 

5. Calculate wkj updates; 176 

6. Update the values of wkj; 177 

7. Repeat steps 2 to 6 until all examples are classified correctly. 178 

3. Dynamic training  179 

In order to guarantee that the learning process is always updated throughout each simulation, 180 
the methodology is re-trained every time that new data is observed. The data used for training the 181 
ANN in the first iterations is the historic data from the electricity market. As the simulation results 182 
start appearing, these are used a continuation of the previous historic, i.e., they will be used to 183 
complement the previous information, and will, as the time progresses, be the main subject of 184 
analysis for the training of the ANN. Fig. 2 provides a visualization of this process. 185 

 186 

Figure 2. Data range for the training process of the proposed learning methodology 187 

In addition to the re-training process that guarantees the constant update of the learning 188 
procedure, the training data is also selected carefully. Since the objective of the proposed approach is 189 
to find patterns in the forecasting error, the way historical error data should be approached is a crucial 190 
aspect. This process must the ad-hoc and dependent on the original training data itself. In the case 191 
addressed by this paper, the used training data refers to the historic electricity market prices. Since 192 
electricity market prices depend directly on generation of consumption in each moment, they have a 193 
strong seasonal variation (due to the variation in the use of heating and cooling devices). Also, there 194 
is a variation depending on the week day due to consumption patterns (especially from business days 195 



 

 

to weekends). Also, there are differences from hour to hour due to the variability of generation 196 
(especially solar, which is only positive during the day) and consumption patterns. Due to this 197 
entropy, the training data must be selected carefully in order to improve the performance of the 198 
methodology. Three different training strategies are used, according to the entropy identified above.  199 

These three approaches use the ANN with one value in the output layer - the value of the 200 
expected error, two intermediate nodes, and an input layer of four units. The input layer considers 201 
different values in the different approaches. These values depend on how the history of the error is 202 
considered: 203 

• Strategy A - This strategy makes a prediction along the 24 hourly periods per day, using 204 
for the training of each period the error of the same hour for: 205 

o the previous day; 206 
o the previous 7 days; 207 
o the previous 14 days; 208 
o the previous 21 days. 209 

 210 

Figure 3. Strategy A training data structure 211 

Having Fig. 3 as support, if an error prediction is required for day N and period X, the input 212 
values of the ANN are N-1, N-7, N-14 and N-21, all for hour X. The data of the previous hours is used 213 
to train the ANN, considering the same days. 214 

• Strategy B - This strategy makes a prediction along the days, using the error of the 215 
following hourly periods: 216 

o previous period; 217 
o 2 previous periods; 218 
o 3 previous periods; 219 
o 4 previous periods. 220 



 

 

 221 

Figure 4. Strategy B training data structure 222 

If an error prediction is required for day N and period X, the input values of the ANN are the 223 
previous four hourly periods, considering the same day. The previous periods are considered to train 224 
the ANN. When all the periods of the current day have contributed to the training, the periods of the 225 
prior day start being considered, as shown in Fig. 4. 226 

• Strategy C - this strategy makes a prediction considering always the errors of the same 227 
period (the hourly period in question), using the error for: 228 

o the previous day; 229 
o the previous 7 days; 230 
o the previous 14 days; 231 
o the previous 21 days. 232 

 233 

Figure 5. Strategy C training data structure 234 

This approach always considers the same period. It ignores the data concerning all periods other 235 
than the required one, and uses the previous days to train the ANN, as depicted by Fig. 5. 236 

3. Case study 237 

1. Specifications 238 

This section presents the case study used to assess the performance of the proposed 239 
methodology. The proposed approach is applied to the day-ahead forecasting of electricity market 240 
prices, using real data from the Iberian market operator – OMIE. Real data from 3 years is used, 241 
namely from 1, November 2014 to 31 October 2017. These data can be consulted and downloaded in 242 
[34]. From these data, the first two years are used as training data, and the last year as test and 243 
validation data. The used data has the characteristics presented in Table 1. 244 

 245 



 

 

Table 1. Experimental data characteristics overview  246 

Time interval Max Min STD Median Mean 

3 years 

(1, November 2014 to 

31 October 2017) 

12.32 0.00 1.31 6.84 6.32 

 247 
Eleven different forecasting methods are used as basis approaches to provide the primary 248 

electricity market price forecasts. The proposed methodology is then applied to the analysis and 249 
learning of the forecasting errors originated by each of these approaches in order to reach the updated 250 
prediction values. The results from the application of the proposed methodology to the different 251 
methods is compared to the individual performance of the methods themselves. These methods have 252 
been chosen as they are the most widely applied methods to the electricity market forecasting 253 
problem in the literature. The considered basis forecasting methods are: 254 

• AutoRegressive Integrated Moving Average (ARIMA) model; 255 
• Feedforward ANN trained with backpropagation, as presented in [35]; 256 
• Support Vector Machine (SVM) for regression, as presented in [36]; 257 
• Wang and Mendel’s (WM) Fuzzy Rule-Based System (FRBS) model [37]; 258 
• Hybrid neural Fuzzy Inference System (HyFIS) [38]; 259 
• Genetic fuzzy systems for fuzzy rule learning based on the MOGUL methodology 260 

(GFS.FR.MOGUL) [39]; 261 
• Genetic lateral tuning and rule selection of linguistic fuzzy systems (GFS.LT.RS) [40]; 262 
• The simplified TSK fuzzy rule generation method using heuristics and gradient descent 263 

method (FS.HGD) [41]; 264 
• Extreme Learning Machine (ELM) [42]; 265 
• Echo State Network (ESN) [43]; 266 
• Convolutional neural network [44]. 267 

In order to enable a fair comparison between these models, similar input and output structures 268 
have been used. The output of all methods is the predicted market price. The inputs are: (i) for 269 
ARIMA and SVM, the market price in the same hour of the previous four days, and the market price 270 
of the same hour, referring to one week, two weeks, three weeks and four weeks before the target 271 
day, (ii) for all the other methods, besides the inputs used for the ARIMA and SVM, inputs also 272 
include the volume of traded power in the same hour. This difference in training is due to the bigger 273 
difficulty of ARIMA and SVM in achieving quality regression results when associating different 274 
variables. The inclusion of extra data in this case only worsens the forecasting results, and it is, 275 
therefore, unnecessary, and thereby excluded.  276 

2. Results 277 

Fig. 6, 7 and 8 show a graphical comparison of the real market price, the price forecasted by the 278 
ANN and the adapted prediction price resulting from the proposed methodology, throughout the 279 
last 2 months of test data, using the three strategies considered for dynamic training, as explained in 280 
section 3.3. 281 

Fig. 6 shows the results when using training strategy A, comparing its prediction with the value 282 
received by the auxiliary strategy (ANN), to which the expected error is applied. In this comparison 283 
there is presented the actual market price, so one can check the quality of the prediction strategy. 284 



 

 

 285 
Figure 6. Results using training strategy A 286 

As can be seen from Fig. 6, the calculation and application of the expected error, using strategy 287 
A, is very close to the actual market value. From Fig. 6 it is visible that the proposed methodology is 288 
able to improve the ANN forecasted values, as the green line is, in most cases, closer to the real market 289 
price values than the ANN forecast. The proposed approach is able to identify patterns on the ANN 290 
forecasting errors, learn from these errors history log, and use this learning process to adapt the 291 
prediction in a way that the predicted values become closer to the real market price values. In Fig. 7, 292 
the same information is presented, for the case in which strategy B is applied. 293 

 294 
Figure 7. Results using training strategy B 295 

From Fig. 7 it is visible that strategy B has had worst results when compared with strategy A, 296 
for the considered time period. Finally, Fig. 8 shows the results from the application of strategy C. 297 



 

 

 298 
Figure 8. Results using training strategy C 299 

Analysing the results when using strategy C, it can be seen that strategy C achieves better results 300 
than strategy B for the considered time period, regarding the level of proximity of the forecast with 301 
the actual values of the market, but still worse than strategy A.  302 

From these results it can be concluded that the best strategy to be applied is training strategy A, 303 
which is the one applied in the experimental tests shown henceforward.  304 

Table 2 presents the forecasting error achieved by the eleven forecasting methods, and the error 305 
achieved by the proposed methodology (using training strategy A) applied to each of these 306 
approaches. These results refer to the average results over the entire year of test data. The error is 307 
measures though the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). 308 
The Standard Deviation (STD) of the forecast errors is also presented, as well as the value of Pearson 309 
Correlation (PC) [-1, 1] between the real data and the forecasted data [45].  310 

Table 2. Results of the forecasting methods and of the proposed methodology  311 

Method 
Without the proposed methodology With the proposed methodology 

RMSE MAPE (%) STD PC RMSE MAPE (%) STD PC 

ARIMA 16.4 24.12 5.3 0.74 13.3 20.87 4.9 0.79 

ANN 10.09 16.90 4.6 0.81 7.87 9.83 3.2 0.88 

SVM 9.95 15.36 5.1 0.82 8.06 10.16 4.2 0.89 

WM 12.31 20.06 6.3 0.78 11.45 17.63 4.8 0.81 

HyFIS 7.25 10.32 3.6 0.88 5.36 7.87 2.9 0.93 

GFS.FR.MOGUL 6.83 9.86 3.1 0.89 4.36 6.93 2.6 0.94 

GFS.LT.RS 22.31 34.23 13.3 0.63 24.36 36.49 11.1 0.61 

FS.HGD 18.14 27.88 8.4 0.68 14.80 24.42 7.2 0.70 

ELM 9.45 14.98 4.9 0.83 7.21 9.37 3.1 0.90 

ESN 8.89 13.26 4.2 0.86 6.92 8.89 3.0 0.91 

CNN 17.23 26.21 8.6 0.69 13.12 23.87 8.2 0.71 

 312 
From Table 2 it is visible that the proposed methodology has been able to reduce the forecasting 313 

error of nearly all the applied forecasting methodologies. The only exception is the GFS.LT.RS 314 
method, whose performance is bad from the start. There is no tendency found in the results, and thus 315 
the adaptation of the original value is not done properly. There is no found pattern in the errors 316 
achieved by this method. Nevertheless, the proposed approach is still able to decrease the errors STD, 317 
smoothing the variation of the errors outliers. In all the other methods the results are improved, 318 
regarding both the reduction of the forecasting error and of the STD. The method that achieves the 319 
best results is the GFS.FR.MOGUL, followed by the HyFIS, with both approaches being able to reach 320 



 

 

a MAPE error below 8% when using the proposed methodology, which is a relevant result. Fig. 9 321 
shows the MAPE errors of the different methodologies, to allow a visual comparison of their 322 
performance. 323 

 324 

 325 

Figure 9. MAPE forecasting errors of the different methods and results when applying the proposed 326 

methodology 327 

From Fig. 9 it is visible that the proposed method enables a reduction of the forecasting error of 328 
all methods but GFS.LT.RS, by capturing patterns in their forecasting errors, and adjusting the 329 
predicted value accordingly, in order to reduce the final prediction error. Table 3 shows the results 330 
of the forecasting error prediction, when analysing the error achieved by each of the forecasting 331 
methodologies.  332 

Table 3. Results of the predictions’ forecasting error prediction  333 

Method RMSE MAPE (%) STD 

ARIMA 6.23 23.16 3.2 

ANN 2.45 8.34 1.3 

SVM 3.16 9.12 1.8 

WM 6.32 24.17 2.3 

HyFIS 4.26 10.34 2.2 

GFS.FR.MOGUL 3.99 11.06 2.3 

GFS.LT.RS 10.3 48.12 5.2 

FS.HGD 6.06 22.34 3.6 

ELM 2.95 9.01 1.7 

ESN 2.89 8.86 1.6 

CNN 5.98 21.06 3.8 

 334 
Table 3 shows that the proposed model is able to predict the forecasting error of the different 335 

methodologies with an acceptable accuracy. By matching Table 3 with Table 2 it can be seen that the 336 
methods that have the better improvement when using the proposed methodology are those for 337 
which the proposed method is able to achieve a smaller error in predicting their forecasting errors. 338 
This is especially relevant in the case of the ANN (and also clearly visible for the SVM and 339 
GFS.FR.MOGUL), which is the method with the smaller forecasting error prediction, and the method 340 
with the biggest improvement when using the proposed approach. The contrary is visible in the case 341 
of the GFS.LT.RS method; the prediction of its forecasting error is not successful (as seen by the large 342 
values in Table 3), and this leads to no improvement when applying the proposed methodology 343 
(Table 2). 344 
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In order to validate the significance of the proposed method against the eleven considered 345 
benchmark methods, a statistical analysis is performed [46]. The Kruscal-Wallis test is the 346 
nonparametric test used to compare three or more independent samples. It indicates if there is a 347 
difference between at least two of them. This is used to test the null hypothesis that all populations 348 
have equal distribution functions against the alternative hypothesis that at least two of the 349 
populations have different distribution functions. In this way it is assumed that equality of averages 350 
when equality of equal distributions exists [47]. 351 

By the test Kruscal-Wallis it is possible to obtain the value of p = 0 that gives us indication of 352 
rejection of the null hypothesis that all data samples come from the same distribution at a 1% 353 
significance level. Given the result of the test that gives the indication of the null hypothesis, the 354 
comparison between the pairs of groups is made in order to verify which of the samples differ from 355 
each other. 356 

The Bonferroni procedure is performed in order to make the comparison in pairs. Fig. 10 357 
represents the 95% confidence interval for all sample groups (12 methods, in which group 1 is the 358 
proposed method using the best supporting forecasting approach: GFS.FR.MOGUL; and the other 11 359 
groups are the 11 benchmark methods considered in this study). In this way, it is possible to see 360 
which groups differ in the value of the average, using the Bonferroni procedure. 361 

 362 

Figure 10. Bonferroni confidence interval by 95% 363 

By analyzing the graph of Fig. 10, it is possible to observe that all methods have significantly 364 
different mean values. Table 4 shows the results of this analysis. 365 

Table 4. Bonferroni procedure 366 

Group pairs p-value 

1 1 1 

1 2 1 

1 3 1 

1 4 1 

1 5 1 

1 6 1 

1 7 1 

1 8 1 

1 9 1 

1 10 1 

1 11 1 

1 12 1 



 

 

Since the p-value is equal to 1 in all these group tests, the null hypothesis where the groups are 367 
considered to have similar means with an error of 5% is accepted. 368 

Taking into account this analysis, it is concluded that the applied benchmark methods achieve 369 
significantly different results, thus supporting the relevance of the proposed approach. 370 

4. Conclusions 371 

The study of how the uncertainty associated to different types of data can be modelled and how 372 
it influences the prediction of future events, is a relevant domain for several decades. Entropy has 373 
arisen as a recognized means to deal with this uncertainty and to extract the information that is given 374 
by the different data.  375 

This paper incorporates learning of past data uncertainty into the forecasting process. This is 376 
accomplished by applying a multi-layer perceptron to analyse the historic of forecasting errors 377 
originated by a forecasting methodology, and reach predictions on the expected forecasting error. 378 
The expected error is then used to adapt the original forecasted value in order to reach a more 379 
accurate prediction, using the Rényi entropy as measure of the amount in which the adaption of the 380 
original forecasted value should be applied.  381 

The proposed methodology has been applied and compared against eleven different state of the 382 
art forecasting methodologies, including ANN, SVM, ARIMA, ELM, ESN, and hybrid fuzzy based 383 
inference systems. The forecasting process has been experimented on a log of real electricity market 384 
data from the last three years. Results show that the proposed methodology is able to successfully 385 
find patterns in the history of forecasting errors originated by the different learning methodologies, 386 
and use these error predictions to improve the quality of the forecasts. The forecasting error has been 387 
decreased, as well as the standard deviation of the forecasting errors.  388 

As a future work, different approaches will be experimented to learn the patters from past error 389 
data, namely probabilistic approaches and hybrid forecasting methods. Also, the combination 390 
between the expected error and the original values will be enhanced by exploring different means of 391 
reaching intelligent and adaptive combinations of these values. 392 
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