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Abstract

Finger identification is increasingly popular in recent years. In this paper, we propose a new finger identification system to acquire
a hybrid pattern of dorsal finger vein and texture in a single image by using only one camera. It effectively reduces the cost
and volume of the imaging device to acquire multi-modal patterns. The hybrid pattern of dorsal finger vein and texture is both
storage-saving and calculation-saving. As there was no existing method specially developed for this kind of pattern, we propose
a new feature extraction method called “Polarized depth-Weighted Binary Direction Coding” (PWBDC). We also establish a new
database of such hybrid images of 210 finger samples. Experimental results demonstrate that the proposed system and feature are
not only storage and calculation saving, but more importantly effective for identification. The proposed PWBDC method performs
well on both the newly established database of hybrid images and a popular public database of traditional finger vein images,

superior to many established and state-of-the-art methods.
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1. Introduction

Human identification using biometric identifiers is increas-
ingly popular in recent years. Among the widely-used biomet-
ric identifiers, finger vein is an important one due to its acquisi-
tion convenience and relatively high recognition accuracy.

On the process of finger vein identification, several com-
prehensive analyses have been reported. For example, [2] sum-
marized the finger vein authentication technology and made an
outlook for its future; [15] studied approaches to improving
the quality of finger vein images affected by light variation and
noise, as well as adaptive thresholding and template matching;
and [21] presented the Sobel detector, enhancement filter and
binarization process.

In the process of finger vein identification, there are often
three steps. The first step is preprocessing, including region of
interest (ROI) extraction, image enhancement and normaliza-
tion [27, 33, 31]. The second step is feature extraction, in which
finger vein features are extracted. The third step is match-
ing [25, 24, 14], in which the extracted features from probe
finger vein images are compared to those from the samples in a
database, and the class of the sample with the highest matching
score is chosen for the probe images.

Among these three steps, finger vein feature extraction is
the most important step, on which great efforts have been con-
tinuously made. For example, a modified Gaussian high-pass
filter was used in [7]; a series of Gabor filters were applied to
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infrared images to determine the most representative direction
in [4] and [28]; a descriptor of local ternary cooccurrence pat-
terns was proposed by [20] to represent finger veins in a local
region; a new texture descriptor called local line binary pattern
was utilized by [16] to offer better performance than the local
binary pattern; and some soft biometric traits in finger veins
were used by [30]. Some other methods focus on the locations
of veins in the image. A modified separable Mumford Shah
model was proposed in [23] to segment finger veins from in-
frared images. The local maximum curvature method was pro-
posed in [12] to investigate the gray-value variation in the cross
section of veins, while the repeated line tracking was introduced
in [11] to trace veins through their orientations. Another rep-
resentative method was proposed in [33] to use the cross sec-
tion to determine locations of veins and code directions in the
vein area. A deep representation-based feature was explored
in [17], achieving good performance compared to traditional
handcrafted features.

However, all the methods aforementioned use unimodal fea-
tures only. Finger vein patterns are usually indispensable in
identification, because they have the advantage of being much
more difficult to fake than surface features such as finger dorsal
textures. However, neither the finger vein pattern nor the finger
dorsal texture is sufficient for personal identification. For exam-
ple, some girls’ finger veins are so tenuous, as Fig. 1.a shows,
that it is hard to observe the vein pattern clearly using the near-
infrared images acquired from the backside of the finger. There-
fore, finger dorsal textures, as shown in Fig. 1.b, should also be
considered, in order to attain more comprehensive information
and better performance of finger identification.
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Figure 1: (a) is the traditional finger vein pattern of a girl; (b) is our proposed
hybrid pattern with information of both dorsal finger texture and dorsal finger
vein embedded in a single image.

Indeed, besides the feature-level fusion of finger print and
finger vein as investigated in [29] and [22], Yang and Huang [31]
also fused the finger dorsal textures and finger veins at the fea-
ture level and achieved better results than using the finger veins
alone. However, there are two limitations of such a feature fu-
sion. Firstly, the finger veins are acquired by using infrared
light (Fig. 2.a) but the finger dorsal textures are obtained by us-
ing natural light (Fig. 2.b), and hence they cannot be stored in
a single image, which is storage consuming. Secondly, these
two types of features have to be extracted separately from two
different images and aligned before fusion, which may lead to
sub-optimal performance of finger identification.

Figure 2: (a) and (b) show the traditional finger vein pattern (under infrared
light) and finger dorsal texture pattern (under natural light); (c) shows the pro-
posed hybrid pattern (both under infrared light).

Therefore, in this paper we propose a new system to acquire
dorsal finger vein and texture into a single image, as illustrated
by Fig. 2.c, using infrared light because of its strong penetration
ability. An imaging device is designed as Fig. 3.a shows, which

can capture the hybrid pattern of dorsal finger vein and texture
in a single image simultaneously. Compared with traditional
multi-modal schemes, the new system effectively reduces the
cost and volume of imaging device. Because we deal with the
hybrid pattern in only one image, the storage space and the cal-
culation amount can also be saved. Considering that there was
no existing method specially developed for the hybrid pattern of
dorsal finger vein and texture, We present a new method to ex-
tract the hybrid pattern from the image for finger identification.
We shall show that the proposed system and feature are not only
storage-saving, but more importantly identification-effective.
The key contributions of our work are threefold:

1. We develop a new system to capture the hybrid pattern of
dorsal finger vein and texture with only a single imaging
device. It is cost-saving and volume-saving compared
with traditional capturing devices.

2. For the hybrid pattern of dorsal finger vein and texture,
we develop a new hybrid finger feature and its extrac-
tion method, which is termed Polarized depth-Weighted
Binary Direction Coding (PWBDC); this hybrid finger
feature can be effective for biometric identification.

3. We establish a database of 210 samples, extending from
a database of 126 samples [32], which will be published
in the future.

The rest of the paper is organized as follows. Section 2
describes briefly our new image acquisition device. Section 3
reviews four classical feature extraction methods used in finger
vein recognition, LBP [16], GCC [4], LMC [12] and LDC [33],
as our evaluation baselines. Section 4 details our proposed
PWBDC method, including three innovative components: po-
larized direction extraction, extended normalized angular bi-
nary coding, and self-adaptive depth-dependent weighting. Sec-
tion 5 presents our experiments and results. Conclusions and
some future work are discussed in section 6.

2. Image Acquisition Device
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Figure 3: (a) is our self-designed image capture device; (b) is its diagram and
physical principle.

There were many unimodal vein image acquisition systems,
for example, for hand [26] and for finger [9]. However, as far
as we are concerned, there is no device to capture a single im-
age blending both finger vein and finger dorsal texture, such as



Fig. 1.b and Fig. 2.c. Therefore, we design and develop a new
image acquisition device, as shown in Fig. 3.

In Fig. 3.a, a black JAI camera is placed above, and a rect-
angular near-infrared illuminant is positioned below. The phys-
ical principle (illustrated in Fig. 3.b) is explained as follows.
Firstly, near-infrared light penetrates a finger, and then those
passing through blood vessels is absorbed by the hemoglobin
in red blood cells to some extent, so the vein area will look
darker than other parts and thus can be captured.

Compared with traditional devices, the new device does not
bring additional costs, because the CCD camera of the new de-
signed device can almost be replaced by a traditional one. The
difference between traditional devices and the newly designed
device mainly exists in two aspects. Traditional devices cap-
ture the finger inner vein, while the proposed device captures
the finger dorsal vein, which is nearer to the finger skin surface
and more remarkable than the finger inner vein. Along with the
finger dorsal vein, the newly designed device also simultane-
ously captures the finger dorsal skin texture. As Fig. 2.c shows,
the proposed device can capture both the finger dorsal vein and
the finger dorsal skin texture, and store the information of both
modalities into a single image simultaneously, which saves stor-
age and brings richer feature. In our case, one CCD camera is
sufficient with no additional costs incurred. Since finger dorsal
texture is sunken, the part of finger corresponding to this tex-
ture is thinner than other parts. Thus, infrared light more easily
penetrates this part of finger and arrives at camera when imag-
ing. In addition, more scattering and refraction light will gather
in the tinny sunken space, which makes the finger dorsal tex-
ture look bright and visible. However, the finger dorsal texture
overlapping with veins seems lost, since veins will absorb more
infrared light and prevent the light from reaching camera.

3. Classical Feature Extraction and Matching Methods

Feature extraction and matching are two crucial compo-
nents of the process of finger identification. Here we first re-
view four classical methods of finger-vein feature extraction,
LBP [16], GCC [4], LMC [12], and LDC [33], as well as their
matching methods, which are widely applied in finger identi-
fication; they will act as the baselines in the experiments pre-
sented in this paper.

3.1. Local Binary Patterns (LBP)

The local binary pattern (LBP) method [16] is widely used
as a baseline feature-extraction scheme, to validate the reliabil-
ity of a database and finger-identification algorithms. Its core
concept is to compare the values of neighboring pixels with a
given central pixel:
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where g, is the value of the central pixel; g, is the value of
neighboring pixels; and P is the total number of neighboring
pixels.

A pixel-by-pixel matching method is applied to the final
coded images.

3.2. Gabor Competitive Coding (GCC)

The Gabor competitive coding (GCC) method was proposed
in [4]. It is a widely-used method to exploit the local direction
information. In biometric pattern recognition, the Gabor filters
have been widely used in feature extraction because of its su-
perior performance in containing the information of magnitude,
phase and orientation simultaneously in a single formula. The
Gabor filter can be defined as follows:
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where o is the standard deviation of the Gaussian function; y
is the adjustment factor for the Gaussian envelope in the y di-
rection, which is in fact the standard deviation ratio between
directions x and y; fj is the center frequency of the Gabor filter;
6 is the orientation parameter; and (xy, yg) is the rotated version

of the coordinate (x, y).

For our experiments in section 5, six orientations are se-
lected, which is consistent with the conclusion made in [8] that
most neural cells are very sensitive to specific orientations with
bandwidth of /6. The Gabor feature map is then transformed
into 3-bit binary code and finally a bitwise matching method is
applied to the two coded feature maps.

3.3. Local Maximum Curvature (LMC)

The local maximum curvature (LMC) method to extract the
vein feature was originally proposed in [12]. It can extract
the center lines of finger veins without being much affected by
the vein width and brightness variation, and thus can enhance
the robustness and matching precision. The algorithm contains
three steps: extraction of center positions by using local max-
imum curvature, connection of center positions, and matching.
The curvature is calculated as

d*Ps(z)/dZ?
(1 + @P@)/dzr)
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K(z) =

where P(z) is a cross-sectional profile with selected direction
in the original image, and z is a point on this cross section.

In the matching step, a score indicating the probability of a
center position on the vein is calculated as

Ser(zp) = k(z) X Wi(z)), “

where «(z}) is the maximum curvature calculated in Eq.(3) and
W,(z)) is the width of the point z; whose curvature is positive.
In our experiments, we find that the local curvature of points is
about -10~5, and the width of the vein area of positive curvature
is about 8~12 pixels.

3.4. Local Direction Coding (LDC)

Another method often used in finger vein feature extraction
is the local direction coding (LDC) method proposed in [33].
The difference in brightness is often used in the vein feature
extraction. The LDC method selects the deepest direction into



the feature map. The formula calculating the depth of a selected

position is
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where 0 is the vein direction, and 4 is the estimated vein width.
In our experiments, the vein width is about 8~12 pixels, so the
average vein width is 10 pixels and r is set to 2.5. Six directions
are selected in the final extracted feature map.

In the matching step, a bitwise matching method is applied
on the binary coded feature maps, and the one with the highest
score is selected as the matched finger pattern.

4. Polarized depth-Weighted Binary Direction Coding (PWBDC}}

Because the finger veins and finger dorsal textures are cap-
tured in a single image, we need to develop a new direction
coding scheme for extracting hybrid finger features to repre-
sent a hybrid finger-identification pattern. We call our proposed
feature extraction method “polarized depth-weighted binary di-
rection coding (PWBDC)” approach, which includes three in-
novative major components: polarized direction extraction, ex-

tended normalized angular binary coding, and self-adaptive depth-

dependent weighting. The first component, polarzied direction
extraction, is to construct feature maps for the two deepest di-
rections over an image. The second component, extended nor-
malized angular binary coding, is to provide an appropriate cod-
ing of each direction feature map. The third component, self-
adaptive depth-dependent weighting, is to adaptively weight the
contributions of the two deepest directions in the matching.
The diagram of PWBDC is illustrated in Fig. 5. The portion
in the red dotted wireframe shows our proposed method applied
on the probe image P, and the processing steps for the image T
in database are similar illustrated in the symmetric lower part of
Fig. 5. In our experiments, the binary coded direction maps B ,
B,’(2 and the corresponding depth maps G,’(l and G,’c2 of images T
in the database are calculated in advance. When a probe image
P comes, its binary coded direction maps By, and By, , as well as
the corresponding depth maps Gy, and Gy,, are figured out, then
a self-adaptive depth-weighted bitwise matching is performed
with every T in the database, and finally the one with the highest
matching score S (P, T) is chosen as the matched sample.

4.1. Polarized Direction Extraction

In the LDC method [33], only one direction with the deep-
est depth is selected as the feature, which unfortunately is not
able to extract sufficient information from our images, where
both finger vein information and finger dorsal texture informa-
tion are embedded in a single image. Therefore, we propose to
simply select the first two deepest directions.

Take Fig. 4.a as an illustrative example, in which the yellow
lines in the two regions represent the real dorsal finger vein and
texture direction, and eight candidate directions are marked as
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igure 4: (a) is the image to be processed; (b) and (d) are two typical regions;
and (c) and (e) are the corresponding coded directions.

a

dashed blue lines. The benefit from using the two deepest direc-
tions instead of one can be illustrated in two cases. As Fig. 4.b
shows, in the case of junction points of vertical finger vein and
horizontal finger dorsal texture, the two deepest candidate di-
rections are the closest to the vertical finger vein and horizontal
finger dorsal texture. In the other case where there is only one
significant orientation, as Fig. 4.d shows, the two deepest candi-
date directions are exactly its two neighboring directions. The
finally extracted directions are shown in Fig. 4.c and Fig. 4.e,
respectively; in both cases, the two selected directions represent
the situations better than using a single candidate direction. As
a result, through adding the information of a second depth, both
the “vein valley” and the “finger dorsal texture peak™ can be
taken into account. Also, for the points only in the “valley” or
on the “peak”, more information can be recorded for the next
matching step.

The brightness of vein position is usually darker than other
positions, so G(i, j) in vein positions is usually larger than
other positions. Technically, the depths of the eight different
directions are first calculated as

Gi(i, J) abs(I(i — 2rsin 6, j — 2rcos 6;)
I(i — rsin6, j — rcos6;)

I(i + rsin 6, j+ rcos6;)

I(i + 2rsin 6y, j + 2rcos 6;)
416, j)),
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where Gy represents the depth of the kth direction. Then the
deepest depth Gy, and the second deepest depth Gy, are selected
and recorded as

(Gy,, G,) = . max S{le--.,Gs}- @)
Finally, the two recorded directions k| and k; of all related pix-
els constitute two direction feature maps, and the corresponding
two deepest depths Gy, and Gy, will be further used to calculate
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Figure 5: The diagram of the major steps of our proposed PWBDC scheme, where W is the calculated weight, and S is the final matching score between a probe
image P and a database image 7T'.




Table 1: The extended normalized angular binary coding.

Direction bitl bit2 bit3 bit4

0 0 0 0 0
1 0 0 0 1
2 0 0 1 1
3 0 1 1 1
4 1 1 1 1
5 1 1 1 0
6 1 1 0 0
7 1 0 0 0

the depth-based confidence weights for the fusion of matching
scores, as we shall show later in section 4.3.

4.2. Extended Normalized Angular Binary Coding

After obtaining the two deepest direction feature maps of
one probe image P, Fy, and Fy,, and those of the database im-
age T, F ,’ﬂ and F //61’ we will calculate the matching score be-
tween the feature maps. People often first code the feature maps
and then calculate the distance between the codes to obtain the
matching score. However, for the direction maps that we obtain,
the traditional binary coding scheme may not be appropriate.

For instance, for a specific pixel of two feature maps, sup-
pose the directions of a pair of points to match are decimally
coded as 5 and 4, and for another pair are 5 and 1. Apparently,
the difference between the first paired direction is smaller than
that between the second paired directions. However, when the
simple binary coding method is used, the direction 5 will be
coded as 101, the direction 4 will be coded as 100, and hence
the Hamming distance between them is 1 bit. Meanwhile, the
direction 1 will be coded as 001, and hence the Hamming dis-
tance between directions 5 and 1 will also be only 1 bit, which is
the same as the Hamming distance between directions 5 and 4.

For such direction maps, the angular binary coding strat-
egy [4] is more appropriate. However, the original angular
coding was only for six directions. Hence we propose an ex-
tended normalized angular binary coding for eight directions as
we need. The coding scheme is designed in Table 1.

This coding method in Table 1 follows the principle that the
difference between adjacent orientations is small. Take the pre-
vious example again, now the direction 5 will be coded as 1110,
and the direction 4 will be coded as 1111, so the Hamming dis-
tance between them is only 1 bit. The direction 1 will be coded
as 0001, so the Hamming distance between directions 5 and 1
will be 4 bits, which is much greater than that of directions 5
and 4. In this way, the direction information will be used more
appropriately in the next step of matching.

Here, for the probe image in Fig. 5, by using the extended
normalized angular binary coding method, the deepest direction
map Fy, and the second deepest direction map F, are coded as
By, and By,, respectively.

4.3. Self-adaptive Depth-based Weighting

Now we have obtained two binary coded polarized direction
maps for a probe image P, By, and By,, and their corresponding

depth maps Gy, and Gy,. Similarly for the database image T,
the coded maps are denoted by B; and B, , and the correspond-
ing depth maps G; and G . To 1dent1fy the probe finger in P,
we need a strategy for matchmg the two binary coded direction
maps By and Bj, as well as for fusing the matching scores S
and S, of the deepest and the second deepest direction maps.

Firstly, to calculate the matching score between By and B;(,
we propose

20(By,. B),)
1= , ®)
4(N(Fy,) + N(F;))
2¢(By,, B,
)= ¢ k: kz) ’ (9)
4(N(Fi,) + N(F}))
where
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and

1, x#0,y#0,x=y;
0, otherwise.
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In Eq.(8) and Eq.(9), N(k) represents the number of nonzero
elements of map k, and ¢(B, B’) is the matched bit number of
nonzero elements in the binary coded maps B and B’. Because
the directions are encoded in 4 bits, 4 appears in the denomi-
nator; because ¢(B, B’) is the matched number of two direction
maps B and B’, 2 appears in the numerator to normalize the
matching scores S| and S, to range [0, 1].

Secondly, it is reasonable that the deepest direction map and
the second deepest direction map do not have the equal signif-
icance in feature representation and thus in the calculation of
final matching score. Because actually a lot of points are not
junctions, and they are neither in the “vein valley” nor on the
“dorsal texture peak”, the deepest depth may be much larger
than the second deepest depth. Therefore, based on the assump-
tion that the directions with a deeper depth have a stronger abil-
ity in feature representation, we propose a self-adaptive depth-
dependent weighting scheme to fuse S and S;:

SPT)=WxS;+(1-W)xS,, (14)
where
Gy
=, 15
G1+G2 ( )
G| =Gy, + G,’(], (16)
G2 =Gk2+G]/Q. (17)



In Eq.(14), S(P,T) denotes the final matching score between
probe image P and database image 7'; S| and S, are the match-
ing scores of the deepest and second deepest direction maps,
respectively; and W is the self-adaptive weight to reflect the
relative influence of the deepest and second deepest depths. In
Eq.(16) and Eq.(17), G and G, are the sums of the deepest and
second deepest depths Gy, and G , and Gy, and G, , respec-
tively. As G is always larger than G,, W is always larger than
0.5.

The polarized direction extraction method reserves two most
remarkable direction features for a pixel, one of which is the di-
rection feature of finger vein and the other one is the direction
feature of finger dorsal texture. In comparison, conventional
methods only reserve the direction feature of finger vein. In this
sense, our PWBDC can be more effective. On top of that, the
self-adaptive depth-based weighting refines the feature match-
ing according to the gray depth, which can reflect the pixel po-
sition information. The position information is discriminative
and useful for identification, further improving the effectiveness
of the proposed PWBDC method.

5. Experimental Studies

5.1. Experiments on a Newly Established Database

We first present our experiments and results on a newly es-
tablished database, which contains 210 independent finger sam-
ples. It includes infrared finger patterns viewed from the back-
side of fingers from both male and female volunteers. The sam-
ples in the database were collected in two sessions: the first
session for training and the second session for testing. In each
session, there are 210 finger samples in the database, and each
subject provides index and middle fingers of both left and right
hands for capturing. Totally, 55 subjects are recorded in the
dataset, with both left and right-hand fingers captured in the
same sessions. The time interval between two capture sessions
for training and test is 3 months. Samples of index and middle
fingers from both sessions are illustrated in Fig. 6, with all the
original finger images resized to the same size of 100x240. In
the process of testing, finger samples from the test database will
be compared to those in the training database. The class of the
sample with the highest matching score in the training database
will be selected as the final identified class for the test sample.

Considering that most of previous research on finger vein
recognition focuses on the traditional finger vein pattern, as
Fig. 2.a shows, we also established another traditional database
of this type, which contains the same 210 finger samples, for
comparative purposes. Our proposed PWBDC method is tested
on both the newly established database of hybrid finger patterns
and the traditional database.

Furthermore, we would like to validate the effect on perfor-
mance improvement induced by the three components of our
new hybrid feature, PWBDC: polarized direction extraction,
extended normalized angular binary coding, and self-adaptive
depth-dependent weighting. To achieve this goal, we design
and implement different methods hierarchically integrating dif-
ferent numbers of components.

1. Firstly, to validate the effectiveness of the proposed method,
four typical baseline algorithms, LBP [16], LLBP [19],
GCC [4], LMC [12], RLT [13] and LDC [33], are also
implemented and evaluated on both the traditional database
and the newly established database.

2. Secondly, we implement a polarized direction coding (PDC)
method, in which the two deepest directions are normally
binary coded, and weights of S| and S, are set to be iden-
tical, i.e. W is set to 0.5. In other words, the innovation
in the PDC method only includes the introduction of the
second deepest direction. Hence we shall use PDC to
demonstrate the added value of the second deepest direc-
tion, through comparing it with the baselines methods.

3. Thirdly, to validate the effectiveness of the adaptive depth-
dependent weights, we implement a method of polarized
depth-weighted direction coding (PWDC). Compared with
PDC, PWDC adds depth-dependent weights; compared
with PWBDC, PWDC lacks of the extended binary cod-
ing.

4. Finally, we implement PWBDC, which contains all the
three components. Hence the different in performance
between PWBDC and PWDC can indicate the added value
of the extended binary coding.

All methods are executed on the R2014a Matlab platform with
3.30 GHz CPU. As usual, we adopt the recognition accuracy
and the equal error rate (EER) as performance measures. In our
experiments, the region of interest (ROI) image is extracted,
alignment is carried out, and then two measures (recognition
accuracy and EER) are calculated using the method in [5].

As Table 2 shows, for all methods, their performance on the
newly established database of hybrid finger patterns is better
(with higher recognition accuracy and lower EER) than on the
traditional database. This indicates that more useful informa-
tion has been acquired in the hybrid finger pattern that contains
both finger vein and finger dorsal texture information. In other
words, this verifies the value of the newly established database.

On the other hand, the accuracy of LBP, GCC, LMC, LDC,
PDC, PWDC and PWBDC increases (and the EER of them de-
creases) in oder. From this trend, we can observe the added
value of our newly proposed components: 1) The better per-
formance of PDC than LDC indicates the superiority of se-
lecting the two polarized deepest directions; 2) the better per-
formance of PWDC than PDC demonstrates the value of the
depth-dependent self-adaptive weights; and 3) the better perfor-
mance of PWBDC than PWDC implies the added value of the
extended binary coding. In summary, the proposed PWBDC
method, which combines all three components, demonstrates
the highest identification accuracy and the lowest EER, which
validates the effectiveness of our proposal.

Moreover, in order to evaluate the performance of different
methods further, the false acceptance rate (FAR) and the false
rejection rate (FRR) of different methods are calculated, and the
DET curves [10] are drawn. As Fig. 7 shows, the DET curve of
our proposed PWBDC method is the closest to the bottom-left
corner, which indicates that it performs the best compared with
all the other compared methods.
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Figure 6: Samples of (a) index, (b) middle and (c) ring fingers, respectively. The two images of each column are from the same subject but collected in different

sessions.

Table 2: Performance of methods on both the traditional and newly-established databases.

LBP LLBP GCC LMC RLT LDC PDC PWDC PWBDC
Traditional accuracy (%) 86.67 88.23 87.08 89.17 88.23 89.58 91.67 92.23 93.75
database EER (%) 11.2 8.0 10.1 8.3 6.7 7.4 6.1 53 4.4
Established accuracy (%) 90.32 91.01 91.01 92.15 9221 9455 95.38 96.38 98.89
database EER (%) 8.3 53 6.7 5.7 6.4 4.5 4.1 2.5 1.3

(a) On the traditional database
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(b) On the newly established database

Figure 7: The DET curves of different methods.

Furthermore, we also test the performances of different al-
gorithms on the index, middle and ring fingers, respectively
(Results not shown here). Overall the performance on index
fingers is the best and the performance on ring fingers is the
worst. This is because the index finger is more flexible and eas-
ier to place in a relatively fixed place in the acquisition process,
so the process result of which is better than that of the middle
and ring fingers.

5.2. Experiments on a Popular Public Database

In order to evaluate the proposed PWBDC method more
widely, we also conduct experiments on a popular public database
HKPU-FV [5]. This database contains 6264 images from 156
volunteers collected in two sessions from April 2009 to March
2010 using a self-designed device, with 93% of all participants
younger than 30 years old. The index finger and the middle fin-
ger of each person’s left hand are each taken six times in one
session.

To compare with the results of different methods with that
in [5] and analyze the experiment results more thoroughly, we
conduct experiments on the index fingers and the middle fingers
separately, as with the experiments in [5]. In each experiment,
six finger vein images acquired in the first session are used to
build the training set, and the rest six finger vein images ac-
quired in the second session are used to build the test set. All
the experiments are done on Matlab 2015b with 4GB RAM.

‘Even Gabor with Morphological’ (EGM) in Table 3 and
Table 4 is the best method for finger vein recognition with both
sessions in [5]. As Table 3 and Table 4 show, similar to the case
in our established database, the overall identification accuracy
of LMC, LDC, PDC, PWDC and PWBDC on the HKPU-FV
database increases in order and the overall EER of them de-
creases in order, which verifies again the effectiveness of PWBDC
and its three new components. Moreover, the performance of



Table 3: Accuracy of methods on different fingers.

accuracy (%) Index Middle Index&Middle
RLT 95.1 95.0 94.2
LMC 94.4 95.9 94.8
EGM 98.1 94.1 96.1
LDC 95.9 95.9 95.5
PDC 98.4 99.1 98.7
PWDC 98.2 99.1 98.7
PWBDC 98.6 98.9 98.7

Table 4: EER of methods on different fingers.

EER (%) Index Middle Index&Middle
RLT 7.3 7.8 7.4
LMC 5.6 5.2 5.1
EGM 33 7.0 49
LDC 4.9 4.6 4.6
DeepVein 1.9 4.1 3.1
CNN+FCN 1.7 35 2.7
PDC 2.6 2.2 2.4
PWDC 2.5 2.3 24
PWBDC 2.4 2.3 2.2

our proposed PWBDC method is better than that of EGM. Be-
sides these conventional methods, two other deep learning-based
methods, namely DeepVein [3] and CNN+FCN [18], are car-
ried out on the HKPU-FV database in our experiments and the
results of EER are shown in Table 4. Compared with these two
deep learning-based methods, our proposed approach achieves
lower overall EER indicating better performance.

Fig. 8 shows the DET curves of different methods on this
database. The HKPU-FV database is a public database with
traditionally captured finger veins. However, even in this case,
the proposed PWBDC method still performs excellently on it,
which may indicate PWBDC'’s stronger ability of feature ex-
traction and better strategies in score calculation.

Nevertheless, despite the extraordinary performance of the
proposed PWBDC method on our newly established database
and the public HKPU-FV database, we have found that failed
identification cases may happen under extreme conditions such
as very distinct light variation and large finger rotation. To
tackle such cases is one of our future work.

6. Conclusions and Future Work

In this paper, for finger-based biometric identification, we
have proposed a new system to acquire dorsal finger vein and
texture in a single image, and we have proposed a new hy-
brid feature and its extraction method called PWBDC. We have
showed that the proposed system and feature are not only storage-
saving, but more importantly identification-effective. We have
also established a new database of such hybrid images of 210
finger samples. Experimental results have demonstrated that
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Figure 8: The DET curves of algorithms on the HKPU-FV database.

the proposed PWBDC method performed superiorly on both
the newly established database of hybrid images and a popu-
lar public database of traditional finger vein images, better than
many established and state-of-the-art methods.

Our future work includes: firstly, we will expand further
our established database; secondly, we shall tackle the failure
cases of PWBDC, starting from developing an enhanced pre-
processing method; thirdly, some other modalities could also
be added into the identification process, such as fingerprint or
finger knuckle texture, to make an even more reliable and ro-
bust finger identification system; finally, a novel feature extrac-
tion method, called multi-orientation weighted symmetric local
graph structure for finger veins, was proposed in [1], which cur-
rently cannot be applied to our data because of the added finger
dorsal textures; it would be interesting to investigate the exten-
sion of this method to our hybrid finger pattern.

7. Acknowledgment

This work was partly supported by the National Natural Sci-
ence Foundation of China (N0.61471216 and No.61771276),
and the Special Foundation for the Development of Strategic
Emerging Industries of Shenzhen (No.JCYJ20170817161845824,

No.JCYJ20170307153940960 and No.JCYJ20150831192224146).

References

[1] Dong,S., Yang, J., Chen, Y., Wang, C., Zhang, X., Park, D.S.: Finger vein
recognition based on multi-orientation weighted symmetric local graph
structure. KSII Transactions on Internet & Information Systems 9(10)
(2015)

[2] Hashimoto, J.: Finger vein authentication technology and its future. In:
VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on,
pp. 5-8. IEEE (2006)

[3] Hong, H.G., Lee, M.B., Park, K.R.: Convolutional neural network-based
finger-vein recognition using NIR image sensors. Sensors 17(6), 1297
(2017)

[4] Kong, AK., Zhang, D.: Competitive coding scheme for palmprint veri-
fication. In: Pattern Recognition, 2004. ICPR 2004. Proceedings of the
17th International Conference on, vol. 1, pp. 520-523. IEEE (2004)



[3]
[6]
[7]
[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

(25]

[26]

(27]

Kumar, A., Zhou, Y.: Human identification using finger images. IEEE
Transactions on Image Processing 21(4), 2228-2244 (2012)

Kumar, A., Zhou, Y.: Human identification using finger images. IEEE
Transactions on image processing 21(4), 2228-2244 (2012)

Lee, E.C., Jung, H., Kim, D.: New finger biometric method using near
infrared imaging. Sensors 11(3), 2319-2333 (2011)

Lee, T.S.: Image representation using 2d gabor wavelets. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 18(10), 959-971
(1996)

Lee, Y., Khalil-Hani, M., Bakhteri, R.: FPGA-based finger vein biomet-
ric system with adaptive illumination for better image acquisition. In:
Computer Applications and Industrial Electronics (ISCAIE), 2012 IEEE
Symposium on, pp. 107-112. IEEE (2012)

Martin, A., Doddington, G., Kamm, T., Ordowski, M., Przybocki, M.:
The DET curve in assessment of detection task performance. Tech. rep.,
DTIC Document (1997)

Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein
patterns based on repeated line tracking and its application to personal
identification. Machine Vision and Applications 15(4), 194-203 (2004)
Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns
using maximum curvature points in image profiles. IEICE TRANSAC-
TIONS on Information and Systems 90(8), 1185-1194 (2007)

Miura N Nagasaka A, M.T.: Feature extraction of finger-vein patterns
based on repeated line tracking and its application to personal identifica-
tion. Machine Vision and Applications (2004)

Mobarakeh, A.K., Rizi, S.M., Khaniabadi, S.M., Bagheri, M.A., Nazari,
S.: Applying weighted k-nearest centroid neighbor as classifier to im-
prove the finger vein recognition performance. In: Control System, Com-
puting and Engineering (ICCSCE), 2012 IEEE International Conference
on, pp. 56-59. IEEE (2012)

Mulyono, D., Jinn, H.S.: A study of finger vein biometric for personal
identification. In: Biometrics and Security Technologies, 2008. ISBAST
2008. International Symposium on, pp. 1-8. IEEE (2008)

Ojala, T., Pietikaeinen, M., Maeenpaeae, T.: Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7),
971-987 (2002)

Qin, H., El-Yacoubi, M.A.: Deep representation based feature extraction
and recovering for finger-vein verification. IEEE Transactions on Infor-
mation Forensics and Security (2017)

Qin, H., El-Yacoubi, M.A.: Deep representation-based feature extraction
and recovering for finger-vein verification. IEEE Transactions on Infor-
mation Forensics and Security 12(8), 1816-1829 (2017)

Rosdi, B.A., Shing, C.W., Suandi, S.A.: Finger vein recognition using
local line binary pattern. Sensors 11(12), 11,357-11,371 (2011)

Varun, C., Lalith, K.B.S., Bhatnagar, S., et al.: Finger vein authentication
using local ternary co-occurrence pattern feature descriptor. In: Inventive
Computation Technologies (ICICT), International Conference on, vol. 3,
pp. 1-6. IEEE (2016)

Vega, A.P., Travieso, C.M., Alonso, J.B.: Biometric personal identifica-
tion system based on patterns created by finger veins. In: Bio-inspired
Intelligence (IWOBI), 2014 International Work Conference on, pp. 65—
70. IEEE (2014)

Veluchamy, S., Karlmarx, L.: A system for multimodal biometric recog-
nition based on finger knuckle and finger vein using feature level fusion
and k-svm classifier. IET Biometrics (2016)

Vlachos, M., Dermatas, E.: Finger vein segmentation from infrared
images based on a modified separable Mumford Shah model and lo-
cal entropy thresholding. Computational and mathematical methods in
medicine 2015 (2015)

Wu, J.D., Liu, C.T.: Finger-vein pattern identification using principal
component analysis and the neural network technique. Expert Systems
with Applications 38(5), 5423-5427 (2011)

Wu, J.D., Liu, C.T.: Finger-vein pattern identification using SVM and
neural network technique. Expert Systems with Applications 38(11),
14,284-14,289 (2011)

Xu, J., Jianjiang, C., Dingyu, X., Feng, P.: Near infrared vein image
acquisition system based on image quality assessment. In: Electronics,
Communications and Control (ICECC), 2011 International Conference
on, pp. 922-925. IEEE (2011)

Yang, J., Shi, Y.: Finger—vein ROI localization and vein ridge enhance-

10

[28]

[29]

[30]

[31]

[32]

[33]

ment. Pattern Recognition Letters 33(12), 1569-1579 (2012)

Yang, J., Shi, Y.: Towards finger-vein image restoration and enhancement
for finger-vein recognition. Information Sciences 268, 33-52 (2014)
Yang, J., Zhang, X.: Feature-level fusion of fingerprint and finger-vein
for personal identification. Pattern Recognition Letters 33(5), 623—-628
(2012)

Yang, L., Yang, G., Yin, Y., Xi, X.: Exploring soft biometric trait with
finger vein recognition. Neurocomputing 135, 218-228 (2014)

Yang, W., Huang, X., Zhou, F,, Liao, Q.: Comparative competitive coding
for personal identification by using finger vein and finger dorsal texture
fusion. Information Sciences 268, 20-32 (2014)

Yang, W., Ji, W., Liao, Q.: Significance of being unique from finger pat-
terns: Exploring hybrid near-infrared finger vein and finger dorsal pat-
terns in verifying human identities. In: Chinese Conference on Biometric
Recognition, pp. 529-535. Springer (2015)

Yang, W., Rao, Q., Liao, Q.: Personal identification for single sample us-
ing finger vein location and direction coding. In: Hand-Based Biometrics
(ICHB), 2011 International Conference on, pp. 1-6. IEEE (2011)



